Как сделать регулятор оборотов: схема подключения самодельного регулятора числа оборотов. Как сделать регулировку из диммера?

Как сделать простой регулятор оборотов, скорости вращения для компьютерного вентилятора, кулера. « ЭлектроХобби

Компьютерные вентиляторы могут быть полезны не только внутри компьютера. Допустим я использую такой вентилятор (размерами 120 на 120 мм, 12 В и 350 мА) для быстрой разморозки своего мини холодильника, а также его вполне хватает для проветривания небольшого помещения, после того как надымил паяльником. Хотя когда такие вентиляторы питаешь от их стандартного напряжения 12 вольт они издают относительно большой шум. Да и не всегда нужны их максимальные обороты вращения. Порой данного кулера хватает и при пониженной мощности. Но чтобы это сделать нам понадобится весьма простая схема (что приведена ниже на рисунке), которая позволит регулировать частоту вращения, его скорость, обороты.

 

Для бывалых электронщиков и радиотехников эта простая схема ясна и понятна, так что буду пояснять ее работы, принцип действия для новичков. Одно дело когда собрал схему, включил, и пусть себе работает. Другое же дело, когда знаешь как она функционирует, и при желании можно ввести свои какие-нибудь изменения и дополнения к имеющейся схеме.

Итак, сама схема регулятора оборотов компьютерного вентилятора состоит всего из трех деталей, а именно это биполярный транзистор типа КТ817 с любым буквенным индексом, переменного резистора на 1 ком и постоянного резистора, который желательно подобрать наиболее подходящий. Транзистор включен по схеме с общим коллектором (называемым также эмиттерным повторителем), а это значит что он усиливает только ток, при том усиления по напряжению не происходит.

Между коллектором и эмиттером стоит делитель напряжения, состоящий из двух резисторов (переменного и постоянного). Как известно, биполярный транзистор имеет три вывода, это эмиттер, коллектор и база. Переход между базой и эмиттером считается управляющим, а переход между коллектором и эмиттером считается силовым. Так вот, в изначальном состоянии (когда никакого напряжения к схеме не приложено) переход коллектор-эмиттер закрыт, он через себя ток не пропускает, его проводимость в этом состоянии имеет бесконечно малое значение (проще говоря имеет бесконечно большое сопротивление). Но вот когда мы на управляющий переход подадим напряжение более 0,6 вольт, этот силовой переход (коллектор-эмиттер) постепенно начинает открываться. И чем больше мы пропустим тока через управляющий переход, тем больше тока сможет пройти через силовой переход.

Именно от переменного резистора R1 зависит будет ли силовой переход закрыт (при этом вентилятор вращаться не будет) или же будет он полностью открыт (при этом кулер будет иметь максимальные обороты своего вращения). Естественно, чем больше мы выкрутим ручку переменного резистора, тем сильнее или медленнее будет вращаться наш компьютерный вентилятор (в зависимости в какую сторону мы будем вращать ручку). Но зачем нужен еще одни постоянные резистор R2 ? Дело в том что у переменного резистора имеется некоторая «мертвая зона», находясь в которой вращение ручки не на что не будет влиять (кулер будет стоять на месте). Это происходит из-за того, что транзистор начинает открываться только при напряжении более 0,6 вольт. До этого напряжения с транзистором ничего не происходит.

И вот чтобы напряжение от 0 до 0,6 вольт убрать с переменного резистора мы и вводим в схему постоянный резистор. Именно он возьмет на себя это самое низкое напряжение «мертвой зоны». В итоге переменный резистор будет работать от максимальных оборотов вентилятора до минимальных. Постоянный резистор R2 нужно подбирать. Лучше вначале вместо него поставить подстроечный резистор с сопротивлением около 470 ом. После того как мы подберем нужное сопротивление «мертвой зоны» можно будет ставить и постоянный, до этого подобранным сопротивлением. Оно будет примерно около 100-300 ом.

Что касается самого транзистора. В этой схеме я поставил КТ817. У него максимальный ток, который может пройти через коллектор-эмиттерный переход равен до 3 ампер. Рассеиваемая мощность без радиатора до 1 ватта, а с наличием охлаждающего радиатора эта мощность уже увеличивается аж до 25 ватт. Можно поставить любой другой биполярный транзистор с n-p-n проводимостью, у которого ток коллектор-эмиттер будет больше того, что будет проходит при использовании конкретного вентилятора. Ну, и рассеиваемая мощность должна быть не меньше той, что будет выделяться при конкретном вентиляторе.

Ну, а сама схема работает достаточно просто. Когда мы крутим ручку переменного резистора в сторону уменьшения оборотов вентилятора, то лишнее напряжение отводится на эту транзисторную схему. Проще говоря, лишнюю электрическую мощность на себя забирает эта схема, превращая ее в тепло, которое рассеивается на транзисторе и радиаторе. К сожалению, это является недостатком данной схемы. Ведь при этом не о какой экономии электроэнергии говорить не приходится. Если это для вас важно, то тогда нужно использовать схемы понижающих DC-DC преобразователей, у который с экономией дело обстоит гораздо лучше.

Несмотря на простоту этой схемы она действительно способна вполне линейно регулировать частоту вращения компьютерного вентилятора. Хотя к ней можно подключать не только кулер от компа, с маломощными электродвигателями постоянного тока, рассчитанных на напряжение 12 вольт, она также вполне способна работать. Хотя и напряжение 12 вольт не является ограничением, схема будет работать и при больших напряжениях.

НИЖЕ ВИДЕО ПО ЭТОЙ ТЕМЕ

Простейший регулятор скорости вращения компьютерного вентилятора всего на 3х деталях, схема для регулировки оборотов кулера

Ссылка для просмотра этого видео на моем канале в Дзене

 

Ссылка на эту статью в Дзене — https://dzen.ru/a/Y7lAs96P5yobAiQG


 

Схема регулятора оборотов коллекторного двигателя 220В

04.07.2019 0 bogdann.tech Электродвигатели Электрооборудование

Схема регулятора оборотов коллекторного двигателя 220в бывает двух типов стандартная и модифицированная. Все зависит непосредственно от регулятора, который вы используете.

Зачем они нужны

Множество бытовых приборов и электроинструментов не обходятся без коллекторного электродвигателя. Такая популярность подобного электродвигателя обусловлена универсальностью.

Для коллекторного электродвигателя может использование питание от тока постоянного или переменного напряжения. Дополнительным преимуществом является эффективный пусковой момент. При этом работа от постоянного или переменного тока электродвигателя сопровождается высокой частотой оборотом, что подходит далеко не всем пользователям. Чтобы обеспечить более плавный пуск и иметь возможность настраивать частоту вращения, используется регулятор оборотов. Простой регулятор вполне можно изготовить своими руками.

Но прежде чем будет обсуждаться схема, сначала нужно разобраться в коллекторных двигателях.

Коллекторные электродвигатели

Конструкция любого коллекторного двигателя включает несколько основных элементов:

  • Коллектор,
  • Щетки,
  • Ротор,
  • Статор.

Работа стандартного коллекторного электродвигателя основана на следующих принципах.

  1. Осуществляется подача тока от источника напряжения 220в. Именно 220 Вольт является стандартным напряжением бытовой сети. Для большинства приборов с электромоторами более 220 Вольт не требуется. Причем подача тока идет на ротор и статор, которые соединяются один с другим.
  2. В результате подачи тока от источника 220в образуется поле магнитное.
  3. Под воздействием магнитного напряжения начинается вращение ротора.
  4. Щетки осуществляют передачу напряжения непосредственно на ротор устройства. Причем щетки обычно изготавливают на основе графита.
  5. Когда направление тока в роторе или статоре меняется, вал вращается в обратную сторону.

Кроме стандартных коллекторных электродвигателей, существуют другие агрегаты:

  • Электромотор последовательного возбуждения. Их устойчивость к перегрузкам более внушительная. Часто встречаются в бытовых электроприборах,
  • Устройства параллельного возбуждения. У них сопротивление не отличается большими показателями, количество витков существенно больше, чем у аналогов,
  • Однофазный электромотор.
    Его очень легко изготовить своими руками, мощность на приличном уровне, а вот коэффициент полезного действия оставляет желать лучшего.

Регуляторы оборотов

Теперь возвращаемся к теме регулятора оборотов. Все доступные сегодня схемы можно разделить на две большие категории:

  • Стандартная схема регулятора оборотов,
  • Модифицированные устройства контроля оборотов.

Разберемся в особенностях схем подробнее.

Стандартные схемы

Стандартная схема регулятора коллекторного электромотора имеет несколько особенностей:

  • Изготовить динистор не составит труда. Это важное преимущество устройства,
  • Регулятор отличается высокой степенью надежности, что положительно сказывается в течение его периода эксплуатации,
  • Позволяет комфортно для пользователя менять обороты двигателя,
  • Большинство моделей основаны на тиристорном регуляторе.

Если вас интересует принцип работы, то такая схема выглядит довольно просто.

  1. Заряд тока от источника 220 Вольт идет к конденсатору.
  2. Далее идет напряжение пробоя динистора через переменный резистор.
  3. После этого происходит непосредственно сам пробой.
  4. Симистор открывается. Этот элемент несет ответственность за нагрузку.
  5. Чем выше окажется напряжение, чем чаще будет происходить открытие симистора.
  6. За счет подобного принципа работы происходит регулировка оборотов электродвигателя.
  7. Наибольшая доля подобных схем регулировки электродвигателя приходится на импортные бытовые пылесосы.
  8. Но при использовании стандартной схемы регулятора оборотов важно понимать, что он обратной связью не обладает. И если с нагрузкой произойдут изменения, обороты электродвигателя придется настраивать.

Модифицированная схема

Прогресс не стоит на месте. Несмотря на удовлетворительные характеристики стандартной схемы регулятора оборотов двигателя, усовершенствования никому еще не навредили.

Наиболее часто применяемыми схемами являются две:

  • Реостатная. Из названия становится очевидно, что здесь основой выступает реостатная схема. Такие регуляторы высокоэффективные при смене количества оборотов электродвигателя. Высокие показатели эффективности объясняются использованием силовых транзисторов, отбирающих часть напряжения. Так меньшее количество тока из источника 220 Вольт поступает на двигатель, ему не приходится работать с большой нагрузкой. При этом схема имеет определенный недостаток большое количество выделяемого тепла. Чтобы регулятор работал длительное время, для электроинструмента потребуется активное постоянное охлаждение,
  • Интегральная. Для работы интегрального устройства регулирования используется интегральный таймер, который отвечает за нагрузку на электродвигатель. Здесь могут быть задействованы всевозможные транзисторы. Это обусловлено наличием микросхемы в конструкции с большими параметрами выходного тока. При нагрузке менее 0,1 Ампер, все напряжение идет непосредственно на микросхему, обходя транзисторы. Чтобы регулятор работал эффективно, на затворе требуется наличие напряжения в 12 Вольт.
    Из этого вытекает, что электрическая цепь и напряжение питания обязаны отвечать данному диапазону.

Простой самодельный регулятор

Если вы не хотите покупать готовый регулятор оборотов для двигателя, его вполне можно попробовать изготовить своими руками для контроля мощности устройства.

Это дополнительные навыки для вас и определенная экономия средств для кошелька.

Для изготовления регулятора вам потребуется:

  • Набор проводков,
  • Паяльник,
  • Схема,
  • Конденсаторы,
  • Резисторы,
  • Тиристор.

Монтажная схема будет выглядеть следующим образом.

Согласно представленной схеме, регулятор мощности и оборотов будет контролировать 1 полупериод. Расшифровывается она следующим образом.

  1. Питание от стандартной сети 220в поступает на конденсатор. 220 Вольт стандартный показатель бытовых розеток.
  2. Конденсатор, получив заряд, вступает в работу.
  3. Нагрузка переходит к нижнему кабелю и резисторам.
  4. Положительный контакт конденсатора соединяется с электродом тиристора.
  5. Идет один достаточный заряд напряжения.
  6. Второй полупроводник при этом открывается.
  7. Тиристор через себя пропускает полученную от конденсатора нагрузку.
  8. Происходит разряжение конденсатора, и полупериод вновь повторяется.

При большой мощности электродвигателя, питающегося от постоянного или переменного тока, регулятор дает возможность применять агрегат более экономично.

Самодельные регуляторы оборотов имеют полное право на свое существование. Но когда речь заходит о необходимости использовать регулятор электродвигателя для более серьезного оборудования, рекомендуется купить готовое устройство. Пусть оно обойдется дороже, но вы будете уверены в работоспособности и надежности агрегата.

bogdann.tech

Администратор сайта Electricvdele.Ru

  • Next Как проверить и отремонтировать коллектор электродвигателя своими руками
  • Previous Обзор уличных фонарей на солнечных батареях: характеристики, виды и особенности установки

Как сделать регулятор скорости двигателя постоянного тока с помощью микросхемы таймера NE555

28 ноября 2020 г. 8400 просмотров

Что такое регулятор скорости двигателя постоянного тока?

Регулятор скорости двигателя постоянного тока представляет собой простую электронную схему, которая используется для линейного управления скоростью подключенного привода/двигателя постоянного тока путем простого вращения присоединенного потенциометра. Управление скоростью двигателя постоянного тока может быть достигнуто с помощью широкого набора электронных конфигураций. В этой статье мы сосредоточимся на том, как сделать регулятор скорости двигателя постоянного тока с использованием метода широтно-импульсной модуляции (ШИМ). Управление двигателем постоянного тока с помощью ШИМ имеет неотъемлемое преимущество, заключающееся в том, что потери мощности в переключающем транзисторе всегда малы из-за того, что транзистор либо полностью «ВКЛ», либо полностью «ВЫКЛ». В результате переключающий транзистор имеет уменьшенную рассеиваемую мощность, что обеспечивает линейный тип управления, что приводит к лучшей стабильности скорости.

Еще одним преимуществом является то, что двигатель может вращаться намного медленнее без остановки. Поскольку амплитуда двигателя всегда остается постоянной

Сердцем этой схемы является микросхема точного таймера NE555. ИС таймера 555 имеет частоту колебаний в диапазоне от 670 до 680 Гц. Здесь микросхема таймера NE555 работает в неустойчивом режиме, чтобы генерировать автономный прямоугольный сигнал ШИМ.

JLCPCB — передовая компания по производству и производству прототипов печатных плат в Китае, предоставляющая нам лучший сервис, который мы когда-либо получали (качество, цена, сервис и время).

2$ Прототип печатной платы

Hardware Components

The following components are required to make DC Motor Speed ​​Controller Circuit

S. No Component Value Qty
1) DC Motor 12 В/6000 – 10000 об/мин 1
2) Таймер IC NE555 1
3) Power MOSFET
3) MOSFET
3).0041 P75NF75 1
4) Potentiometer 100K 1
5) Diodes 1N4007 3
6) Capacitors 100nF, 1nF 2
7) Resistor 10K, 1K 4
8) Terminal Block Connectors 2
9) Soldering Iron 45W – 65W 1
10) Soldering Wire with Flux 1
11) DC Battery 12V 1
12) Veroboard/PCB Poard 1
13) БАЙТКА0041 – При необходимости

555 Распиновка таймера

Подробное описание цоколевки, размерных характеристик и технических характеристик загрузите в техническом описании 555 Таймер

Полезные шаги

2 9000 вниз 0 все резисторы 1) 2) После этого припаяйте все диоды на плате Veroboard/PCB.

3) Теперь припаяйте все необходимые перемычки.

4) После этого припаяйте конденсаторы на Veroboard.

5) Припаяйте микросхему таймера 555 и потенциометр 100K к плате Veroboard.

6) Припаяйте силовой MOSFET P75NF75 к плате Veroboard.

7) Припаяйте разъемы входного блока 12 В пост. тока и разъемы выходного блока двигателя постоянного тока.

8) Теперь включите питание и проверьте схему, используя батарею постоянного тока 12 В.

Объяснение работы

Работа этой схемы довольно проста. Здесь сигнал прямоугольной формы (ШИМ) используется для управления скоростью двигателя постоянного тока. Этот сигнал ШИМ генерируется при работе интегральной схемы таймера NE555 в режиме нестабильного мультивибратора. Предустановленный потенциометр 100K управляет активным временем выходного ШИМ-сигнала. Среднее выходное напряжение двигателя постоянного тока зависит от рабочего цикла ШИМ-сигнала.

Выходные импульсы ШИМ микросхемы таймера служат управляющим сигналом для входа затвора силового МОП-транзистора P75NF75. Затем МОП-транзистор реагирует и управляет подключенным двигателем постоянного тока в соответствии с настройкой предустановленного потенциометра 100K. Это позволяет МОП-транзистору управлять двигателем постоянного тока с высоким током.

Применение

  • Используется в таких приложениях, как конвейерные ленты и эскалаторы, для устранения потерь мощности, когда система находится в состоянии простоя.
  • Также используется в таких устройствах, как насосы и воздуходувки, для управления потоком и энергией.

Похожие сообщения:

555 ШИМ-регулятор скорости двигателя постоянного тока с таймером

В этом уроке мы узнаем, как сделать ШИМ-регулятор скорости двигателя постоянного тока с использованием микросхемы таймера 555. Мы подробно рассмотрим, как работает схема ШИМ-генератора 555 Timer, как использовать ее для управления скоростью двигателя постоянного тока и как сделать для нее собственную печатную плату.

Вы можете посмотреть следующее видео или прочитать письменный учебник ниже.

Обзор

Мы можем управлять скоростью двигателя постоянного тока, контролируя входное напряжение двигателя. Для этой цели мы можем использовать ШИМ или широтно-импульсную модуляцию.

ШИМ Управление скоростью двигателя постоянного тока

ШИМ — это метод, с помощью которого мы можем генерировать переменное напряжение, быстро включая и выключая питание, подаваемое на электронное устройство. Среднее напряжение зависит от рабочего цикла сигнала или количества времени, в течение которого сигнал включен, по сравнению с количеством времени, в течение которого сигнал выключен за один период времени.

555 Схема Генератора ШИМ Таймера

Таймер 555 способен генерировать сигнал ШИМ, когда установлен в нестабильном режиме. Если вы не знакомы с таймером 555, вы можете проверить мой предыдущий учебник, где я подробно объяснил, что внутри и как работает микросхема таймера 555.

Вот базовая схема таймера 555, работающего в нестабильном режиме, и мы можем заметить, что выходной сигнал ВЫСОКИЙ, когда конденсатор C1 заряжается через резисторы R1 и R2.

С другой стороны, выход IC имеет НИЗКИЙ уровень, когда конденсатор C1 разряжается, но только через резистор R2. Таким образом, мы можем заметить, что если мы изменим значения любого из этих трех компонентов, мы получим разные времена включения и выключения или другой рабочий цикл прямоугольного выходного сигнала. Простой и быстрый способ сделать это — заменить резистор R2 потенциометром и дополнительно добавить в схему два диода.

В этой конфигурации время включения будет зависеть от резистора R1, левой стороны потенциометра и конденсатора C1, а время выключения будет зависеть от конденсатора C1 и правой стороны потенциометра. Мы также можем заметить, что в этой конфигурации период одного цикла, а значит, и частота, всегда будут одинаковыми, потому что общее сопротивление при зарядке и разрядке останется одним и тем же.

Обычно сопротивление R1 намного меньше сопротивления потенциометра, например, 1K по сравнению со 100K потенциометра. Таким образом, у нас есть 99% контроль зарядного и разрядного сопротивления в цепи. Управляющий контакт таймера 555 не используется, но он подключен к конденсатору емкостью 100 нФ, чтобы устранить любые внешние помехи от этого вывода. Сброс, вывод номер 4, имеет активный низкий уровень, поэтому он подключен к VCC, чтобы предотвратить любой нежелательный сброс выхода.

Выход таймера 555 может потреблять или подавать на нагрузку ток 200 мА. Поэтому, если двигатель, которым мы хотим управлять, превышает этот номинал, нам нужно использовать транзистор или полевой МОП-транзистор для управления двигателем. В этом примере я использовал транзистор Дарлингтона (TIP122), который может выдерживать ток до 5 А.

Выход ИС нужно соединить с базой транзистора через резистор, в моем случае я использовал резистор 1кОм. Для предотвращения скачков напряжения, создаваемых двигателем, необходимо использовать обратный диод, который подключается параллельно двигателю.

Теперь мы можем двигаться дальше и разработать собственную печатную плату для этой схемы. Для этой цели я буду использовать бесплатное онлайн-программное обеспечение EasyEDA. Здесь мы можем начать с поиска и размещения компонентов на чистом холсте. В библиотеке сотни тысяч компонентов, поэтому у меня не возникло проблем с поиском всех необходимых компонентов для этой схемы ШИМ-регулятора скорости двигателя постоянного тока.

После вставки компонентов нам нужно создать контур платы и приступить к размещению компонентов. Два конденсатора должны быть размещены как можно ближе к таймеру 555, в то время как другие компоненты могут быть размещены где угодно, но все же в логическом порядке согласно принципиальной схеме.

С помощью инструмента отслеживания нам нужно соединить все компоненты. Инструмент отслеживания довольно интуитивно понятен и с ним легко работать. Мы можем использовать как верхний, так и нижний слой, чтобы избежать пересечений и сделать пути короче.

Контактные площадки компонентов, которые должны быть подключены к земле, устанавливаются на землю через вкладку Свойства контактной площадки, где нам нужно ввести GND в метку «Сеть», когда контактная площадка выбрана.

Мы можем использовать слой Silk, чтобы добавить текст на доску. Также мы можем вставить файл изображения, поэтому я добавляю изображение логотипа моего веб-сайта для печати на доске. В конце, используя инструмент Copper Area, нам нужно создать область земли на печатной плате.

Файлы проекта EasyEDA этого проекта можно найти здесь.

Когда мы закончим с дизайном, нам просто нужно нажать кнопку «Вывод Gerber», сохранить проект, и мы сможем загрузить файлы Gerber, которые используются для изготовления печатной платы. Мы можем заказать печатную плату у JLCPCB, которая является службой изготовления печатных плат EasyEDA, а также является спонсором этого видео.

Здесь мы можем просто перетащить загруженный zip-файл с файлами gerber. После загрузки мы можем еще раз просмотреть нашу плату в программе просмотра Gerber. Если все в порядке, мы можем выбрать до 10 печатных плат и получить их всего за 2 доллара.

Сборка печатной платы ШИМ-контроллера скорости двигателя постоянного тока

Тем не менее, через неделю печатные платы были доставлены, и я должен признать, что очень приятно иметь собственный дизайн печатной платы. Качество печатных плат отличное, все точно так же, как и в дизайне.

Итак, теперь мы можем перейти к установке компонентов на печатную плату.

Компоненты, необходимые для этого примера, можно получить по ссылкам ниже:

  • ИС таймера NE555P……………………………… Amazon / Banggood / AliExpress
  • R1 = R2 = 1 кОм…………………………. Amazon / Banggood / AliExpress
  • C1 = C2 = 100 нФ…………………………….. Amazon / Banggood / AliExpress
  • D1 = D2 = D3 = 1N4004………………… .
    Amazon/Banggood/AliExpress
  • Потенциометр = 100 кОм……………. Amazon / Banggood / AliExpress
  • Транзистор — Darlington TIP122………. Amazon / Banggood / AliExpress
  • 2 блочных терминала …………………………. Amazon / Banggood / AliExpress

Раскрытие информации: это партнерские ссылки. Как партнер Amazon я зарабатываю на соответствующих покупках.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *