Измерение напряжения вольтметром: информация для пользователя (как пользоваться вольтметром и работать с ним в автомобиле)

Содержание

информация для пользователя (как пользоваться вольтметром и работать с ним в автомобиле)

Вольтметр — это прибор, который служит для измерения напряжения на участке цепи. Как правильно работать с этим прибором, что нужно учитывать при выборе вольтметра, какие еще бывают приборы для измерения напряжения в сети, давайте разберемся.

Напряжение

Напряжением называют физическую величину, выражающую работу, которая была затрачена для пробного электрического заряда из одной точки электрической цепи в другую. Или, другими словами, это энергия, расходуемая при перемещении положительного заряда из точки с малым потенциалом в точку с большим потенциалом.

Оно бывает двух видов: постоянное и переменное. Постоянное напряжение характерно для цепей электростатики или постоянного тока, а переменное – для схем с переменным и суисоидальным током. Данная физическая величина измеряется в вольтах, а его обозначение: U.

Эту величину можно находить по следующим формулам:

Где U — напряжение, I – с ила тока, R – сопротивление, P – мощность.

Но значение U можно узнать, не используя этих формул, если провести специальные измерения. Для этого надо просто уметь пользоваться вольтметром.

Он является простейшим прибором для измерения напряжения. На уроках физики в школах детям часто рассказывают об особенностях данного устройства, учат проверять напряжение в электрической цепи. С помощью него можно узнать не только напряжение, но и сопротивление, если знать специальные формулы. Вольтметром удобно пользоваться, и он несложен в устройстве, поэтому вольтметр остается самым лучшим способом измерения U в домашних условиях.

Классификация вольтметров

Они бывают электромеханическими (такие приборы являются наиболее чувствительными и точными), электронными, принцип действия которых заключается в преобразовании переменного напряжения в постоянное, и цифровыми.

Исходя из назначения, вольтметры могут быть импульсными, постоянного или же переменного тока. А по принципу применения — щитовыми и переносными. Перед использованием прибора нужно проверять, к какому из типов они относятся, чтобы провести правильные измерения.

Немного истории

Первый в истории вольтметр был изобретен русским физиком Г.В. Рихманом в 1754 году и назывался «указателем электрической силы». Современные электростатические вольтметры основаны на принципах этого устройства.

Строение вольтметра

Прежде чем приступать к измерению напряжения, следует изучить, как работает вольтметр.

Его основные элементы — это корпус, клемма, стрелка и шкала. На клеммах обычно стоит знак «плюс» или «минус» или же они помечены цветом (плюс — красный цвет, минус — синий или черный цвет). Часто на этом приборе можно заметить букву «V». Когда прибор служит для цепей с переменным током, то на циферблате изображается волнистая линия, а когда для цепей с постоянным током — линия прямая.

Иногда используются обозначения АС (для измерения переменного тока) и DC (для измерения постоянного тока). В приборах для переменного тока полярности нет.

Классический вольтметр, который на данный момент немного устарел, состоит из катушки тоненькой подковообразной проволоки с железной стрелкой, которая располагается между концами магнита. Стрелка перемещается на оси. Ток идет по катушке, и намагниченная стрелка перемещается из-за силы тока. Чем сила тока больше, тем больше отклоняется стрелка. Можно заметить, что устройство этого прибора не очень сложное. Весь его принцип основан на простых законах физики.

Как пользоваться вольтметром

Вольтметр всегда подключается параллельно участку цепи, т. к. такое подключение уменьшает ток. Прибор может провести измерения напряжения только на определенном участке электрической цепи. При работе с ним нужно всегда соблюдать полярность.

Провода прикручивают к винтам с гайками. У приборов, рассчитанных на постоянное напряжение, контакты обозначены знаками «плюс» и «минус». Это что касается стрелочного вольтметра. В электронных моделях все гораздо проще: там нет проводов. Более подробно можно познакомиться с принципом работы вольтметра, посмотрев видео.

Как работать вольтметром

Перед тем как проводить измерения нужно проверить, подходит ли данный прибор для них. В первую очередь необходимо определить максимально допустимую величину измерений для данного вольтметра. Для этого достаточно просто найти наибольшее числовое значение на шкале вольтметра. Далее следует уточнить, в каких единицах измеряет вольтметр. Это могут быть вольты, микровольты или милливольты. Пренебрежение этим пунктом может привести к тому, что прибор начнет дымиться после подключения к сети, значение напряжения которой во много раз выше допустимого.

Если напряжение в электрической цепи уже известно и превышает шестьдесят вольт, то нужно использовать специальные диэлектрические перчатки и щупы с хорошей изоляцией. Безопасное напряжение для человека — около 42 вольт при нормальных условиях и около 11 в неблагоприятных условиях (повышенная влажность, повышенная температура, железные предметы поблизости и т. д.).

Вольтметр и автомобиль

В машине этот прибор используется по двум основным причинам: для того, чтобы следить за зарядкой аккумулятора и контролировать просадки напряжения в бортсети. Для полного контроля просадки питания, можно установить два вольтметра: один — для подключения к аккумулятору, а второй – для подключения к клеммам усилителей.

Вольтметр.

Приборы для измерения напряжения

Первый учёный, который сконструировал и создал достаточно мощную электрическую батарею постоянного тока, был известный итальянский физик Александро Вольта. Эта батарея получила название «вольтов столб» и состояла из нескольких тысяч кружочков из цинка и меди, которые разделялись пропитанными в соляной кислоте матерчатыми прокладками. Он использовал батареи с большим или меньшим количеством элементов. Маленькие батареи давали слабую искру, большие батареи сильную и яркую.

Учёный вплотную подошёл к количественному понятию напряжения, поэтому единицу разности потенциалов назвали его именем: «Вольт». В международной системе единиц СИ вольт обозначается буквой «V», отсюда напряжение переменного тока обозначается: VAC, а напряжение постоянного тока: VDC. У нас единица величины напряжения обозначается буквой «В» – вольт. Например, 220 В, 380 В и наиболее часто используемые производные: 10

3-киловольт (kV), 106-мегавольт, 10-3-милливольт (mV), 10-6-микровольт (μV). Другие большие или меньшие производные используются только в лабораторных условиях. Подробнее о производных величинах читайте на странице про сокращённую запись численных величин.

Для измерения напряжения или разности потенциалов используется прибор, который называется вольтметр. На снимке изображён щитовой стрелочный вольтметр, который может монтироваться на щите управления, какого либо устройства. Он используется только для измерения конкретной величины напряжения на одном из узлов данного устройства. Тот вольтметр, что изображён на фото, применяется для измерения постоянного напряжения до 15 вольт. Взгляните на его шкалу. Она ограничена 15 вольтами.

На принципиальных схемах условное изображение вольтметра может выглядеть вот так.

Из рисунка видно, что условное изображение вольтметра на схеме может быть разным. Если в кружке обозначена буква «V», то это означает, что данный вольтметр рассчитан на измерения величин напряжения, составляющих единицы – сотни вольт. Изображения с обозначением «mV» и «μV» указываются в тех случаях, если вольтметр рассчитан на измерение долей вольта – милливольт (1mV = 0,001V) и микровольт (1μV = 0,000001 V). Иногда рядом с изображением вольтметра также указывается максимальная величина напряжения, которую способен измерить вольтметр. Например, вот так – 100 mV. Обычно эта величина указывается для встраиваемых стрелочных вольтметров. Превышать это напряжение не стоит, так как можно испортить прибор.

Кроме этого, рядом с выводами вольтметра могут быть проставлены знаки полярности подключения его в схему «+» и «».

Это касается тех вольтметров, которые применяются для измерения постоянного напряжения.

Следует отметить, что щитовые вольтметры это частный случай использования этих приборов. В лабораториях, на радиозаводах, в конструкторских бюро и радиолюбительской практике, вольтметры используются чаще всего в составе мультиметров, которые раньше назывались авометры, то есть ампер-вольт-омметр.

В настоящее время с развитием цифровой электроники стрелочные приборы отходят в прошлое и им на смену приходят цифровые мультиметры с удобной цифровой шкалой, автоматическим переключением предела измерения, малой погрешностью и высоким классом точности.

В радиолюбительской практике на смену «цешкам» и «авошкам» пришли компактные и удобные цифровые приборы. Работать с ними не сложно, но определённые меры безопасности применять необходимо.

Как измерить напряжение мультиметром?

Следует твёрдо помнить, что вольтметр, в отличие от амперметра подключается параллельно нагрузке.

Например, вам надо замерить напряжение на резисторе, который является частью электронной схемы. В таком случае переключаем мультиметр в режим измерения напряжения (постоянного или переменного – смотря какой ток течёт в цепи), устанавливаем наивысший предел измерения. По мере накопления опыта предел измерения вы научитесь выставлять более осознанно, порой пренебрегая данным правилом. Далее подключаем щупы мультиметра параллельно резистору. Вот как это можно изобразить в виде схемы.

Вот так плавно мы переходим к определению так называемого шунта. Как видим из схемы, вольтметр, который измеряет напряжение на резисторе R1, создаёт параллельный путь току, который протекает по электрической цепи. При этом часть тока (Iшунт) ответвляется и течёт через измерительный прибор – вольтметр PV1. Далее опять возвращается в цепь.

В данном случае вольтметр PV1 шунтирует резистор R1 – создаёт обходной путь для тока. Для электрической цепи вольтметр – это шунт – обходной путь для тока. По закону ома, напряжение на участке цепи зависит от протекающего по этой цепи тока. Но мы ведь ответвили часть тока в цепи и провели эту часть через вольтметр. Поскольку сопротивление резистора неизменно, а ток через резистор уменьшился (IR1), то и напряжение на нём изменилось. Получается, что вольтметром мы измеряем напряжение на резисторе, которое образовалось после того, как мы подключили к схеме измерительный прибор. Из-за этого образуется погрешность измерения.

Как же уменьшить воздействие измерительного прибора на электрическую цепь при проведении измерений? Необходимо увеличить, так называемое «входное сопротивление» измерительного прибора – вольтметра. Чем оно выше, тем меньшая часть тока шунтируется измерительным прибором и более точные данные мы получаем при измерениях.

Современные цифровые мультиметры обладают достаточно большим входным сопротивлением и практически не влияют на работу схемы при проведении измерений. При этом точность измерений, естественно, достаточно высока.

Ранее все приборы были стрелочные, а для того, чтобы высоким напряжением не вывести прибор из строя применялись резистивные шунты, которые уменьшали величину измеряемого напряжения до безопасной величины. Но эти шунты вносили так называемое «паразитное сопротивление» и это сказывалось на точности измерений.

Поэтому в лабораторных условиях использовались специальные ламповые вольтметры, которые обладали большим входным сопротивлением и некоторые из них имели класс точности в доли процента.

Перейдём к практике…

Прежде всего, не забывайте, что есть переменное (англ. сокращение – VAC) и постоянное напряжение (VDC). Профессиональные приборы сами определяют, с каким напряжением вы работаете, и сами переключаются в нужный режим и на требуемый поддиапазон измерений. При работе с малогабаритными приборами все переключения нужно делать вручную.

На снимке показана часть панели управления популярного и недорогого тестера DT-830B.

Хорошо видно, что пределы измерения переменного напряжения ограничены величинами: 750 вольт (750 V~) и 200 вольт (200 V~). Понятно, что к силовым промышленным сетям с этим прибором не стоит и близко подходить. Шкала постоянного и импульсного напряжения несколько больше: от 200 милливольт (200 mV) до тысячи вольт (1000).

Как уже говорилось, чтобы замерить напряжение на участке схемы, нужно выбрать переключателем пределов измерения самый большой предел измерения и подключить щупы мультиметра параллельно тому участку цепи, на котором производится замер.

Если предел измерения подходит – то на дисплее появятся показания. Если этого не происходит, то отключаем вольтметр от схемы, уменьшаем предел измерения на один шаг. Повторяем измерение. И так далее до получения показаний.

Имейте в виду, что провода измерительных щупов со временем изнашиваются. При этом нарушается электрический контакт. Перед проведением любых измерений проверяйте целостность щупов!

Также часто бывает необходимо замерить напряжение на выходе блока питания или химического источника тока (батарейки или аккумулятора).

Выбираем ту секцию на панели прибора, которая отвечает за измерение постоянного напряжения. Выставляем предел чуть больше того напряжения, что мы хотим измерить. Далее подключаем щупы прибора в соответствии с полярностью и изменяем предел измерения в сторону уменьшения до тех пор, пока на табло не появятся данные.

На фото показан замер напряжения составной батареи из трёх батареек 1,5V с помощью мультиметра Victor VC9805A+. Для измерения выбран предел 20V.

Аналогично замеряется напряжение на герметичном свинцовом аккумуляторе.

Стоит понимать, что таким образом мы замеряем так называемую ЭДС. ЭДС или электродвижущая сила – это напряжение на клеммах аккумулятора без подключенной нагрузки. Если к аккумулятору подключить какой-либо прибор, то напряжение будет чуть меньше.

Никогда не касайтесь руками оголённых щупов! Небольшим напряжением от 1,5-вольтовой батарейки вас, конечно, не убьёт, но вот при измерении напряжений более 24 вольт могут быть серьёзные последствия от удара током.

Чтобы руки оставались свободными используйте зажимы типа «крокодил», но подключать их нужно при отключенном от сети приборе. Часто возникает необходимость измерять напряжение на рабочей плате, в разных её точках.

Если вы работаете с низковольтным устройством, бойтесь только закоротить щупами отдельные проводники. Для замеров напряжения в устройстве, как правило, применяется следующая методика.

  • Соедините «земляной» щуп прибора и «землю» платы как можно надёжнее. Работать одним щупом всегда удобнее. Для тех, кто не в курсе, «земляным» или «общим» щупом у прибора называется тот щуп, который подключается к разъёму COM. Обычно он чёрного цвета. Сокращение COM получено от английского слова common – «общий».

  • Наденьте на рабочий щуп прибора кусочек трубки ПВХ, оставив только крохотный острый кончик. Это делать не обязательно, но желательно. При случайном касании щупом соседних проводников трубка ПВХ изолирует контакты и убережёт от короткого замыкания.

  • По принципиальной схеме, в контрольных точках проведите нужные вам замеры по отношению к «земле» – корпусному или по-другому общему проводу. Высокое входное сопротивление тестера работу вашей схемы не нарушит.

Измерение переменного напряжения производится аналогичным образом. Можно для пробы измерить переменное напряжение электросети в собственной квартире.

На снимке видно, что установлен максимальный предел 750 вольт (напряжение переменное – V~). При установке этого предела на индикаторе высвечиваются две буквы: HV – высокое напряжение (сокращение от англ. – High Voltage). Поскольку напряжение переменное, то полярность не имеет значения. В данном случае величина напряжения сети – 217 вольт.

Как уже говорилось, при работе с высоким напряжением следует соблюдать правила электробезопасности.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Как вольтметром измерить силу тока – Moy-Instrument. Ru

Измерение напряжения вольтметром

Для измерения переменного или постоянного напряжения в цепях переменного и постоянного тока используют прибор, называемый вольтметром. Поскольку напряжение присутствует между разными точками цепи или на полюсах источника напряжения, вольтметр подключается всегда параллельно исследуемому участку цепи или параллельно клеммам источника напряжения.

Можно, конечно, включить вольтметр и последовательно, в разрыв цепи, но тогда будет измерено напряжение источника, а не на участке цепи, так как цепь будет разомкнута, а сам вольтметр имеет при этом очень большое внутреннее сопротивление.

Вольтметры выпускаются как в виде отдельных электроизмерительных приборов, так и в формате одной из функций мультиметров. Во входной цепи современного вольтметра обычно находится резистор номиналом порядка мегаома, последовательно подключенный к электронной измерительной схеме.

Вольтметр, как отдельный измерительный прибор или как одна из функций мультиметра, имеет несколько диапазонов измерения напряжения. Выбор диапазона осуществляется при помощи переключателя, расположенного на лицевой панели прибора.

Обычно на мультиметре можно выбрать одно из следующих значений (максимальное значение для диапазона): 200мВ, 2000мВ (2В), 20В, 200В, 600В и т.д. Как правило у мультиметров есть возможность измерения постоянного и переменного напряжения. Вид напряжения также выбирается на шкале переключателя.

Для измерения тока и напряжения у мультиметров имеются два отдельных гнезда для подключения щупов: одно гнездо — для измерения напряжения, второе гнездо — для измерения тока. Третье — общий провод, который остается на своем месте независимо от того, что измеряется, ток или напряжение.

Подключите щупы к соответствующим гнездам мультиметра или вольтметра. Включите прибор и переведите его в режим измерения напряжения, выбрав вид напряжения и диапазон с помощью переключателя. Если диапазон неизвестен, то стоит начать с самого большого значения из доступных на шкале переключателя, потом можно будет уменьшить.

Схема подключения вольтметра для измерения падения напряжения на лампочке:

Присоедините щупы (соблюдая осторожность!) так, чтобы прибор оказался подключен к нужным точкам цепи, между которыми требуется измерить напряжение. Спустя пару секунд прибор отобразит на своем дисплее действующее значение измеренного напряжения.

Если диапазон 600В или более, то значение измеренного напряжения будет отображено в вольтах. Если диапазон например 2000мВ или 200мВ (порядок величин напряжений, но в принципе значения на шкале могут отличаться от этих), то на дисплее будут показания в милливольтах.

Если измеряется постоянное напряжение, то, в зависимости от его полярности и от правильности расположения щупов, на дисплее может отобразиться цифра со знаком минус перед ним.

Это значит, что красный и черный щупы стоит поменять местами, поскольку красный щуп предназначен для установки на положительный полюс, а черный — на отрицательный полюс по отношению к источнику постоянного напряжения, который установлен в исследуемой цепи.

Вольтметр (или мультиметр), не предназначенный для измерения высокочастотных напряжений или более высоких напряжений, чем максимальное на его шкале, легко выйдет из строя, если с помощью него попытаться измерить высокочастотное или более высокое напряжение. В документации к прибору всегда указан род тока и максимально допустимые параметры напряжения, которое можно им мерить.

Замер силы тока мультиметром

Для проведения расчетов и подбора необходимых элементов электрической цепи часто требуется измерить силу тока в ней. Сделать это можно с помощью расчетов, но наиболее простой способ — это использование специальных приборов.

Чем можно измерить силу тока

Чтобы определить мощность потребления и силу тока, требуется электрический измерительный прибор, который может измерять эти параметры с учетом особенностей переменного и постоянного тока. Типов таких устройств существует всего два:

  • Амперметр — специальное устройство для измерения исключительно силы тока в цепи. Амперметр включается в тестируемую цепь последовательно с потребителями электрического тока. На шкале прибора, помимо основных значений, в амперах используются также миллиамперы. На ампераж нужно обращать особое внимание. Существуют электронные и механические варианты устройства.

  • Мультиметр — это электронное измерительное устройство, которое помогает мерить различные параметры цепи (сопротивление, напряжение, разомкнутая цепь, пригодность для аккумулятора, включая и силу тока).

Что такое мультиметр?

Мультиметр — это универсальное комбинированное измерительное устройство, которое объединяет функции нескольких измерительных устройств, то есть измеряет практически все показатели цепи. Самый маленький набор функций мультиметра — это измеритель напряжения, силы заряда и сопротивления. Однако современные производители не останавливаются на достигнутом, а вместо этого добавляют ряд функций, таких как емкостное измерение конденсаторов, частоты тока, проверку диодов (измерение падения напряжения на pn-переходе), звуковых датчиков, измерений температуры и измерения определенных параметров транзистора, встроенный генератор низких частот и многое другое.

Мультиметр может быть:

  • Аналоговый. В этом типе приборов присутствует индикатор, который имеет несколько шкал (по одной на каждый вид измерения). Аналоговые тестеры имеют ряд недостатков, в первую очередь — это большие ошибки и погрешности в измерении. В конструкцию многих моделей включен специальный подстраиваемый резистор, который при правильной настройке несколько улучшает работу прибора, повышая точность выдаваемых результатов. Но все же сейчас большее распространение получили цифровые модели.
  • Цифровой. Единственная внешняя разница между цифровым устройством и аналоговым устройством — это экран, который численно представляет измеренные параметры. Старые модели оснащены дисплеем из светодиодов, боле

Измерение напряжения | Учебный портал Dewesoft

Следуя теории, последует практический пример того, как работают измерительные приборы Dewesoft. Будет измерено напряжение в сети общего пользования. Значение входного напряжения электросети общего пользования необходимо учитывать, чтобы определить, какой тип входа усилителя необходим для измерения. В сети общего пользования в Европе заявлено значение 230 VRMS, но для обеспечения безопасной работы измерительных приборов пиковые значения сети должны учитываться для входного диапазона.Пиковое значение сети в Европе равно среднеквадратичному значению, умноженному на квадратный корень из 2, как показано в уравнении ниже.

\ (230V_ {RMS} \ cdot \ sqrt {2} \ about325V_ {peak} \)

При пиковом значении 325 В мы можем напрямую использовать модуль Sirius HV-HS, который поддерживает напряжение до 1,6 кВ. Это означает, что мы можем провести простое измерение без каких-либо дополнительных делителей напряжения или усилителей и простого подключения, как показано ниже. Будет использован канал 4, в который встроен усилитель Sirius HV-HS.Остальные каналы можно оставить неактивными (неиспользованными в программном обеспечении), поскольку они не имеют отношения к этому измерению. Следующим шагом является настройка канала измерения в программном обеспечении, как показано ниже.

Изображение 17: Подключение однофазного напряжения к Sirius 4xHV 4xLV

Окно настройки имеет две стороны: левая сторона – сторона усилителя, а правая – сторона датчика.

Изображение 18: Экран настройки канала в Dewesoft X

На стороне усилителя мы можем переключаться между диапазоном 50 В и 1600 В.В этом примере будет использоваться диапазон 1600 В. Фильтр низких частот также можно использовать для отсечения высоких частот, но при этом следует соблюдать осторожность. Если берется частота ниже половины частоты дискретизации, это обрезает сигнал в диапазоне измерения, это может быть полезно в некоторых приложениях, но в большинстве случаев эта конфигурация устанавливается по ошибке.

Настройка на стороне датчика заключается в выборе датчика, который будет использоваться для измерения. В этом случае напряжение измеряется напрямую без датчика, поэтому только физическая величина должна быть установлена ​​как напряжение, а единица измерения – как вольт (В).В этой части настройки можно также установить масштабный коэффициент, если для измерения используются датчики или делители. В этом случае он будет иметь значение 1, так как напряжение измеряется напрямую и масштабирование не выполняется.

В этом примере настройки сделаны так, чтобы можно было начать измерение. Щелкнув по кнопке Измерение. Лучший способ наблюдать синусоидальную форму волны – использовать осциллограф. При первом открытии осциллографа будет бегущая волна, которую невозможно проанализировать, это связано с тем, что программное обеспечение работает в бесплатном режиме, и измерения нужно как-то проводить.Рекомендуется добавить триггер к стандартному триггеру и определить источник и уровень триггера. Для целей этого примера его можно оставить как есть, поскольку источником запуска является канал U1, а уровень равен 0.

Изображение 19: Экран измерения напряжения с помощью простого триггера

Режим DUAL-CORE

В режиме В предыдущем разделе много говорилось о правильном выборе диапазона измерения усилителя. Пришло время взглянуть на впечатляющие возможности двухъядерного режима в усилителях Sirius.При использовании двухъядерного режима Sirius можно получить лучшее разрешение (меньше шума) при низких амплитудах. Это решается с помощью двух 24-битных аналого-цифровых преобразователей с разными диапазонами на каждом канале.

Первый аналого-цифровой преобразователь имеет полный диапазон входного канала, а диапазон второго аналого-цифрового преобразователя составляет только 5% от полного диапазона канала. Эта технология измеряет сигнал с низким и высоким коэффициентом усиления одновременно, что означает, что сигнал может быть измерен с относительно высокой амплитудой, но в то же время он имеет идеальное разрешение при низких амплитудах одного и того же сигнала.

Давайте посмотрим на разницу между двухъядерным режимом и нормальным режимом при измерении низких сигналов с высоким диапазоном:

Изображение 20: Включение двухъядерного режима в Dewesoft X

В этом примере сигнал 0,3 В постоянного тока от включенного калибратора будут измеряться два усилителя ACC. На обоих усилителях будет выбран диапазон 10 В (что полная ерунда), но это самый простой способ увидеть разницу между включенным или выключенным двухъядерным режимом. Это можно переключить в настройке канала, где также можно установить диапазон.

На первом канале отключим режим Dual core, на втором включим режим Dual core. Это отрендерит изображение, как показано ниже, на котором можно увидеть разницу в уровнях шума. Графики, представленные ниже, имеют одинаковый масштаб.

Изображение 21: Разница в уровнях шума при выключенном и включенном двухъядерном процессоре

По уровню шума нетрудно увидеть, где двухъядерный режим выполняет свою работу (справа), а где он выключен (слева). При включенном двухъядерном режиме мы получаем такой же уровень шума в диапазоне измерения 10 В, как если бы мы использовали 0.Диапазон 5 В. Это позволяет нам лучше рассмотреть более низкие сигналы.

Что такое вольтметр? – Определение и типы

Определение: Прибор, который измеряет напряжение или разность потенциалов в вольтах, известен как вольтметр. Он работает по принципу, согласно которому крутящий момент создается током, возникающим из-за измеряемого напряжения, и этот крутящий момент отклоняет стрелку прибора. Прогиб стрелки прямо пропорционален разности потенциалов между точками.Вольтметр всегда подключается параллельно цепи.

Условное обозначение вольтметра

Вольтметр представлен буквой V внутри круга вместе с двумя выводами.

Почему вольтметр подключен параллельно?

Вольтметр устроен таким образом, что их внутреннее сопротивление всегда остается высоким. Если он подключается последовательно со схемой, он минимизирует ток, протекающий из-за измеряемого напряжения.Таким образом нарушают показания вольтметра.

Вольтметр всегда подключается параллельно цепи , так что на ней возникает такое же падение напряжения. Высокое сопротивление вольтметра сочетается с сопротивлением элемента, к которому он подключен. И полное сопротивление системы равно импедансу, который имел элемент. Таким образом, из-за вольтметра в цепи не возникает препятствий, и счетчик дает правильные показания.

Почему вольтметр имеет высокое сопротивление?

Вольтметр имеет очень высокое внутреннее сопротивление, поскольку он измеряет разность потенциалов между двумя точками цепи. Вольтметр не меняет ток измерительного прибора.

Если вольтметр имеет низкое сопротивление, через него проходит ток, и вольтметр дает неверный результат. Высокое сопротивление вольтметра не позволяет току проходить через него и, таким образом, получают правильные показания.

Типы вольтметров

Вольтметры подразделяются на три вида. Классификация вольтметра представлена ​​на рисунке ниже.

По конструкции вольтметр бывает следующих типов.

Вольтметр PMMC

Он работает по принципу, согласно которому проводник с током помещается в магнитное поле и из-за силы тока на проводник действует сила. В приборе PMMC возникает ток из-за измеряемого напряжения, и этот ток отклоняет стрелку измерителя.

Вольтметр PMMC используется для измерения постоянного тока. Точность прибора очень высокая и низкое энергопотребление. Единственный недостаток инструмента – он очень дорогостоящий. Диапазон вольтметра PMMC увеличивается за счет последовательного подключения к нему сопротивления.

Вольтметр MI

Инструмент MI означает инструмент с подвижным железом. Этот прибор используется для измерения как переменного, так и постоянного напряжения. В приборах этого типа отклонение прямо пропорционально напряжению катушки.Инструмент с подвижным железом подразделяется на два типа.

  • Подвижный утюг с аттракционом
  • Инструмент с подвижным железом отталкивающего типа

Электродинамометр Вольтметр

Электродинамометрический вольтметр используется для измерения напряжения как переменного, так и постоянного тока . В приборах этого типа калибровка одинакова как для измерения переменного, так и постоянного тока.

Выпрямительный вольтметр

Прибор такого типа используется в цепях переменного тока для измерения напряжения. Выпрямитель преобразует величину переменного тока в величину постоянного тока с помощью выпрямителя. Затем сигнал постоянного тока измеряется прибором PMMC.

Ниже приведена классификация приборов относительно отображения выходных значений.

Аналоговый вольтметр

Аналоговый вольтметр используется для измерения переменного напряжения. Показывает показания с помощью указателя, закрепленного на калиброванной шкале. Прогиб стрелки зависит от действующего на нее крутящего момента.Величина развиваемого крутящего момента прямо пропорциональна измерительному напряжению.

Цифровой вольтметр

Вольтметр, отображающий показания в числовой форме, известен как цифровой вольтметр. Цифровой вольтметр дает точный результат.

Прибор, который измеряет постоянный ток, известен как вольтметр постоянного тока, а вольтметр переменного тока используется в цепи переменного тока для измерения переменного напряжения.

Калибровка амперметра, вольтметра и ваттметра с помощью потенциометра

Мы знаем, что напряжение, ток и мощность измеряются в вольтах, амперах, а для измерения этих параметров используются ваттметры, амперметры и ваттметры. Хотя эти измерительные приборы изготовлены с особой тщательностью, они все же могут давать показания ошибок на стороне клиента. Таким образом, эти инструменты откалиброваны, чтобы минимизировать ошибку. В этой статье мы объясним , как откалибровать вольтметр, амперметр и ваттметр с помощью потенциометра .

Прежде чем вдаваться в подробности, давайте сначала обсудим важную концепцию, используемую в этой статье.

Если у нас есть два источника напряжения одинакового значения, подключенные параллельно, как показано ниже, то между ними не будет тока.Это связано с тем, что потенциальные значения обоих источников одинаковы, и ни один из источников не может подтолкнуть заряд к другому. Так что в схеме гальванометр не показывает никаких отклонений.

Мы будем использовать то же явление уравновешивания двух источников напряжения в процессе калибровки.

Калибровка потенциометра

На рисунке выше показана принципиальная схема для калибровки потенциометра.

На рисунке стандартный элемент с напряжением 1.Используется 50В, что не вызывает колебаний напряжения даже в милливольтах при нагрузке. Такой стабильный источник необходим для безошибочной калибровки потенциометра.

Токопроводящая шкала точно масштабирована, чтобы избежать ошибок при измерении. Электропроводящая шкала также имеет гладкую поверхность с четко очерченными размерами для равномерного распределения сопротивления по всей ее длине.

Реостат предназначен для регулировки потока тока в контуре цепи, и, таким образом, мы можем регулировать падение напряжения на единицу длины по проводящей шкале.Сюда также подключается гальванометр для визуализации неисправности, которая возникает в случае протекания тока между стандартной петлей ячейки и токопроводящей петлей шкалы. Неизвестная ЭДС здесь подключена к гальванометру для измерения после калибровки потенциометра.

Рабочий:

Сначала включите питание и отрегулируйте реостат, чтобы позволить току в несколько сотен миллиампер течь по контуру основной цепи. Поскольку проводящая шкала также находится в основном контуре, через нее протекает тот же ток, что и вызывает падение напряжения.Хотя падение напряжения появляется на металлической шкале, она будет равномерно распределена по всему ее телу.

После появления падения напряжения по проводящей шкале, если взять скользящий контакт и двигаться по металлической шкале от нуля, то ток течет из вторичной цепи в первичную из-за дисбаланса цепи. И по мере того, как скользящий контакт перемещается дальше от нуля, величина этого тока уменьшается. Это связано с тем, что по мере увеличения площади контакта падение напряжения на масштабированной площади приближается к напряжению стандартной ячейки.Таким образом, в определенный момент падение напряжения на масштабируемой области будет равно напряжению стандартной ячейки, и в этот момент между двумя цепями не будет протекать ток.

Теперь, когда гальванометр подключен к вторичной цепи, он покажет на своем дисплее отклонение из-за протекания тока, и чем больше ток, тем больше отклонение. Исходя из этого, гальванометр не будет показывать отклонения только тогда, когда обе цепи сбалансированы, и это состояние, которого мы будем пытаться достичь при калибровке потенциометра.

Для лучшего понимания рассмотрим схему, показанную ниже, которая показывает состояние баланса.

Если мы примем сопротивление металлического контакта длиной от 0 до 100 см как «R», тогда падение напряжения на всем металлическом контакте длиной 100 см будет V = IR. Поскольку мы использовали симметричную схему , то для это падение напряжения «V» должно быть равно напряжению стандартного элемента, и в показаниях гальванометра будет нулевое отклонение.

Теперь, измерив эту точную длину, на которой гальванометр показывает ноль, мы можем откалибровать шкалу потенциометра на основе стандартного значения напряжения ячейки.

Таким образом, длина шкалы составляет 1 см = 1,5 В / 100 см = 0,005 В = 5 мВ. 

Зная падение напряжения на сантиметр на шкале потенциометра, подключите неизвестное напряжение ко вторичной цепи и сдвиньте контакт, чтобы измерить длину, при которой мы будем иметь нулевое отклонение. Зная эту шкалу, на которой имеет место баланс, мы можем измерить значение неизвестной ЭДС как,

.
V = (длина контакта) x (5 мВ). 

Применение потенциометров

Помимо измерения неизвестного напряжения, потенциометр также можно использовать для измерения силы тока и мощности, для их измерения требуется всего лишь пара дополнительных компонентов.

Помимо измерения напряжения, тока и мощности, потенциометры в основном используются для калибровки вольтметров, амперметров и ваттметров . Кроме того, поскольку потенциометр является устройством постоянного тока, калибруемые инструменты должны быть типа подвижного железа постоянного тока или электродинамометра.

Калибровка вольтметра с помощью потенциометра

В схеме наиболее важным компонентом процесса калибровки является подходящий стабильный источник постоянного напряжения.Это связано с тем, что любые колебания напряжения питания вызовут ошибку в калибровке вольтметра, что приведет к полному провалу эксперимента. Таким образом, стандартный элемент напряжения со стабильным конечным значением берется в качестве источника и подключается параллельно с вольтметром, который необходимо калибровать. Две потенциометры «RV1» и «RV2» используются для регулировки напряжения, которое должно появляться на вольтметре, как показано на рисунке.

Коробка соотношения напряжений также подключается параллельно вольтметру, чтобы разделить напряжение на вольтметре и получить соответствующее значение, подходящее для подключения потенциометра.

Со всей установкой мы готовы к проверке точности вольтметра . Итак, для начала просто подайте питание на схему, чтобы получить показания вольтметра и неизвестное напряжение на выходе коробки соотношения напряжений. Теперь мы будем использовать откалиброванный потенциометр для измерения этого неизвестного напряжения.

После получения показаний потенциометра проверьте, совпадают ли показания потенциометра с показаниями вольтметра. Поскольку потенциометр измеряет истинное значение напряжения, если показание потенциометра не совпадает с показанием вольтметра, то отображается отрицательная или положительная ошибка. А для коррекции можно построить калибровочную кривую с помощью показаний вольтметра и потенциометра.

Также для точности измерений необходимо, насколько это возможно, измерять напряжения вблизи максимального диапазона потенциометра.

Калибровка амперметра с помощью потенциометра

Как упоминалось выше, мы будем использовать подходящее стабильное напряжение питания постоянного тока, чтобы избежать ошибок при калибровке, которые не вызывают колебаний напряжения в течение всего эксперимента.Реостат используется для регулировки величины тока, протекающего по всей цепи. Кроме того, стандартное сопротивление «R» подходящего значения с достаточной допустимой нагрузкой по току подключается последовательно с амперметром (который находится в процессе калибровки) для получения параметра напряжения, который относится к току, протекающему в цепи.

Теперь, после включения питания, через всю цепь протекает ток «I», и при этом показании протекания тока будет генерироваться амперметр, присутствующий в контуре. Кроме того, из-за протекания тока на стандартном сопротивлении «R» произойдет падение напряжения.

Теперь мы воспользуемся потенциометром для измерения напряжения на стандартном резисторе, а затем воспользуемся законом Ома для вычисления тока через стандартное сопротивление.

То есть ток I = V / R
куда
V = напряжение на стандартном резисторе, измеренное потенциометром,
А R = сопротивление стандартного резистора. 

Поскольку мы используем стандартный резистор, сопротивление будет точно известно, а напряжение на стандартном резисторе измеряется потенциометром.Рассчитанное значение будет точным значением тока, протекающего через контур. Затем сравните это рассчитанное значение с показаниями амперметра, чтобы проверить точность амперметра. Если есть какие-либо ошибки, мы можем внести необходимые корректировки в амперметр, чтобы исправить ошибки.

Калибровка ваттметра с помощью потенциометра

Как упоминалось выше, для точного процесса калибровки мы будем использовать два подходящих источника постоянного напряжения постоянного тока в качестве источников. Обычно источник низкого напряжения подключается последовательно к катушке тока ваттметра, а источник среднего напряжения подключается к катушке потенциала ваттметра. Реостат в верхней цепи используется для регулировки величины тока, протекающего через токовую катушку, а подстроечный потенциометр в нижней цепи используется для регулировки напряжения на катушке потенциала.

Помните, что регулировочный потенциометр предпочтительнее для регулировки напряжения, а реостат предпочтительнее для регулировки тока в цепи.

Кроме того, стандартное сопротивление «R» подходящего значения и достаточной допустимой нагрузки по току помещается последовательно с токовой катушкой ваттметра. И это стандартное сопротивление будет вызывать падение напряжения на нем, когда ток течет в цепи катушки тока.

После включения питания мы получим два неизвестных значения напряжения, одно на выходе делителя напряжения, а другое на стандартном сопротивлении «R». Теперь, если потенциометр используется для измерения напряжения на стандартном резисторе, мы можем использовать закон Ома для расчета тока через стандартное сопротивление. Поскольку токовая катушка включена последовательно со стандартным сопротивлением, расчетное значение также представляет ток, протекающий через токовую катушку. Аналогичным образом используйте потенциометр второй раз, чтобы измерить напряжение на катушке потенциала ваттметра.

Теперь, когда мы измерили ток через токовую катушку и напряжение на потенциальной катушке с помощью потенциометра, мы можем рассчитать мощность как

Мощность P = значение напряжения x значение тока. 

После расчета мы можем сравнить это рассчитанное значение с показаниями ваттметра для проверки на наличие ошибок.Как только ошибки будут обнаружены, произведите необходимые настройки ваттметра, чтобы скорректировать ошибки.

Таким образом, потенциометр можно использовать для калибровки вольтметра, амперметра и ваттметра для получения точных показаний.

Как измерить ток с помощью мультиметра »Электроника

Мультиметр обеспечивает один из самых простых способов измерения переменного и постоянного тока (AC и DC). Мы даем некоторые из основных рекомендаций. . .


Руководство по мультиметру Включает в себя:
Основные сведения о тестере Аналоговый мультиметр Как работает аналоговый мультиметр Цифровой мультиметр DMM Как работает цифровой мультиметр Точность и разрешение цифрового мультиметра Как купить лучший цифровой мультиметр Как пользоваться мультиметром Измерение напряжения Текущие измерения Измерения сопротивления Тест диодов и транзисторов Диагностика транзисторных цепей


Часто бывает необходимо знать, как измерить ток с помощью мультиметра.Измерения тока выполнить легко, но они выполняются несколько иначе, чем измерения напряжения и другие измерения. Однако измерения тока часто необходимо проводить, чтобы выяснить, правильно ли работает цепь, или чтобы обнаружить другие факты, связанные с ее потреблением тока.

Ток является одним из основных электрических / электронных параметров, поэтому часто необходимо измерить ток, протекающий в цепи, чтобы проверить ее работу.

… как цифровые, так и аналоговые мультиметры могут очень легко измерять ток ….

Измерения тока можно выполнять с помощью различных измерительных приборов, но наиболее широко используемым измерительным оборудованием для измерения тока является цифровой мультиметр. Это испытательное оборудование широко доступно по очень разумным ценам.

Измерение тока: основы

Измерения тока выполняются иначе, чем измерения напряжения и других измерений.Ток состоит из потока электронов вокруг цепи, и необходимо иметь возможность контролировать общий поток электронов. В очень простой схеме показана ниже. В нем есть батарейка, лампочка, которую можно использовать как индикатор, и резистор. Чтобы изменить уровень тока, протекающего в цепи, можно изменить сопротивление, а количество протекающего тока можно измерить по яркости лампы.

Простая схема для измерения тока

При использовании мультиметра для измерения тока единственный способ, который можно использовать для определения уровня протекающего тока, – это разрыв цепи, чтобы ток проходил через измеритель. Хотя временами это может быть сложно, это лучший вариант. Типичное измерение тока можно выполнить, как показано ниже. Из этого видно, что цепь, в которой протекает ток, должна быть разорвана, а мультиметр вставлен в цепь. В некоторых цепях, где часто может потребоваться измерение тока, могут быть добавлены клеммы с перемычкой для облегчения измерения тока.

Как измерить ток с помощью мультиметра

Для того, чтобы мультиметр не влиял на работу цепи, когда он используется для измерения тока, сопротивление измерителя должно быть как можно меньшим.Для измерений около ампера сопротивление метра должно быть намного меньше ома. Например, если измеритель имел сопротивление в один Ом и протекал ток в один ампер, то на нем было бы напряжение в один вольт. Для большинства измерений это было бы неприемлемо высоким. Поэтому сопротивление счетчиков, используемых для измерения тока, обычно очень низкое.

Как измерить ток аналоговым мультиметром

Аналоговый измеритель довольно просто использовать для измерения электрического тока. Есть несколько незначительных отличий в способах проведения измерений тока, но используются те же основные принципы.

… аналоговые мультиметры также могут легко и точно измерять ток ….

При использовании аналогового мультиметра можно выполнить несколько простых шагов:

  1. Вставьте датчики в правильные соединения – это необходимо, потому что может быть несколько различных соединений, которые можно использовать.Убедитесь, что вы выбрали правильные соединения, поскольку могут быть отдельные соединения для диапазонов очень низкого или очень высокого тока.
  2. Установите переключатель на правильный тип измерения (т. Е. Для измерения тока) и диапазон, в котором будет выполняться измерение. При выборе диапазона убедитесь, что максимум для конкретного выбранного диапазона выше ожидаемого. При необходимости диапазон мультиметра может быть позже уменьшен. Однако, если выбрать слишком большой диапазон, это предотвратит перегрузку счетчика и любое возможное повреждение движения самого счетчика.
  3. При снятии показаний оптимизируйте диапазон для наилучшего считывания. Если возможно, отрегулируйте его так, чтобы можно было добиться максимального отклонения счетчика. Таким образом будет получено наиболее точное показание.
  4. После завершения считывания рекомендуется поместить щупы в гнезда для измерения напряжения и повернуть диапазон в положение максимального напряжения. Таким образом, если счетчик случайно подключен, не задумываясь о том, какой диапазон будет использоваться, вероятность повреждения счетчика мала.Это может быть неправдой, если он оставлен на текущее значение, а счетчик случайно подключен к точке высокого напряжения!

Как измерить ток цифровым мультиметром

Чтобы измерить ток цифровым мультиметром, можно выполнить несколько простых шагов:

  1. Включите счетчик
  2. Вставьте зонды в правильные соединения – на многих счетчиках существует несколько различных соединений для зондов. Часто один помечен как обычный, в который обычно помещается черный зонд.Другой зонд должен быть вставлен в соответствующее гнездо для измерения тока. Иногда используется специальное соединение для измерения тока, а иногда – отдельное соединение для измерений низкого или высокого тока. Выберите правильный вариант для текущего измерения.
  3. Установите главный селекторный переключатель на переключателе измерителя на правильный тип измерения (т. Е. Ток) и диапазон, в котором будет производиться измерение. При выборе диапазона убедитесь, что максимальный диапазон превышает ожидаемое значение.При необходимости диапазон цифрового мультиметра можно уменьшить. Однако выбор слишком большого диапазона предотвращает перегрузку счетчика.
  4. При измерении тока оптимизируйте диапазон для наилучшего считывания. Если возможно, разрешите всем ведущим цифрам не читать ноль, и таким образом можно будет прочитать наибольшее количество значащих цифр.
  5. Когда считывание будет завершено, рекомендуется поместить щупы в гнезда для измерения напряжения и установить диапазон на максимальное напряжение. Таким образом, если счетчик случайно подключен без учета используемого диапазона, вероятность повреждения счетчика мала. Это может быть неправдой, если он оставлен на текущее значение, а счетчик случайно подключен к точке высокого напряжения!

Следуя этим шагам, очень легко измерить ток с помощью любого цифрового мультиметра.

Альтернативные методы измерения силы тока

Самый очевидный метод измерения тока с помощью мультиметра – разорвать цепь и быстро приблизить измеритель к цепи.Однако это не единственный метод, который можно использовать.

Есть несколько методов, которые могут быть реализованы, не требующие разрыва цепи и последовательного подключения счетчика.

Эти методы часто используются там, где важно не разорвать цепь, и используются методы, которые тем или иным образом определяют ток.

Точность часто может быть почти такой же хорошей, как при включении измерителя в цепь, но для этого может потребоваться, чтобы компоненты уже были на месте или использовались другие типы датчиков.

Использование последовательного резистора для измерения тока

Этот метод измерения тока может дать некоторые преимущества при некоторых обстоятельствах, когда предполагается, что ток может потребоваться регулярно измерять в цепи.

Этот метод измерения тока предполагает включение в схему небольшого резистора подходящего номинала. Обычно один конец резистора находится под потенциалом земли, чтобы избежать риска случайного замыкания на землю высокого напряжения при проведении теста.

Метод измерения тока путем вставки в цепь последовательного резистора.

Измеряя напряжение на резисторе, можно легко вычислить ток.

Например, резистор 10 Ом включен в цепь и на нем обнаружено значение 100 мВ, тогда, используя закон Ома, можно сделать вывод, что ток составляет V / R = 0,1 / 10 = 10 мА.

При использовании этого метода измерения тока сопротивление резистора должно быть достаточно точным для проведения измерений.Любая погрешность в резисторе e даст такой же допуск, но не при измерении. К счастью, многие измерения в этой ситуации не требуют особой точности, и поэтому даже 10% резисторов будут достаточно точными – 2% также может быть адекватным в зависимости от необходимых допусков.

В показанном случае последовательный резистор, используемый для измерения тока, помещен рядом с землей, а также в обход конденсатора для обхода любого сигнала на землю. Это особенно важно, если схема используется на радиочастотах, РЧ, поскольку это поможет предотвратить излучение любого сигнала по выводам измерительного прибора.

Метод измерения тока с помощью датчика тока / катушки

Если невозможно каким-либо образом прорваться в цепь, можно использовать датчик тока.

Датчики тока обычно имеют форму датчика, который размещается вокруг проводника с током. Он способен обнаруживать ток, протекающий в проводнике, и таким образом давать показания.

Эти датчики часто входят в состав целого измерителя, поэтому часто невозможно использовать стандартный мультиметр для этого типа теста.

Существует несколько различных типов датчиков / измерителей, которые могут использоваться с этим методом измерения тока.

  • Трансформатор тока: Одна из наиболее распространенных форм датчика тока называется токовыми клещами. Он состоит из разрезного кольца из феррита или мягкого железа, на которое намотана катушка – по одной на каждой половине. Сердечник пропускается по проводнику, в котором необходимо измерить ток, и две половины сердечника зажимаются на месте. Таким образом, сборка действует как трансформатор, а катушки зажима улавливают магнитное поле от тока, протекающего в проводнике.Поскольку вся сборка фактически представляет собой трансформатор, этот метод измерения тока работает только для переменного тока. Также расходомеры, использующие это, обычно поставляются как отдельные «клещи».
  • Датчик Холла: Датчик Холла, использующий другую технологию. Он может измерять как переменный, так и постоянный ток, протекающий в проводнике. Его часто используют вместе с осциллографами и цифровыми мультиметрами высокого класса, хотя их использование становится все более распространенным.

Существуют и другие аналогичные методы измерения тока с использованием датчиков, но наиболее распространенными являются токовые клещи и датчики на эффекте Холла.

Как измерить переменный ток мультиметром

Часто бывает необходимо измерить переменный ток. Хотя для измерения переменного тока используются те же основные шаги, что и при обычном измерении постоянного тока, есть несколько дополнительных моментов, на которые следует обратить внимание.

  • Требуется настройка переменного тока: Различия в измерениях возникают из-за того, что мультиметр должен исправлять переменную форму волны, чтобы иметь возможность измерять переменный ток.Основное отличие цифрового мультиметра состоит в том, что переключатель типа измерения должен быть установлен на измерение переменного тока, а не постоянного.
  • Для аналоговых счетчиков требуется выпрямитель: Для аналогового мультиметра ситуация немного иная. Поскольку аналоговый мультиметр не содержит активной электроники, диодный выпрямитель, используемый для выпрямления переменного сигнала, имеет определенное напряжение включения, и это повлияет на низкое напряжение на некоторых шкалах. Некоторые измерители могут быть не в состоянии измерять переменный ток или у них будут очень ограниченные диапазоны.

Хотя измерение электрического тока не так распространено, как измерение напряжения, тем не менее, умение измерять ток является важной способностью. Также важно знать, как измерять ток, чтобы получить лучшее от мультиметра.

Другие темы тестирования:
Анализатор сети передачи данных Цифровой мультиметр Частотомер Осциллограф Генераторы сигналов Анализатор спектра Измеритель LCR Дип-метр, ГДО Логический анализатор Измеритель мощности RF Генератор радиочастотных сигналов Логический зонд Тестирование и тестеры PAT Рефлектометр во временной области Векторный анализатор цепей PXI GPIB Граничное сканирование / JTAG
Вернуться в меню тестирования. . .

Напряжение, ток, сопротивление и закон Ома

Добавлено в избранное Любимый 108

Основы электроэнергетики

Приступая к изучению мира электричества и электроники, важно начать с понимания основ напряжения, тока и сопротивления. Это три основных строительных блока, необходимых для управления и использования электричества.Поначалу эти концепции могут быть трудными для понимания, потому что мы не можем их «видеть». Невооруженным глазом нельзя увидеть энергию, протекающую по проводу, или напряжение батареи, стоящей на столе. Даже молния в небе, хотя и видимая, на самом деле не является обменом энергии между облаками и землей, а является реакцией в воздухе на энергию, проходящую через него. Чтобы обнаружить эту передачу энергии, мы должны использовать измерительные инструменты, такие как мультиметры, анализаторы спектра и осциллографы, чтобы визуализировать, что происходит с зарядом в системе. Однако не бойтесь, это руководство даст вам общее представление о напряжении, токе и сопротивлении, а также о том, как они соотносятся друг с другом.

Георг Ом

Рассмотрено в этом учебном пособии

  • Как электрический заряд соотносится с напряжением, током и сопротивлением.
  • Что такое напряжение, сила тока и сопротивление.
  • Что такое закон Ома и как его использовать для понимания электричества.
  • Простой эксперимент для демонстрации этих концепций.

Рекомендуемая литература

и nbsp

и nbsp

Электрический заряд

Электричество – это движение электронов. Электроны создают заряд, который мы можем использовать для работы. Ваша лампочка, стереосистема, телефон и т. Д. – все используют движение электронов для выполнения работы. Все они работают, используя один и тот же основной источник энергии: движение электронов.

Три основных принципа этого урока можно объяснить с помощью электронов или, более конкретно, заряда, который они создают:

  • Напряжение – это разница заряда между двумя точками.
  • Текущий – это скорость, с которой происходит начисление.
  • Сопротивление – это способность материала сопротивляться прохождению заряда (тока).

Итак, когда мы говорим об этих значениях, мы на самом деле описываем движение заряда и, следовательно, поведение электронов. Цепь представляет собой замкнутый контур, который позволяет заряду перемещаться из одного места в другое. Компоненты схемы позволяют нам контролировать этот заряд и использовать его для работы.

Георг Ом был баварским ученым, изучавшим электричество.Ом начинается с описания единицы сопротивления, которая определяется током и напряжением. Итак, начнем с напряжения и продолжим.

Напряжение

Мы определяем напряжение как количество потенциальной энергии между двумя точками цепи. Одна точка заряжена больше, чем другая. Эта разница в заряде между двумя точками называется напряжением. Он измеряется в вольтах, что технически представляет собой разность потенциалов между двумя точками, которые передают один джоуль энергии на каждый кулон заряда, который проходит через них (не паникуйте, если это не имеет смысла, все будет объяснено).Единица «вольт» названа в честь итальянского физика Алессандро Вольта, который изобрел то, что считается первой химической батареей. Напряжение представлено в уравнениях и схемах буквой «V».

При описании напряжения, тока и сопротивления общей аналогией является резервуар для воды. По этой аналогии заряд представлен количеством воды , напряжение представлено давлением воды , а ток представлен потоком воды . Для этой аналогии запомните:

  • Вода = Заряд
  • Давление = Напряжение
  • Расход = Текущий

Рассмотрим резервуар для воды на определенной высоте над землей. На дне этой емкости находится шланг.

Давление на конце шланга может представлять напряжение. Вода в баке представляет собой заряд. Чем больше воды в баке, тем выше заряд, тем больше давление измеряется на конце шланга.

Мы можем представить этот резервуар как батарею, место, где мы накапливаем определенное количество энергии, а затем высвобождаем ее. Если мы опорожняем наш бак определенным количеством жидкости, давление, создаваемое на конце шланга, падает. Мы можем думать об этом как об уменьшении напряжения, например, когда фонарик тускнеет по мере разрядки батарей.Также уменьшается количество воды, протекающей через шланг. Меньшее давление означает, что течет меньше воды, что приводит нас к течению.

Текущий

Мы можем представить себе количество воды, протекающей по шлангу из бака, как ток. Чем выше давление, тем выше расход, и наоборот. С водой мы бы измерили объем воды, протекающей по шлангу за определенный период времени.18 электронов (1 кулон) в секунду проходят через точку в цепи. Ампер в уравнениях обозначается буквой «I».

Предположим теперь, что у нас есть два резервуара, каждый со шлангом, идущим снизу. В каждом резервуаре одинаковое количество воды, но шланг одного резервуара уже, чем шланг другого.

Мы измеряем одинаковое давление на конце любого шланга, но когда вода начинает течь, расход воды в баке с более узким шлангом будет меньше, чем расход воды в баке с более широкий шланг.С точки зрения электричества, ток через более узкий шланг меньше, чем через более широкий шланг. Если мы хотим, чтобы поток через оба шланга был одинаковым, мы должны увеличить количество воды (заряда) в баке с помощью более узкого шланга.

Это увеличивает давление (напряжение) на конце более узкого шланга, проталкивая больше воды через бак. Это аналогично увеличению напряжения, которое вызывает увеличение тока.

Теперь мы начинаем видеть взаимосвязь между напряжением и током.Но здесь следует учитывать третий фактор: ширину шланга. В этой аналогии ширина шланга – это сопротивление. Это означает, что нам нужно добавить еще один термин в нашу модель:

  • Вода = заряд (измеряется в кулонах)
  • Давление = напряжение (измеряется в вольтах)
  • Расход = ток (измеряется в амперах, или сокращенно «амперах»)
  • Ширина шланга = сопротивление

Сопротивление

Снова рассмотрим наши два резервуара для воды, один с узкой трубой, а другой с широкой.

Само собой разумеется, что мы не можем пропустить через узкую трубу такой же объем, как более широкая, при том же давлении. Это сопротивление. Узкая труба «сопротивляется» потоку воды через нее, даже если вода находится под тем же давлением, что и резервуар с более широкой трубой.

В электрическом смысле это представлено двумя цепями с одинаковым напряжением и разным сопротивлением. Цепь с более высоким сопротивлением позволит протекать меньшему количеству заряда, то есть в цепи с более высоким сопротивлением будет меньше тока, протекающего через нее.18 электронов. Это значение обычно представлено на схемах греческой буквой «& ohm;», которая называется омега и произносится как «ом».

Закон Ома

Объединив элементы напряжения, тока и сопротивления, Ом разработал формулу:

Где

  • В = Напряжение в вольтах
  • I = ток в амперах
  • R = Сопротивление в Ом

Это называется законом Ома.Скажем, например, что у нас есть цепь с потенциалом 1 вольт, током 1 ампер и сопротивлением 1 Ом. Используя закон Ома, мы можем сказать:

Допустим, это наш резервуар с широким шлангом. Количество воды в баке определяется как 1 В, а «узость» (сопротивление потоку) шланга определяется как 1 Ом. Используя закон Ома, это дает нам ток (ток) в 1 ампер.

Используя эту аналогию, давайте теперь посмотрим на резервуар с узким шлангом. Поскольку шланг более узкий, его сопротивление потоку выше.Определим это сопротивление как 2 Ом. Количество воды в резервуаре такое же, как и в другом резервуаре, поэтому, используя закон Ома, наше уравнение для резервуара с узким шлангом составляет

.

а какой ток? Поскольку сопротивление больше, а напряжение такое же, это дает нам значение тока 0,5 А:

Значит, в баке с большим сопротивлением ток меньше. Теперь мы видим, что если мы знаем два значения закона Ома, мы можем решить третье.Продемонстрируем это на эксперименте.

Эксперимент по закону Ома

Для этого эксперимента мы хотим использовать батарею на 9 В для питания светодиода. Светодиоды хрупкие и могут пропускать через них только определенное количество тока, прежде чем они перегорят. В документации к светодиоду всегда будет «текущий рейтинг». Это максимальное количество тока, которое может пройти через конкретный светодиод, прежде чем он перегорит.

Необходимые материалы

Для проведения экспериментов, перечисленных в конце руководства, вам потребуется:

ПРИМЕЧАНИЕ. Светодиоды – это так называемые «неомические» устройства.Это означает, что уравнение для тока, протекающего через сам светодиод, не так просто, как V = IR. Светодиод вызывает в цепи то, что называется «падением напряжения», тем самым изменяя величину протекающего через нее тока. Однако в этом эксперименте мы просто пытаемся защитить светодиод от перегрузки по току, поэтому мы пренебрегаем токовыми характеристиками светодиода и выбираем номинал резистора, используя закон Ома, чтобы быть уверенным, что ток через светодиод безопасно ниже 20 мА.

В этом примере у нас есть батарея на 9 В и красный светодиод с номинальным током 20 мА, или 0.020 ампер. На всякий случай мы бы предпочли не управлять максимальным током светодиода, а его рекомендуемым током, который указан в его техническом описании как 18 мА или 0,018 ампер. Если просто подключить светодиод непосредственно к батарее, значения закона Ома будут выглядеть так:

следовательно:

, а поскольку сопротивления еще нет:

Деление на ноль дает бесконечный ток! Ну, на практике не бесконечно, но столько тока, сколько может доставить аккумулятор. Поскольку мы НЕ хотим, чтобы через светодиод проходил такой большой ток, нам понадобится резистор.Наша схема должна выглядеть так:

Мы можем использовать закон Ома точно так же, чтобы определить значение резистора, которое даст нам желаемое значение тока:

следовательно:

вставляем наши значения:

решение для сопротивления:

Итак, нам нужно сопротивление резистора около 500 Ом, чтобы ток через светодиод не превышал максимально допустимый.

500 Ом не является обычным значением для стандартных резисторов, поэтому в этом устройстве вместо него используется резистор 560 Ом.Вот как выглядит наше устройство вместе.

Успех! Мы выбрали номинал резистора, достаточно высокий, чтобы ток через светодиод не превышал его максимальный номинал, но достаточно низкий, чтобы ток был достаточным, чтобы светодиод оставался красивым и ярким.

Этот пример светодиодного / токоограничивающего резистора является обычным явлением в хобби-электронике. Вам часто придется использовать закон Ома, чтобы изменить величину тока, протекающего по цепи. Другой пример такой реализации – светодиодные платы LilyPad.

При такой настройке вместо того, чтобы выбирать резистор для светодиода, резистор уже встроен в светодиод, поэтому ограничение тока выполняется без необходимости добавлять резистор вручную.

Ограничение тока до или после светодиода?

Чтобы немного усложнить задачу, вы можете разместить токоограничивающий резистор по обе стороны от светодиода, и он будет работать точно так же!

Многие люди, впервые изучающие электронику, борются с идеей, что резистор, ограничивающий ток, может находиться по обе стороны от светодиода, и схема по-прежнему будет работать как обычно.

Представьте себе реку в непрерывной петле, бесконечную, круглую, текущую реку. Если бы мы построили там плотину, вся река перестала бы течь, а не только с одной стороны. Теперь представьте, что мы помещаем водяное колесо в реку, которое замедляет течение реки. Неважно, где в круге находится водяное колесо, оно все равно замедлит поток на всей реке .

Это чрезмерное упрощение, поскольку токоограничивающий резистор нельзя размещать где-либо в схеме ; он может быть размещен на с любой стороны светодиода для выполнения своей функции.

Чтобы получить более научный ответ, мы обратимся к закону напряжения Кирхгофа. Именно из-за этого закона резистор, ограничивающий ток, может располагаться по обе стороны светодиода и при этом иметь тот же эффект. Для получения дополнительной информации и некоторых практических задач с использованием KVL посетите этот веб-сайт.

Ресурсы и дальнейшее развитие

Теперь вы должны понять концепции напряжения, тока, сопротивления и их взаимосвязь. Поздравляю! Большинство уравнений и законов для анализа цепей можно вывести непосредственно из закона Ома.Зная этот простой закон, вы понимаете концепцию, лежащую в основе анализа любой электрической цепи!

Эти концепции – лишь верхушка айсберга. Если вы хотите продолжить изучение более сложных приложений закона Ома и проектирования электрических цепей, обязательно ознакомьтесь со следующими руководствами.

Поверхностный вольтметр постоянного тока SVM2 – AlphaLab, Inc.

Описание

Описание продукта:

SVM2 – портативный измеритель статического электричества, используемый для измерения величины и полярности статического заряда на объектах или поверхностях.Обычно его держат на расстоянии 1 дюйма (25 мм) от испытательной поверхности. На металлической или проводящей поверхности измеритель измеряет напряжение на поверхности. (Как и в случае любого электростатического вольтметра, отображаемое показание в некоторой степени зависит от размера объекта измерения и расстояния между объектом и датчиком. ) На изолирующих поверхностях «напряжение» не является четко определенным числом. В этом случае измеритель показывает число, пропорциональное имеющемуся статическому заряду.

SVM2 имеет высокую чувствительность (разрешение) и может обнаруживать даже заряд в 1 вольт в любом месте в пределах всего диапазона от +29 999 до -29 999 вольт.Таким образом, легко измерить, увеличивает или уменьшает данный процесс статическое электричество, даже если это увеличение или уменьшение незначительно. Измеритель считывает фактический статический сигнал, но он также фиксирует и сохраняет самые высокие положительные и самые отрицательные сигналы, которые были получены с момента последнего нажатия кнопки «Сброс». Эти пиковые + и – могут быть отображены в любое более позднее время. Функция пикового значения имеет время окна 0,005 секунды (что намного быстрее, чем отображение), поэтому даже очень быстрые пики фиксируются и сохраняются.Также имеется настраиваемая пользователем сигнализация. Сигнал тревоги сработает, если сигнал (будь то + или -) когда-либо превысит значение, установленное пользователем, как минимум на 0,005 секунды. Аварийный сигнал можно сбросить или отключить в любой момент.

С помощью этого измерителя можно измерить все следующее:

  • Количество заряда (или напряжения) на поверхности и эффективность антистатической обработки. Измерение крошечного частичного изменения поверхностного напряжения полезно, потому что оно говорит вам, становится ли проблема лучше или хуже по мере того, как новое лекарство пробуется и модифицируется.
  • Местоположение, сила и полярность всех источников статического электричества. Благодаря скорости этого измерителя легко найти неожиданные источники.
  • Число (на квадратный см в секунду) аэроионов, ударяющихся о поверхность, и эффективность ионизаторов и разрядных устройств.
  • Постоянный ток Напряженность электрического поля в воздухе (также переменный ток, который составляет 1/3 разницы между числами удержания пиков + и -).
  • Приблизительная проводимость или Ом на квадрат поверхности.
  • Приблизительная сила притяжения / отталкивания между заряженными поверхностями. (Это можно рассчитать по показаниям.)
  • Дифференциал напряжения по толщине изоляционного листа или пленки.


Включен сертификат прослеживаемой калибровки NIST

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ: Поверхностный вольтметр постоянного тока, модель SVM2
Диапазон при 1 ”: от 0 до ± 29,999 кВ (29000 В)
Разрешение при 1 ″: 0,001 кВ (1 В)
Точность: ± 2% от показания
Емкость (относительно земли) датчика: 3 нФ
Чувствительность при использовании для определения заряда: 3.3 кВ / нК
Дрейф: <0,001 кВ / 10 секунд
Период полураспада утечки: > 10 часов
Диапазон сигнала тревоги: . 010 кВ – 20 кВ / без звука
Сигнализация высокого напряжения: звучит автоматически> 20 кВ
Скорость выборки: 0,0005 сек. > 98% отклик в течение> 0,015 сек.пульс
Автоотключение: Если в течение 10 минут кнопки не нажимаются
Окружающая среда: от -1 ° C до 43 ° C (от 30 ° F до 110 ° F) 0-85% относительной влажности
Размер: 4,5 х 3 х 1,2 дюйма; 115 X 72 X 30 мм
Вес: 160 г; 5,5 унций
Батарея: Щелочная батарея 9 В (срок службы ~ 30 часов) / индикатор разряда батареи

Подробная информация о том, как выполнять эти измерения.

Этот измеритель не рекомендуется для длительных автоматических измерений , таких как подключение к системе сбора данных. Обратите внимание, что входящий в комплект выходной разъем представляет собой аналоговое напряжение, составляющее 1/10000 фактического напряжения на расстоянии 25 мм. Он представляет истинную форму волны, включая постоянный ток и переходные процессы (например, переменный ток). Выход предназначен для подключения к мультиметру, осциллографу или системе АЦП. Этот измеритель следует сбрасывать вручную не реже, чем каждые 20 минут, на случай, если датчик приобрел какой-либо заряд, а при очень сильном уровне ионов (если присутствует много искры) внешние ионы будут добавлять заряд, достаточный для того, чтобы перезагрузку приходилось выполнять чаще. .(Для стабильного электростатического вольтметра, который стабилизирован прерывателем [«полевой стан»], чтобы его можно было использовать для длительных автоматических измерений без необходимости его сброса, используйте сверхстабильный поверхностный вольтметр постоянного тока USSVM2.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *