Класс точности станка н: классификация, обозначения, отличительные особенности :: ТОЧМЕХ

высокой класс точности фрезерных cnc

Огромную роль при выборе  станка с ЧПУ  играет такой параметр, как его точность. В ходе оценочной деятельности, которая проводится с целью определения возможности эксплуатации устройства в будущем, проводится комплекс диагностических действий, в том числе и определение класса точности устройства. Именно от этой характеристики зависит то, насколько качественными будут изделия, созданные с помощью конкретного устройства, и насколько они будут соответствовать параметрам, заданным оператором.

Класс точности станков с ЧПУ высокой точности

Точность станков с компьютерным управлением напрямую зависит от показателей суммарной погрешности, которая складывается из нескольких параметров:

  • точность самого устройства;
  • точность управляющей системы станка;
  • погрешности, которые допускаются при креплении заготовки на рабочем столе;
  • неточности, допущенные при отладке инструментов;
  • погрешности, допущенные при производстве фрез;
  • износ рабочего оборудования, в том числе фрез;
  • жесткость системы СПИД.

Точность позиционирования оси станка с ЧПУ является обобщенной величиной, которая показывает пределы нахождения реальных координат после того, как процедура позиционирования завершена. Точность этого показателя зависит от повторяемости, но при этом включает в себя не только размер разброса ошибок позиционирования, но и их промежуточные значения. Все это делает точность позиционирования универсальной характеристикой.

Этот параметр предназначен для того, чтобы показать, насколько большой может быть ошибка позиционирования координатных осей устройства.

Точность – основополагающая характеристика станка с ЧПУ. Этот параметр зависит от большого количества факторов, в том числе – вероятного люфта направляющих и передач, неточности направляющих осей, нарушение их перпендикулярного расположения и др. На характеристику также напрямую влияют качество станины и ее жесткость.

В зависимости от того, насколько высока эта характеристика, станки с ЧПУ делятся на четыре группы:

  • нормальной точности;
  • повышенной точности;
  • высокой точности;
  • особо высокой точности.

В зависимости от класса точности, который присвоен станку, различается и качество обработки деталей.

Станки с повышенной точностью обеспечивают точность обработки изделий в пределах 0,6 отклонений, получаемых на станках с нормальной точностью.

У станков с высокой точностью этот параметр равняется 0,4, а станки особо высокой точности позволяют обрабатывать детали с точностью в пределах до 0,25 отклонений.

Особо точные и станки с высокой точностью создаются в результате применения специальных конструктивных решений.

Для проверки точности станков с ЧПУ проводится оценка следующих параметров:

  • точности линейного позиционирования рабочего инструмента;
  • размера нечувствительной зоны;
  • возвратной точности рабочего инструмента;
  • стабильности выхода рабочих органов в заданную точку координатной сетки;
  • точности круговой обработки;
  • стабильности положения фрез после их смены в автоматическом режиме.

Эти проверки направлены на выявление не только точности работы станка, но и на оценку стабильности в ходе производственного процесса, то есть многократности прихода рабочих органов станка в заданное положение. При этом показатели стабильности нередко оказываются более важными, чем непосредственно точность. Именно от стабильности во многом зависит качество обработки изделия.

Параметры допустимой ошибки при определении положения рабочего инструмента определяются по формуле Δр = Δ + δ.

Для того чтобы сохранить точность станка во время его длительной эксплуатации, характеристики геометрической точности на все возможные проверки ужесточают в сравнении с нормативными более чем на 40 %. Это позволяет производителю оборудования заложить запас на возможный износ станка.

Разрешение позиционирования

Дискретность станка с числовым программным управлением определяется максимально возможной точностью перемещения, которую может задать оператор.

Например, если ось Y оснащена шаговым двигателем с шагом 1,8 градуса, т. е. его производительность составляет 200 шагов/об, и драйвером, который предполагает наличие режима деления шага по принципу 1 к 16, и при этом соединенным с винтом ШВП 1605, шаг которого составляет 5 мм на один оборот.

Каждый импульс STEP обеспечивает движение вала двигателя, соответствующего движению идеальной оси (без учета возможного люфта, погрешностей и т. д. на 1/(200 × 16) × 5 = 0,0015625 мм. Эта характеристика определяет разрешение позиционирования оси Y. На протяжении последующих производственных процессов ее характеристики в управляющей программе будут позиционироваться именно с таким обозначением. Задать перемещение в точку на координатной сетке с параметрами Y = 2,101 не представляется возможным, программа самостоятельно округлит значение до максимально подходящего в соответствии с заданными настройками.

Цифры после запятой

Количество цифр после запятой напрямую зависит от того, какой тип двигателей установлен на станке с ЧПУ.

Если установлены шаговые двигатели, рабочее поле будет иметь непосредственные размеры 600 × 900 мм.

Станки, оборудованные серводвигателями, отличаются наличием от 3 до 5 нулей после запятой. Чаще всего этим параметрам соответствуют металлообрабатывающие станки прецизионного типа.

 ВАЖНО!  Чем больше знаков после запятой способен обработать станок с ЧПУ, тем выше его точность.

Что влияет на точность фрезерных станков с ЧПУ?

На характеристики, отвечающие за точность позиционирования станка, оказывают непосредственное влияние следующие факторы:

  • перпендикулярность расположения координатных осей;
  • качество направляющих;
  • наличие люфтов при движении подвижных частей устройства;
  • стабильность рамы, ее жесткость и конструктивные особенности, в том числе – высота;
  • качество сборки устройства;
  • особенности программной и технической настройки оборудования;
  • качество комплектующих, которые используются в работе;
  • отсутствие перепада высот на поверхности, на которой находится устройство, и др.

Точность повторного позиционирования

Точность повторного позиционирования станка с ЧПУ зависит от следующих факторов:

  • механического воздействия фрезы;
  • перпендикулярности установки шпинделя;
  • режима резания, который установлен на станке;
  • типа обрабатываемых материалов.

Превосходной точностью считается параметр, равный 0,05 мм. Станки с точностью 0,2 мм считаются всего лишь удовлетворительными.

Когда управляющий блок отдает команду для возврата рабочей головки в начальную точку координат, конечный результат всегда незначительно отличается от параметров, заданных первоначально. Различия зависят от возможных люфтов в передаче. Для производства важно понимание того, насколько стабильна возникающая при позиционировании ошибка. Чаще всего повторяемость в несколько раз превышает точность, что делает такой станок пригодным для работы.

Современные станки, оснащенные модулями числового программного управления, позволяют обрабатывать детали из различных материалов с максимально возможной точностью, не снижая при этом производительность. Точность станков с ЧПУ – один из самых важных параметров, от которого напрямую зависит качество обработки любых изделий. На эту характеристику влияют самые разные факторы – от качества сборки станка до температуры, которая установлена в рабочем помещении.

  • 23 ноября 2020
  • 4239

Получите консультацию специалиста

Класс точности станка н по гост 8-82.

КПД станка η = 0,8

Частота вращения шпинделя, мин-1: 31,5; 45; 63; 90;- 125; 180; 250; 355; 500; 710; 1000; 1400 Подача, мм/об: 0,1; .0,14; 0,2; 0,28; 0,4; 0,56; 0,8; 1,12; 1,6

Максимальная осевая сила резания, допускаемая механизмом подачи станка, Рх = 1500 кгс ≈ 15000Н.

Главным движением в вертикально-сверлильных станках мод.2Н135 является вращение шпинделя с закрепленным в нем инструментом. Движение подачи в станках этого типа осуществляется вертикальным перемещением шпинделя. Заготовку обычно устанавливают на столе станка.

Соосность отверстия заготовки и шпинделя получают перемещением заготовки.

Станина 1 имеет вертикальные направляющие, по которым перемещается стол 9 и сверлильная головка 3, несущая шпиндель 7 и двигатель 2. Управление коробками скоростей и подач осуществляют рукоятками 4, ручную подачу — штурвалом 5. Контроль глубины обработки осуществляют по лимбу 6. В нише станины размещен противовес. Электрооборудование станка вынесено в отдельный шкаф 12. Фундаментная плита 11 служит опорой станка. В средних и тяжелых станках на ее верхнюю плоскость можно устанавливать заготовку. Стол станка бывает подвижным (от рукоятки 10 через коническую пару зубчатых колес и ходовой винт), неподвижным (съемным) или поворотным (откидным). Его монтируют на направляющих станины или выполняют в виде тумбы, установленной на фундаментной плите.

Вертикально-сверлильный станок мод. 2Н135:

1 — станина;

2— электродвигатель;

3— сверлильная головка;

4, 10— рукоятки;

5— штурвал;

6 — лимб;

7 — шпиндель;

8 — шланг подачи СОЖ;

9 — стол;

11 — плита;

12 — шкаф электроаппаратуры

Охлаждающую жидкость подают электронасосом по шлангу 8.

Узлы сверлильной головки смазывают с помощью насоса, остальные узлы станка — вручную.

2.3. Назначение и устройство шпиндельного узла

Шпиндель предназначен для крепления режущего инструмента. Он смонтирован на двух шарикоподшипниках в гильзе, которая с помощью реечной передачи имеет возможность перемещаться вдоль оси. Осевое усилие подачи воспринимает нижний упорный подшипник, а вес шпинделя — верхний. Подшипники шпинделя регулируют гайкой, расположенной над верхней опорой шпинделя.

На конец шпинделя свободно посажено кольцо, в торец которого входит штифт. Для предохранения от выпадения служит специальный колпачок.

Верхний подшипник шпинделя смазывается набивкой консистентной смазки ЦИАТИМ-201 не реже одного раза в шесть месяцев, а нижний подшипник смазывается пресс-маслёнкой (смазка ЦИАТИМ-201) один раз в шесть месяцев.

ПРИМЕЧАНИЕ: смазка ЦИАТИМ-201. Температура каплепадения не ниже 175 С.

3.Подготовка к ремонту

3.1. Технологическая подготовка к ремонту

Технологическая подготовка ремонта – это совокупность работ, определяющих последовательность выполнения технологического процесса ремонта наиболее рациональными способами с учетом конкретных условий производства данного предприятия

Основной задачей технологической подготовки ремонта является обеспечение высокого качества ремонта оборудования и создание условий для соблюдения принципов рациональной организации производственных процессов, улучшения использования оборудования и производственных площадей, роста производительности труда, снижения расхода материалов и энергоресурсов.

Согласно Единой системе технологической документации технологической подготовки ремонта должна включать следующие стадии:

1) Технологический анализ рабочих чертежей и их контроль на предмет технологичности конструкции деталей и сборочных единиц;

2) Разработку прогрессивных технологических процессов;

3) Проектирование специальных инструментов, технологической оснастки и оборудования для изготовления нового изделия;

4) Выполнение планировок цехов и производственных участков с расстановкой оборудования согласно разработанным технологическим маршрутам;

5) Проверку, отладку и внедрение технологических процессов;

В ОГТ все рабочие чертежи деталей подвергаются технологическому анализу в соответствии с требованиями стандартов, который включает контроль на технологичность. Для его проведения и сокращения сроков проектирования технологи принимают участие в конструкторской подготовке. При анализе выявляются и предусматриваются возможности использования типовых технологических процессов, стандартной оснастки, средств механизации и автоматизации, имеющегося оборудования и производственной мощности предприятия. Изменения в рабочих чертежах деталей оформляются актом согласования между работниками ОГК и ОГТ.

Современная техника позволяет осуществлять один и тот же ремонт различными способами. При выборе оптимального варианта технологического процесса ремонта рассчитывается экономический эффект по приведенным затратам и сравнивается с заменяемой технологией.

В качестве оценки при этом используются:

1) Технологическая себестоимость, т.е. сумма сопоставимых текущих затрат, в состав которых входят стоимость заготовки (материалов), топлива и энергии на технологические нужды; заработная плата (основная, дополнительная) и отчисления на страхование основных производственных и вспомогательных рабочих; амортизация, обслуживание и ремонт оборудования и оснастки; расходы на инструмент;

2) Капитальные вложения, к которым относятся стоимость оборудования, оснастки и оплата за площадь, которую они занимают; затраты, связанные с содержанием (хранением) заделов; экологические штрафы и затраты на мероприятия по обеспечению требований экологии; затраты на исследовательские и опытные работы, технологическую подготовку производства и др.

Для разных технологических процессов ремонта технологическая себестоимость и капитальные вложения будут иметь разную структуру. Выбирается оптимальный вариант технологического процесса ремонта и определяется критический объем производственной программы предприятия (точка безубыточности).

Общий | Классы точности линейных подшипников и рельсов | Практик-механик

ЗарЗур
Пластик