Схема регулятора оборотов: Подборка схем регулятора оборотов двигателя постоянного тока

Подборка схем регулятора оборотов двигателя постоянного тока

Главная » Бытовая электроника » Подборка схем регулятора оборотов двигателя постоянного тока

Регулировать скорость вращения маломощного коллекторного электродвигателя можно путем подключения постоянного резистора в цепь питания. Но данный вариант создает очень низкий КПД, и к тому же отсутствует возможность осуществлять плавное изменение скорости вращения. Ниже рассмотрим четыре варианта регулятора оборотов двигателя постоянного тока лишенных этих недостатков.

 Данные схемы так же можно с успехом использовать и для изменения яркости свечения 12 вольтовых ламп накаливания.

Описание 4 схем регуляторов оборотов электродвигателя

Первая схема

ШИМ регулятор оборотов двигателя. На однопереходном транзисторе VT1 (КТ117А) реализован генератор пилообразного напряжения (частота 150 Гц). Операционный усилитель DA1 (К140УД7) играет роль компаратора, создающего ШИМ, поступающий на базу транзистора VT2 (КТ817Б).

Изменение скорости вращения двигателя осуществляется с помощью переменного резистора R5, который меняет длительность импульсов. Так как, амплитуда ШИМ постоянна и равна напряжению питания электродвигателя, двигатель не остановиться даже при очень малой скорости вращения.

Вторая схема

Эта схема схожа с предыдущей, но в роли задающего генератора использован дополнительный операционный усилитель DA1 (К140УД7).

Этот ОУ работает как генератор напряжения вырабатывающий импульсы треугольной формы и имеющий частоту 500 Гц. Переменным резистором R7 выставляют частоту вращения электродвигателя.

Третья схема

Эта схема своеобразная и построена на популярном таймере NE555. Задающий генератор работает с частотой 500 Гц. Ширину импульсов, а следовательно, и частоту вращения двигателя возможно изменять в диапазоне от 2 % до 98 %.

Четвертая схема

Слабым местом во всех вышеприведенных схемах является то, что в них нет элемента стабилизации частоты вращения при увеличении или уменьшении нагрузки на валу двигателя. Решить эту проблему можно с помощью следующей схемы:

Тестер транзисторов / ESR-метр / генератор

Многофункциональный прибор для проверки транзисторов, диодов, тиристоров…

Подробнее

Как и большинство похожих регуляторов, схема этого регулятора имеет задающий генератор напряжения, вырабатывающий импульсы треугольной формы, частота которых составляет 2 кГц. Суть схемы — присутствие положительной обратной связи (ПОС) через элементы R12, R11, VD1, C2 и DA1.4, которая стабилизирует частоту вращения вала электродвигателя при увеличении или уменьшении нагрузки.

При налаживании схемы с определенным двигателем, сопротивлением R12 выбирают такую глубину ПОС, при которой еще не происходят автоколебания частоты вращения при изменении нагрузки.

Детали регуляторов вращения электродвигателей

В данных схемах можно использовать следующие детали: транзистор КТ817Б — КТ815, КТ805; КТ117А можно заменить на КТ117Б-Г или 2N2646; Операционный усилитель К140УД7 на К140УД6, КР544УД1, ТL071, TL081; таймер NE555 — С555, КР1006ВИ1; микросхему TL074 — TL064, TL084, LM324.

При использовании более мощной нагрузки, ключевой транзистор КТ817 можно поменять мощным полевым транзистором, например, IRF3905 или ему подобным.

Блок питания 0…30В/3A

Набор для сборки регулируемого блока питания…

Подробнее




Categories Бытовая электроника Tags Двигатель

Отправить сообщение об ошибке.

Надежная схема регулятора оборотов коллекторного двигателя без потерь мощности с обратной связью по Тахо

Для выполнения многих видов работ по обработке древесины, металла или других типов материалов требуются не высокие скорости, а хорошее тяговое усилие. Правильнее будет сказать – момент. Именно благодаря ему запланированную работу можно выполнить качественно и с минимальными потерями мощности. Для этого в качестве приводного устройства применяются моторы постоянного тока (или коллекторные), в которых выпрямление питающего напряжения осуществляется самим агрегатом. Тогда для достижения требуемых рабочих характеристик необходима регулировка оборотов коллекторного двигателя без потери мощности.

  • Особенности регулирования скорости
  • Обобщенная схема регулятора
  • Разновидности коллекторных двигателей
  • Конструкция мотора
  • Выбор схемы
  • Особенности конструкции
  • Принцип управления

Особенности регулирования скорости

Важно знать, что каждый двигатель при вращении потребляет не только активную, но и реактивную мощность. При этом уровень реактивной мощности будет больше, что связано с характером нагрузки. В данном случае задачей конструирования устройств регулирования скорости вращения коллекторных двигателей является уменьшение разницы между активной и реактивной мощностями. Поэтому подобные преобразователи будут довольно сложными, и самостоятельно их изготовить непросто.

Своими руками можно сконструировать лишь некоторое подобие регулятора, но говорить о сохранении мощности не стоит. Что такое мощность? С точки зрения электрических показателей, это произведение потребляемого тока, умноженное на напряжение. Результат даст некое значение, которое включает активную и реактивную составляющие. Для выделения только активной, то есть сведения потерь к нулю, необходимо изменить характер нагрузки на активную. Такими характеристиками обладают только полупроводниковые резисторы.

Следовательно, необходимо индуктивность заменить на резистор, но это невозможно, потому что двигатель превратится во что-то иное и явно не станет приводить что-либо в движение. Задача регулирования без потерь заключается в том, чтобы сохранить момент, а не мощность: она все равно будет изменяться. Справиться с подобной задачей сможет только преобразователь, который будет управлять скоростью за счёт изменения длительности импульса открытия тиристоров или силовых транзисторов.

Обобщенная схема регулятора

Примером регулятора, который осуществляет принцип управления мотором без потерь мощности, можно рассмотреть тиристорный преобразователь. Это пропорционально-интегральные схемы с обратной связью, которые обеспечивают жесткое регулирование характеристик, начиная от разгона-торможения и заканчивая реверсом. Самым эффективным является импульсно-фазовое управление: частота следования импульсов отпирания синхронизируется с частотой сети. Это позволяет сохранять момент без роста потерь в реактивной составляющей. Обобщенную схему можно представить несколькими блоками:

  • силовой управляемый выпрямитель;
  • блок управления выпрямителем или схема импульсно-фазового регулирования;
  • обратная связь по тахогенератору;
  • блок регулирования тока в обмотках двигателя.

Перед тем как углубляться в более точное устройство и принцип регулирования, необходимо определиться с типом коллекторного двигателя. От этого будет зависеть схема управления его рабочими характеристиками.

Разновидности коллекторных двигателей

Известно, как минимум, два типа коллекторных двигателей. К первому относятся устройства с якорем и обмоткой возбуждения на статоре. Ко второму можно отнести приспособления с якорем и постоянными магнитами. Также необходимо определиться

, для каких целей требуется сконструировать регулятор:

  • Если необходимо регулировать простым движением (например, вращением шлифовального камня или сверлением), то обороты потребуется изменять в пределах от какого-то минимального значения, неравному нулю, — до максимального. Примерный показатель: от 1000 до 3000 об/мин. Для этого подойдёт упрощённая схема на 1 тиристоре или на паре транзисторов.
  • Если необходимо управлять скоростью от 0 до максимума, тогда придется использовать полноценные схемы преобразователей с обратной связью и жёсткими характеристиками регулирования. Обычно у мастеров-самоучек или любителей оказываются именно коллекторные двигатели с обмоткой возбуждения и тахогенератором. Таким мотором является агрегат, используемый в любой современной стиральной машине и часто выходящий из строя. Поэтому рассмотрим принцип управления именно этим двигателем, изучив его устройство более подробно.

Конструкция мотора

Конструктивно двигатель от стиральной машины «Индезит» несложен, но при проектировании регулятора управления его скоростью необходимо учесть параметры. Моторы могут быть различными по характеристикам, из-за чего будет изменяться и управление. Также учитывается режим работы, от чего будет зависеть конструкция преобразователя. Конструктивно коллекторный мотор состоит из следующих компонентов:

  • Якорь, на нем имеется обмотка, уложенная в пазы сердечника.
  • Коллектор, механический выпрямитель переменного напряжения сети, посредством которого оно передается на обмотку.
  • Статор с обмоткой возбуждения. Он необходим для создания постоянного магнитного поля, в котором будет вращаться якорь.

При увеличении тока в цепи двигателя, включенного по стандартной схеме, обмотка возбуждения включена последовательно с якорем.

При таком включении мы увеличиваем и магнитное поле, воздействующее на якорь, что позволяет добиться линейности характеристик. Если поле будет неизменным, то получить хорошую динамику сложнее, не говоря уже о больших потерях мощности. Такие двигатели лучше использовать на низких скоростях, так как ими удобнее управлять на малых дискретных перемещениях.

Организовав раздельное управление возбуждением и якорем, можно добиться высокой точности позиционирования вала двигателя, но схема управления тогда существенно усложнится. Поэтому подробнее рассмотрим регулятор, который позволяет изменять скорость вращения от 0 до максимальной величины, но без позиционирования. Это может пригодиться, если из двигателя от стиральной машины будет изготавливаться полноценный сверлильный станок с возможностью нарезания резьбы.

Выбор схемы

Выяснив все условия, при которых будет использоваться мотор, можно начинать изготавливать регулятор оборотов коллекторного двигателя. Начинать стоит с выбора подходящей схемы, которая обеспечит вас всеми необходимыми характеристиками и возможностями. Следует вспомнить их:

  • Регулирование скорости от 0 до максимума.
  • Обеспечение хорошего крутящего момента на низких скоростях.
  • Плавность регулирования оборотов.

Рассматривая множество схем в интернете, можно сделать вывод о том, что мало кто занимается созданием подобных «агрегатов». Это связано со сложностью принципа управления, так как необходимо организовать регулирование многих параметров. Угол открытия тиристоров, длительность импульса управления, время разгона-торможения, скорость нарастания момента. Данными функциями занимается схема на контроллере, выполняющая сложные интегральные вычисления и преобразования. Рассмотрим одну из схем, которая пользуется популярностью у мастеров-самоучек или тех, кто просто хочет с пользой применить старый двигатель от стиральной машины.

Всем нашим критериям отвечает схема управления скоростью вращения коллекторным двигателем, собранная на специализированной микросхеме TDA 1085. Это полностью готовый драйвер для управления моторами, которые позволяют регулировать скорость от 0 до максимального значения, обеспечивая поддержание момента за счёт использования тахогенератора.

Особенности конструкции

Микросхема оснащена всем необходимым для осуществления качественного управления двигателем в различных скоростных режимах, начиная от торможения, заканчивая разгоном и вращением с максимальной скоростью. Поэтому ее использование намного упрощает конструкцию, одновременно делая весь

привод универсальным, так как можно выбирать любые обороты с неизменным моментом на валу и использовать не только в качестве привода конвейерной ленты или сверлильного станка, но и для перемещения стола.

Характеристики микросхемы можно найти на официальном сайте. Мы укажем основные особенности, которые потребуются для конструирования преобразователя. К ним можно отнести: интегрированную схему преобразования частоты в напряжение, генератор разгона, устройство плавного пуска, блок обработки сигналов Тахо, модуль ограничения тока и прочее. Как видите, схема оснащена рядом защит, которые обеспечат стабильность функционирования регулятора в разных режимах.

На рисунке ниже изображена типовая схема включения микросхемы.

Схема несложная, поэтому вполне воспроизводима своими руками. Есть некоторые особенности, к которым относятся предельные значения и способ регулирования скоростью:

  • Максимальный ток в обмотках двигателя не должен превышать 10 А (при условии той комплектации, которая представлена на схеме). Если применить симистор с большим прямым током, то мощность может быть выше. Учтите, что потребуется изменить сопротивление в цепи обратной связи в меньшую сторону, а также индуктивность шунта.
  • Максимальная скорость вращения достигается 3200 об/мин. Эта характеристика зависит от типа двигателя. Схема может управлять моторами до 16 тыс. об/мин.
  • Время разгона до максимальной скорости достигает 1 секунды.
  • Нормальный разгон обеспечивается за 10 секунд от 800 до 1300 об/мин.
  • На двигателе использован 8-полюсный тахогенератор с максимальным выходным напряжением на 6000 об/мин 30 В. То есть он должен выдавать 8мВ на 1 об/мин. При 15000 об/мин на нем должно быть напряжение 12 В.
  • Для управления двигателем используется симистор на 15А и предельным напряжением 600 В.

Если потребуется организовать реверс двигателя, то для этого придется дополнить схему пускателем, который будет переключать направление обмотки возбуждения. Также потребуется схема контроля нулевых оборотов, чтобы давать разрешение на реверс. На рисунке не указано.

Принцип управления

При задании скорости вращения вала двигателя резистором в цепи вывода 5 на выходе формируется последовательность импульсов для отпирания симистора на определенную величину угла. Интенсивность оборотов отслеживается по тахогенератору, что происходит в цифровом формате. Драйвер преобразует полученные импульсы в аналоговое напряжение, из-за чего скорость вала стабилизируется на едином значении, независимо от нагрузки. Если напряжение с тахогенератора изменится, то внутренний регулятор увеличит уровень выходного сигнала управления симистора, что приведёт к повышению скорости.

Микросхема может управлять двумя линейными ускорениями, позволяющими добиваться требуемой от двигателя динамики. Одно из них устанавливается по Ramp 6 вывод схемы. Данный регулятор используется самими производителями стиральных машин, поэтому он обладает всеми преимуществами для того, чтобы быть использованным в бытовых целях. Это обеспечивается благодаря наличию следующих блоков:

  • Стабилизатор напряжения для обеспечения нормальной работы схемы управления. Он реализован по выводам 9, 10.
  • Схема контроля скорости вращения. Реализована по выводам МС 4, 11, 12. При необходимости регулятор можно перевести на аналоговый датчик, тогда выводы 8 и 12 объединяются.
  • Блок пусковых импульсов. Он реализован по выводам 1, 2, 13, 14, 15. Выполняет регулировку длительности импульсов управления, задержку, формирования их из постоянного напряжения и калибровку.
  • Устройство генерации напряжения пилообразной формы. Выводы 5, 6 и 7. Он используется для регулирования скорости согласно заданному значению.
  • Схема усилителя управления. Вывод 16. Позволяет отрегулировать разницу между заданной и фактической скоростью.
  • Устройство ограничения тока по выводу 3. При повышении напряжения на нем происходит уменьшение угла отпирания симистора.

Использование подобной схемы обеспечивает полноценное управление коллекторным мотором в любых режимах. Благодаря принудительному регулированию ускорения можно добиваться необходимой скорости разгона до заданной частоты вращения. Такой регулятор можно применять для всех современных двигателей от стиралок, используемых в иных целях.

Цепи управления скоростью двигателя

Киран Салим

В отличие от двигателей переменного тока, двигатели постоянного тока очень просты в использовании, поскольку их скорость можно легко изменить. Итак, … Читать далее

Киран Салим

В отличие от двигателей переменного тока, двигатели постоянного тока очень просты в использовании, поскольку их скорость можно легко изменить. Итак, … Читать далее

Фарва Навази

Введение В наших различных статьях мы обсуждали управление скоростью двигателя постоянного тока. Итак, мы подумали обсудить … Читать далее

Фарва Навази

Широтно-импульсная модуляция (ШИМ) – это метод, используемый для управления током, позволяющий управлять / контролировать скорость … Читать далее

Фарва Навази

Введение Технология двигателей постоянного тока значительно продвинулась вперед и в настоящее время широко используется в различных секторах. Один из … Читать далее

Киран Салим

Контроллер двигателя постоянного тока — это любое устройство, которое может управлять положением, скоростью или крутящим моментом двигателя постоянного тока… Читать далее

Киран Салим

В этом уроке мы собираемся сделать «схему контроллера шагового двигателя». Когда хочется конкретного … Читать далее

by Wajid Hussain

Введение Сервобиблиотека – отличная библиотека для управления серводвигателями. В этой статье вы найдете «Arduino Servo … Читать далее

Фарва Навази

Введение Машины постоянного тока широко используются в различных коммерческих и промышленных секторах, как и двигатели постоянного тока. И, … Читать далее

Фарва Навази

Машины постоянного тока

широко используются в различных коммерческих и промышленных секторах, как и двигатели постоянного тока. И, в … Читать дальше

by Farwah Nawazi

Введение Устройства постоянного тока широко используются во многих коммерческих и промышленных секторах, как и двигатели постоянного тока. Более того, … Читать далее

Киран Салим

В этом уроке мы собираемся создать «ШИМ-схему управления скоростью двигателя постоянного тока». Двигатель постоянного тока … Читать далее

by Farwah Nawazi

Введение Двигатели постоянного тока имеют широкий спектр применения в электронных устройствах. Если вы специалист по электрике или электронике… Читать далее

Фарва Навази

Введение Если вы живете в жарком регионе, вы знаете о важности охлаждающих вентиляторов и их преимуществах. … Читать далее

Фарва Навази

Введение Шаговый двигатель широко используется в электромеханических устройствах и схемах, он имеет ротор … Читать далее

Фарва Навази

Введение Двигатели постоянного тока используются во многих электронных устройствах. Он широко используется в промышленности, автоматизации и … Читать далее

Цепь управления скоростью двигателя постоянного тока

В этом уроке мы демонстрируем проект схемы управления скоростью двигателя постоянного тока. Главной особенностью DC Motor Speed ​​CONTROL является схема ШИМ на основе микросхемы 555, предназначенная для получения переменного напряжения по сравнению с постоянным напряжением. Вот процедура для PWM.

Возьмите простую схему, как показано на следующей схеме. Эта схема проста в изготовлении и требует нескольких недорогих компонентов, включая источник питания, двигатель постоянного тока, ИС таймера 555, резисторы, конденсатор, потенциометр, переключатель и ИС L293D.

Купить на Amazon

Аппаратный компонент

Следующие компоненты необходимы для изготовления схемы управления скоростью двигателя постоянного тока0132 Qty 1 555 Timer IC 1 2 Capacitor 10nF 1 3 Switch – 1 4 Diode IN4148 2 5 potentiometer 100K -220K 1 6 IC L293D 1 7 Small DC motor – 1 8 Power supply 9V 1 9 Resistor 1K, 100R 1

Схема контактов микросхемы NE555

Подробное описание схемы контактов, размеров и технических характеристик см. в техническом описании таймера 555

Схема управления скоростью двигателя постоянного тока

Описание работы

555 ТАЙМЕР IC выдает ШИМ-сигнал, зависящий от коэффициента сопротивления потенциометра для источника питания, с коэффициентом заполнения. Конденсатор должен здесь нагружать и разгружать другой набор резисторов из-за потенциометра и пары диодов. Таким образом, конденсатор заряжается и разряжается за разное время. Выход высокий во время загрузки конденсатора и низкий во время разгрузки конденсатора. Мы различаемся высоким выходным сигналом, низким временем вывода и, следовательно, ШИМ.

ШИМ таймера подается на сигнальный вывод h-моста L239D для управления генератором постоянного тока. Мы получаем другое среднеквадратичное напряжение на клеммах и обороты в минуту с разным коэффициентом ШИМ. ШИМ таймера подключен ко второму сигнальному выводу для изменения направления вращения.

Области применения и использование

Двигатели постоянного тока подходят для многих применений, включая конвейеры, поворотные столы и другие приложения, требующие динамической скорости и постоянного и низкоскоростного крутящего момента.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *