от одноразовых к многократно используемым
Почему места обычных солевых и щелочных батареек все чаще занимают перезаряжаемые электрические аккумуляторы? Всегда ли возможна такая замена, и как сделать правильный выбор? На эти и подобные вопросы отвечает данный материал.
Батареи электропитания образуются из отдельных элементов, соединенных, например, последовательно или параллельно, с целью получения более высокого напряжения или тока. Но поскольку в повседневной жизни термин “батарейка” часто относится даже к одному такому элементу, не будем здесь нарушать это разговорное допущение. Более важно, что существуют гальванические, или первичные (одноразовые), и вторичные (перезаряжаемые) элементы питания, называемые также электрическими аккумуляторами. Все они являются химическими источниками тока, то есть, химические реакции, протекающие в них, используются для получения электрической энергии.
Весьма упрощенно химический источник тока можно представить как два электрода (катод и анод) из разных металлов, разделенных жидким или твердым электролитом.
Нас окружает множество электронных устройств, для функционирования которых необходимы элементы питания: это пульты дистанционного управления и ручные фонарики, игровые консоли и электронные будильники, беспроводные клавиатуры и компьютерные мышки, электробритвы и радиоуправляемые игрушки и т.п. Наиболее часто в подобных девайсах используются одноразовые солевые или щелочные, более известные, как алкалиновые (alkaline — щелочной), гальванические элементы с напряжением 1,5 В. Среди основных преимуществ этих батареек обычно называют их длительное хранение и возможность использования без предварительной подготовки (зарядки) сразу после покупки.
Однако, чем больше становится электронных гаджетов c одноразовыми элементами питания, тем чаще приходится сталкиваться с ситуацией, когда батарейки внезапно “сели” (истощились) и их нужно срочно менять на новые.
В то же время массовое потребление одноразовых элементов питания наносит серьезный удар по экологии. Трудно представить, но на игровые консоли у заядлого геймера за год уходит более сотни щелочных батареек. А ведь они требуют отдельной утилизации и выкидывать вместе с общим мусором их нельзя. Куда сдавать батарейки на переработку можно узнать, например, на сайте экологического движения “Раздельный Сбор”.
Всего один перезаряжаемый аккумулятор, благодаря многократному использованию, сможет заменить несколько сотен одноразовых элементов питания. При этом купить его оказывается дешевле, чем замещаемое им количество даже самых недорогих солевых батареек. Вот, например, каждая из моделей аккумуляторов Panasonic Eneloop и Varta Endless готова стать эквивалентом более двух тысяч последовательно заменяемых щелочных элементов. Действительно, 1,5-вольтовые солевые и алкалиновые батарейки во многих случаях можно без проблем поменять на никель-металлгидридные аккумуляторы (NiMH), выполненные в таком же форм-факторе — АА или ААА.
Напомним, что в ходу оказались обозначения элементов питания вовсе не по европейскому (IEC) или американскому (ANSI) стандартам. Так, щелочной элемент питания LR6 (IEC) или 24A (ANSI) чаще называют просто AA, а свою очередь, LR03 (IEC) или 15A (ANSI) – AAA. Причем в обиходе АА – это “пальчиковая” (диаметр 14,5 мм, высота 50,5 мм), а ААА — “мизинчиковая” (диаметр 10,5 мм, высота 44,5 мм) батарейка.
Но вернемся к вопросу замены одноразовых солевых и щелочных элементов никель-металлгидридными аккумуляторами, которые при всех своих недостатках, в отличие от никель-кадмиевых (NiCd), практически не страдают от “эффекта памяти”, уменьшающего емкость, и не наносят такого вреда окружающей среде. Эти довольно неприхотливые источники питания, выпущенные в том числе и под знакомыми “батарейными” брендами Duracell, Energizer, GP, могут использоваться во многих электронных устройствах с разным уровнем энергопотребления. К сожалению, приборы с высоким порогом отключения, например, некоторые фотоаппараты, светодиодные вспышки, электронные весы, детские игрушки и т.п. очень капризны к уровню питающего напряжения и замещение на никель-металлгидридные аккумуляторы могут попросту “не понять”.
Короче говоря, рабочее напряжение никель-металлгидридного аккумулятора (1,2 В) они воспримут как истощение элемента питания и перестанут работать.Помимо щелочных гальванических (одноразовых!) элементов встречаются и перезаряжаемые алкалиновые аккумуляторы, также обеспечивающие выходное напряжение 1,5 В. В этом случае надпись Alkaline на корпусе обязательно будет дополнена пояснением — Rechargeable. Особая конструкция корпуса перезаряжаемых марганцево-щелочных элементов RAM (Rechargeable Alkaline Manganese), первое поколение которых появилось еще в 1970-х годах, допускает пару десятков полных перезарядок, причем количество возможных циклов зависит от уровня разряда.
В особо заманчивых предложениях на площадке AliExpress речь сегодня идет о нескольких сотнях, а, например, у алкалиновых аккумуляторов под брендом Okoman вообще до тысячи циклов. Правда, похоже, что посчитано просто количество небольших “доливов” в разряженные менее чем на четверть щелочные элементы питания. Кстати, для их перезаряда необходимо применять специальные или профессиональные устройства. Алкалиновые аккумуляторы отличаются высокой степенью готовности, поскольку продаются уже заряженными, а с учетом низкого саморазряда до первого использования могут храниться довольно долго. Их рекомендуют использовать в устройствах с низким потреблением тока и периодическим характером использования, таких, например, как пульты ДУ для аудио- и видеоаппаратуры, беспроводные телефоны, погодные станции, компьютерные мышки, беспроводные клавиатуры и т.п.
А вот никель-цинковые элементы (NiZn), как часто утверждают их производители, объединяют лучшие свойства никель-металлгидридных и никель-кадмиевых аккумуляторов. Высокое номинальное напряжение (1,6 В), максимальный ресурс до 500 перезарядок и способность отдавать большие разрядные токи делают их хорошим выбором при замене одноразовых щелочных батареек, особенно когда нужны высокая мощность и продолжительность работы, например, в фотоаппаратуре, радиоуправляемых игрушках, электробритвах и т.
Для регенерации NiZn-аккумуляторов требуются специальные зарядные устройства. Следует также иметь в виду появление высокого выходного напряжения (1,85-1,9 В) на клеммах сразу после полной зарядки. Отсутствие в составе NiZn-аккумуляторов токсичных веществ (по сравнению, например, c никель-кадмиевыми) предполагает более простой процесс их утилизации. В качестве примеров перезаряжаемых элементов питания с такой “электрохимией” можно привести продукцию под брендами Ansmann, BPI, Melasta, PkCell и российским Robiton.
Заменой одноразовых солевых и щелочных батареек для случая, когда требуется выходное напряжение в 1,5 В, могут также стать литий-ионные (Li-Ion) аккумуляторы, выгодно отличающиеся значительной емкостью и низким саморазрядом.
Поскольку номинальное напряжение таких батарей обычно составляет 3,7 В, то, чтобы получить на выходе заветные 1,5 В, конструкцию аккумулятора дополняют встроенным импульсным преобразователем одного уровня постоянного напряжения в другой, более низкий (Step-Down DC/DC Converter). Кроме того, реализуют температурную защиту, а также функции предохранения от пониженного напряжения и короткого замыкания.Примером базовой микросхемы в данном случае может служить чип LC9200D (выше на фото, справа от него — другие аналогичные решения).
Для зарядки таких аккумуляторов обычно предлагается фирменное устройство, которое подключается буквально к любому USB-порту, поскольку максимальное значение тока не превышает возможности данного интерфейса (500 мА). В качестве примеров здесь можно привести подобные элементы питания под торговыми марками Jugee и Palo.
А вот 1,5-вольтовые литий-ионные аккумуляторы под брендом Kentli существенно отличаются конструктивно – у них для заряда базового элемента питания на 3,7 В используется дополнительный контакт на торце, отделенный от анода (1,5 В) изолирующим кольцом. Разумеется, фирменное зарядное устройство для аккумуляторов АА/ААА получило дугообразные положительные электроды, которые могут соприкасаться только с дополнительными кольцевыми контактными площадками на таких аккумуляторах.
Некоторые производители перезаряжаемых элементов питания пошли еще дальше. В частности, они дополнили конструкцию литий-полимерных аккумуляторов в форм-факторах АА и ААА не только импульсным преобразователем напряжения до 1,5 В, но и схемой управления питанием. Отдельное зарядное устройство в этом случае уже не требуется.
Если на боковой поверхности корпуса типа AAA хватает места только для установки microUSB-розетки, то вот для АА-аккумуляторов используется либо такое же решение, либо вилка USB-разъема (тип А) встраивается прямо в торец корпуса со стороны анода. Так что в последнем случае для соединения с USB-розеткой на источнике тока кабель уже не нужен. Правда, к ней нельзя сразу подключить до четырех аккумуляторов, как в случае использования microUSB-разъема.
У аккумуляторов Blackube в форм-факторе АА размещение разъема microUSB на торце у анода даже запатентовано.
А вот, например, для перезаряжаемых батареек под брендами Fuvaly и Twharf и разъем оказался не нужен. Они вполне обходятся USB-кабелем с магнитными контактами-защелками, ну а на крайний случай дополняются зарядным устройством на 5 В.
Мерам безопасности у выпускаемых элементов питания крупные производители стараются уделять особое внимание. Вот, например, в аккумуляторах ARB-L14-1600U под брендом Fenix, помимо клапанов сброса давления, предусмотрено несколько уровней защиты.
Рассмотренные выше литий-ионные и литий-полимерные аккумуляторы отличаются практически неизменным напряжением (1,5 В) на протяжении всего цикла разряда. Помимо упомянутых брендов, подобную продукцию можно найти под торговыми марками EBL, GTF, Power Etinesan, Sorbo, Znter и т.д.
Вот, например, под российским брендом “Даджет” предлагаются литий-полимерные аккумуляторы на 1,5 В в форм-факторах AA и AAA, емкостью 1200 мА*ч и 400 мА*ч, соответственно, которые обещают до 500 циклов перезарядки. При этом полное время регенерации, которое можно отслеживать по светодиодному индикатору, составляет час-полтора. OEM-производителем аккумуляторов является компания Wenzhou Sorbo Technology (бренд Sorbo).
Надо иметь в виду, что литий-ионные и полимерные аккумуляторы, по сравнению с другими типами перезаряжаемых элементов, трудно назвать дешевыми, а уж дополненные электроникой и встроенными разъемами, тем более.
Так, под сингапурским брендом Rombica в России продаются литий-полимерные аккумуляторы на 1,5 В, выполненные к тому же в стильно оформленных корпусах AA (1300 мА*ч) и AAA (400 мА*ч). Конструкции у них одинаковые – оба корпуса с розетками microUSB на боковой поверхности рядом с анодом, поэтому в комплекте с каждым аккумулятором идет свой кабель microUSB-USB. Получившие имена собственные элементы питания Neo X2 и Neo X3 обещают аж до 3 тысяч циклов перезаряда. Вот и цена на эти аккумуляторы в разы выше, чем, например, на элементы питания “Даджет”.
Кстати, покупая импортные аккумуляторы, первым делом стоит посетить сайты российских дилеров, поскольку цены у них иной раз оказываются даже ниже, чем в зарубежных интернет-магазинах.
Итак, можно резюмировать, что одноразовые 1,5-вольтовые солевые и щелочные батарейки в форм-факторах АА и ААА чаще всего без особых проблем можно заменить на никель-металлгидридные аккумуляторы таких же типоразмеров. Но вот в отдельных случаях стоит рассмотреть более дорогие решения на базе никель-цинковых (1,6 В), а также литий-ионных и литий-полимерных аккумуляторов (1,5 В), в том числе с прямой зарядкой от USB-портов. И не забывайте, пожалуйста, об экологии!
Тяговые литий-ионные батареи Tesla, что внутри?
Тяговые литий-ионные батареи Tesla, что внутри?
Тесла Моторс является создателем поистине революционных экомобилей – электромобилей, которые не только выпускаются серийно, но и обладают уникальными показателями, позволяющими их использование буквально ежедневно. Сегодня мы заглянем внутрь тяговой аккумуляторной батареи электромобиля Tesla Model S, узнаем, как она устроена и раскроем магию успеха этой аккумуляторной батареи.
Поставка батарей клиентам осуществляется в таких вот ящиках из ОСБ.
Самая крупная и дорогая запчасть для Tesla Model S – блок тяговой аккумуляторной батареи.
Блок тяговой аккумуляторной батареи находится в днище автомобиля (по сути это пол электромобиля – машины), за счёт чего Tesla Model S имеет очень низкий центр тяжести и великолепную управляемость. Батарея крепится к силовой части кузова при помощи мощных кронштейнов (см. фото ниже) или выполняет роль силовой – несущей части кузова авто.
По данным североамериканского Агентства по защите окружающей US Environmental Protection Agency (EPA) одного заряда тяговой литий-ионной аккумуляторной батареи Tesla с номинальным напряжением 400В DC, ёмкостью 85 кВт·ч хватает на 265 миль (426 км) пробега, что позволяет преодолевать наибольшую дистанцию среди подобных электромобилей. При этом от 0 до 100 км/ч подобная машина разгоняется всего за 4,4 секунды.
Секрет успеха Tesla Model S – это высокоэффективные цилиндрические литий-ионные батареи высокой энергоёмкости, поставщик базовых элементов известная японская фирма Panasonic. Вокруг этих батарей ходит немало слухов.
Один из них – это не влезай, убьёт!
Один из владельцев и энтузиастов Tesla Model S из США решил полностью разобрать использованную батарею для Tesla Model S энергоёмкостью 85 кВт·ч, чтобы детально изучить её конструкцию. Кстати, её стоимость, как запчасти, в США составляет 12 000 USD.
Сверху блок батареи размещено тепло и звука изоляционное покрытие, которое закрывается толстой полиэтиленовой плёнкой. Снимаем это покрытие, в виде ковра и готовимся к разборке. Для работы с батареей необходимо иметь изолированный инструмент и пользоваться резиновой обувью, и резиновыми защитными перчатками.
Батарея Tesla. Разбираем!
Тяговая аккумуляторная батарея Tesla (блок тяговой аккумуляторной батареи) состоит 16 батарейных модулей, каждый номинальным напряжением 25В (исполнение батарейного блока – IP56). Шестнадцать батарейных модулей соединены последовательно в батарею с номинальным напряжением 400В. Каждый батарейный модуль состоит из 444 элементов (аккумуляторов) 18650 Panasonic (вес одного аккумулятора 46 г), которые соединены по схеме 6s74p (6 элементов последовательно и 74 таких групп параллельно). Всего в тяговой аккумуляторной батарее Tesla – 7104 таких элементов (аккумуляторов). Батарея защищена от окружающей среды посредством использования металлического корпуса с алюминиевой крышкой. На внутренней стороне общей алюминиевой крышки имеются пластиковые накладки, в виде плёнки. Общая алюминиевая крышка крепится винтами с металлическими, и резиновыми прокладками, которые герметизируются, дополнительно силиконовым герметиком. Блок тяговой аккумуляторной батареи разделен на 14 отсеков, в каждом отсеке размещен батарейный модуль. В каждом отсеке сверху и снизу батарейных модулей размещены листы прессованной слюды. Листы слюды обеспечивают хорошую изоляцию батареи электрическую, и тепловую от корпуса электромобиля. Отдельно спереди батареи под своей крышкой размещены два таких же батарейных модуля. В каждом из 16 батарейных модулей имеется встроенный блок BMU, который соединён с общей системой BMS, которая управляет работой, следит за параметрами, а так же обеспечивает защиту всей аккумуляторной батареи. Общие выводные клеммы (терминал) находится в задней части блока тяговой батареи.
До того, как полностью её разобрать, было замерено электрическое напряжение (оно составили около 313,8В), что говорит о том, что батарея разряжена, но находится в рабочем состоянии.
Батарейные модули отличается высокой плотностью элементов (аккумуляторов) 18650 Panasonic, которые там размещены и точностью подгонки деталей. Весь процесс сборки на заводе Tesla проходит в полностью стерильном помещении, с использованием роботов, выдерживается даже определенная температура и влажность.
Каждый батарейный модуль состоит из 444 элементов (аккумуляторов), которые по виду крайне схожих с простыми пальчиковыми батарейками – это литий-ионные цилиндрические аккумуляторы 18650, производства компании Panasonic. Энергоемкость каждого батарейного модуля из таких элементов составляет 5,3 кВт·ч.
В аккумуляторах 18650 Panasonic положительный электрод – графит, а отрицательный электрод – никель, кобальт и оксид алюминия.
Тяговая аккумуляторная батарея Tesla весит 540 кг, а её размеры равны 210 см в длину, 150 см в ширину, и 15 см в толщину. Количество энергии (5,3 кВт·ч), вырабатываемой всего одним блоком (из 16 батарейных модулей), равно количеству, производимому сотней аккумуляторов от 100 портативных компьютеров. К минусу каждого элемента (аккумулятора) в качестве соединителя припаяна проволочка (внешний токовый ограничитель), который при превышении тока (или при коротком замыкании) сгорает и защищает цепь, при этом не работает только группа (из 6 аккумуляторов), в которой был этот элемент, все остальные аккумуляторы продолжают работать.
Тяговая аккумуляторная батарея Tesla охлаждается и подогревается с помощью жидкостной системы на основе антифриза.
При сборке своих батарей Тесла применяет элементы (аккумуляторы), произведенные компанией Panasonic в различных странах, таких, как Индия, КНР и Мексика. Финальная доработка и размещение в корпус батарейного отсека, производятся в Соединенных Штатах. Компания Tesla предоставляет гарантийной обслуживание своей продукции (в том числе и аккумуляторной батареи) на срок до 8 лет.
На фото (сверху) элементы – аккумуляторы 18650 Panasonic (завальцовка у элементов со стороны плюса «+»).
Таким образом, мы узнали, из чего состоит тяговая аккумуляторная батарея Tesla Model S.
Благодарим за внимание!
Технология и компоненты в аккумуляторных батареях для электромобилей
Аккумуляторы являются подходящими системами хранения энергии в различных типах автомобилей, но они играют ключевую роль в случае электромобилей. Технологии, отвечающие за их работу, постоянно развиваются, и различные типы аккумуляторов отличаются друг от друга по применению и техническим характеристикам. Узнайте о типах батарей, используемых в электромобилях.
Технологии в аккумуляторах электромобилей – основные типы аккумуляторов
Аккумуляторы электромобилей (EV) отличаются используемыми в них химическим элементам. В основном мы различаем литий-ионные, никель-металл-гидридные и свинцово-кислотные аккумуляторы. Выбрать оптимальную аккумуляторную батарею для электромобиля сложно, потому что индивидуальные решения хорошо работают в разных ситуациях.
Ниже вы найдете краткое описание различных типов аккумуляторов, используемых в автомобильной промышленности, а также их применение.
Литий-ионная батарея – большая популярность и высокая производительность.
Несомненно, именно литий-ионные батареи в последние годы внесли наибольший вклад в передовое развитие электроэнергетического сектора. Они характеризуются эффективностью, низкой ценой и высоким уровнем производительности по отношению к весу элементов. Это лучшие батареи, если учитывать три параметра: оптимизация размера и веса батареи, соотношение массы к количеству накопленной энергии и выгодная цена. Литий-ионные батареи также можно найти во многих бытовых устройствах, таких как телефоны, компьютеры или пылесосы.
Никель-металл-гидридная аккумуляторная батарея – для специализированного использования.
Аккумуляторы являются подходящими системами хранения энергии в различных транспортных средствах, но они играют ключевую роль в случае электромобилей.Это специальные аккумуляторные элементы, которые достаточно редки по своим химическим и физическим параметрам. Водород является сырьем, требующим особого контроля. Батарея теряет энергию, когда она не используется, но этот недостаток компенсируется длительным сроком службы элементов. Никель-металл-гидридные батареи используются в специализированных устройствах, таких как медицинское оборудование. Решения такого рода характеризуются высокой себестоимостью производства.
Свинцово-кислотные аккумуляторы – низкий срок службы и впечатляющая мощность.
Аккумуляторы этой категории характеризуются отличными параметрами мощности. В электромобиле, однако, приходится делать ставку на решение, которое характеризуется высокой эффективностью даже при низких температурах, где такие батареи работают плохо. Несмотря на то, что стандартные аккумуляторные батареи автомобиля также фиксируют снижение таких условий, свинцово-кислотные элементы демонстрируют худшие показатели в этом аспекте. К их преимуществам относятся низкая себестоимость и надежность.
Суперконденсаторы – поддержка производительности аккумуляторов.
Суперконденсаторы или ультраконденсаторы в первую очередь используются для обеспечения необходимого электропитания при временном отключении электричества. По этой причине они также полезны в электромобилях, где их роль заключается в обеспечении достаточной мощности, когда требуется больше энергии.
Многие электромобили используют аккумуляторные батареи – несколько элементов одновременно. Сочетая возможности суперконденсаторов с литий-ионными и никель-металлогидридными аккумуляторами, можно добиться лучших результатов, чем при использовании одиночных элементов. В настоящее время в автомобильном секторе доминируют литий-ионные аккумуляторы, чаще всего используемые в электромобилях.
Литиево-ионные или никель-металл-гидридные аккумуляторы – как выбрать лучшую батарею для электромобиля?
Из-за описанных выше параметров литий-ионная батарея используется чаще всего. Более того, технология, связанная с этими элементами, все еще развивается. Ведущие поставщики работают над тем, чтобы разрушить дальнейшие барьеры на пути к ассортименту транспортных средств, которые используют данный тип батареи в качестве источника энергии.
Никель-металл-гидридные батареи используются в гибридных транспортных средствах. Сектор EV редко использует свинцово-кислотные батареи, хотя они иногда дополняют литий-ионные батареи. На современном этапе развития эта технология еще не готова к использованию в более широком масштабе.
Суперконденсаторы находят свое место и в электромобилях, позволяя увеличить мощность автомобиля при высокой нагрузке. Благодаря этому во время разгона может поддерживаться стандартный аккумулятор. Суперконденсаторы также очень важны для рекуперативного торможения, что позволяет преобразовывать тепловую энергию в электричество.
См. также: Срок службы аккумуляторных батарей электромобилей – когда следует заменять аккумуляторные батареи электромобилей?
Какой тип батареи используется в электромобилях?
Использование конкретного элемента зависит не только от его производительности, но и от типа транспортного средства. В случае полностью электрических транспортных средств и plug-in гибридов, которые могут быть заряжены от розетки, мы, как правило, имеем дело с литий-ионными батареями. Традиционные гибриды используют в основном никель-гидридные батареи. Больший вклад двигателя внутреннего сгорания в работу транспортного средства позволяет обеспечить более высокий уровень потерь энергии, когда он не используется. Следует также помнить, что в случае гибридных автомобилей элементы долгое время не работают при максимальной нагрузке.
Электромобили намного эффективнее, чем автомобили внутреннего сгорания. Стоимость электроэнергии в большинстве случаев значительно ниже, чем цена топлива, необходимого для проезда по аналогичному маршруту. Наиболее эффективные решения на рынке в настоящее время позволяют преодолевать расстояние около 500 км на одной зарядке.
Партнерство с компанией “KNAUF AUTOMOTIVE” – получение всесторонней поддержки опытного партнера.
Для того чтобы обеспечить оптимальные решения в области электрических батарей, вы не можете работать в одиночку. В течение многих лет компания Knauf Industries работает над внедрением инноваций в автомобильной промышленности. Благодаря командам инженеров, работающих в лаборатории ID Lab, нам удалось превратить полученные за эти годы знания в потенциал на будущее. Мы разрабатываем новые решения по изоляции автомобильных аккумуляторов, компонентов аккумуляторов, электрических кабелей, фитингов для холодильных труб и сепараторов аккумуляторных элементов.
Мы хотим предоставлять нашим партнерам аккумуляторные батареи с гораздо более высокими эксплуатационными характеристиками и оптимизированным сроком службы. Чтобы предотвратить выход аккумулятора из строя при слишком низких или слишком высоких температурах, важно помнить об изоляции, которая при этом не будет существенно влиять на вес автомобиля. Наш взгляд на будущее сочетает в себе электромобильность с экологией – мы предлагаем такие материалы, как пенополипропилен и пенополистирол, которые на 100% пригодны для вторичной переработки. Мы приглашаем к сотрудничеству предприятия автомобильной отрасли, которые хотят всесторонне поддерживать свое производство.
Хотите получить более специализированные знания?
Аккумуляторные батарейки
Аккумуляторы ЗУБР “DYNAMIC PRO” никель-металлгидридные (NiMH)Никель-металлогидридные (Ni-MH) аккумуляторы – обладают большей мощностью, поэтому их рекомендуется выбирать для питания устройств с большим энергопотреблением. Их главным преимуществом является возможность подзаряжать аккумулятор в любой момент цикла.
Адаптеры для аккумуляторов, тип АААдаптеры позволяют использовать аккумуляторы и батарейки стандартного размера (тип AA), вместо элементов питания C и D. Благодаря многократному использованию аккумуляторов адаптер полностью окупается уже после своего 2-кратного применения!
Как выбрать аккумуляторы АА и ААА
В данном обзоре рассмотрены критерии выбора аккумуляторов АА и ААА. Для того, чтобы понять, какие аккумуляторные батарейки АА и ААА лучше, применительно к различным условиям эксплуатации, в этой статье подробно разбираются технические характеристики и потребительские качества каждого вида аккумуляторов.
Размеры пальчиковых и мизинчиковых аккумуляторов АА и ААА
Аккумуляторы АА и ААА между собой очень похожи, как по назначению и химическому составу, так и по форме. Аккумуляторные батарейки ААА являются, как бы, уменьшенной копией аккумуляторов АА. Из-за формы и размеров аккумуляторные элементы AA получили название “пальчиковые”, а AAA – “мизинчиковые”.
Элемент | Диаметр D, мм | Длина L, мм |
---|---|---|
АА (пальчиковый) | 14.5 | 50.5 |
ААА (мизинчиковый) | 10.5 | 44.5 |
Виды аккумуляторов АА и ААА: Ni-Cd, Ni-MH, Li-Ion
По химическому составу аккумуляторы АА и ААА подразделяются на следующие виды:
- Никель-кадмиевые (Ni-Cd).
- Никель-металл-гидридные (Ni-MH).
- Литий-ионные (Li-Ion).
- Никель-кадмиевые аккумуляторы AA/AAA характеризуются относительно небольшой ёмкостью. Они имеют “эффект памяти” – уменьшение реальной емкости из-за неполного разряда перед началом процесса зарядки. При нарушении герметичности корпуса Ni-Cd акб токсичны, поэтому они экологически не безопасны.
- Ni-MH аккумуляторы АА и ААА отличаются от Ni-Cd повышенной ёмкостью, экологически безопасны, менее подвержены эффекту памяти. В настоящее время никель-металл-гидридные элементы заменили никель-кадмиевые практически везде.
- Литий-ионные аккумуляторы АА Li-Ion 1.5v содержат в одном корпусе два устройства: литиевую аккумуляторную батарейку с напряжением 3.7v и преобразователь с 3.7 Вольт на 1.5 Вольта. Такие Li-Ion акб производятся специально для замены батарейкам AA и AAA 1.5v и характеризуются отсутствием эффекта памяти.
Li-Ion аккумулятор AA 1.5v Fenix с USB портом для зарядки.
Характеристики аккумуляторов АА и ААА
Основные характеристики аккумуляторов АА и ААА:
- емкость,
- напряжение,
- ток разряда,
- ток заряда,
- срок службы,
- число циклов заряд-разряд,
- величина саморазряда,
- эффект памяти,
- вес.
- Для аккумуляторов АА и ААА емкость – это характеристика, показывающая длительность разряда при заданном токе. Емкость измеряется в миллиАмпер*часах (мАч) или, в английском обозначении, в milliAmper*hour (mAh).
- Напряжение – это разность электрических потенциалов между плюсовым и минусовым электродами аккумулятора ААА или АА. Напряжение измеряется в Вольтах (Volt) и обозначается буквой “В” (V). Напряжение в процессе разряда уменьшается. После полного заряда напряжение составляет около 1.4 Вольта, а в конце разряда примерно 1.2 Вольта
- Ток – это направленное движение заряженных частиц, который измеряется в миллиАмперах (мА) или, в зарубежном обозначении, milliAmper (mA). Максимальный ток разряда аккумулятора АА и ААА такой, который еще не приводит к повреждению или ухудшению характеристик элемента.
- Ток заряда – максимальный допустимый при зарядке аккумуляторного элемента AA или AAA.
- Срок службы аккумулятора АА или ААА показывает, сколько лет он может эксплуатироваться при условии не превышения допустимого числа циклов заряд-разряд.
- Число допустимых циклов заряд-разряд аккумуляторных батареек AA и AAA определяется снижением их ёмкости не более, чем на 10 процентов.
- Саморазряд – эффект снижения заряда с течением времени, даже если аккумуляторный элемент не использовался. Величина саморазряда показывает на сколько процентов за месяц разрядится аккумулятор. Серии с низким саморазрядом имеют обозначение LSD (Low Self-Discharge).
- Эффект памяти – снижение максимальной емкости аккумулятора АА или ААА за счет неполного разряда перед началом зарядки. Величина эффекта памяти зависит от химического состава элемента.
- Вес никель-металл-гидридного Ni-MH аккумулятора АА примерно 30 граммов, ААА – около 14 граммов.
Аккумулятор Ni MH 1.2v AAA Westinghouse 1000 mAh.
Сравнение аккумуляторов АА и ААА с батарейками: преимущества и недостатки
Аккумуляторы АА и ААА имеют следующие преимущества перед одноразовыми батарейками аналогичных размеров:
- Многократность использования.
- Лучшее соотношение стоимости к количеству часов работы.
- Работа в устройствах с подзарядкой.
- Аккумуляторы могут многократно заряжаться и использоваться, что является их основным преимуществом перед одноразовыми батарейками АА и ААА.
- При интенсивной работе, каждый час использования перезаряжаемых аккумуляторных батареек АА или ААА обходится пользователю значительно дешевле, чем при применении одноразовых.
- Аккумуляторы АА и ААА, в отличие от одноразовых батареек, могут использоваться в устройствах с подзарядкой, например, в садовых светильниках с солнечной батареей. Другим примером таких устройств может быть фонарик с динамо-машиной.
Аккумулятор GP AAA 650 mAh для садового светильника на солнечных батареях.
Батарейки АА и ААА в сравнении с аккумуляторными элементами имеют следующие преимущества:
- Более низкая цена.
- Более высокое напряжение.
- Отсутствие необходимости заряжать.
- Более низкая цена батареек АА и AAA весьма относительна. Одноразовые батарейки повторно использовать нельзя. Поэтому уже после трех – пяти раз использования перезаряжаемых батареек (аккумуляторов) их применение становится экономически выгодным.
- Более высокое напряжение АА/ААА батареек 1.5 Вольта обычно не принципиально для большинства устройств, которые также хорошо работают и от заряженных до 1.4 Вольта аккумуляторов AA/AAA. Для гаджетов, которые критичны к напряжению питания, выпускаются 1.5 Вольтовые литиевые аккумуляторы AA.
- Одноразовые АА и ААА батарейки имеют заряд электричества непосредственно с завода и не требуют зарядки перед использованием.
Алкалиновая батарейка GP LR03/AAA.
Что лучше, аккумуляторы AA/AAA или батарейки: рекомендации по использованию
В большинстве применений лучше использовать аккумуляторы AA и AAA , чем неперезаряжаемые батарейки аналогичных форматов. Однако, есть случаи, когда потребителю более выгодно применять одноразовые AAA/AA батарейки:
- Очень низкое энергопотребление устройством.
- Редкое кратковременное использование питаемого устройства.
- Критичность устройства к напряжению питания.
- Отсутствие возможности зарядить аккумуляторы.
- Примером низкого энергопотребления могут служить настольные часы с жидко-кристаллическим экраном. В них отлично работают батарейки AA/AAA.
- К кратковременно используемым можно отнести, например, пульты дистанционного управления устройствами, включаемые время от времени.
- Некоторые приборы при замене батареек на аккумуляторы AA/AAA могут подавать сигнал или выдавать надпись о пониженном напряжении. В таком случае лучше использовать одноразовые батарейки или литиевые аккумуляторы AA/AAA 1.5v.
- Отсутствие возможности зарядить аккумуляторы скорее относится к нештатной ситуации. Например, у вас во время экскурсии разрядились аккумуляторы, а зарядка находится в отеле. Чтобы решить проблему “здесь и сейчас”, можно купить недорогие батарейки АА/ААА, а аккумуляторы зарядить уже при первой возможности.
Ведущие производители аккумуляторов AA и AAA
Наиболее популярны у пользователей аккумуляторы AA и AAA следующих производителей:
- Panasonic.
- Duracell.
- GP.
- Varta.
- Robiton.
- Японская компания “Panasonic” хорошо известна пользователям, как производитель качественной электроники и мини-АТС. Лучшими аккумуляторами компании Панасоник является серия Panasonic Eneloop AA и AAA.
- Торговая марка “Дюраселл” занимает почти четверть рынка портативных элементов питания. Срок службы аккумуляторов Duracell AA и AAA составляет до 5 лет.
- Гонконгская фирма “GP Batteries International Limited” выпускает качественные и недорогие батарейки и аккумуляторы GP AA и AAA .
- Бренд “Варта” более известен как производитель автомобильных аккумуляторных батарей. В настоящее время этот бренд поделен на три части. Производством аккумуляторов Varta AA и AAA занимается американская корпорация “Spectrum Brands”.
- Бренд “Робитон” – российская торговая марка. Аккумуляторные батарейки Robiton AA и AAA занимают своё достойное место среди элементов питания для электроники.
Какие аккумуляторы АА и ААА выбрать
Критерий выбора лучшей модели аккумулятора АА и ААА определяется тем, какие потребительские качества для вас наиболее важны:
- Наибольшая емкость.
- Наименьший саморазряд.
- Наибольшее число циклов заряд-разряд.
- Наилучшее соотношение цена/ёмкость.
Лучшие аккумуляторы АА и ААА по номинациям
- Наибольшая емкость.
Лучшие аккумуляторы ААА по емкости – Robiton 1100 mAh R03/AAA-2BL, а в формате АА – Robiton 2850 mAh R6/AA-2BL.
Мизинчиковые аккумуляторы для фонарика Robiton R03/AAA 1100 mAh.
Пальчиковые аккумуляторы для фотоаппарата Robiton R6/AA 2850 mAh.
- Наименьший саморазряд.
Наименьшим саморазрядом при высокой ёмкости обладают аккумуляторы Panasonic 750 mAh R03/AAA Eneloop-2BL (зав. код BK-4MCCE/2BE) и Panasonic 1900mAh R6/AA Eneloop-4BL. Аккумуляторные батарейки этой серии относятся к категории с низким саморазрядом (LSD) и идут заряженными уже с завода, так как за 5 лет хранения они теряют всего 30% заряда и остаются заряженными на 70%.
ААА аккумуляторы для пульта телевизора Panasonic R03/AAA Eneloop 750 mAh.
Аккумуляторы с низким саморазрядом АА Eneloop Panasonic 1900mAh.
- Наибольшее число циклов заряд-разряд.
До 3000 циклов заряда и разряда обеспечивают элементы модели Panasonic 550 mAh R03/AAA Eneloop Lite-2BL (зав. код BK-4LCCE/2BE). Среди аккумуляторов АА – Panasonic 1900 mAh R6/AA Eneloop-2BL, которые имеют 2100 циклов заряд/разряд. Эти модели также относятся к категории LSD и заряжены еще на заводе.
Мизинчиковые аккумуляторы для радиотелефонов Panasonic AAA Eneloop Lite.
Пальчиковые аккумуляторы для радиотелефонов Panasonic Eneloop AA 1900 mAh.
- Наилучшее соотношение цена/ёмкость.
Самое лучшее соотношение цена/емкость получится при покупке ААА аккумуляторов Robiton 1050 mAh R03/AAA RTU-2BL, к тому же обладающих низким саморазрядом.
Аккумулятор для пульта радиоуправления Robiton R03 AAA 1050 mAh.
В номинации “лучшее соотношение цена/емкость” среди аккумуляторов АА побеждает уже представленный выше – Panasonic 1900 mAh R6/AA Eneloop-4BL.
Таким образом, в рейтинге самым лучшим аккумулятором АА оказался Panasonic Eneloop R6/AA 1900 mAh, победивший сразу в трех номинациях.
Купить аккумуляторы ААА/АА и мизинчиковые/пальчиковые аккумуляторные батарейки с доставкой в ваш город Вы можете в нашем интернет-магазине “Вольта”, который предлагает широкий ассортимент аккумуляторных батареек для электроники и бытовой техники. В интернет-магазине представлены лучшие модели ведущих производителей: GP, Robiton, Panasonic, Varta,LG, Duracell, Westinghouse, Fujitsu, ZMI. Выбрать и купить аккумулятор АА и ААА для радиотелефона, фонарика, пульта ДУ с необходимыми характеристиками очень легко, используя фотографии и точные описания для каждой модели.
Производители аккумуляторов готовятся к бурному росту
Самый яркий и известный пример взрывного роста в секторе литийионных аккумуляторов – «гигафабрика» Tesla в Неваде стоимостью $5 млрд. По оценкам инвестбанка Berenberg, сектору потребуется на порядок увеличить выпуск аккумуляторов, чтобы их мощности выросли с 68 ГВт ч в 2016 г. до 1165 ГВт ч 10 лет спустя.
Восполнить недостающее предложение стремятся прежде всего азиатские компании. Несмотря на всю шумиху вокруг завода Tesla, американская компания аккумуляторы не производит – за это отвечает ее партнер Panasonic (у японской компании есть и самостоятельные проекты в этой области). Другие лидеры отрасли – LG Chem и Samsung SDI, публичные подразделения южнокорейских конгломератов. Они поставляют аккумуляторы Nissan, GM, BMW и другим производителям электромобилей. Наступают на пятки корейцам две китайские компании, намеренные осуществлять поставки на быстрорастущем рынке электромобилей Китая. Это BYD, которая сама выпускает электромобили (8,25% акций компании принадлежат Berkshire Hathaway Уоррена Баффетта), а также Contemporary Amperex Technology, планирующая привлечь $2 млрд во время IPO в Шэньчжэне в ближайшие месяцы. По оценке Bloomberg New Energy Finance (BNEF), получив деньги на расширение производства, Contemporary Amperex станет крупнейшим производителем литийионных аккумуляторов в мире.
Эти пять азиатских компаний и еще ряд производителей намерены к 2021 г. построить 24 завода общей мощностью выпускаемых аккумуляторов 332 ГВт ч (см. график), указывает Саймон Мурз, управляющий директор Benchmark Mineral Intelligence.
Инвесторы, которые хотят заработать на новой золотой лихорадке, должны ориентироваться на долгосрочную перспективу, пишет The Wall Street Journal (WSJ). Капитальные затраты в секторе велики, тогда как заключаемые контракты предполагают очень маленькую маржу.
Томас Эдисон об аккумуляторах
«Аккумулятор, по моему мнению, – это дешевая сенсация, рассчитанная на привлечение покупателей, механизм обмана публики акционерными компаниями».
Вести переговоры с автопроизводителями тоже будет трудно. За пределами Китая автомобильная отрасль очень консолидирована, и регуляторы оказывают сильное давление на автокомпании, стимулируя продажи электромобилей, даже если пока это невыгодно. Франция и Великобритания запретили продажи машин с двигателем внутреннего сгорания с 2040 г. Поэтому выход для автопроизводителей – добиться снижения цен на аккумуляторы.
Помочь производителям батарей должны новые крупные заводы. «Экономия на масштабах здесь имеет решающее значение», – цитирует Bloomberg аналитика BNEF Колина Маккеррачера. Аккумуляторы уже подешевели втрое с $1000 за 1 кВт ч в 2010 г. По оценке BNEF, электромобили смогут составить конкуренцию машинам с двигателем внутреннего сгорания, когда стоимость аккумулятора снизится до $100 за 1 кВт ч. Это может произойти к 2026 г., считают эксперты, выступавшие на этой неделе на конференции BNEF.
Инвесторам стоит обратить внимание и на другой участок цепочки поставок, отмечает WSJ. Самый ценный компонент аккумулятора – катод, поэтому его производители должны быть в определенной степени защищены от сокращения расходов. Японская Sumitomo Metal Mining поставляет Panasonic катоды для аккумуляторов Tesla, остальную часть рынка занимают бельгийская Umicore и еще несколько компаний. Акции Sumitomo и Umicore с начала года выросли на 38,8 и 42,3%.
Растут и акции компаний, поставляющих другие компоненты для аккумуляторов, в частности японского производителя литиевой соли Stella Chemifa и чилийской Sociedad Quimica y Minera de Chile, которая добывает химикаты и металлы, включая литий. Акции японской Tanaka Chemical, которая выпускает и продает компоненты для аккумуляторов, с мая выросли втрое.
Риск для компаний, работающих с литийионными аккумуляторами, заключается в том, что их может вытеснить принципиально новая технология. В этом году 95-летний профессор Техасского университета Джон Гуденаф, считающийся создателем литийионных батарей, провозгласил прорыв в области твердотельных аккумуляторов. Toyota Motor рассчитывает начать коммерческие продажи машин с твердотельными аккумуляторами в начале 2020-х гг., а британская Dyson намерена через три года выпустить электромобиль с таким аккумулятором. Она объявила об инвестиции 1 млрд фунтов ($1,3 млрд) в разработку машины и аналогичной суммы – аккумулятора.
|
Что такое аккумулятор? – learn.sparkfun.com
Добавлено в избранное Любимый 22Введение
Батареи представляют собой совокупность одной или нескольких ячеек, химические реакции которых создают поток электронов в цепи.Все батареи состоят из трех основных компонентов: анода (сторона «-»), катода (сторона «+») и какого-то электролита (вещество, которое химически реагирует с анодом и катодом).
Когда анод и катод батареи подключены к цепи, между анодом и электролитом происходит химическая реакция. Эта реакция заставляет электроны проходить через цепь и возвращаться к катоду, где происходит другая химическая реакция.Когда материал катода или анода расходуется или больше не может быть использован в реакции, батарея не может производить электричество. В этот момент ваша батарея «разряжена».
Батареи, которые необходимо выбросить после использования, известны как первичные батареи . Батареи, которые можно перезаряжать, называются вторичными батареями и .
Литий-полимерные батареи, например, можно заряжать
Без батарей ваш квадрокоптер пришлось бы привязать к стене, вам пришлось бы вручную провернуть машину, а ваш контроллер Xbox должен был бы быть постоянно подключен к розетке (как в старые добрые времена).Батареи позволяют хранить потенциальную электрическую энергию в переносном контейнере.
Батареи бывают разных форм, размеров и химического состава.
Изобретение современной батареи часто приписывают Алессандро Вольта. На самом деле все началось с удивительной аварии, связанной с рассечением лягушки.
Что вы узнаете
В этом руководстве будут подробно рассмотрены следующие темы:
- Как были изобретены батарейки
- Из каких частей состоит аккумулятор
- Как работает аккумулятор
- Общие термины, используемые для описания батарей
- Различные способы использования батарей в схемах
Рекомендуемая литература
Есть несколько концепций, с которыми вы, возможно, захотите ознакомиться перед тем, как начать читать это руководство:
Хотите изучить различные батареи?
Мы вас прикрыли!
Щелочная батарея 9 В
В наличии PRT-10218Это ваши стандартные щелочные батарейки на 9 вольт от Rayovac.Даже не думайте пытаться перезарядить их. Используйте их остроумие…
1История
Термин Батарея
Исторически, слово «батарея» использовалось для описания «серии подобных объектов, сгруппированных вместе для выполнения определенной функции», как в артиллерийской батарее. В 1749 году Бенджамин Франклин впервые использовал этот термин для описания серии конденсаторов, которые он соединил вместе для своих экспериментов с электричеством.Позже этот термин будет использоваться для любых электрохимических ячеек, связанных вместе с целью обеспечения электроэнергии.
Батарея «конденсаторов» Лейденской банки, соединенная вместе(Изображение любезно предоставлено Альвинруном из Wikimedia Commons)
Изобретение батареи
В один роковой день 1780 года итальянский физик, врач, биолог и философ Луиджи Гальвани рассекал лягушку, прикрепленную к медному крючку. Когда он коснулся лягушачьей лапы железным отростком, нога дернулась.Гальвани предположил, что энергия исходит от самой ноги, но его коллега-ученый Алессандро Вольта считал иначе.
Вольта предположил, что импульсы лягушачьей лапки на самом деле вызываются разными металлами, пропитанными жидкостью. Он повторил эксперимент, используя ткань, пропитанную рассолом, вместо трупа лягушки, что привело к аналогичному напряжению. Вольта опубликовал свои открытия в 1791 году, а позже создал первую батарею, гальваническую батарею, в 1800 году.
Гальваническая свая состояла из пакета цинковых и медных пластин, разделенных тканью, пропитанной рассолом
СтопкаVolta страдала от двух основных проблем: вес стопки вызывал утечку электролита из ткани, а особые химические свойства компонентов приводили к очень короткому сроку службы (около часа).Следующие двести лет уйдут на совершенствование конструкции Вольты и решение этих проблем.
Исправления для гальванической сваи
Уильям Круикшанк из Шотландии решил проблему утечки, положив гальваническую батарею на бок, чтобы сформировать «желобную батарею».
Лотковая батарея решила проблему утечки гальванической сваи
Вторая проблема, короткий срок службы, была вызвана разложением цинка из-за примесей и скоплением пузырьков водорода на меди.В 1835 году Уильям Стерджен обнаружил, что обработка цинка ртутью предотвратит разложение.
Британский химик Джон Фредерик Дэниелл использовал второй электролит, который вступал в реакцию с водородом, предотвращая накопление на медном катоде. Батарея Даниэля с двумя электролитами, известная как «ячейка Даниэля», станет очень популярным решением для обеспечения энергией зарождающихся телеграфных сетей.
Коллекция ячеек Даниэля из 1836 г.
Первая аккумуляторная батарея
В 1859 году французский физик Гастон Планте создал батарею из двух прокатанных листов свинца, погруженных в серную кислоту.Путем реверсирования электрического тока через батарею химия вернется в исходное состояние, создав первую перезаряжаемую батарею.
Позже, в 1881 году, Камилла Альфонса Фор улучшила конструкцию Планте, превратив листы свинца в пластины. Эта новая конструкция упростила производство аккумуляторов, и свинцово-кислотные аккумуляторы получили широкое распространение в автомобилях.
-> Дизайн обычного «автомобильного аккумулятора» существует уже более 100 лет
(Изображение любезно предоставлено Эмилианом Робертом Виколом из Wikimedia Commons) <-
Сухая камера
До конца 1800-х годов электролит в батареях был в жидком состоянии.Это сделало транспортировку аккумуляторов очень осторожным делом, и большинство аккумуляторов никогда не предназначались для перемещения после подключения к цепи.
В 1866 году Жорж Лекланше создал батарею с цинковым анодом, катодом из диоксида марганца и раствором хлорида аммония в качестве электролита. Хотя электролит в элементе Лекланше был все еще жидким, химический состав батареи оказался важным шагом для изобретения сухого элемента.
Карл Гасснер придумал, как создать электролитную пасту из хлорида аммония и гипса.Он запатентовал новую батарею с «сухими элементами» в 1886 году в Германии.
Эти новые сухие элементы, обычно называемые «угольно-цинковыми батареями», производились массово и пользовались огромной популярностью до конца 1950-х годов. Хотя углерод не используется в химической реакции, он играет важную роль в качестве электрического проводника в углеродно-цинковой батарее.
-> 3V угольно-цинковая батарея 1960-х годов
(Изображение любезно предоставлено PhFabre из Wikimedia Commons) <-
В 1950-х годах Льюис Урри, Пол Марсал и Карл Кордеш из компании Union Carbide (позже известной как «Eveready», а затем «Energizer») заменили электролит хлористого аммония щелочным веществом на основе химического состава батареи, сформулированного Вальдемаром. Юнгнер в 1899 году.Щелочные батареи с сухими элементами могут содержать больше энергии, чем угольно-цинковые батареи того же размера, и имеют более длительный срок хранения.
Щелочные батареи приобрели популярность в 1960-х годах, обогнали угольно-цинковые батареи и с тех пор стали стандартными первичными элементами для потребительского использования.
-> Щелочные батареи бывают разных форм и размеров
(Изображение любезно предоставлено Aney ~ commonswiki из Wikimedia Commons) <-
Аккумуляторы 20-го века
В 1970-х годах компания COMSAT разработала никель-водородную батарею для использования в спутниках связи.Эти батареи хранят водород в газообразной форме под давлением. Многие искусственные спутники, такие как Международная космическая станция, по-прежнему используют никель-водородные батареи.
Исследования нескольких компаний с конца 1960-х годов привели к созданию никель-металлгидридных (NiMH) аккумуляторов. NiMH батареи были выпущены на потребительский рынок в 1989 году и стали более дешевой альтернативой никель-водородным аккумуляторным элементам меньшего размера.
Asahi Chemical из Японии построила первую литий-ионную батарею в 1985 году, а Sony создала первую коммерческую литий-ионную батарею в 1991 году.В конце 1990-х годов был создан мягкий гибкий корпус для литий-ионных аккумуляторов, из которого возникли «литий-полимерные» или «LiPo» аккумуляторы.
Химические реакции в литий-полимерной батарее практически такие же, как и в литий-ионной батарее
Очевидно, было изобретено, произведено и устарело гораздо больше химических элементов батарей. Если вы хотите узнать больше о современных и популярных технологиях аккумуляторов, ознакомьтесь с нашим руководством по технологиям аккумуляторов.
Компоненты
Батареисостоят из трех основных компонентов: анода , катода и электролита . Сепаратор часто используется для предотвращения соприкосновения анода и катода, если электролита недостаточно. Для хранения этих компонентов аккумуляторы обычно имеют какой-то кожух .
Хорошо, большинство аккумуляторов на самом деле не разделены на три равные части, но идею вы поняли.Лучшее поперечное сечение щелочной ячейки можно найти в Википедии.И анод, и катод относятся к типу электродов . Электроды – это проводники, через которые электричество входит или выходит из компонента в цепи.
Анод
Электроны выходят из анода в устройстве, подключенном к цепи. Это означает, что обычный «ток» течет в анод .
На аккумуляторах анод обозначен как отрицательная (-) клемма
В батарее химическая реакция между анодом и электролитом вызывает накопление электронов на аноде.Эти электроны хотят перейти к катоду, но не могут пройти через электролит или сепаратор.
Катод
Электроны текут в катод в устройстве, подключенном к цепи. Это означает, что обычный «ток» протекает от катода .
На аккумуляторах катод помечен как положительный (+) вывод
В батареях в химической реакции внутри катода или вокруг него используются электроны, образующиеся на аноде.Электроны могут попасть на катод только через цепь, внешнюю по отношению к батарее.
Электролит
Электролит – это вещество, часто жидкость или гель, способное переносить ионы между химическими реакциями, происходящими на аноде и катоде. Электролит также препятствует потоку электронов между анодом и катодом, так что электроны легче проходят через внешнюю цепь, чем через электролит.
-> Щелочные батареи могут протекать из своего электролита, гидроксида калия, если подвергаются воздействию высоких температур или обратного напряжения
(Изображение любезно предоставлено Вильямом Дэвисом из Wikimedia Commons) <-
Электролит имеет решающее значение в работе аккумулятора.Поскольку электроны не могут проходить через него, они вынуждены проходить через электрические проводники в виде цепи, соединяющей анод с катодом.
Разделитель
Сепараторы представляют собой пористые материалы, которые предотвращают соприкосновение анода и катода, что может вызвать короткое замыкание в батарее. Сепараторы могут быть изготовлены из различных материалов, включая хлопок, нейлон, полиэстер, картон и синтетические полимерные пленки. Сепараторы не вступают в химическую реакцию ни с анодом, ни с катодом, ни с электролитом.
В гальванической куче использовалась ткань или картон (разделитель), пропитанные рассолом (электролитом), чтобы электроды разнесены.
Ионы в электролите могут быть положительно заряженными, отрицательно заряженными и иметь различные размеры. Могут быть изготовлены специальные сепараторы, которые пропускают одни ионы, но не пропускают другие.
Кожух
Большинству аккумуляторов требуется способ удерживать их химические компоненты. Кожухи, также известные как «кожухи» или «оболочки», представляют собой просто механические конструкции, предназначенные для удержания внутренних компонентов батареи.
Свинцово-кислотный аккумулятор в пластиковом корпусе
Корпуса батареймогут быть изготовлены практически из чего угодно: из пластика, стали, чехлов из мягкого полимерного ламината и так далее. В некоторых батареях используется токопроводящий стальной кожух, который электрически соединен с одним из электродов. В случае обычного щелочного элемента AA стальной корпус соединен с катодом.
Эксплуатация
Батареи обычно требуют нескольких химических реакций для работы.По крайней мере, одна реакция происходит внутри или вокруг анода, и одна или несколько реакций происходят внутри или вокруг катода. Во всех случаях реакция на аноде дает дополнительные электроны в процессе, называемом окислением , а реакция на катоде использует дополнительные электроны во время процесса, известного как восстановление .
Когда переключатель замкнут, цепь замыкается, и электроны могут течь от анода к катоду. Эти электроны активируют химические реакции на аноде и катоде.
По сути, мы разделяем определенный вид химической реакции, реакцию окисления-восстановления или окислительно-восстановительную реакцию, на две отдельные части. При переносе электронов между химическими веществами происходят окислительно-восстановительные реакции. Мы можем использовать движение электронов в этой реакции, чтобы они выходили за пределы батареи и питали нашу цепь.
Анодное окисление
Эта первая часть окислительно-восстановительной реакции, окисление, происходит между анодом и электролитом и производит электроны (обозначенные как e – ).
В некоторых реакциях окисления образуются ионы, например, в литий-ионной батарее. В других химических реакциях расходуются ионы, как в обычных щелочных батареях. В любом случае ионы могут свободно проходить через электролит, а электроны – нет.
Катодное восстановление
Другая половина окислительно-восстановительной реакции, восстановление, происходит в катоде или рядом с ним. Электроны, образующиеся в результате реакции окисления, расходуются во время восстановления.
В некоторых случаях, например, в литий-ионных батареях, положительно заряженные ионы лития, образующиеся во время реакции окисления, расходуются во время восстановления.В других случаях, например, в щелочных батареях, во время восстановления образуются отрицательно заряженные ионы.
Электронный поток
В большинстве батарей некоторые или все химические реакции могут происходить, даже когда батарея не подключена к цепи. Эти реакции могут повлиять на срок годности батареи.
По большей части, реакции будут происходить с полной силой только тогда, когда между анодом и катодом замыкается электропроводящая цепь. Чем меньше сопротивление между анодом и катодом, тем больше электронов может течь и тем быстрее протекают химические реакции.
Короткое замыкание в аккумуляторе (в данном случае даже случайное) может быть опасным. Известно, что литий-ионные батареи перегреваются и даже задыхаются или загораются при коротком замыкании.
Мы можем пропустить эти движущиеся электроны через различные электрические компоненты, известные как «нагрузка», чтобы выполнить что-то полезное. В анимационном ролике в начале этого раздела мы зажигаем виртуальную лампочку движущимися электронами.
Батарея разряжена
Химические вещества в батарее в конечном итоге достигают состояния равновесия. В этом состоянии химические вещества больше не будут реагировать, и в результате аккумулятор больше не будет генерировать электрический ток. На данный момент аккумулятор считается «мертвым».
Первичные элементы необходимо утилизировать, когда батарея разряжена. Вторичные элементы можно перезаряжать, и это достигается путем подачи через батарею обратного электрического тока.Перезарядка происходит, когда химические вещества выполняют еще одну серию реакций, чтобы вернуть их в исходное состояние.
Терминология
Люди часто используют общий набор терминов, говоря о напряжении батареи, емкости, возможности источника тока и так далее.
Ячейка
Элемент относится к одному аноду и катоду, разделенным электролитом, используемым для выработки напряжения и тока. Батарея может состоять из одной или нескольких ячеек.Например, одна батарея AA – это одна ячейка. Автомобильные аккумуляторы содержат шесть ячеек по 2,1 В.
Обычная 9-вольтовая батарея содержит шесть щелочных элементов по 1,5 В, установленных друг над другом
Первичный
Первичные клетки содержат химический состав, который нельзя обратить вспять. В результате аккумулятор необходимо выбрасывать после того, как он разрядился.
Среднее
Вторичные элементы можно перезаряжать, и их химический состав возвращается в исходное состояние.Эти элементы, также известные как «перезаряжаемые батареи», можно использовать много раз.
Номинальное напряжение
Номинальное напряжение аккумулятора – это напряжение, указанное производителем.
Например, щелочные батареи типа AA указаны как имеющие 1,5 В. В этой статье Mad Scientist Hut показано, что их испытанные щелочные батареи начинаются с напряжения около 1,55 В, а затем медленно теряют напряжение по мере разряда. В этом примере номинальное напряжение «1,5 В» относится к максимальному или пусковому напряжению батареи.
Этот аккумулятор Storm для квадрокоптеров показывает кривую разряда для их LiPo-элементов, начиная с 4,2 В и снижаясь до 2,8 В по мере разряда. Номинальное напряжение, указанное для большинства литий-ионных и LiPo элементов, составляет 3,7 В. В этом случае номинальное напряжение «3,7 В» относится к среднему напряжению аккумулятора в течение его цикла разряда.
Вместимость
Емкость аккумулятора – это величина электрического заряда, который он может доставить при определенном напряжении. Большинство аккумуляторов рассчитаны на ампер-часы (Ач) или миллиампер-часы (мАч).
Этот LiPo аккумулятор рассчитан на 1000 мАч, что означает, что он может обеспечить 1 ампер в течение 1 часа, прежде чем он будет считаться разряженным.
Большинство графиков разряда батареи показывают зависимость напряжения батареи от емкости, например, эти тесты батареи AA, проведенные PowerStream. Чтобы выяснить, достаточно ли емкости аккумулятора для питания вашей схемы, найдите самое низкое допустимое напряжение и найдите соответствующий номинал мАч или Ач.
C-Rate
Многие батареи, особенно мощные литий-ионные, обозначают ток разряда как «C-Rate», чтобы более четко определить характеристики батареи.C-Rate – это скорость разряда относительно максимальной емкости аккумулятора.
1С – это количество тока, необходимое для разрядки аккумулятора за 1 час. Например, аккумулятор емкостью 400 мАч, обеспечивающий ток 1С, будет обеспечивать 400 мА. 5С для той же батареи будет 2 А.
Большинство батарей теряют емкость при повышенном потреблении тока. Например, этот график информации о продукте от Chargery показывает, что их LiPo-элемент имеет меньше мАч при более высоких показателях C-Rates.
ПРИМЕЧАНИЕ: Общий совет гласит, что вы должны заряжать LiPo батареи при 1С или меньше.
MIT предлагает фантастическое руководство по спецификациям и терминологии аккумуляторов, которое идет намного дальше этого обзора.
Использование
Однокамерный
Некоторые схемы могут питаться от одного элемента, но убедитесь, что батарея может обеспечивать достаточное напряжение и ток.
Этот экран для фотонной батареи питается от одного элемента LiPoЕсли напряжение слишком высокое или слишком низкое для вашей схемы, вам, вероятно, понадобится преобразователь постоянного тока в постоянный.
серии
Чтобы увеличить напряжение между выводами батареи, вы можете расположить элементы последовательно. Последовательность означает штабелирование ячеек встык, соединение анода одного с катодом следующего.
Соединяя батареи последовательно, вы увеличиваете общее напряжение. Сложите напряжение всех ячеек, чтобы определить рабочее напряжение. Емкость остается прежней.
В этом примере четыре ячейки 1,5 В подключены последовательно.Напряжение на нагрузке составляет 6 В, а общий набор аккумуляторов имеет емкость 2000 мАч.
В большинстве бытовых электронных устройств, в которых используются щелочные батареи, батареи устанавливаются последовательно. Например, этот держатель батареек 2x AA может поднять номинальное напряжение до 3 В для проекта.
ПРИМЕЧАНИЕ : Если вы заряжаете литий-ионные или литий-полимерные батареи последовательно, вам необходимо использовать специальные схемы, известные как «балансировщик», чтобы обеспечить равномерное напряжение между элементами.Некоторые зарядные устройства, такие как это, имеют балансиры для безопасной зарядки.Параллельный
Если напряжение одного элемента соответствует нагрузке, вы можете добавить батареи параллельно, чтобы увеличить емкость. Обратите внимание, что это также означает увеличение доступного тока (C-Rate).
Будьте осторожны при параллельном подключении аккумуляторов! Все элементы должны иметь одинаковое номинальное напряжение и одинаковый уровень заряда. Если есть какие-либо различия в напряжении, может произойти короткое замыкание, что приведет к перегреву и, возможно, возгоранию.
В этом примере четыре ячейки 1,5 В подключены параллельно. Напряжение на нагрузке остается на уровне 1,5 В, но общая емкость увеличивается до 8000 мАч.
Серияи параллельный
Если вы хотите увеличить напряжение и емкость, вы можете комбинировать последовательные и параллельные батареи. Еще раз убедитесь, что уровень напряжения одинаков для батарей, включенных параллельно, так как может произойти короткое замыкание.
В этом примере полное напряжение на нагрузке составляет 3 В, а общая емкость аккумуляторов составляет 4000 мАч.
В больших аккумуляторных блоках, особенно литий-ионных, вы часто видите конфигурацию, указанную с использованием «S» и «P» для последовательного и параллельного подключения. Конфигурация схемы выше – 2S2P. В качестве практического примера современные электромобили используют массивные массивы батарей, соединенных последовательно и параллельно.
Ресурсы и дальнейшее развитие
К настоящему времени вы должны понимать, как были изобретены батареи и как они работают. Батареи – это один из способов обеспечения вашего проекта электроэнергией, и они могут быть невероятно полезны, если вам нужен портативный источник питания.
Если вы хотите больше узнать о батареях, вот еще несколько уроков:
Хотите увидеть аккумуляторы в действии? Взгляните на эти проекты, в которых используются разные батареи в разных конфигурациях:
Беспроводная связь Simon Splosion
Это учебное пособие, демонстрирующее один из многих методов “взлома” Саймона Сэйса. Мы выделим технику, чтобы взять ваш Simon Says Wireless.
Батарея Сравнение плотности энергии
Рисунки на этой странице были получены из разного количества источников при различных условиях.Сравнение аккумуляторных элементов затруднено, и любое фактическое сравнение должно использовать проверенные данные для конкретной модели аккумулятора.
Батареиработают по-разному из-за различных процессов, используемых разными производителями. Даже ячейка другой модели от того же производителя будет работать по-разному в зависимости от того, для чего они оптимизированы.
Также следует принять во внимание фактическое приложение, в котором используется аккумулятор. Это может существенно повлиять на производительность батареи, поэтому при выборе аккумуляторной батареи для вашего продукта следует учитывать множество факторов.
Для получения дополнительной информации см. Сообщение в нашем блоге о том, как выбрать тип элемента для использования в аккумуляторной батарее.
Сравнение плотности энергии в аккумуляторных элементах
Эта сравнительная таблица аккумуляторов иллюстрирует объемную и гравиметрическую плотности энергии на основе голых аккумуляторных элементов.
Фото предоставлено НАСА – Национальное управление по аэронавтике и исследованию космического пространства
Плотность энергии Сравнение размеров и веса
Приведенная ниже сравнительная таблица аккумуляторов иллюстрирует объемную и удельную плотности энергии, показывая меньшие размеры и более легкие ячейки.
Спецификации Battery Chemistry
Технические характеристики | Свинцово-кислотный | NiCd | NiMH | Литий-ионный | ||
---|---|---|---|---|---|---|
Кобальт | Марганец | Фосфат | ||||
Удельная энергия (Втч / кг) | 30-50 | 45-80 | 60-120 | 150-190 | 100-135 | 90-120 |
Внутреннее сопротивление (мОм) | <100 12В в упаковке | 100-200 6 В в упаковке | 200-300 6 В в упаковке | 150-300 7.2В | 25-75 на ячейку | 25-50 на ячейку |
Жизненный цикл (разряд 80%) | 200-300 | 1000 | 300-500 | 500–1 000 | 500–1 000 | 1 000–2 000 |
Время быстрой зарядки | 8-16ч | 1 час стандартная | 2-4ч | 2-4ч | 1 ч или меньше | 1 ч или меньше |
Допуск перезарядки | Высокая | Умеренная | Низкая | Низкий.Не переносит непрерывный заряд | ||
Саморазряд / месяц (комнатная температура) | 5% | 20% | 30% | <10% | ||
Напряжение элемента (номинальное) | 2V | 1,2 В | 1.2В | 3,6 В | 3,8 В | 3,3 В |
Напряжение отключения заряда (В / элемент) | 2,40 Поплавок 2,25 | Обнаружение полного заряда по сигнатуре напряжения | 4,20 | 3,60 | ||
Напряжение отключения разряда (В / элемент, 1С) | 1.75 | 1,00 | 2,50–3,00 | 2,80 | ||
Пиковый ток нагрузки Лучший результат | 5C 0,2C | 20C 1C | 5C 0,5C | > 3C <1C | > 30C <10C | > 30C <10C |
Температура заряда | от -20 до 50 ° C от -4 до 122 ° F | от 0 до 45 ° C от 32 до 113 ° F | от 0 до 45 ° C от 32 до 113 ° F | |||
Температура нагнетания | от -20 до 50 ° C от -4 до 122 ° F | от -20 до 65 ° C от -4 до 149 ° F | от -20 до 60 ° C от -4 до 140 ° F | |||
Требования к техническому обслуживанию | 3-6 месяцев (доплата) | 30-60 дней (выписка) | 60-90 дней (выписка) | Не требуется | ||
Требования безопасности | Термически стабильный | Термически стабильный, общий предохранитель | Обязательная схема защиты | |||
Используется с | Конец 1800-х годов | 1950 | 1990 | 1991 | 1996 | 1999 |
Токсичность | Очень высокий | Очень высокий | Низкая | Низкий |
Активная балансировка аккумуляторных ячеек | Analog Devices
При пассивной и активной балансировке ячеек каждая ячейка в батарейном стеке контролируется для поддержания работоспособного состояния заряда батареи (SoC).Это продлевает срок службы батареи и обеспечивает дополнительный уровень защиты, предотвращая повреждение элемента батареи из-за глубокой разрядки или чрезмерной зарядки. Пассивная балансировка приводит к тому, что все аккумуляторные элементы имеют одинаковую SoC, просто рассеивая избыточный заряд в спускном резисторе; однако это не увеличивает время работы системы (см. блог «Балансировка ячеек пассивной батареи»). Активная балансировка ячеек – это более сложный метод балансировки, который перераспределяет заряд между аккумуляторными элементами во время циклов зарядки и разрядки, тем самым увеличивая время работы системы за счет увеличения общего полезного заряда в аккумуляторной батарее, уменьшения времени зарядки по сравнению с пассивной балансировкой и уменьшения выделяемого тепла. при балансировке.
Активная балансировка ячеек во время разряда
На приведенной ниже диаграмме показан типичный аккумуляторный блок, в котором все элементы работают на полную мощность. В этом примере полная емкость отображается как 90% заряда, потому что поддержание батареи на уровне 100% емкости или около нее в течение длительных периодов времени сокращает срок службы батареи быстрее. 30% представляют собой полностью разряженные, чтобы предотвратить глубокую разрядку ячеек.
Рисунок 1. Полная мощность.
Со временем некоторые элементы станут слабее других, что приведет к профилю разряда, представленному на рисунке ниже.
Рисунок 2. Несоответствующий разряд.
Видно, что даже несмотря на то, что в некоторых батареях может оставаться довольно много емкости, слабые батареи ограничивают время работы системы. Несоответствие батареи 5% приводит к неиспользованию 5% емкости. С большими батареями это может быть чрезмерное количество энергии, которое не используется. Это становится критически важным для удаленных систем и систем, к которым трудно получить доступ, поскольку это приводит к увеличению количества циклов заряда и разряда батареи, что сокращает срок службы батареи, что приводит к более высоким затратам, связанным с более частой заменой батареи.
При активной балансировке заряд перераспределяется от более сильных элементов к более слабым, что приводит к полностью разряженному профилю батареи.
Рисунок 3. Полное истощение при активной балансировке.
Активная балансировка ячеек во время зарядки
При зарядке батарейного блока без балансировки слабые элементы достигают полной емкости раньше, чем более сильные батареи. Опять же, ограничивающим фактором являются слабые клетки; в этом случае они ограничивают общий объем заряда, который может удерживать наша система.На приведенной ниже диаграмме показана зарядка с этим ограничением.
Рисунок 4. Зарядка без балансировки.
При активном балансировочном перераспределении заряда во время цикла зарядки стек может достичь своей полной емкости. Обратите внимание, что такие факторы, как процент времени, отведенного для балансировки, и влияние выбранного тока балансировки на время балансировки здесь не обсуждаются, но являются важными соображениями.
Активные балансировщики ячеек
Analog Devices Inc.имеет семейство активных балансировщиков ячеек, каждое из которых соответствует различным системным требованиям. LT8584 – это монолитный обратноходовой преобразователь тока разряда 2,5 А, используемый вместе с семейством мультихимических мониторов аккумуляторных элементов LTC680x; Заряд может быть перераспределен от одного элемента к верху аккумуляторной батареи или к другой аккумуляторной ячейке или комбинации ячеек в стопке. На каждую ячейку батареи используется один LT8584.
Рис. 5. 12-элементный аккумуляторный модуль с активной балансировкой.LTC3300 – это автономный двунаправленный контроллер обратного хода для литиевых и LiFePO4 батарей, обеспечивающий до 10 А уравновешивающего тока; поскольку он двунаправленный, заряд от любой выбранной ячейки может передаваться с высокой эффективностью к 12 или более соседним ячейкам или от них. Один LTC3300 может сбалансировать до шести ячеек.
Рисунок 6. Высокоэффективная двунаправленная балансировка.LTC3305 – автономный стабилизатор свинцово-кислотных аккумуляторов, вмещающий до четырех ячеек; он использует пятую аккумуляторную батарею (AUX) и постоянно размещает ее параллельно с каждой из других батарей (по одной за раз), чтобы сбалансировать все элементы батареи (свинцово-кислотные батареи прочные и могут справиться с этим).
Рисунок 7. Балансир с четырьмя батареями с запрограммированными фронтами высокого и низкого напряжения батареи.Резюме
Как активная, так и пассивная балансировка ячеек являются эффективными способами улучшения состояния системы путем мониторинга и согласования SoC каждой ячейки. Активная балансировка ячеек перераспределяет заряд во время цикла зарядки и разрядки, в отличие от пассивной балансировки ячеек, которая просто рассеивает заряд во время цикла зарядки. Таким образом, активная балансировка ячеек увеличивает время работы системы и может повысить эффективность зарядки.Для активной балансировки требуется более сложное решение, занимающее большую площадь; пассивная балансировка более рентабельна. Независимо от того, какой метод лучше всего подходит для вашего приложения, Analog Devices Inc. предлагает решения как для интегрированных в наши ИС управления батареями (например, LTC6803 и LTC6804), так и для дополнительных устройств, которые работают вместе с этими ИС, чтобы обеспечить точную и надежную систему управления батареями. .
Литий-ионные батареи – Промышленные устройства и решения
Продукты, описанные на этом веб-сайте, были разработаны и изготовлены для стандартных приложений, таких как общая электроника, офисное оборудование, оборудование для передачи данных и связи, измерительные приборы, бытовая техника и аудио-видео оборудование.Для специальных применений, в которых требуются качество и надежность, или если отказ или неисправность продуктов могут напрямую угрожать жизни или вызвать угрозу травм (например, для самолетов и аэрокосмического оборудования, дорожного и транспортного оборудования, оборудования для сжигания, медицинского оборудования , устройства для предотвращения несчастных случаев и защиты от кражи, а также защитное оборудование), пожалуйста, используйте только после того, как ваша компания проверит пригодность наших продуктов для этого применения.
Независимо от области применения, при использовании наших продуктов в оборудовании, для которого ожидается высокий уровень безопасности и надежности, убедитесь, что схемы защиты, схемы резервирования и другие устройства установлены для обеспечения безопасности оборудования при оценке области применения путем независимой проверки безопасности. тесты.
Обратите внимание, что продукты и технические характеристики, размещенные на этом веб-сайте, могут быть изменены без предварительного уведомления в целях улучшения. Независимо от области применения, пожалуйста, подтвердите последнюю информацию и спецификации до окончательного этапа проектирования, покупки или использования.
Техническая информация на этом веб-сайте содержит примеры типичных операций и схем применения продуктов. Он не предназначен для гарантии ненарушения или предоставления лицензии на права интеллектуальной собственности этой компании или любой третьей стороны.
Если какие-либо продукты, спецификации продуктов и техническая информация на этом веб-сайте подлежат экспорту или предоставлению нерезидентам, необходимо соблюдать законы и правила страны-экспортера, особенно те, которые касаются безопасного экспортного контроля.
Информация, содержащаяся на этом веб-сайте, не может быть перепечатана или воспроизведена полностью или частично без предварительного письменного разрешения Panasonic Corporation.
Инструменты и программы, представленные на этом веб-сайте, должны использоваться по вашему усмотрению.Panasonic не гарантирует каких-либо результатов от использования этих инструментов и программ и не несет ответственности за любые убытки, возникшие в результате использования вами.
<о письме для получения сертификата соответствия директиве ЕС RoHS>
Дата перехода на продукт, соответствующий требованиям RoHS, зависит от номера детали или серии.
При использовании инвентаря, в котором неясно соответствие требованиям RoHS, выберите «Запрос на продажу».
в форме веб-запроса.
Извещение о передаче полупроводникового бизнеса
Полупроводниковый бизнес Panasonic Corporation (далее именуемой «Компания») будет передан 1 сентября 2020 года Nuvoton Technology Corporation (далее именуемой «Nuvoton»). Соответственно, Panasonic Semiconductor Solutions Co., Ltd., которая управляла полупроводниковым бизнесом Panasonic, перейдет под эгидой Nuvoton Group с новым названием Nuvoton Technology Corporation Japan (далее именуемой «NTCJ»).
В соответствии с этой передачей полупроводниковая продукция, размещенная на этом веб-сайте, будет считаться продукцией, произведенной NTCJ, после 1 сентября 2020 года. Однако такая продукция будет постоянно продаваться через Компанию.
Обратите внимание, что при запросе о полупроводниковой продукции, размещенной на этом веб-сайте, клиенты должны перейти на веб-сайт, управляемый NTCJ (далее «веб-сайт NTCJ»), и подтвердить, что NTCJ является компанией, ответственной за управление личной информацией, предоставляемой клиентами на ее веб-сайте.Мы ценим ваше понимание по этому поводу.
Литиевые батареи – Промышленные устройства и решения
Продукты, описанные на этом веб-сайте, были разработаны и изготовлены для стандартных приложений, таких как общие электронные устройства, офисное оборудование, оборудование для передачи данных и связи, измерительные приборы, бытовая техника и аудио-видео оборудование.Для специальных применений, в которых требуются качество и надежность, или если отказ или неисправность продуктов могут напрямую угрожать жизни или вызвать угрозу травм (например, для самолетов и аэрокосмического оборудования, дорожного и транспортного оборудования, оборудования для сжигания, медицинского оборудования , устройства для предотвращения несчастных случаев и защиты от кражи, а также защитное оборудование), пожалуйста, используйте только после того, как ваша компания проверит пригодность наших продуктов для этого применения.
Независимо от области применения, при использовании наших продуктов в оборудовании, для которого ожидается высокий уровень безопасности и надежности, убедитесь, что схемы защиты, схемы резервирования и другие устройства установлены для обеспечения безопасности оборудования при оценке области применения путем независимой проверки безопасности. тесты.
Обратите внимание, что продукты и технические характеристики, размещенные на этом веб-сайте, могут быть изменены без предварительного уведомления в целях улучшения.Независимо от области применения, пожалуйста, подтвердите последнюю информацию и спецификации до окончательного этапа проектирования, покупки или использования.
Техническая информация на этом веб-сайте содержит примеры типичных операций и схем применения продуктов. Он не предназначен для гарантии ненарушения или предоставления лицензии на права интеллектуальной собственности этой компании или любой третьей стороны.
Если какие-либо продукты, спецификации продуктов и техническая информация на этом веб-сайте подлежат экспорту или предоставлению нерезидентам, необходимо соблюдать законы и правила страны-экспортера, особенно те, которые касаются безопасного экспортного контроля.
Информация, содержащаяся на этом веб-сайте, не может быть перепечатана или воспроизведена полностью или частично без предварительного письменного разрешения Panasonic Corporation.
Инструменты и программы, представленные на этом веб-сайте, должны использоваться по вашему усмотрению. Panasonic не гарантирует каких-либо результатов от использования этих инструментов и программ и не несет ответственности за любые убытки, возникшие в результате использования вами.
<о письме для получения сертификата соответствия директиве ЕС RoHS>
Дата перехода на продукт, соответствующий требованиям RoHS, зависит от номера детали или серии.
При использовании инвентаря, в котором неясно соответствие требованиям RoHS, выберите «Запрос на продажу».
в форме веб-запроса.
Извещение о передаче полупроводникового бизнеса
Полупроводниковый бизнес Panasonic Corporation (далее именуемой «Компания») будет передан 1 сентября 2020 года Nuvoton Technology Corporation (далее именуемой «Nuvoton»). Соответственно, Panasonic Semiconductor Solutions Co., Ltd., которая управляла полупроводниковым бизнесом Panasonic, войдет в состав Nuvoton Group с новым названием Nuvoton Technology Corporation Japan (далее именуемой «NTCJ»).
В соответствии с этой передачей полупроводниковая продукция, размещенная на этом веб-сайте, будет считаться продукцией, произведенной NTCJ, после 1 сентября 2020 года. Однако такая продукция будет постоянно продаваться через Компанию.
Обратите внимание, что при запросе о полупроводниковой продукции, размещенной на этом веб-сайте, клиенты должны перейти на веб-сайт, управляемый NTCJ (далее «веб-сайт NTCJ»), и подтвердить, что NTCJ является компанией, ответственной за управление личной информацией, предоставляемой клиентами на ее веб-сайте.Мы ценим ваше понимание по этому поводу.
Однобумажные гибкие литий-ионные аккумуляторные элементы в процессе изготовления бумаги на основе нанофибриллированной целлюлозы
Однобумажные гибкие литий-ионные аккумуляторные элементы в процессе изготовления бумаги на основе нанофибриллированной целлюлозы
В последнее время возникла потребность в механически гибких и прочных батареях для питания технических решений, таких как активные RFID-метки и гибкие считывающие устройства.В этой работе представлен метод изготовления гибких и прочных аккумуляторных элементов, объединенных в единую гибкую бумажную структуру. Нанофибриллированная целлюлоза (NFC) используется как в качестве связующего материала для электродов, так и в качестве разделительного материала. Бумага для аккумуляторов изготавливается в процессе изготовления бумаги путем последовательной фильтрации водных дисперсий, содержащих компоненты аккумуляторов. Получающаяся в результате бумажная структура является тонкой, 250 мкм, и прочной, с прочностью на разрыв до 5,6 МПа при замачивании в электролите батареи.Циклические характеристики хорошие с реверсивной емкостью 146 мА ч г. -1 LiFePO 4 при C / 10 и 101 мА ч г до плотности энергии 188 мВт. ч. −1 полностью бумажной батареи при C / 10.
Эта статья в открытом доступе
Подождите, пока мы загрузим ваш контент… Что-то пошло не так. Попробуй еще раз? .