Как сделать блок питания 12В своими руками
Блок питания постоянного напряжения 12 вольт состоит из трех основных частей:
- Понижающий трансформатор с обычного входного переменного напряжения 220 В. На его выходе будет такое же синусоидальное напряжение, только пониженное до примерно 16 вольт по холостому ходу – без нагрузки.
- Выпрямитель в виде диодного моста. Он «срезает» нижние полусинусоиды и кладет их вверх, то есть получается напряжение, меняющееся от 0 до тех же 16 вольт, но в положительной области.
- Электролитический конденсатор большой емкости, который сглаживает полусинусоиды напряжения, делая их приближающимися к прямой линии на уровне в 16 вольт. Это сглаживание тем лучше, чем больше емкость конденсатора.
Самое простое, что нужно для получения постоянного напряжения, способного питать приборы, рассчитанные на 12 вольт – лампочки, светодиодные ленты и другое низковольтное оборудование.
Понижающий трансформатор можно взять из старого блока питания компьютера или просто купить в магазине, чтобы не заморачиваться с обмотками и перемотками.
Для моста можно взять четыре выпрямительных диода 1N4001, рассчитанных на нужный нам диапазон напряжений или аналогичные.
Конденсатор должен быть емкостью не менее 480 мкФ. Для хорошего качества выходного напряжения можно и больше, 1 000 мкФ или выше, но для питания осветительных приборов это совсем не обязательно. Диапазон рабочих напряжений конденсатора нужен, скажем, вольт до 25.
Компоновка прибора
Если мы хотим сделать приличный прибор, который не стыдно будет потом приделать в качестве постоянного блока питания, допустим, для цепочки светодиодов, нужно начать с трансформатора, платы для монтажа электронных компонентов и коробки, где все это будет закреплено и подключено. При выборе коробки важно учесть, что электрические схемы при работе разогреваются. Поэтому коробку хорошо найти подходящую по размерам и с отверстиями для вентиляции.
Можно купить в магазине или взять корпус от блока питания компьютера. Последний вариант может оказаться громоздким, но в нем как упрощение можно оставить уже имеющийся трансформатор, даже вместе с вентилятором охлаждения. Корпус блока питанияКорпус блока питанияНа трансформаторе нас интересует низковольтная обмотка. Если она дает понижение напряжения с 220 В до 16 В – это идеальный случай. Если нет, придется ее перемотать. После перемотки и проверки напряжения на выходе трансформатора его можно закрепить на монтажной плате. И сразу продумать, как монтажная плата будет крепиться внутри коробки. У нее для этого имеются посадочные отверстия.
Низковольтная обмоткаМонтажная платаДиодный мост собираем на монтажной плате, должен получиться такой ромбик из четырех диодов. Причем левая и правая пары состоят одинаково из диодов, подключенных последовательно, а обе пары параллельны друг другу. Один конец каждого диода маркирован полоской – это обозначен плюс. Сначала паяем диоды в парах друг к другу. Последовательно – это значит плюс первого соединен с минусом второго. Свободные концы пары тоже получатся – плюс и минус. Параллельно соединить пары – значит спаять оба плюса пар и оба минуса. Вот теперь имеем выходные контакты моста – плюс и минус. Или их можно назвать полюсами – верхним и нижним.
Схема диодного мостаОстальные два полюса – левый и правый – используются как входные контакты, на них подается переменное напряжение с вторичной обмотки понижающего трансформатора. А на выходы моста диоды подадут пульсирующее знакопостоянное напряжение.
Если теперь подключить параллельно с выходом моста конденсатор, соблюдая полярность – к плюсу моста – плюс конденсатора, он напряжение начнет сглаживать, причем настолько хорошо, насколько велика у него емкость. 1 000 мкФ будет достаточно, и даже ставят 470 мкФ.
Внимание! Электролитический конденсатор – прибор небезопасный. При неверном подключении, при подаче на него напряжения вне рабочего диапазона или при большом перегреве он может взорваться. При этом разлетается по округе все его внутреннее содержимое – лохмотья корпуса, металлической фольги и брызги электролита. Что весьма опасно.
Ну вот и получился у нас самый простой (если не сказать, примитивный) блок питания для приборов напряжением 12 V DC, то есть постоянного тока.
Проблемы простого блока питания с нагрузкой
Сопротивление, нарисованное на схеме – это эквивалент нагрузки. Нагрузка должна быть такова, чтобы ток, ее питающий, при подаваемом напряжении в 12 В не превысил 1 А. Можно рассчитать мощность нагрузки и сопротивление по формулам.
Откуда сопротивление R = 12 Ом, а мощность P = 12 ватт. Это значит, что если мощность будет больше 12 ватт, а сопротивление меньше 12 Ом, то наша схема начнет работать с перегрузкой, будет сильно греться и быстро сгорит. Решить проблему можно несколькими способами:
- Стабилизировать выходное напряжение так, чтобы при изменяющемся сопротивлении нагрузки ток не превышал максимально допустимого значения или при внезапных скачках тока в сети нагрузки – например, в момент включения некоторых приборов – пиковые значения тока срезались до номинала. Такие явления бывают, когда блок питания запитывает радиоэлектронные устройства – радиоприемники, и пр.
- Использовать специальные схемы защиты, которые бы отключали блок питания при превышении тока на нагрузке.
- Использовать более мощные блоки питания или блоки питания с большим запасом мощности.
Блок питания со стабилизатором на микросхеме
На рисунке ниже представлено развитие предыдущей простой схемы включением на выходе микросхемы 12-вольтового стабилизатора LM7812.
Блок питания со стабилизатором на микросхемеЭто уже лучше, но максимальный ток в нагрузке такого блока стабилизированного питания по-прежнему не должен превышать 1 А.
Блок питания повышенной мощности
Более мощным блок питания можно сделать, добавив в схему несколько мощных каскадов на транзисторах Дарлингтона типа TIP2955. Один каскад даст прибавку нагрузочного тока в 5 А, шесть составных транзисторов, подключенных параллельно, обеспечат нагрузочный ток в 30 А.
Схема, обладающая такой выходной мощностью, требует соответствующего охлаждения. Транзисторы должны быть обеспечены радиаторами. Возможно, понадобится и дополнительный вентилятор охлаждения. Кроме того, можно защититься еще плавкими предохранителями (на схеме не показано).
На рисунке показано подключение одного составного транзистора Дарлингтона, дающего возможность увеличения выходного тока до 5 ампер. Можно увеличивать и дальше, подключая новые каскады параллельно с указанным.
Подключение одного составного транзистора ДарлингтонаВнимание! Одним из главных бедствий в электрических цепях является внезапное короткое замыкание в нагрузке. При этом, как правило, возникает ток гигантской силы, который сжигает все на своем пути. В этом случае сложно придумать такой мощный блок питания, который способен это выдержать. Тогда применяют схемы защиты, начиная от плавких предохранителей и кончая сложными схемами с автоматическим отключением на интегральных микросхемах.
Блок питания 1,5в, 3,3в, 5в, 12в, 24в, самому собрать из подручных деталей мощный блок. Схемы блоков питания. Сборка простого блока питания.
Как самому собрать простой блок питания и мощный источник напряжения.
Порой приходится подключать различные электронные приборы, в том числе самодельные, к источнику постоянного напряжения 12 вольт. Блок питания несложно собрать самостоятельно в течении половины выходного дня. Поэтому нет необходимости приобретать готовый блок, когда интереснее самостоятельно изготовить необходимую вещь для своей лаборатории.
Блок питания 12в
Каждый, кто захочет сможет изготовить 12 – ти вольтовый блок самостоятельно, без особых затруднений.
Шаг 1: Какие детали необходимы для сборки блока питания …
Для сборки блока, заранее подготовьте электронные компоненты, детали и принадлежности из которого будет собираться сам блок ….
-Монтажная плата.
-Четыре диода 1N4001, или подобные. Мост диодный.
-Стабилизатор напряжения LM7812.
-Маломощный понижающий трансформатор на 220 в, вторичная обмотка должна иметь 14В – 35В переменного напряжения, с током нагрузки от 100 мА до 1А, в зависимости от того какую мощность необходимо получить на выходе.
-Электролитический конденсатор емкостью 1000мкФ – 4700мкФ.
-Конденсатор емкостью 1uF.
-Два конденсатора емкостью 100nF.
-Обрезки монтажного провода.
-Радиатор, при необходимости.
Если необходимо получить максимальную мощность от источника питания, для этого необходимо подготовить соответствующий трансформатор, диоды и радиатор для микросхемы.
Шаг 2: Инструменты ….
Для изготовления блока необходимы инструменты для монтажа:
-Паяльник или паяльная станция
-Кусачки
-Монтажный пинцет
-Кусачки для зачистки проводов
-Устройство для отсоса припоя.
-Отвертка.
И другие инструменты, которые могут оказаться полезными.
Шаг 3: Схема и другие …
Для получения 5 вольтового стабилизированного питания, можно заменить стабилизатор LM7812 на LM7805.
Для увеличения нагрузочной способности более 0,5 ампер, понадобится радиатор для микросхемы, в противном случае он выйдет из строя от перегрева.
Однако, если необходимо получить несколько сотен миллиампер (менее, чем 500 мА) от источника, то можно обойтись без радиатора, нагрев будет незначительным.
Кроме того, в схему добавлен светодиод, чтобы визуально убедиться, что блок питания работает, но можно обойтись и без него.
Блок питания 12в 30а
Схема блока питания 12в 30А.
При применении одного стабилизатора 7812 в качестве регулятора напряжения и нескольких мощных транзисторов, данный блок питания способен обеспечить выходной ток нагрузки до 30 ампер.
Пожалуй, самой дорогой деталью этой схемы является силовой понижающий трансформатор. Напряжение вторичной обмотки трансформатора должно быть на несколько вольт больше, чем стабилизированное напряжение 12в, чтобы обеспечить работу микросхемы. Необходимо иметь в виду, что не стоит стремиться к большей разнице между входным и выходным значением напряжения, так как при таком токе теплоотводящий радиатор выходных транзисторов значительно увеличивается в размерах.
В трансформаторной схеме применяемые диоды должны быть рассчитаны на большой максимальный прямой ток, примерно 100А. Через микросхему 7812 протекающий максимальный ток в схеме не составит больше 1А.
Шесть составных транзисторов Дарлингтона типа TIP2955 включенных параллельно, обеспечивают нагрузочный ток 30А (каждый транзистор рассчитан на ток 5А), такой большой ток требует и соответствующего размера радиатора, каждый транзистор пропускает через себя одну шестую часть тока нагрузки.
Для охлаждения радиатора можно применить небольшой вентилятор.
Проверка блока питания
При первом включении не рекомендуется подключать нагрузку. Проверяем работоспособность схемы: подсоединяем вольтметр к выходным клеммам и измеряем величину напряжения, оно должно составлять 12 вольт, или значение очень близко к нему. Далее подключаем нагрузочный резистор 100 Ом, мощностью рассеивания 3 Вт, или подобную нагрузку – типа лампы накаливания от автомобиля. При этом показание вольтметра не должно изменяться. Если на выходе отсутствует напряжение 12 вольт, отключите питание и проверьте правильность монтажа и исправность элементов.
Перед монтажом проверьте исправность силовых транзисторов, так как при пробитом транзисторе напряжение с выпрямителя прямиком попадает на выход схемы. Чтобы избежать этого, проверьте на короткое замыкание силовые транзисторы, для этого измерьте мультиметром по раздельности сопротивление между коллектором и эмиттером транзисторов. Эту проверку необходимо провести до монтажа их в схему.
Блок питания 3 – 24в
Схема блока питания выдает регулируемое напряжение в диапазоне от 3 до 25 вольт, при токе максимальной нагрузки до 2А, если уменьшить токоограничительный резистор 0,3 ом, ток может быть увеличен до 3 ампер и более.
Транзисторы 2N3055 и 2N3053 устанавливаются на соответствующие радиаторы, мощность ограничительного резистора должно быть не менее 3 Вт. Регулировка напряжения контролируется ОУ LM1558 или 1458. При использовании ОУ 1458 необходимо заменить элементы стабилизатора, подающие напряжение с вывода 8 на 3 ОУ с делителя на резисторах номиналом 5.1 K.
Максимальное постоянное напряжение для питания ОУ 1458 и 1558 36 В и 44 В соответственно. Силовой трансформатор должен выдавать напряжение, как минимум на 4 вольт больше, чем стабилизированное выходное напряжение. Силовой трансформатор в схеме имеет на выходе напряжение 25.2 вольт переменного тока с отводом посредине. При переключении обмоток выходное напряжение уменьшается до 15 вольт.
Схема блока питания на 1,5 в
Схема блока питания для получения напряжения 1,5 вольта, используется понижающий трансформатор, мостовой выпрямитель со сглаживающим фильтром и микросхема LM317.
Схема регулируемого блока питания от 1,5 до 12,5 в
Схема блока питания с регулировкой выходного напряжения для получения напряжения от 1,5 вольта до 12,5 вольт, в качестве регулирующего элемента применяется микросхема LM317. Ее необходимо установить на радиатор, на изолирующей прокладке для исключения замыкания на корпус.
Схема блока питания с фиксированным выходным напряжением
Схема блока питания с фиксированным выходным напряжением напряжением 5 вольт или 12 вольт. В качестве активного элемента применяется микросхема LM 7805, LM7812 она устанавливается на радиатор для охлаждения нагрева корпуса. Выбор трансформатора приведен слева на табличке. По аналогии можно выполнить блок питания и на другие выходные напряжения.
Схема блока питания мощностью 20 Ватт с защитой
Схема предназначена для небольшого трансивера самодельного изготовления, автор DL6GL. При разработке блока ставилась задача иметь КПД не менее 50%, напряжение питания номинальное 13,8V, максимум 15V, на ток нагрузки 2,7а.
По какой схеме: импульсный источник питания или линейный?
Импульсные блоки питания получается малогабаритный и кпд хороший, но неизвестно как поведет себя в критической ситуации, броски выходного напряжения …
Несмотря на недостатки выбрана схема линейного регулирования: достаточно объемный трансформатор, не высокий КПД, необходимо охлаждение и пр.
Применены детали от самодельного блока питания 1980-х годов: радиатор с двумя 2N3055. Не хватало еще только µA723/LM723-регулятор напряжения и несколько мелких деталей.
Регулятор напряжения напряжения собран на микросхеме µA723/LM723 в стандартная включении. Выходные транзисторы Т2, Т3 типа 2N3055 для охлаждения устанавливаются на радиаторы. При помощи потенциометра R1 устанавливается выходное напряжение в пределах 12-15V. При помощи переменного резистора R2 устанавливается максимальное падение напряжение на резисторе R7, которое составляет 0,7В (между контактами 2 и 3 микросхемы).
Для блока питания применяется тороидальный трансформатор (может быть любой по вашему усмотрению).
На микросхеме MC3423 собрана схема срабатывающая при превышении напряжения (выбросах) на выходе блока питания, регулировкой R3 выставляется порог срабатывания напряжения на ножке 2 с делителя R3/R8/R9 (2,6V опорное напряжение), с выхода 8 подается напряжение открывающее тиристор BT145, вызывающее короткое замыкание приводящее к срабатыванию предохранителя 6,3а.
Для подготовки блока питания к эксплуатации (предохранитель 6,3а пока не участвует) выставить выходное напряжение например, 12.0В. Нагрузите блок нагрузкой, для этого можно подключить галогенную лампу 12В/20W. R2 настройте, что бы падение напряжение было 0,7В (ток должен быть в пределах 3,8А 0,7=0,185Ωх3,8).
Настраиваем срабатывание защиты от перенапряжения, для этого плавно выставляем выходное напряжение 16В и регулируем R3 на срабатывание защиты. Далее выставляем выходное напряжение в норму и устанавливаем предохранитель (до этого ставили перемычку).
Описанный блок питания можно реконструировать для более мощных нагрузок, для этого установите более мощный трансформатор, дополнительно транзисторы, элементы обвязки, выпрямитель по своему усмотрению.
Самодельный блок питания на 3.3v
Если необходим мощный блок питания, на 3,3 вольта, то его можно изготовить, переделав старый блок питания от пк или используя выше приведенные схемы. К примеру, в схема блока питания на 1,5 в заменить резистор 47 ом большего номинала, или поставить для удобства потенциометр, отрегулировав на нужное напряжение.
Трансформаторный блок питания на КТ808
У многих радиолюбителей остались старые советские радиодетали, которые валяются без дела, но которые можно с успехом применить и они верой и правдой вам долго будут служить, одна из известных схем UA1ZH, которая гуляет по просторам интернета. Много копий и стрел сломано на форумах при обсуждении, что лучше полевой транзистор или обычный кремниевый или германиевый, какую температуру нагрева кристалла они выдержат и кто из них надежнее?
У каждой стороны свои доводы, ну а вы можете достать детали и смастерить еще один несложный и надежный блок питания. Схема очень простая, защищена от перегрузки по току и при параллельном включении трех КТ808 может выдать ток 20А, у автора использовался такой блок при 7 параллельных транзисторов и отдавал в нагрузку 50А, при этом емкость конденсатора фильтра была 120 000 мкф, напряжение вторичной обмотки 19в. Необходимо учитывать, что контакты реле должны коммутировать такой большой ток.
При условии правильного монтажа, просадка выходного напряжения не превышает 0.1 вольта
Блок питания на 1000в, 2000в, 3000в
Если нам необходимо иметь источник постоянного напряжения на высокое напряжение для питания лампы выходного каскада передатчика, что для этого применить? В интернете имеется много различных схем блоков питания на 600в, 1000в, 2000в, 3000в.
Первое: на высокое напряжение используют схемы с трансформаторов как на одну фазу, так и на три фазы (если имеется в доме источник трехфазного напряжения).
Второе: для уменьшения габаритов и веса используют бестрансформаторную схему питания, непосредственно сеть 220 вольт с умножением напряжения. Самый большой недостаток этой схемы – отсутствует гальваническая развязка между сетью и нагрузкой, как выход подключают данный источник напряжения соблюдая фазу и ноль.
В схеме имеется повышающий анодный трансформатор Т1 (на нужную мощность, к примеру 2500 ВА, 2400В, ток 0,8 А ) и понижающий накальный трансформатор Т2 – ТН-46, ТН-36 и др. Для исключения бросков по току при включении и защите диодов при заряде конденсаторов, применяется включение через гасящие резисторы R21 и R22.
Диоды в высоковольтной цепи зашунтированы резисторами с целью равномерного распределения Uобр. Расчет номинала по формуле R(Ом)=PIVх500. С1-С20 для устранения белого шума и уменьшения импульсных перенапряжений. В качестве диодов можно использовать и мосты типа KBU-810 соединив их по указанной схеме и, соответственно, взяв нужное количество не забывая про шунтирование.
R23-R26 для разряда конденсаторов после отключения сети. Для выравнивания напряжения на последовательно соединенных конденсаторах параллельно ставятся выравнивающие резисторы, которые рассчитываются из соотношения на каждые 1 вольт приходится 100 ом, но при высоком напряжении резисторы получаются достаточно большой мощности и здесь приходится лавировать, учитывая при этом, что напряжение холостого хода больше на 1,41.
Еще по теме
Трансформаторный блок питания 13,8 вольта 25 а для КВ трансивера своими руками.
Трансформаторный блок питания
Ремонт и доработка китайского блока питания для питания адаптера.
Доработка блока питания
Схемы блоков питания
Схемы. Самодельный блок питания на 1,5 вольта, 3 вольта, 5 вольт, 9 вольт, 12 вольт, 24 вольта. Стабилизатор 7812, 7805
Блок питания 12В 5А | joyta.ru
Эта схема мощного блока питания на 12 вольт вырабатывает ток нагрузки до 5 ампер. В схеме блока питания применен трех выводной интегральный стабилизатор LM338.
Краткая характеристика Lm338:
- Uвход: от 3 до 35 В.
- Uвыход: от 1,2 до 32 В.
- Iвых.: 5 А (max)
- Рабочая температура: от 0 до 125 гр. C
Блок питания 12В 5А на интегральной микросхеме LM338
Напряжение от сети поступает к понижающему трансформатору через плавкий предохранитель FU1 на 7А. Варистор V1 на 240 вольт, используется для защиты схемы блока питания от выбросов напряжения в электросети. Трансформатор Tр1 понижающий с напряжение на вторичной обмотке не ниже 15 вольт с током нагрузки не менее 5 ампер.
Пониженное напряжение с вторичной обмотки поступает на диодный мост, состоящий из четырех выпрямительных диодов VD1-VD4. На выходе диодного моста установлен электролитический конденсатор С1 предназначенный для сглаживания пульсаций выпрямленного напряжения. Диоды VD5 и VD6 используются в качестве устройств защиты для предотвращения разряда конденсаторов C2 и C3 от незначительного тока утечки в регуляторе LM338. Конденсатор С4 используется для фильтрации высокочастотной составляющей блока питания.
Для нормальной работы блока питания на 12В, стабилизатор напряжения LM338 необходимо установить на радиатор. Вместо выпрямительных диодов VD1-VD4 можно использовать выпрямительную сборку на ток не менее 5 ампер, например, KBU810.
Блок питания на 12 вольт на стабилизаторе 7812
Следующая схема мощного блока питания на 12 вольт и 5 ампер нагрузки построена на интегральном линейном стабилизаторе напряжения 7812. Поскольку допустимый максимальный ток нагрузки данного стабилизатора ограничивается 1,5 ампер, в схему блока питания добавлен силовой транзистор VT1. Этот транзистор известен как обходной внешний транзистор.
Если ток нагрузки будет менее 600 мА, то он будет протекать через стабилизатор 7812. Если ток превысит 600 мА, то на резисторе R1 будет напряжение более 0,6 вольта, в результате чего силовой транзистор VT1 начинает проводить через себя дополнительный ток к нагрузке. Резистор R2 ограничивает чрезмерный базовый ток.
Силовой транзистор в данной схеме необходимо разместить на хорошем радиаторе. Минимальное входное напряжение должно быть на несколько вольт выше, чем напряжение на выходе регулятора. Резистор R1 должен быть рассчитан на 7 Вт. Резистор R2 может иметь мощность 0,5 Вт.
Цифровой мультиметр AN8009
Большой ЖК-дисплей с подсветкой, 9999 отсчетов, измерение TrueRMS…
Блок питания своими руками.
Собираем регулируемый блок питания
Те новички, которые только начинают изучение электроники спешат соорудить нечто сверхъестественное, вроде микрожучков для прослушки, лазерный резак из DVD-привода и так далее… и тому подобное… А что насчёт того, чтобы собрать блок питания с регулируемым выходным напряжением? Такой блок питания – это крайне необходимая вещь в мастерской каждого любителя электроники.
С чего же начать сборку блока питания?
Во-первых, необходимо определиться с требуемыми характеристиками, которым будет удовлетворять будущий блок питания. Основные параметры блока питания – это максимальный ток (Imax), который он может отдать нагрузке (питаемому устройству) и выходное напряжение (Uout), которое будет на выходе блока питания. Также стоит определиться с тем, какой блок питания нам нужен: регулируемый или нерегулируемый.
Регулируемый блок питания – это блок питания, выходное напряжение которого можно менять, например, в пределах от 3 до 12 вольт. Если нам надо 5 вольт – повернули ручку регулятора – получили 5 вольт на выходе, надо 3 вольта – опять повернул – получил на выходе 3 вольта.
Нерегулируемый блок питания – это блок питания с фиксированным выходным напряжением – его менять нельзя. Так, например, многим известный и широко распространённый блок питания «Электроника» Д2-27 является нерегулируемым и имеет на выходе 12 вольт напряжения. Также нерегулируемыми блоками питания являются всевозможные зарядники для сотовых телефонов, адаптеры модемов и роутеров. Все они, как правило, рассчитаны на какое-то одно выходное напряжение: 5, 9, 10 или 12 вольт.
Понятно, что для начинающего радиолюбителя наибольший интерес представляет именно регулируемый блок питания. Им можно запитать огромное количество как самодельных, так и промышленных устройств, рассчитанных на разное напряжение питания.
Далее нужно определиться со схемой блока питания. Схема должна быть простая, легка для повторения начинающими радиолюбителями. Тут лучше остановиться на схеме с обычным силовым трансформатором. Почему? Потому что найти подходящий трансформатор достаточно легко как на радиорынках, так и в старой бытовой электронике. Делать импульсный блок питания сложнее. Для импульсного блока питания необходимо изготавливать достаточно много моточных деталей, таких как высокочастотный трансформатор, дроссели фильтров и пр. Также импульсные блоки питания содержат больше радиоэлектронных компонентов, чем обычные блоки питания с силовым трансформатором.
Итак, предлагаемая к повторению схема регулируемого блока питания приведена на картинке (нажмите для увеличения).
Параметры блока питания:
Выходное напряжение (Uout) – от 3,3…9 В;
Максимальный ток нагрузки (Imax) – 0,5 A;
Максимальная амплитуда пульсаций выходного напряжения – 30 мВ.;
Защита от перегрузки по току;
Защита от появления на выходе повышенного напряжения;
Высокий КПД.
Возможна доработка блока питания с целью увеличения выходного напряжения.
Принципиальная схема блока питания состоит из трёх частей: трансформатора, выпрямителя и стабилизатора.
Трансформатор. Трансформатор Т1 понижает переменное сетевое напряжение (220-250 вольт), которое поступает на первичную обмотку трансформатора (I), до напряжения 12-20 вольт, которое снимается со вторичной обмотки трансформатора (II). Также, по «совместительству», трансформатор служит гальванической развязкой между электросетью и питаемым устройством. Это очень важная функция. Если вдруг трансформатор выйдет из строя по какой-либо причине (скачок напряжения и пр.), то напряжение сети не сможет попасть на вторичную обмотку и, следовательно, на питаемое устройство. Как известно, первичная и вторичная обмотки трансформатора надёжно изолированы друг от друга. Это обстоятельство снижает риск поражения электрическим током.
Выпрямитель. Со вторичной обмотки силового трансформатора Т1 пониженное переменное напряжение 12-20 вольт поступает на выпрямитель. Это уже классика. Выпрямитель состоит из диодного моста VD1, который выпрямляет переменное напряжение с вторичной обмотки трансформатора (II). Для сглаживания пульсаций напряжения после выпрямительного моста стоит электролитический конденсатор C3 ёмкостью 2200 микрофарад.
Регулируемый импульсный стабилизатор.
Схема импульсного стабилизатора собрана на достаточно известной и доступной микросхеме DC/DC преобразователя – MC34063.
Чтобы было понятно. Микросхема MC34063 является специализированным ШИМ-контроллером, разработанным для импульсных DC/DC преобразователей. Эта микросхема является ядром регулируемого импульсного стабилизатора, который используется в данном блоке питания.
Микросхема MC34063 снабжена узлом защиты от перегрузки и короткого замыкания в цепи нагрузки. Выходной транзистор, встроенный в микросхему, способен отдать в нагрузку до 1,5 ампер тока. На базе специализированной микросхемы MC34063 можно собрать как повышающие (Step-Up), так и понижающие (Step-Down) DC/DC преобразователи. Так же возможно построение регулируемых импульсных стабилизаторов.
Особенности импульсных стабилизаторов.
К слову сказать, импульсные стабилизаторы обладают более высоким КПД по сравнению со стабилизаторами на микросхемах серии КР142ЕН (КРЕНки), LM78xx, LM317 и др. И хотя блоки питания на базе этих микросхем очень просты для сборки, но они менее экономичны и требуют установки охлаждающего радиатора.
Микросхема MC34063 не нуждается в охлаждающем радиаторе. Стоит заметить, что данную микросхему можно довольно часто встретить в устройствах, которые работают автономно или же используют резервное питание. Использование импульсного стабилизатора увеличивает КПД устройства, а, следовательно, уменьшает энергопотребление от аккумулятора или батареи питания. За счёт этого увеличивается автономное время работы устройства от резервного источника питания.
Думаю, теперь понятно, чем хорош импульсный стабилизатор.
Детали и электронные компоненты.
Теперь немного о деталях, которые потребуются для сборки блока питания.
Трансформатор. В качестве трансформатора подойдёт любой сетевой понижающий трансформатор мощностью 8-10 ватт. Его первичная обмотка (I) должна быть рассчитана на переменное напряжение 220-250 вольт, а вторичная (II) на 12-20 вольт.
Где найти такой трансформатор?
Найти подходящий трансформатор можно в старой, неисправной и морально устаревшей аппаратуре: кассетных магнитофонах, стационарных CD-проигрывателях, игровых приставках и пр. Например, подойдут трансформаторы от старых лампово-полупроводниковых телевизоров советского производства ТВК-110ЛМ, ТВК-110Л2 и ТВК-70. Можно приобрести трансформатор серии ТП114, например ТП114-163М. При подборе силового трансформатора не лишним будет иметь представление о том, как узнать мощность трансформатора.
Силовые трансформаторы ТС-10-3М1 и ТП114-163М
Также подойдёт трансформатор ТС-10-3М1 с выходным напряжением около 15 вольт. В магазинах радиодеталей и на радиорынках можно найти подходящий трансформатор, главное, чтобы он соответствовал указанным параметрам.
Микросхема MC34063. Микросхема MC34063 выпускается в корпусах DIP-8 (PDIP-8) для обычного монтажа в отверстия и в корпусе SO-8 (SOIC-8) для поверхностного монтажа. Естественно, в корпусе SOIC-8 микросхема обладает меньшими размерами, а расстояние между выводами составляет около 1,27 мм. Поэтому изготовить печатную плату для микросхемы в корпусе SOIC-8 сложнее, особенно тем, кто только недавно начал осваивать технологию изготовления печатных плат. Следовательно, лучше взять микросхему MC34063 в DIP-корпусе, которая больше по размерам, а расстояние между выводами у такого корпуса – 2,5 мм. Сделать печатную плату под корпус DIP-8 будет легче.
Диодный мост. Диодный мост для блока питания можно изготовить из 4 отдельных диодов 1N4001-1N4007. Также вместо диодов 1N4001-1N4007 можно применить диоды 1N5819. При этом экономичность блока питания повыситься, поскольку диоды серии 1N58xx – это диоды Шоттки и у них меньшее падение напряжения на p-n переходе, чем у обычных диодов серии 1N400x.
Также в блок питания можно установить диодную сборку выпрямительного моста. Сборка занимает на печатной плате меньше места. Для установки в схему подойдут сборки на ток 1 ампер и выше. Для надёжности можно воткнуть в плату сборку и на 2 ампера – хуже не будет.
Где найти сборку диодного моста? В бэушных платах от любой электроники, которая питается от сети 220 вольт. Даже в компактных люминесцентных лампах – КЛЛ – есть диодный мост. Можно выковырять оттуда. Правда что попадётся, 4 отдельных диода или сборка диодного моста можно только гадать – тут как повезёт.
Если быть более конкретным, то подойдут диодные мосты (сборки): DB101-107, RB151-157, D3SBA10, 2W10M, DB207, RS207 и другие аналогичные и более мощные. Можно с лёгкостью применить диодный мост из неисправного компьютерного блока питания. Они мощные и здоровые, рассчитаны на довольно большой ток – хватить за глаза. Не забудьте проверить его на исправность!
Конденсаторы C1, C2, C4, C5 служат для подавления импульсных помех, которые поступают из электросети. Кроме этого они блокируют импульсные помехи, которые могут поступить в электросеть от самого импульсного стабилизатора.
Элементы защиты. В схеме применено два предохранителя. Предохранитель FU2 представляет собой обычный плавкий предохранитель на ток срабатывания 0,16 А (160 мА). Он включен последовательно с первичной обмоткой (I) трансформатора T1. FU1 – самовосстанавливающийся предохранитель. Когда ток через него становиться больше 0,5 ампер, то его сопротивление резко увеличивается, а ток в цепи выпрямителя и стабилизатора резко падает.
Самовосстанавливающийся предохранитель FRX050-90F
Так реализована защита в случае неисправности преобразователя. Стабилитрон VD3 также служит защитным и работает в паре с самовосстанавливающимся предохранителем FU1. Основная его цель – защитить нагрузку (питаемое устройство) от повреждения высоким напряжением. Напряжение стабилизации стабилитрона составляет 11 вольт. В случае неисправности преобразователя и появления на выходе напряжения более 11 вольт, ток через стабилитрон резко возрастает. Возросший ток в цепи приводит к срабатыванию предохранителя FU1, который ограничивает ток. Поэтому защитный стабилитрон VD3 необходимо установить в схему обязательно. В случае если не удастся найти подходящий самовосстанавливающийся предохранитель, то его можно заменить обычным плавким на ток срабатывания 0,5 ампер.
Список деталей, которые потребуются для сборки блока питания.
Название | Обозначение | Номинал/Параметры | Марка или тип элемента |
Микросхема | DA1 | MC34063 | |
Диодный мост | VDS1 (VD1-VD4) | 1-2 ампер, 600 вольт | D3SBA10, RS207, DB107 и аналоги |
Электролитические конденсаторы | C8, C9, C12 | 330 мкФ * 16 вольт | К50-35 или аналоги |
C3 | 2200 мкФ * 35 вольт | ||
Конденсаторы | C1, C2, C4, C5, C10, C11, C13 | 0,22 мкФ | КМ-5, К10-17 и аналогичные |
C6 | 0,1 мкФ | ||
C7 | 470 пФ | ||
Резисторы | R1 | 0,2 Ом (1 Вт) | МЛТ, МОН, С1-4, С2-23, С1-14 и аналогичные |
R3 | 560 Ом (0,125 Вт) | ||
R4 | 3,6 кОм (0,125 Вт) | ||
R5 | 8,2 кОм (0,125 Вт) | ||
Резистор переменный | R2 | 1,5 кОм | СП3-9, СП4-1, ППБ-1А и аналогичные |
Диод Шоттки | VD2 | 1N5819 | |
Стабилитрон | VD3 | 11 вольт | 1N5348 |
Дроссель | L1, L2 | 300 мкГн | |
Дроссель | L3 | самодельный | |
Предохранитель плавкий | FU2 | 0,16 ампер | |
Самовосстанавливающийся предохранитель | FU1 | 0,5 ампер (на напряжение >30-40 вольт) | MF-R050; LP60-050; FRX050-60F; FRX050-90F |
Светодиод индикаторный | HL1 | любой 3 вольтовый |
Дроссели. Дроссели L1 и L2 можно изготовить самостоятельно. Для этого потребуется два кольцевых магнитопровода из феррита 2000HM типоразмера К17,5 х 8,2 х 5 мм. Типоразмер расшифровывается так: 17,5 мм. – внешний диаметр кольца; 8,2 мм. – внутренний диаметр; а 5 мм. – высота кольцевого магнитопровода. Для намотки дросселя понадобиться провод ПЭВ-2 сечением 0,56 мм. На каждое кольцо необходимо намотать 40 витков такого провода. Витки провода следует распределять по ферритовому кольцу равномерно. Перед намоткой, ферритовые кольца нужно обмотать лакотканью. Если лакоткани нет под рукой, то обмотать кольцо можно скотчем в три слоя. Стоит помнить, что ферритовые кольца могут быть уже покрашены – покрыты слоем краски. В таком случае обматывать кольца лакотканью не надо.
Кроме самодельных дросселей можно применить и готовые. В этом случае процесс сборки блока питания ускориться. Например, в качестве дросселей L1, L2 можно применить вот такие индуктивности для поверхностного монтажа (SMD – дроссель).
SMD-дроссель
Как видим, на верхней части их корпуса указано значение индуктивности – 331, что расшифровывается как 330 микрогенри (330 мкГн). Также в качестве L1, L2 подойдут готовые дроссели с радиальными выводами для обычного монтажа в отверстия. Выглядят они вот так.
Дроссель с радиальными выводами
Величина индуктивности на них маркируется либо цветовым кодом, либо числовым. Для блока питания подойдут индуктивности с маркировкой 331 (т.е. 330 мкГн). С учётом допуска ±20%, который разрешён для элементов бытовой электроаппаратуры, также подойдут дроссели с индуктивностью 264 – 396 мкГн. Любой дроссель или катушка индуктивности рассчитана на определённый постоянный ток. Как правило, его максимальное значение (IDC max) указывается в даташите на сам дроссель. Но на самом корпусе это значение не указывается. В таком случае можно ориентировочно определить значение максимально допустимого тока через дроссель по сечению провода, которым он намотан. Как уже говорилось, для самостоятельного изготовления дросселей L1, L2 необходим провод сечением 0,56 мм.
Дроссель L3 самодельный. Для его изготовления необходим магнитопровод из феррита 400HH или 600HH диаметром 10 мм. Найти такой можно в старинных радиоприёмниках. Там он используется в качестве магнитной антенны. От магнитопровода нужно отломать кусок длиной 11 мм. Сделать это достаточно легко, феррит легко ломается. Можно просто плотно зажать необходимый отрезок пассатижами и отломить излишки магнитопровода. Также можно зажать магнитопровод в тисках, а потом резко ударить по магнитопроводу. Если с первого раза аккуратно разломить магнитопровод не получиться, то можно повторить операцию.
Затем получившийся кусок магнитопровода нужно обмотать слоем бумажного скотча или лакоткани. Далее наматываем на магнитопровод 6 витков сложенного вдвое провода ПЭВ-2 сечением 0,56 мм. Для того чтобы провод не размотался, обматываем его сверху скотчем. Те выводы проводов, с которых начиналась намотка дросселя, в последующем впаиваем в схему в том месте, где показаны точки на изображении L3. Эти точки указывают на начало намотки катушек проводом.
Дополнения.
В зависимости от нужд можно внести в конструкцию те или иные изменения.
Например, вместо стабилитрона VD3 типа 1N5348 (напряжение стабилизации – 11 вольт) в схему можно установить защитный диод – супрессор 1,5KE10CA.
Супрессор – это мощный защитный диод, по своим функциям схож со стабилитроном, однако, основная его роль в электронных схемах – защитная. Назначение супрессора – это подавление высоковольтных импульсных помех. Супрессор обладает высоким быстродействием и способен гасить мощные импульсы.
В отличие от стабилитрона 1N5348, супрессор 1.5KE10CA обладает высокой скоростью срабатывания, что, несомненно, скажется на быстродействии защиты.
В технической литературе и в среде общения радиолюбителей супрессор могут называть по-разному: защитный диод, ограничительный стабилитрон, TVS-диод, ограничитель напряжения, ограничительный диод. Супрессоры можно частенько встретить в импульсных блоках питания – там они служат защитой от перенапряжения питаемой схемы при неисправностях импульсного блока питания.
О назначении и параметрах защитных диодов можно узнать из статьи про супрессор.
Супрессор 1,5KE10CA имеет букву С в названии и является двунаправленным – полярность установки его в схему не имеет значения.
Если есть необходимость в блоке питания с фиксированным выходным напряжением, то переменный резистор R2 не устанавливают, а заменяют его проволочной перемычкой. Нужное выходное напряжение подбирают с помощью постоянного резистора R3. Его сопротивление рассчитывают по формуле:
Uвых = 1,25 * (1+R4/R3)
После преобразований получается формула, более удобная для расчётов:
R3 = (1,25 * R4)/(Uвых – 1,25)
Если использовать данную формулу, то для Uвых = 12 вольт потребуется резистор R3 с сопротивлением около 0,42 кОм (420 Ом). При расчётах, значение R4 берётся в килоомах (3,6 кОм). Результат для резистора R3 также получаем в килоомах.
Для более точной установки выходного напряжения Uвых вместо R2 можно установить подстроечный резистор и выставить по вольтметру требуемое напряжение более точно.
При этом следует учесть, что стабилитрон или супрессор стоит устанавливать с напряжением стабилизации на 1…2 вольта больше, чем расчётное напряжение на выходе (Uвых) блока питания. Так, для блока питания с максимальным выходным напряжением равным, например, 5 вольт следует установить супрессор 1,5KE6V8CA или аналогичный ему.
Изготовление печатной платы.
Печатную плату для блока питания можно сделать разными способами. О двух методах изготовления печатных плат в домашних условиях уже рассказывалось на страницах сайта.
В общем, выбрать есть из чего.
Налаживание и проверка блока питания.
Чтобы проверить работоспособность блока питания его для начала нужно, конечно же, включить. Если искр, дыма и хлопков нет (такое вполне реально), то скорее БП работает. Первое время держитесь от него на некотором расстоянии. Если ошиблись при монтаже электролитических конденсаторов или поставили их на меньшее рабочее напряжение, то они могут «хлопнуть» – взорваться. Это сопровождается разбрызгиванием электролита во все стороны через защитный клапан на корпусе. Поэтому не торопитесь. Подробнее об электролитических конденсаторах можно почитать здесь. Не ленитесь это прочитать – пригодиться не раз.
Внимание! Во время работы силовой трансформатор находиться под высоким напряжением! Пальцы к нему не совать! Не забывайте о правилах техники безопасности. Если надо что-то изменить в схеме, то сначала полностью отключаем блок питания от электросети, а потом делаем. По-другому никак – будьте внимательны!
P.S.
Под занавес всего этого повествования хочу показать готовый блок питания, который был сделан своими руками.
Да, у него ещё нет корпуса, вольтметра и прочих «плюшек», которые облегчают работу с таким прибором. Но, несмотря на это, он работает и уже успел спалить офигенный трёхцветный мигающий светодиод из-за своего бестолкового хозяина, который любит безбашенно крутить регулятор напряжения . Желаю и вам, начинающие радиолюбители, собрать что-нибудь похожее!
Главная » Радиоэлектроника для начинающих » Текущая страница
Также Вам будет интересно узнать:
Напряжение с блока питания компьютера, как взять 12 вольт.
В современном мире существует множество различных устройств, требующих подключения к электросети. Для некоторых из них требуется определенный блок питания. Напряжение и сила тока играют важную роль в функционировании любого электроприбора. В сегодняшней статье я хочу рассказать о том, как взять напряжение с блока питания компьютера и каким образом можно получить 12 Вольт.
Что вы узнаете
Какое напряжение с блока питания компьютера можно получить
Вы, наверное, сами прекрасно понимаете, что системный блок ПК – это комплекс устройств позволяющих системе работать. Каждое из них требует подключения к электрической сети. Но вот для определенного оборудования оно может быть разным. Допустим, большинство вентиляторов работают от 5 Вольт при силе тока в 0.1 Ампер. Для других устройств требуются другие значения. Именно для обеспечения работы всех комплектующих имеется блок питания компьютера. Он преобразует напряжение и обеспечивает каждое изделие необходимым током. Если мы рассмотрим БП компьютера, то увидим, что в нем имеется огромное количество проводов и портов для подключения. Они имеют свои цвета, и это не просто так. На боковой или задней стенке корпуса блока питания имеется табличка, на которой указана вся необходимая информация.
Разбираемся с маркировкой
Взгляните на картинку. Там указано, что оранжевый провод (orange) имеет исходящее напряжение в +3.3V, желтый (yellow) — +12V, красный (red) — +5V и так далее. Кроме этого, есть пометка о силе тока. Черный провод в большинстве случаев является общим (минусом или «земля»). Исходя из полученной информации, можно понять, что получить нужное напряжение с блока питания, даже работающего, совсем не сложно.
Учитывайте, что блок питания запускается замыканием проводов GND (минус) и PWR SW. Работает до тех пор, пока данные цепи замкнуты! То есть, разъемы будут работать только тогда, когда блок питания подаст напряжение.
Для чего может понадобиться напряжение с блока питания компьютера
Вы спросите, а зачем вообще это нужно? Расскажу на своем опыте. Мне в руки попался монитор, работающий от 12 Вольт, однако кабеля подключения к электросети у меня не было. Имеющиеся блочки от других устройств не подходили по силе тока или по напряжению. Монитор нужно было проверить в течение дня, а отправиться на поиски нужного зарядного, не было ни времени, ни желания. Взяв 12 Вольт с желтого провода на молексе БК питания компьютера, мне удалось включить монитор. Оказалось, что это вполне удобно. Не нужно искать лишнюю розетку, а сам экран запускается вместе с системным блоком. Спустя год у меня все так и работает.
Существует еще целый ряд возможностей, которые дает напряжение с блока питания компьютера.
- Многие мастера из БП ПК делают блок питания для шуруповерта и других электроинструментов.
- Существует возможность переделать блок питания ПК под автомобильное зарядное для аккумуляторов.
- Вы всегда можете зарядить любое устройство, выбрав нужное напряжение. Согласитесь, ведь часто бывает так, что оригинальные блоки выходят из строя в самый неподходящий момент.
- Можно запитать диодную ленту или любой другой осветительный прибор, требующий небольшое напряжение.
Как взять 12 вольт с блока питания компьютера
Как вы уже поняли, взять напряжение с блока питания компьютера достаточно просто. Вам необходимо лишь подключить устройство к желтому проводу (плюс) и черному (минус). Только будьте внимательны и не перепутайте полярность, иначе ваше устройство, скорее всего, выйдет из строя. Опять же повторюсь, не забывайте о том, что блок питание подаст напряжение на провода только тогда, когда он будет запущен. Если вы работаете с демонтированным БП ПК, который изъят из корпуса, то необходимо запустить устройство путем замыкания проводов GND (минус) и PWR SW.
Если вы еще не знакомы со статьей моего коллеги «Варрам — робот для вашего питомца», то прочесть её можно нажав сюда.
Немного информации в помощь
Для того, чтобы вам было легче понять, какое напряжение с блока питания вы получите, я составил небольшую таблицу. Пользоваться ей нужно по такому принципу: положительное напряжение + ноль =итог.
Положительное | Ноль | Итог |
+12V | 0V | +12V |
+5V | -5V | +10V |
+12V | +3,3V | +8,7V |
+3,3V | -5V | +8,3V |
+12V | +5V | +7V |
+5V | 0V | +5V |
+3,3V | 0V | +3,3V |
+5V | +3,3V | +1,7V |
0V | 0V | 0V |
А вы знаете, что не пропустите ни один наш материал, если оформите подписку? Оформить подписку легко: достаточно лишь ввести свой email в форму под этой статьей и нажать на кнопку «Подписаться на рассылку». И вы всегда будете в курсе наших публикаций!
Надеюсь, сегодняшняя статья была понятна и полезна. Теперь вы знаете, как получить нужное напряжение с блока питания компьютера и каким образом взять 12 Вольт. Однако помните, что обращение с электроприборами требует соблюдения правил техники безопасности. В случае, если вы не уверены в своих знаниях, лучше попросить помощи у профессионала.
Автор статьи: Максим Заворотный
Надеюсь мои статьи будут вам полезны, ведь я стараюсь передать весь имеющийся опыт и знания. С радостью отвечу на все возникшие вопросы и могу дать дельный совет. Буду ждать ваших отзывов, мнений и предложений.
Блок питания 12 вольт схема с защитой БП на lm317
Самодельный блок питания 12 вольт с регулировкой всегда хотелось иметь под рукой. Простой блок питания 0 – 12 вольт для слаботочных конструкций.
Началось все с того, что давным- давно, разбирая для утилизации домашнюю советскую стиральную машинку «Аурика» 80-х годов двадцатого века, наткнулся я в её внутренностях на добротный пластмассовый прямоугольный корпус, в котором распологался электронный блок непонятного назначения (скорее всего реле времени, таймер или что – то типа того). Почему то тогда, сразу, возникло желание в этом корпусе сделать самодельный блок питания 12 вольт, хотя оный у меня уже был. А вот усердие для реализации как то тогда не проявилось. В общем, эта идея так и зависла тогда у меня в воздухе из за отсутствия желания возится с детальной проработкой блока питания. Пластмассовый корпус был надежно «законсервирован» в гараже до лучших времен лет на 10. Просто удивляюсь, как такой замечательный корпус не был отправлен на помойку и дожил на полочке до сегодняшнего дня. И вот, этот день настал. Словно пазл, удалось собрать воедино этот блок питания из совершенно разного найденного в загашниках хлама, идеально уместившегося внутри. Сам удивляюсь как все «сложилось».
Решил я собрать именно компактный маломощный блок питания, с регулируемым напряжением 0-12 вольт и током до 1 ампера.
Так же хотелось всегда иметь под рукой компактный маломощный источник для питания схем на радиолампах (постоянка 300 вольт, переменка 6 вольт).
По этому, этот блок питания состоит, по сути, из двух блоков питания: блока питания 0-12 вольт и блока питания схем на лампах +300 вольт.
Схема блока питания 12 вольт.
Источник 0-12 вольт собран на LM317, посаженой на небольшой радиатор. Схема имеет простую автоматическую систему охлаждения на термодатчике. Система охлаждения запускает вентилятор при достижении температуры на радиаторе выше температуры срабатывания термодатчика. В результате включается вентилятор и охлаждает радиатор с LM317. При остывании радиатора, вентилятор отключается. Благодаря этому температура радиатора не превышает допустимую. При включении вентилятора, так же загорается индикаторный светодиод «Перегрев». Схема не имеет защиты от короткого замыкания, так как ток вторичной обмотки существующего трансформатора оказался 0,5 ампер, а микросхема же LM317 выдерживает ток 1 ампер. Экспериментально установлено, что при коротком замыкании схема охлаждения отлично справляется с температурным режимом. Микросхема с вентиляторным охлаждением радиатора неограниченно долго держит нагрузку короткого замыкания (0,5 ампер конкретно для данного экземпляра блока питания). Хотя, в принципе на термодатчике легко можно реализовать и защиту от короткого замыкания блока питания.
Блок питания радиоламп.
Как говорилось выше, в корпусе так же смонтирован и блок питания радиоламп – простой источник накала и источник анодного напряжения +300 вольт для ламповых схем. Так вот, источник анодного напряжения очень остроумно устроен. Многие радиолюбители-ветераны ламповой техники привыкли знать, что блок питания для ламп имеет всегда массивный сетевой трансформатор для питания анодов и накала. Он так же служит развязкой от сетевого напряжения (нельзя просто выпрямлять сетевое напряжение и подавать его на аноды ламп – это опасно для жизни!!!). Все это верно. Но в нашем случае для питания пары – тройки маломощных ламп не обязательно иметь отдельный большой сетевой трансформатор. У нас уже есть один сетевой трансформатор источника 0-12 вольт. То есть развязка от сети уже как бы есть. Теперь последовательно с этим трансформатором можно применить еще один — малогабаритный повышающий (а по факту просто включенный в обратном направлении) простой маломощный китайский трансформатор от сетевого адаптера 200/12 вольт, на который мы собственно и подадим 12 вольт от предыдущего трансформатора. На выходе – на повышающей обмотке естественно получим около 250 вольт и в конечном итоге развязку от сетевого напряжения (смотрите схему). В результате получается, мы использовали два малогабаритных трансформатора вместо одного крупногабаритного. Сэкономили массу и габариты блока питания.
Далее выпрямленное напряжение повышается до 300 вольт на сглаживающих конденсаторах фильтра. Напряжение же 6 вольт для питания накалов ламп снимаем со среднего вывода 12 вольт первого трансформатора. То есть первый трансформатор должен иметь отвод от середины обмотки 12 вольт.
Конструкция и детали блока питания:
Сетевой трансформатор – от какого-то советского толи проигрывателя, толи магнитофона неизвестной модели. Имеет две вторичные обмотки по 6 вольт, которые собственно и были соединены последовательно для получения переменки 12 вольт. Так же к штатному бандажу трансформатору пришлось припаять гайки М4 для крепления его в корпусе.
Повышающий трансформатор 250 вольт – от блока питания антенного ТВ усилителя «Польской антенны».
Термодатчик – 85 градусов (можно 60-85), устанавливается на одном радиаторе с LM317.
Микросхему LM317 необходимо устанавливать на радиатор через изолирующую термопрокладку, подложив под крепежный болтик специальную изолирующую шайбу, так как «корпус» LM317 является выходом. Т.е желательно электрически изолировать LM317 от радиатора.
Блок питания имеет два выходных гнезда. «Гнездо 1» — для питания ламповых схем. «Гнездо 2» — для питания схем 0-12 вольт. Среднее гнездо на фото – резервное, для будущих «обновлений». Планирую на него вывести источник 5 вольт (на КРЕН5) – для питания схем на микроконтроллерах при наладке.
В качестве выходных гнезд блока питания использованы пятиштырьковые гнезда от магнитофонов СССР. Причем распиновка выполнена таким логическим способом, который исключает подачу напряжения при перепутывании гнезда (300 вольт или переменка не пойдет на двенадцативольтовое устройство при перепутывании гнезда – смотри схему). Так же по этой причине общий провод переменного напряжения не соеденен с минусом или плюсом 300 вольт – смотри схему.
«Гнездо 1» имеет следующую распиновку:
1 — Общий провод переменного напряжения;
2 — Переменное напряжение 6 вольт;
3 — Переменное напряжение 12 вольт;
4 — Минус 300 вольт;
5 — Плюс 300 вольт;
«Гнездо 2» имеет следующую распиновку:
1 — Плюс 12 вольт;
5 — Минус 12 вольт;
Блок питания соответственно снабжен двумя отдельными кабелями с пятиштырьковыми штекерами от магнитофонов СССР.
Печатная плата – проектировалась под имеющиеся детали для монтирования их навесным монтажом. По этому «выкладывать печатку» смысла нет. Все равно нужно будет переделывать под свои детали. Дорожки и контактные площадки платы отрисовывались вручную «на лету» водостойким CD/DWD маркером и травились в медном купоросе.
Я и Диод. © yaidiod.ru.
Мощный импульсный блок питания на 12 В своими руками
Доброго времени суток дорогие друзья, в этой статье хочу поделиться с вами своим опытом по созданию импульсных источников питания. Речь пойдет о том как собрать своими руками импульсный источник питания на микросхеме IR2153.Микросхема IR2153 представляет собой высоковольтный драйвер затвора, на ней строят много различных схем, блоки питания, зарядные устройства и т. д. Напряжение питания варьируется от 10 до 20 вольт, рабочий ток 5 мА и рабочую температуру до 125 градусов Цельсия.
Начинающие радиолюбители побаиваются собрать свой первый импульсный блок питания, очень часто прибегают к трансформаторным блокам. Я в свое время тоже опасался, но все таки собрался и решил попробовать, тем более что деталей было достаточно для его сборки. Теперь поговорим не много о схеме. Это стандартный полумостовой источник питания с IR2153 на борту.
Детали
Диодный мост на входе 1n4007 или готовая диодная сборка рассчитанная на ток не менее 1 А и обратным напряжением 1000 В.
Резистор R1 не менее двух ватт можно и 5 Ватт 24 кОм, резистор R2 R3 R4 мощностью 0,25 Ватт.
Конденсатор электролитический по высокой стороне 400 вольт 47 мкф.
Выходной 35 вольт 470 – 1000 мкФ. Конденсаторы фильтра пленочные рассчитанные на напряжение не менее 250 В 0,1 – 0,33 мкФ. Конденсатор С5 – 1 нФ. Керамический, конденсатор С6 керамический 220 нФ, С7 пленочный 220 нФ 400 В. Транзистор VT1 VT2 N IRF840, трансформатор от старого блока питания компьютера, диодный мост на выходе полноценный из четырех ультрабыстрых диодах HER308 либо другие аналогичные.
В архиве можно скачать схему и плату:
Печатная плата изготовлена на куске фольгированного одностороннего стеклотекстолита методом ЛУТ. Для удобства подключения питания и подключения выходного напряжения на плате стоят винтовые клемники.
Схема импульсного блока питания на 12 В
Преимущество этой схемы в том, что эта схема очень популярная в своем роде и ее повторяют многие радиолюбители в качестве своего первого импульсного источника питания и КПД а разы больше не говоря уже и размерах. Схема питается от сетевого напряжения 220 вольт по входу стоит фильтр который состоит из дросселя и двух пленочных конденсаторов рассчитанных на напряжение не менее 250 – 300 Вольт емкостью от 0,1 до 0,33 мкФ их можно взять из компьютерного блока питания.
В моем случае фильтра нет, но поставить желательно. Далее напряжение поступает на диодный мост рассчитанный на обратное напряжение не менее 400 Вольт и током не менее 1 Ампера. Можно и поставить готовую диодную сборку. Дальше по схеме стоит сглаживающий конденсатор с рабочим напряжением 400 В, поскольку амплитудное значение сетевого напряжение составляет в районе 300 В. Емкость данного конденсатора подбирается следующим образом, 1 мкФ на 1 Ватт мощности, так как я не собираюсь выкачивать из этого блока большие токи, то в моем случае стоит конденсатор на 47 мкФ, хотя из такой схемы можно и выкачивать сотни ватт. Питание микросхемы берется с переменки, здесь организован источник питания резистор R1 который обеспечивает гашение тока, желательно ставить помощнее не менее двух ватт так как осуществляется его нагрев, затем напряжение выпрямляется всего одним диодом и поступает на сглаживающий конденсатор а затем на микросхему. 1 вывод микросхемы плюс питания и 4 вывод это минус питания.
Можно и собрать отдельный источник питания для нее и подать согласно полярности 15 В. В нашем случае микросхема работает на частоте 47 – 48 кГц для такой частоты организована RC цепочка состоящая из резистора R2 15 ком и пленочного или керамического конденсатора на 1 нФ. При таком раскладе деталей микросхема будет работать правильно и вырабатывать прямоугольные импульсы на своих выходах которые поступают на затворы мощных полевых ключей через резисторы R3 R4 номиналы их могут отклоняться в пределах от 10 до 40 Ом. Транзисторы необходимо ставить N канальные, в моем случае стоят IRF840 с рабочим напряжением сток исток 500 В и максимальным током стока при температуре 25 градусов 8 А и максимальной рассеиваемой мощностью 125 Ватт. Далее по схеме стоит импульсный трансформатор, после него идет полноценный выпрямитель из четырех диодов марки HER308, обычные диоды тут не подойдут так как они не смогут работать на высоких частотах, поэтому ставим ультрабыстрые диоды и после моста напряжение уже поступает на выходной конденсатор 35 Вольт 1000 мкФ, можно и 470 мкФ особо больших емкостей в импульсных блоках питания не требуется.
Вернемся к трансформатору, его можно найти на платах компьютерных блоков питания, определить тут его не сложно на фото видно самый большой вот он то нам и нужен. Чтобы перемотать такой трансформатор необходимо прослабить клей, которым склеены половинки феррита, для этого берем паяльник или паяльный фен и потихоньку прогреваем трансформатор, можно опустить в кипяток на несколько минут и аккуратно разъединяем половинки сердечника. Сматываем все базовые обмотки, наматывать будем свои. Из расчета того что мне на выходе нужно получить напряжение в районе 12-14 Вольт, первичная обмотка трансформатора содержит 47 витков проводом 0,6 мм в две жилы, делаем изоляцию между намоткой обычным скотчем, вторичная обмотка содержит 4 витка того же провода в 7 жил. ВАЖНО производить намотку в одну сторону, каждый слой изолировать скотчем, отмечая начало и конец обмоток иначе ни чего работать не будет, а если и будет тогда блок не сможет отдать всю мощность.
Проверка блока
Ну а теперь давайте протестируем наш блок питания так как мой вариант полностью исправен то я сразу подключаю в сеть без страховочной лампы.
Проверим выходное напряжение как видим оно в районе 12 – 13 В не много гуляет от перепадов напряжения в сети.
В качестве нагрузки автомобильная лампа на 12 В мощностью 50 Ватт ток соответственно протекает 4 А. Если такой блок дополнить регулировкой тока и напряжения, поставить входной электролит большей емкости, то можно смело собирать зарядное устройство для авто и лабораторный блок питания.
Перед запуском блока питания необходимо проверить весь монтаж и включаем в сеть через страховочную лампу накаливания 100 Ватт, если Лампа горит в полный накал значит ищите ошибки при монтаже сопли не смытый флюс либо не исправен какой то компонент и т д. При правильной сборке лампа должна слегка вспыхнуть и погаснуть, это нам говорит, что Конденсатор по входу зарядился и ошибок в монтаже нет. Поэтому перед установкой компонентов на плату их необходимо проверять даже если они новые. Еще один не мало важный момент после запуска напряжение на микросхеме между 1 и 4 выводом должно быть не менее 15 В. Если это не так подбирать нужно номинал резистора R2.
Смотрите видео
Как легко сделать источник питания 12 В в домашних условиях
Как легко сделать источник питания 12 В в домашних условиях
В этом проекте мы узнаем, как легко сделать блок питания 12 В в домашних условиях или как преобразовать 230 В в 12 В постоянного тока, используя несколько простых шагов с принципиальной схемой. Для создания этого проекта нам понадобятся некоторые компоненты.
Компоненты, необходимые для изготовления адаптера 12 В:
- LM7812 Регулятор напряжения
- Радиатор
- 50 В 1000 мкФ (конденсатор)
- светодиод
- Резистор 1 кОм
- 1N4007 (4 диода)
- 12-0-12 (трансформатор 12 В / 1 А)
- Печатная плата
- Паяльник
- Проволока для пайки
В этом проекте мы используем регулятор напряжения LM7812.Основная функция регулятора напряжения – дать нам ровно 12В на выходе.
Мы используем диодный мост, потому что он преобразует переменное напряжение в постоянное.
Схема блока питания 12 В |
Схема источника питания 12 В:
- Возьмите 4 диода и сделайте перемычку, как на схеме.
- Соединить выход трансформатора с диодом, как на схеме.
- Теперь подключите положительный провод конденсатора 1000 мкФ к положительному проводу, а отрицательную сторону – к заземляющему проводу.
- и теперь подключите резистор 1 кОм и светодиод с положительным и отрицательным проводом.
- Теперь 1-й контакт регулятора напряжения соединяется с плюсовым проводом, 2-й контакт соединяется с проводом заземления, а третий контакт используется для вывода.
- 2-й (-12 В) и 3-й (+12) контакты регулятора напряжения используются для выходного питания.
- Наконец, подсоедините радиатор к регулятору напряжения.
LM7812 Регулятор напряжения |
Вывод стабилизатора напряжения LM7812:
Регулятор напряжения LM7812 имеет 3 контакта.
- 1-й вход
- 2-я земля
- 3-й выход
Основная функция регулятора напряжения – это выход ровно 12 В.
например, если на входе 20 В, а на выходе я хочу ровно 12 В, тогда я использую LM7812.
Узнайте больше, посмотрев видео
Видео о том, как сделать адаптер питания на 12 В:
Некоторые основные вопросы и ответы:
Зачем использовать диодный мост?
Поскольку мы производим источник питания постоянного тока, а трансформатор обеспечивает питание переменного тока, мы используем диодный мост для преобразователя переменного тока в постоянный.мы также можем использовать выпрямитель напряжения. обе работы одинаковы. если вы не можете найти выпрямитель напряжения, вы можете использовать диодный мост.Зачем использовать трансформатор?
потому что наше требование – входное напряжение 220 вольт и выходное напряжение 12 В. и трансформатор преобразует мощность 220 вольт в 12 В. Основное назначение трансформатора – понижение мощности с 220В до 12В.в чем смысл трансформатора 12-0-12?
12-0-12 трансформатор означает 12в два выхода . Средний провод – нейтральный провод или отрицательный провод.1-й и 3-й провод – положительный. оба имеют выход 12 В. если мы оставим средний провод и будем использовать только 1-й и 3-й провод, то он предоставит нам выход 24 В.Зачем использовать регулятор напряжения LM7812?
потому что нам нужен стабильный выход 12 В. и регулятор напряжения LM7812 обеспечивают стабильный выход 12 В. например, если мы используем вход 24 В, тогда регулятор напряжения преобразует его в идеальный выход 12 В.Зачем использовать конденсатор?
когда мы преобразуем переменный ток в постоянный с помощью диода, его отрицательный контур падает, и напряжение распадается.поэтому мы используем конденсатор. его напряжение накапливается в течение нескольких секунд и обеспечивает выход в состоянии и в одном направлении.Сколько используют входное напряжение?
Обычно вы можете использовать входное напряжение от 220 до 250 В. Если ваш трансформатор поддерживает 150 вольт, вы также можете использовать входную мощность 150 В.Можно ли использовать трансформатор для питания постоянного тока?
Да, трансформатор – это основная часть источника питания. мы также используем трансформатор. и дополнительные компоненты мы используем диодный мост для преобразователя переменного тока в постоянный. Только трансформатор не может обеспечить нас постоянным током.мы должны использовать другие компоненты для преобразования его в постоянный ток.Как переменный ток преобразуется в постоянный?
Используя выпрямитель напряжения или диодный мост, мы можем преобразовать переменный ток в постоянный. нормальный переменный ток проходит по 2 петлям. верхний и нижний. (это называется переменным током), когда мы используем выпрямитель напряжения или диод, его нижний контур падает, а пропускаются только верхние контуры. тогда мы получаем питание постоянного тока.Возможен ли трансформатор постоянного тока?
Нет, потому что трансформатор работает от переменного тока, он не может пропускать постоянный ток. например, мы хотим вводить 230 В и 12 В постоянного тока, используя только трансформатор.так что это невозможно. трансформатор только преобразует 230 В переменного тока в 12 В переменного тока. если вы хотите преобразовать его в DC, вам нужно прикрепить больше компонентов.Что это означает AC и DC?
AC означает или AC означает альтернативный ток . и DC означает постоянный ток .Ссылки на другие проекты электроснабжения:
Как построить преобразователь питания с 120 В переменного тока в 12 В постоянного тока
Создание простого источника постоянного тока 12 В – отличный проект для новичков в электронике.Вы можете сделать его из нескольких недорогих компонентов и, когда закончите, использовать его для зарядки батарей, силовых цепей или запуска двигателей. Схема состоит из трансформатора, выпрямителя, преобразующего переменный ток в постоянный, и конденсатора. Сборка преобразователя мощности занимает от одного до двух часов.
1. Найдите проушины первичной и вторичной обмоток на трансформаторе; они обычно находятся на противоположных сторонах устройства. Поместите трансформатор на монтажную плату так, чтобы выступы первичной обмотки свешивались над левым краем платы или находились очень близко к ней.
2. Прикрепите трансформатор к монтажной плате с помощью винтов №6, шайб и гаек. Трансформатор имеет монтажные отверстия в металлическом каркасе. Возможно, вам придется просверлить небольшие отверстия в доске кончиком ножа для хобби или сверла, чтобы оно подошло к оборудованию.
3. Припаяйте концы медных проводов сетевого шнура к наконечникам первичной обмотки трансформатора, по одному проводу к каждому наконечнику. Когда ушки остынут, обмотайте их изолентой.
4. Поместите двухполупериодный выпрямитель на монтажную плату так, чтобы два вывода, помеченные знаком «~», совпадали с выводами вторичной обмотки трансформатора.Символ «~» обозначает входы переменного тока выпрямителя; два выходных провода помечены «+» и «-» для положительного и отрицательного выхода постоянного тока. Припаяйте выводы выпрямителя к выводам вторичной обмотки, по одному выводу к каждому выводу. Если трансформатор имеет три вывода вторичной обмотки, игнорируйте средний.
5. Проденьте выводы конденсатора через отверстия в монтажной плате так, чтобы отрицательный вывод конденсатора совпал с выводом «-» выпрямителя. Припаяйте два отрицательных вывода вместе. Припаяйте положительный вывод конденсатора к положительному выводу выпрямителя.При необходимости обрежьте лишний провод с помощью приспособлений для зачистки проводов.
6. Отрежьте два 12-дюймовых куска соединительного провода 22-го калибра и зачистите 1/2 дюйма изоляции с обоих концов каждого провода. Подключите один конец одного провода к положительному выводу конденсатора и припаяйте его. Подключите один конец другого провода к отрицательному выводу конденсатора и припаяйте его. Преобразователь питания 12 В постоянного тока закончен; вы можете подключить положительный и отрицательный выходные выводы к цепи или батарее.
TL; DR (слишком долго; не читал)
Схема, описанная здесь, не регулируется, то есть ее напряжение будет слегка дрейфовать, а ток будет содержать некоторые электрические помехи.Нерегулируемый источник питания подходит для зарядки аккумуляторов и питания электродвигателей; для некоторых чувствительных аудиосхем может потребоваться немного более сложный регулируемый источник питания, точно поддерживающий 12 В.
Если вы не можете найти конденсатор на 25 В, то подойдет и конденсатор с более высоким номинальным напряжением. Не используйте устройство, рассчитанное на более низкое напряжение.
Простая схема источника питания 12 В 2 А
Сегодня мой сын построил простую схему источника питания на 12 В для солнечного насоса на 12 В.Это нерегулируемый источник питания 2А. Потому что нагрузка – это только двигатель постоянного тока.
Почему вы должны этому научиться?
Это пример принципа работы нерегулируемого источника питания . Которые являются основными для каждого источника питания.
Как это работает
Учу сына понимать принцип работы этих проектов.
Основной принцип, мы используем этот проект для снижения напряжения от сети переменного тока 220 В до 12 В постоянного тока. ( Источник питания с фильтром 12 В, )
На рисунке 1 переменный ток 220 В 50 Гц подключен к цепи через S1-ON. -OFF и предохранитель F1 для защиты этой цепи.
Затем они протекают через трансформатор на 2 А для понижения напряжения до 12 В переменного тока.
Затем через оба диода к выпрямительному преобразователю переменного тока в постоянный.
Затем на конденсаторе в качестве фильтра постоянного напряжения.
Светодиод 1 показывает питание дисплея, а резистор R1 ограничивает ток для использования светодиода.
Рисунок 1 простая принципиальная схема блока питания 12 В 2 А
Детали, которые вам понадобятся
T1: Трансформатор 12 В CT, 12 В, 2 А
D1, D2: 1N5402, 3A Диод
C1: 2200 мкФ Электролитический конденсатор 25 В
R1 : 1.Резисторы 2 кОм 0,5 Вт
LED1: светодиоды, как вам нравится
S1: выключатели
F1: предохранитель 1A
Медные провода и гвоздь 0,5 дюйма, питание от сети переменного тока
Сделайте источник питания 12 В постоянного тока
Этот проект, мой сын построил 12 вольт фильтровал блок питания с самим собой много ступенек.
В первую очередь кладем бумагу на лист фанеры и забиваем гвоздь в стык деталей. ( Рисунок 2 )
Паял все детали на шляпку гвоздя вместо печатной платы. ( Рисунок 3 ).
Все части линии переменного тока под высоким напряжением Я подключаю их вместо моего сына.
Рисунок 2 Забить гвоздь в стык деталей
Рисунок 3 припаять все части на гвоздь
По завершении Он измеряет напряжение на выходе 17 В Без нагрузки ( Рисунок 4 )
Рисунок 4
Затем он пытается применить насос постоянного тока в качестве нагрузки. Как на видео ниже.
Тогда он измеряет ток нагрузки около 0.9A как Рисунок 5
Этот проект применяется на открытом воздухе, поэтому он поместил его в пластиковые коробки для защиты воды, как Рисунок 6
Схема источника питания 12 В 3 А
Если вам нужен выход 3 А. Перечень нескольких частей легко изменить:
1. Переключите трансформатор на ток 3А.
2. Добавьте еще конденсаторный фильтр до 4700 мкФ. Добавив параллельно еще один 2200 мкФ.
Это просто?
Это первый проект по обучению мальчиков на дому. Мы рады, что он отлично работает.
Подробнее: Разработка линейного источника питания 12 В, 5 АПОЛУЧИТЬ ОБНОВЛЕНИЕ ЧЕРЕЗ ЭЛЕКТРОННУЮ ПОЧТУ
Я всегда стараюсь сделать Electronics Learning Easy .
Создайте простой блок питания постоянного тока
В мире существуют более эффективные и сложные блоки питания. Есть более простые способы получить простой источник питания, подобный этому (например, повторно использовать бородавку). Но если вы сделаете такой источник питания хотя бы раз в жизни, вы будете гораздо лучше понимать, как переменный ток становится регулируемой мощностью постоянного тока.Будет много других подобных блоков питания, но этот будет вашим.
Блок питания, как мы здесь будем называть его, преобразует переменный ток из розетки на стене в постоянный. Есть несколько способов сделать это. Мы рассмотрим один из самых простых, но и наиболее наглядных примеров.
Электроэнергия проходит через несколько ступеней в источнике питания с регулятором напряжения, подобном этому или обычному настенному бородавку. Способы его изменения на каждом этапе объяснены ниже.В следующий раз, когда вы воспользуетесь бородавкой для питания одного из своих проектов, вы поймете, что происходит внутри.
Теория:
Вход переменного тока
Напряжение переменного тока, идущего от стены, изменяется от минимального до максимального с частотой 60 Гц (в США и других странах с частотой 60 Гц). Это то, что питает все приборы переменного тока в вашем доме и магазине, и это похоже на график ниже. После трансформатора график аналогичен, за исключением того, что синусоида имеет меньшую амплитуду.
Простой график, показывающий мощность переменного тока. Vin MarshallВыпрямитель
Первая ступень этого блока питания – выпрямитель. Выпрямитель представляет собой систему диодов, которая позволяет току течь только в одном направлении. Представьте себе односторонний обратный клапан для воды. Из-за расположения диодов в двухполупериодном выпрямителе, используемом в этой конструкции, положительная часть сигнала переменного тока проходит беспрепятственно, а отрицательная часть сигнала переменного тока фактически инвертируется и добавляется обратно в выходной сигнал выпрямителя.Теперь наш сигнал выглядит так:
График мощности переменного тока после отключения выпрямителя. Vin MarshallСглаживание
Теперь у нас есть по крайней мере стабильно положительные уровни напряжения, но они все еще опускаются до нуля 120 раз в секунду. Большой конденсатор, который можно представить себе как батарею в течение очень коротких периодов времени, устанавливается поперек цепи, чтобы выровнять эти быстрые колебания мощности. Конденсатор заряжается при высоком напряжении и разряжается при низком напряжении.С помощью конденсатора кривая напряжения выглядит так:
График мощности переменного тока при сглаживании конденсатором. Вин МаршаллПостановление
На этом этапе мы используем интегральную схему (ИС), чтобы последовательно регулировать напряжение до желаемого уровня. При выборе размеров компонентов для всех предыдущих этапов важно управлять этой ИС с уровнем напряжения, достаточно большим, чем регулируемое напряжение, чтобы оставшиеся провалы 120 раз в секунду не опускались ниже требуемого минимального входного значения.Однако вы не хотите использовать слишком высокое напряжение, так как эта избыточная мощность будет рассеиваться в виде тепла. Кривая напряжения в этой точке (в идеале) представляет собой сигнал постоянного тока при желаемом напряжении; горизонтальная линия.
На этом графике мощности постоянного тока нет провалов. Вин Маршалл Что вам понадобитсяДля сборки этого конкретного блока питания вам потребуется следующее:
- Шнур питания. Он должен быть где-то валяться…
- Тумблер SPST 120V
- Монтаж на панели неоновая лампа на 120 В
- 3 зажимных стержня
- Трансформатор с входным напряжением 120 В и выходным напряжением около 24 В, чтобы Vin для регулятора 7812 оставался выше минимум.Я использовал Radio Shack p / n 273-1512.
- Двухполупериодный мостовой выпрямитель
- 6800 мкФ конденсатор
- 2x 100 нФ (точное значение не имеет значения) конденсаторы
- 2x 1 мкФ (точное значение не имеет значения) конденсаторы
- 7805 регулятор напряжения 5 В
- 7812 регулятор напряжения 12 В
Инструкции
Конструкция блока питания довольно проста. Я построил этот блок питания много лет назад и использовал двухточечную проводку на монтажной плате.Есть много более чистых способов его создания, чем этот, и я рекомендую вам воспользоваться одним из них. Однако это прекрасно работает. При создании этого источника питания было бы разумно прикрепить какой-либо радиатор к регуляторам напряжения 78xx. Эту конструкцию можно довольно легко изменить для обеспечения регулируемого выходного напряжения с помощью регулятора напряжения LM317 вместо или в дополнение к указанным регуляторам напряжения. Заземлив центральный отвод вторичной обмотки трансформатора (при условии, что у вас есть трансформатор с центральным отводом), взяв положительный и отрицательный выводы от мостового выпрямителя и используя регуляторы отрицательного напряжения серий LM79xx и / или LM337, ваш источник питания может обеспечить регулируемые отрицательные напряжения.
Полная схема блока питания. Vin MarshallГотовый продукт выглядит так:
Внутри блока питания. Vin MarshallЭто сильноточный источник питания 12 В. Блок питания использует микросхему LM7812 и может подавать на нагрузку до 30 А с помощью проходных транзисторов TIP2955. Каждый транзистор может обрабатывать до 5А, а шесть из них дают общий выходной ток 30А.Вы можете увеличить или уменьшить количество TIP2955, чтобы получить больший или меньший ток на выходе. В этой конструкции ИС выдает около 800 мА. Предохранитель на 1 А подключается после LM7812 для защиты ИС от сильноточных переходных процессов. И транзисторам, и микросхеме стабилизатора 12 В требуется соответствующий радиатор. Когда ток нагрузки велик, рассеиваемая мощность каждого транзистора также увеличивается, поэтому избыточное тепло может привести к выходу транзисторов из строя. Тогда вам понадобится очень большой радиатор или вентиляторное охлаждение.Резисторы 100 Ом используются для обеспечения стабильности и предотвращения затухания тока, поскольку допуски усиления постоянного тока будут разными для каждого транзистора. Диоды выпрямительного моста должны выдерживать не менее 100 ампер. Примечания Входной трансформатор, вероятно, будет самой дорогой частью всего проекта.В качестве альтернативы можно использовать пару автомобильных аккумуляторов на 12 В. Входное напряжение регулятора должно быть как минимум на несколько вольт выше выходного напряжения (12 В), чтобы регулятор мог поддерживать свое выходное напряжение. Если используется трансформатор, то выпрямительные диоды должны быть способны пропускать очень высокий пиковый прямой ток, обычно 100 ампер или более. Микросхема 7812 пропускает только 1 ампер или меньше выходного тока, остальная часть обеспечивается внешними проходными транзисторами. Поскольку схема рассчитана на нагрузку до 30 ампер, шесть TIP2955 подключаются параллельно, чтобы удовлетворить эту потребность.Рассеивание в каждом силовом транзисторе составляет одну шестую от общей нагрузки, но все же требуется адекватный отвод тепла. Максимальный ток нагрузки обеспечивает максимальное рассеивание, поэтому требуется очень большой радиатор. Рассматривая радиатор, может быть хорошей идеей поискать либо вентилятор, либо радиатор с водяным охлаждением. В случае выхода из строя силовых транзисторов, стабилизатор должен будет обеспечивать полный ток нагрузки, что приведет к катастрофическим последствиям. Предохранитель на 1 ампер на выходе регулятора не работает.Нагрузка 400 МОм предназначена только для целей тестирования и не должна включаться в окончательную схему. Смоделированная производительность показана ниже: Расчеты Первоначальное тестирование и устранение неисправностей Я слышал от одного читателя, у которого было напряжение 35 Вольт, а не регулируемые 12 Вольт. Это было вызвано коротким замыканием силового транзистора.В случае короткого замыкания на любом из выходных транзисторов все 6 необходимо распаять. С помощью мультиметра проверьте сопротивление и измерьте между клеммами коллектора и эмиттера. Силовые транзисторы обычно выходят из строя при коротком замыкании, поэтому неисправный транзистор будет легко найти. Готовый проект Загрузки Источник питания 12 В – 30 А – Ссылка
|
|
|
|
Источник питания 12 В постоянного тока, адаптер 2 А, 24 Вт, источник питания SANSUN 12 В для светодиодных лент, трансформаторы от 120 В до 12 В постоянного тока (упаковка из 5) –
У меня есть несколько декоративных надувных лодок на Хэллоуин и Рождество.Большинство из них используют адаптер переменного тока Gemmy на 12 вольт.
Адаптеры не запечатаны, ракушки собраны вместе и скотчем, чтобы не развалиться.
Они никоим образом не являются водонепроницаемыми или даже водонепроницаемыми. (Странно для уличного продукта.)
Ну, у нас был очень сильный ветер и ливень, и вода проникла в два из них.
Один взорвался, и один мне удалось исправить.
Сменные переходники усилителя Gemmy 1 по 11-15 шт.
Я взял комплект из 2 переходников на 12 В на 2 А на 13 штук, которые идут в комплекте с переходником от цилиндра к клемме.
Снял на запчасти переходник Gemmy, распаял разъем постоянного тока и вкрутил его в клеммы переходника SANSUN.
Затем я заклеил все это скотчем и подключил к разъему ствола. Затем я обмотал его лентой или усадкой, чтобы запечатать.
Работает как чемпион
В моем оригинальном адаптере Gemmy был только 1 усилитель, но у меня есть эти два усилителя, поэтому я могу управлять двумя надувными лодками, так что я могу еще больше сократить расходы. Кроме того, это дает небольшие накладные расходы, поскольку адаптеры Gemmy довольно сильно нагреваются.
Я стыковал его с одной звездой, потому что цилиндрический разъем адаптера переменного тока SANSUN имеет очень неаккуратное и неплотное прилегание к корпусу и клеммному адаптеру, с которым он пришел.Это слишком просто !!!
Для меня это не конец света, потому что я заклеивал его лентой и заклеивал, чтобы защитить от непогоды.
Последнее обновление: 2019-11-5
Я никогда не видел, чтобы компания так старалась все исправить. (На ум также приходит Анкер.)
Когда у меня возникала проблема, они обращались ко мне, чтобы все исправить.
Сегодня это очень редко.
Я благодарен, что они обратились ко мне, чтобы заменить их.
Обновление 1:
1 адаптер вышел из строя через 2 недели.
Я связался с компанией, посмотрим, будут ли они что-то делать.
Так как я уже выбросил одну из коробок из двух пакетов, не уверен, смогу ли я вернуться на Amazon.
Обновление 2:
Продавец быстро ответил и отправляет замену!
Обновление 3:
Замены 2A теперь тоже мертвы.
Некоторые с минимальным использованием.
Модель 5 AMP умерла через неделю при нагрузке всего 1-2 А.
Адаптеры питания постоянного тока 12 В. 1, 2, 3, 4, 5 А, 12 В (1 А, 2 А, 2.5A, 3A, 3.5A, 4A, 5A, 6A)
Краткая инструкция по выбору блока питания:
Единственная информация, которую вам нужно иметь, чтобы найти правильный источник питания для вашего устройства, – это напряжение / вольты (В) и сила тока / амперы (A).Напряжение должно точно совпадать. Для устройства на 12 В постоянного тока требуется адаптер на 12 В постоянного тока.
Сила тока – это количество энергии, которое использует ваше устройство. Адаптер, который вы заказываете, должен обеспечивать по крайней мере то количество ампер, которое потребляет ваше устройство.Если ваше устройство заявляет, что оно составляет 12 В 3 А, адаптер на 3 А может справиться с этой нагрузкой, но также с 4 А и 5 А. Блок питания с большей силой тока (ампер) работать не должен. так же трудно справиться с меньшей нагрузкой, и он будет работать холоднее и стабильнее.
Если сила тока вашего устройства неравномерная, например 3,13 А или 4,16 А, всегда округляйте в большую сторону. 3,13 А округляется до 3,5 А, а 4,16 А устройство округлит до 4,5 А или 5 А.
Если вы соответствуете этим двум спецификациям (V и A), блок питания будет работать для вашего устройства.
Подробные инструкции:
Чтобы найти подходящий блок питания для вашего устройства, вам понадобятся две части информации. Это напряжение (измеряется в вольтах или В) и сила тока (измеряется в амперах или А). Вы можете найти эту информацию на задней панели старого блока питания, или с задней стороны самого устройства. Если вы не нашли его на устройстве, вы можете проверить на сайте производителя или в инструкции к устройству в разделе «Технические характеристики». Напряжение:
Все продаваемые нами блоки питания рассчитаны на 12 В постоянного тока.Они принимают любой вход от 100 В до 220 В переменного тока, который выходит из вашей сетевой розетки,
и выход 12 В постоянного тока. Это то, что большинство цифровых устройств, таких как ЖК-экраны, DVD-плееры, жесткие диски, аудио
Gear и большинство других цифровых устройств используют. Мы поставляем только блоки питания 12 В постоянного тока, поэтому, если ваш блок не 12 В,
вы не найдете здесь подходящего адаптера.
Ампер:
После того, как вы подтвердили, что вам нужен блок питания на 12 В, вам нужно будет узнать, сколько мощности ваше устройство.
рисует.Это называется силой тока. Рядом с 12 В в технических характеристиках будет еще один номер, за которым следует заглавная буква «А» для ампер.
Вам понадобится блок питания, который может обеспечить достаточное количество энергии для вашего устройства. Если ваше устройство говорит, что потребляет 3 А (3 А), вам необходимо использовать блок питания.
который может выдать хотя бы такое количество ампер. Если ваше устройство заявляет, что ему требуется 3А, вы можете использовать блок на 3А, 4А или 5А. Все будет работать.
Если сила тока вашего устройства неравномерная, например 3,13 А или 4,16 А, всегда округляйте в большую сторону.