Компрессоры это – Компрессор. Виды и устройство. Работа и применение. Как выбрать

Содержание

Компрессор. Виды и устройство. Работа и применение. Как выбрать

Компрессор – оборудование, которое служит для сжатия воздуха и подачи его для дальнейшего использования. Такая техника используется практически во всех отраслях промышленности и народного хозяйства. Появление компактных и мобильных устройств, позволило применять их в быту, и сейчас такой агрегат есть в хозяйстве у большинства домашних мастеров.

Виды компрессоров

Существует классификация такого оборудования по нескольким признакам.

По типу рабочей среды они могут быть:
  • Воздушные. Самый распространенный вид. Такое оборудование сжимает воздух, после чего он применяется для разных целей, например для работы пневмоинстурмента и другого оборудования.

  • Газовые. В этом случае, агрегаты используются для сжатия газов и их смесей, чаще всего они применяются для сжатия водорода и кислорода.

  • Циркуляционные. С их помощью воздух или газ сжимаются, после чего циркулируют по замкнутому контуру.

  • Аппараты многослужебного типа. Они способны одновременно сжимать несколько видов газов.
  • Многоцелевые. Используются для сжатия газов по переменной схеме.
По типу конструкции:
  • Поршневые. Это самая старая модификация, но она до сих пор является популярной и востребованной. Такое оборудование имеет двигатель внутреннего сгорания, в котором есть поршневая группа, и сжатие воздуха выполняется поршнем. Компрессор может приводиться в действие и при помощи электродвигателя. Самыми доступными являются аппараты небольшой мощности с одним поршнем.

  • Мембранные. Они похожи на предыдущий тип, но здесь рабочим элементом является поршневая мембрана. Во время работы агрегата она колеблется и нагнетает воздух. Мембраны делают многослойными, чтобы увеличить их срок службы. Хотя такие приборы имеют производительность меньше, чем поршневые, но на выходе получается воздух без примесей.

  • Роторно-винтовые. В таких конструкциях нет клапанов, поэтому винт имеет максимальные обороты. Чтобы обеспечить необходимое давление, рабочая камера должна быть большой. Мощность таких приборов может быть от 4 до 250 кВт, и они создают давление от 5 до 13 бар.

  • Роторно-пластинчатые. Они имеют прямой приводной механизм, поэтому у них высокая производительность, надежность и большой срок службы. Ротор вращается со сравнительно небольшой частотой, поэтому мощность таких агрегатов в пределах 1-75 кВт, и они могут создавать давление до 10 бар.
Особенности устройства
Самым распространенным является поршневой компрессор:

Винтовые агрегаты имеют немного другое устройство:
  • Основным рабочим элементом является винтовая пара.
  • Всасывающий клапан.
  • Фильтр.
  • Электромотор.

Для того чтобы оборудование меньше нагревалось во время работы, на любых его типах дополнительно устанавливаются охлаждающие радиаторы. Для накопления сжатого воздуха, могут быть встроенные ресиверы или они устанавливаются отдельно.

Принцип действия

Независимо от типа конструкции, любой компрессор имеет одинаковый принцип действия: воздух засасывается в рабочую камеру, где он сжимается до определенного давления, после чего открывается выпускной клапан и сжатый воздух подается напрямую к потребителю или накапливается в ресивере.

В зависимости от типа устройства компрессора, воздух может нагнетаться поршнем, мембраной или винтовой парой. Лопастные приборы будут подавать сжимаемый воздух в непрерывном режиме, так как увеличивают скорость потока за счет вращения лопастей. В объемных агрегатах воздух подается в пульсирующем режиме. Есть большой выбор видов, поэтому всегда можно подобрать тот, который соответствует предъявляемым требованиям.

Область применения

Сжатый воздух необходим для многих технологических процессов, поэтому такое оборудование используется на разных предприятиях. В зависимости от того, для чего используется воздух, к его качеству предъявляются разные требования. Приборы, применяемые в медицине, электронной промышленности, должны подавать воздух без примесей.

Области применения компрессоров:
  • Нефтехимическое производство, часто наличие примесей в сжатом воздухе может быть опасным, поэтому к его качеству высокие требования.
  • Пищевая промышленность.
  • Медицина.
  • Строительство.
  • Металлургия.
  • Машиностроение.
  • Сельское хозяйство.
Широкое применение такое оборудование нашло и в быту:
  • Для накачивания шин автомобиля, мячей, матрасов, лодок, бассейнов и т.д.
  • Подключив продувочный пистолет, можно убрать в машине, очистить двигатель или радиатор.
  • При помощи моющего пистолета, можно мыть не только автомобиль, но и любые другие предметы.
  • Во время ремонта, с помощью краскопульта можно красить, белить.
  • Для работы пневмоинструментов: отбойный молоток, шуруповерт, дрель, гвоздезабивной пистолет, пневмопила.
  • С помощью специальной насадки, можно прочищать канализационные, водосточные трубы.
  • На даче пневматическими ножницами можно легко стричь кусты и обрезать деревья.
Как выбрать компрессор
Несмотря на большое разнообразие моделей компрессоров, при совершении выбора, нужно обращать внимание на:
  • Давление воздуха, оно может указываться в барах или атмосферах, для бытового использования достаточно 4-12 атмосфер.
  • Производительность, этот параметр измеряют в литрах за минуту, для использования в быту достаточно 350 л/мин.
  • Мощность силовой установки, этот показатель характеризует мощность двигателя, для бытовой техники достаточно его показателей в пределах 0,8-2,5 кВт.
  • Вес и габариты, в зависимости от мощности, производительности и размеров, такие устройства могут иметь вес от нескольких килограмм, до нескольких сотен килограмм, чем больше агрегат, тем он менее мобильный.
  • Объем ресивера, бак для накопления сжатого воздуха у бытовых приборов обычно не превышает 50 литров, а у профессиональных, он оставляет 100 и более литров.

Чем больше будет размер и объем ресивера, тем стабильнее будет давление воздуха на выходе, особенно это касается поршневых аппаратов, так как они работают в пульсирующем режиме. Выбирая компрессор, надо покупать тот, мощность и производительность которого будет минимум на 30% больше, чем требуется для выполнения работ.

Плюсы и минусы

Так как существует два основных типа компрессоров: винтовые и поршневые, рассмотрим преимущества и недостатки каждого вида.

Плюсы поршневых приборов:
  • Удобны для кратковременной подачи сжатого воздуха.
  • Могут работать в сложных условиях, поэтому используются в таких загрязненных помещениях как угольные, фасовочные склады, места помола зерна и другие сферы.
  • Эффективно используется при необходимости сжатия агрессивных газов.
  • Является оптимальным вариантом, когда надо производительность не более 200 л/мин.
  • В промышленности его выгоднее использовать, чем винтовые аналоги.
  • Доступная стоимость.
Недостатки таких устройств:
  • Высокие энергозатраты.
  • Необходимо часто проводить техническое обслуживание, обычно это делают не реже, чем через 500 часов работы.
  • Во время работы создается много шума и вибрация.
Винтовые устройства являются более современным оборудованием, среди их преимуществ надо отметить следующие:
  • Низкий уровень шума и вибрации.
  • Сравнительно небольшой вес и размеры.
  • Мобильность.
  • Получается более чистый воздух.
  • Могут работать в непрерывном режиме длительное время.
  • Небольшое энергопотребление.
  • Есть возможность плавно регулировать производительность.
Имеет винтовой компрессор и некоторые недостатки:
  • Более сложное устройство.
  • Высокая стоимость.
Интересные факты
  • В документации к отечественному и зарубежному оборудованию, часто производительность указывается по-разному. В зарубежных моделях указывают объем забираемого воздуха, а он на 30% больше, чем на выходе. Приобретая зарубежные аппараты, надо добавлять эту величину, чтобы получить необходимую производительность.
  • Если оборудование должно работать длительный период времени, то лучше покупать винтовые устройства, но включать и выключать их часто нельзя. Для кратковременной подачи сжатого воздуха, лучше установить поршневые компрессорные агрегаты.
  • Учитывайте, к какой сети будет подключаться прибор: одно- или трехфазной и в соответствии с этим, делайте его выбор.
  • Для автосервиса или мебельного производства, лучше приобретать поршневые аппараты с ременной передачей, хотя они и более шумные, но имеют больший срок службы и высокую надежность.

Компрессор является таким оборудованием, которое используется в самых различных промышленных сферах и в народном хозяйстве.

Похожие темы:

tehpribory.ru

Воздушный компрессор: назначение, принцип работы, виды

Редко какое предприятие обходится без использования сжатого воздуха. На одних предприятиях его применяют для нанесения покрытий на различные поверхности, на других для обеспечения работы штамповочного оборудования. Для получения сжатого воздуха используют компрессор.

Что такое компрессорЧто такое компрессор

Назначение и принцип действия

Что такое компрессор? Официальное определение звучит следующим образом — устройство, предназначенное для сжатия газов и перекачивания их к потребителям, называют воздушным компрессором. Как он работает? Принцип действия устройства довольно прост, атмосферный воздух поступает в механизм, который выполняет его сжатие. Для этого могут быть использованы разные методы, о них речь пойдёт ниже. Механизм, сжимающий воздух, определяет устройство и принципы работы компрессора. Для эффективной работы оборудования его необходимо подключить к электрической сети и воздушной сети, по которой будет передаваться сжатый воздух. Схема подключения электродвигателя, как правило, указывается в инструкции по эксплуатации.

Виды компрессоров

На рынке промышленного оборудования существует множество предложений по поставкам этих устройств. Его можно разделить на те, которые применяют в промышленности, и которые используют в быту, например, для накачивания автомобильных колес. Все эти устройства могут работать от разных типов привода. Компрессор воздушный электрический 220 В, как понятно из названия работает от электрического силового агрегата с напряжением 220 В. Но, существуют и устройства, работающие от напряжения 380 В.

Дизельный компрессорДизельный компрессор

Дизельный компрессор, работает от двигателя внутреннего сгорания, работающего на дизельном топливе. Использование такого оборудования довольно популярно среди строителей, оно используется тогда, когда отсутствует возможность подключения установок на электроприводе. Установки, работающие на дизельном топливе, обеспечивают эксплуатацию на удаленных строительных площадках.

Атмосферный воздух подается в головку блока цилиндров, в котором установлены поршни. Силовая установка, в свою очередь передаёт крутящий момента на вал, обеспечивающий движение поршней в цилиндре. Именно там и происходит сжатие воздуха до необходимых параметров. После сжатия он направляется в воздушную систему предприятия. Поршневые компрессоры различают на масляные и безмасляные. Масляный отличается тем, что для его эффективной работы в него заливают специальное масло, снижающее силу трения между трущимися деталями и узлами устройства. Это повышает его эксплуатационный ресурс.

Существует множество способов передачи крутящего момента от двигателя на исполнительный механизм. При изготовлении компрессоров чаще все применяют муфты или ременные передачи. Устройство, на котором установлен последний тип, называют ременный компрессор.

Компрессор ременной масляныйКомпрессор ременной масляный

Перечисленные виды оборудования, применяют практически во всех отраслях промышленности, они отличаются друг от друга производительностью, размерами и рядом других параметров. Но, конечно, главная характеристика — это размер давления, которое может создать компрессор.

Компрессоры воздушные различают по принципу работы, об этом ниже.

Поршневые агрегаты

Поршневые компрессоры — это один из самых распространённых типов этого оборудования. Как уже отмечалось выше сжатие воздуха, происходит под действием поршней, перемещающихся внутри гильз. Для обеспечения нужд промышленности применяют поршневые компрессоры высокого давления. Они могут работать как от двигателя внутреннего сгорания, так и от электрического двигателя. Промышленный компрессор высокого давления создаёт от 40 до 500 бар. Компрессоры этого типа отличаются высоким КПД и моторесурсом до 2000 часов. Поршневые компрессоры производят как в стационарном, так и в мобильном исполнениях. Для их перемещения используют шасси на колесном или гусеничном ходу.

Поршневой компрессорПоршневой компрессор

Это довольно сложное устройство, в его конструкции предусмотрены маслосъемные кольца, фильтры для очистки масла и воздуха, управляющая автоматика и это обуславливает то, что для поддержания этого устройства в работоспособном состоянии требуется квалифицированный персонал и специальный инструмент и приспособления.

Мембранный компрессор

Газ сжимается в таком устройстве под действием мембраны, которая выполняет возвратно — поступательное движение. Мембрану приводит в движение шток, который закреплён на коленвале.

Мембранная пластина фиксируется к рабочей камере и таким образом отпадает необходимость использования дополнительных деталей, например, поршневых колец, уплотнительных устройств и пр.

Воздушный компрессор мембранного типа отличается следующими параметрами:

  • герметичностью;
  • стойкостью к действию коррозии;
  • высоким уровнем компрессии;
  • надежностью конструкция;
  • безопасностью в эксплуатации и простотой обслуживания.

Компрессор с ременным приводом мембранного типа отличается тем, что рабочая среда вступает в контакт только с мембраной и внутренними полостями камеры. При этом она не вступает в контакт с атмосферой. Такое устройство применяют для перекачки вредных и токсичных веществ.

Мембранный азотный компрессорМембранный азотный компрессор

Еще одно достоинство мембранного изделия заключается в том, его нет необходимости смазывать, это снижает риск загрязнения транспортируемой рабочей среды.

Объемные компрессоры

Устройство, в котором процесс получения сжатого воздуха происходит путем уменьшения его объема, называют объемным компрессором. К ним относят следующие типы оборудования:

  • безмасляные винтовые компрессоры;
  • дизельные поршневые компрессоры;
  • воздушные компрессоры бытовые.

Винтовые компрессоры

История этого оборудования началась в 1934 году. Винтовые компрессоры отличает высокая надежность, небольшие габариты, низкая металлоемкость обусловили высокий потребительский спрос на оборудование этого класса. Применение этого оборудования позволяет снизить расходы на электрическую энергию до 30%. Установки этого типа устанавливают на мобильных компрессорных станциях, судовых и других холодильных установках.

В качестве рабочего органа использованы винтовые роторы, на которых нанесены впадины. Их устанавливают в корпус, который может быть разобран по нескольким плоскостям. В нем проделаны отверстия и выточки для установки и подшипников. Кроме того, в корпусе сформированы камеры всасывания и нагнетания воздуха. Насосы этого типа отличаются производительностью.

Винтовой компрессор для электротранспортаВинтовой компрессор для электротранспорта

Эти изделия могут развивать давление от 8 и до 13 атм., при этом расход воздуха может быть от 220 до 12400 литров в минуту.

Довольно часто одна единица такого оборудования, может заменить собой несколько единиц компрессоров, устанавливаемых в производственных цехах.

При установке и запуске в промышленную эксплуатацию подобных компрессоров целесообразно на входе установить устройство для очистки воздуха от излишней влаги. Некоторые производители комплектуют свои изделия такими фильтрами.

Пластинчато-роторные компрессоры

Компрессоры этого класса работают на том же, что и поршневые, то есть, на вытеснении. Передача энергии осуществляется во время сжатия. Рабочая среда во время засасывания попадает в рабочую камеру, ею объем уменьшается при перемещении ротора. Это сжатие и приводит к увеличению давления и уходу сжатого воздуха через патрубок.

Компрессоры этого типа могут создавать давление до 0,3 МПа, носят название воздуходувками, и те, которые нагнетают более высокое давление, называют компрессорами.

Устройства этого типа отличают следующие достоинства:

Более стабильный, уравновешенный ход, обеспечивает отсутствие возвратно — поступательного движения. Конструкция этого оборудование предусматривает возможность прямого соединения в электрическим силовым агрегатом. Вес ротационного компрессора будет ниже, чем поршневого с аналогичными характеристиками. В конструкции не предусмотрено использование клапанов. То есть уменьшается количество деталей трущихся друг о друга.

Динамические компрессоры

Компрессоры этой группы подразделяют на два типа — центробежные и осевые. У первых, воздух под воздействие центробежной силы отбрасывается к внешней части рабочего колеса. Таким образом, с всасывающей стороны образуется разреженное пространство. Газ постоянно попадает в рабочую камеру, после прохождения колеса, воздух направляется в диффузор (устройство гашения скорости потока), где, собственно, и повышается его давление.

У оборудования осевого типа воздух продвигается вдоль ротора, а сжатие осуществляется в результате изменения скорости его продвижения между лопатками ротора и направляющего устройства.

Эти компрессоры можно классифицировать по следующим свойствам:

  1. Давлению на выходе, те, которые обеспечивают давление в пределах 0,015 МПа, называют вентиляторами или воздуходувками.
  2. По количеству ступеней сжатия.
  3. По ходу движения воздуха. Если он двигается вдоль оси ротора, то это центробежные, если поперёк, то осевые. Существуют устройства, где воздух движется по диагонали.
  4. По типу привода — он может быть электрическим, паровым или газотурбинным.

Роторный компрессорРоторный компрессор

Роторные компрессоры применяют в авиационных  двигателях. С его помощью нагнетают воздух для подачи в камеру сгорания.

Производительность компрессоров

Под этим термином подразумевается тот объем газа, который нагнетается за определенную единицу времени. Единица измерения производительности — мв минуту. Этот параметр может быть указан или на входе, или на выходе, разумеется, это будут разные числа. Все дело в том, что при изменении давления, происходит изменение объема. Эта характеристика говорит о производительности при температуре рабочей среды равной 20 градусам Цельсия.

В зависимости от величины этой характеристики различают следующие группы — большой производительности (свыше 100 кубометров воздуха в минуту), средней (до 100 кубометров воздуха в минуту) и малой до (10 кубометров).

Динамические устройства обладают некоторыми преимуществами в сравнении с поршневыми. Они отличаются простотой конструкции и эксплуатации. Они обладают малыми габаритно-весовыми параметрами. Плавностью подачи воздуха и они не требуют дополнительной смазки. Для их установки не требуется изготовление массивных фундаментов. Но, вместе с этим, у них КПД, несколько ниже, чем у поршневых.

Эти компрессоры нашли свое применение во многих отраслях. Например, химической и нефтегазовой промышленности, в металлургии, горнодобывающей и многих других отраслях. Одна из разновидностей динамических компрессоров — турбокомпрессорные, устанавливают в газоперекачивающие трубопроводы.

За многие годы эксплуатации подобного оборудования спроектировано и введено в эксплуатацию множество устройств с различными характеристиками, в частности современные машины способны обеспечить производительность до 200 мв минуту, при скорости вращения колеса 250 оборотов в секунду. И все это при малых габаритно-весовых параметрах.

Агрегатирование компрессоров

Процесс монтажа компрессора и силовой установки на раму, называют агрегатирование. В связи с тем, что устройства поршневого типа обладают вибрацией, необходимо проектировать и изготавливать фундамент с учетом этих характеристик.

Особенность безмасляных приборов

Эти устройства нашли свое применения там, где необходимо обеспечить высокие требования к чистоте воздуха. Их устанавливают в медицинских учреждениях, предприятиях фармацевтической и химической промышленности. Справедливости ради надо сказать, что эти устройства относят к наиболее доступным устройствам в части их стоимости. Эти компрессоры отличаются простотой в эксплуатации и обслуживании. Это говорит о том, что нет необходимости в подготовленном персонале, и при установке их на рабочее место не предъявляются какие-то особые требования.

Но безмасляные компрессоры обладают некоторыми недостатками, например, излишним шумом, который возникает во время работы. Но, производители смогли решить эту проблему, устанавливая на эти изделия звукозащитные кожухи.

Поршневой безмасляный компрессорПоршневой безмасляный компрессор

Выбирая безмаслянный компрессор необходимо обратить внимание на мощность устройства, их производительность и параметры рабочего давления, которые показывают приборы, устанавливаемые на компрессор. Нельзя забывать и об объеме ресивера. Как правило, в устройство компрессора устанавливают емкости объемом 50 литров.

Преимущества масляных агрегатов

Самый распространенный метод снижения трения, возникающего при работе различных деталей и узлов, является их смазывание. Это позволяет снизить нагрузку на изделие в целом, в частности, на его ключевую деталь — двигатель.

Для решения, этой задачи применяют специальные, компрессорные масла, которые можно использовать в различных условиях эксплуатации.

Компрессоры такого типа в производстве обходятся дешевле. Поэтому, стоимость такого оборудования существенно дешевле, чем безмасляные аналоги. Но в эксплуатации, они обходятся дороже. Это вызвано тем, что в процессе эксплуатации вместе удалением воздуха из рабочей зоны, происходит выброс масла. Кстати, его необходимо заменять через каждые 2 000–3 000 часов эксплуатации.

Так как в сжатом воздухе присутствуют микрочастицы масла, в систему приходится устанавливать маслоулавливающие элементы, например, фильтры. Через определенное количество времени их так же необходимо заменять, а это усложняет обслуживание, и требует дополнительных расходов на приобретение заменяемых фильтров.

Тем не менее, несмотря на принимаемые меры, воздух, прошедший через масляный компрессор полностью очистить не представляется возможным. Например, после обработки воздуха на винтовом устройстве его загрязнение равно 3 мг на один кубометр. Чистота воздуха после его обработки на поршневом компрессоре, напрямую зависит от уровня износа его деталей и узлов.

Это привело к тому, что в отдельных технологических процессах использование масляных компрессоров запрещено.

Особенности эксплуатации

Штатная работа компрессора прежде зависит от работы всех его узлов и деталей. В частности, впускных и выпускных клапанов. Внутри компрессора, где происходит распределение воздуха, устанавливается определенное количество золотников, распределителей и клапанов. В компрессорах устанавливают клапана следующих типов — тарельчатые, пластинчатые, шпиндельные и пр.

Для того чтобы оборудование не снижало показатели мощности и не расходовал лишнюю мощность, клапаны, которые установлены в компрессоре, должны быть притерты и не должны пропускать воздух. При их выработке клапанов их необходимо срочно заменить. Повышенный расход воздуха может рано или поздно привести к сокращению срока эксплуатации оборудования.

Запаздывание срабатывания клапана приводит к появлению стуков, стук говорит о том, что происходит износ посадочного места. Ко всему прочему, стук может говорить о том, что произошло защемление верхней его части в корпусе.

Износ компрессора автомобильного кондиционераИзнос компрессора автомобильного кондиционера

Бесшумность работы компрессора — это, своего рода показатель качества настройки и соответственно работы устройства в целом.

Правила безопасности

На строительных площадках и производстве широко применяют компрессорные установки различного принципа действия и назначения. Компрессоры могут быть стационарно установлены на бетонные фундаменты или мобильными, то есть, установленными на шасси.

Штатное использование компрессорного оборудование допустимо при соблюдении ряда условий:

  1. На компрессоре должны быть установлены устройства, работающие в автоматическом режиме, которые предотвращают превышение допустимого рабочего предела.
  2. Предусмотрено наличие разгрузочного клапана, предназначенного для быстрого стравливания излишнего давления.
  3. На этом оборудовании должны быть установлены на вход и выход, фильтрационные устройства, которые обеспечивают чистоту воздуха, направляемый на обработку в компрессор и создающих препятствие его поступление в помещение.
  4. Наличие установленных манометров обеспечивают контроль над параметрами давления, создаваемые компрессором.
  5. Между компрессорной установкой и ресивером должен быть установлен маслоотделительный фильтр.
  6. Кроме этого, в компрессорную остановку нельзя подавать воздух, который содержит в себе токсичные или вредные вещества.

За установленным оборудованием, должен быть установлен соответствующий надзор и техническое обслуживание. При этом надо помнить, что обслуживание и регламентные работы должен проводить подготовленный персонал. То оборудование, которое стоит на гарантии поставщика, должны обслуживать специалисты из соответствующих сервисных центров.

 

Компрессорная установкаКомпрессорная установка

В частности, при промывке узлов и деталей компрессора, должны быть использованы только те жидкости и составы, которые рекомендованы производителем этого оборудования. Емкости для хранения, сжатого воздуха должны быть установлены предохранительные клапаны, сливной кран, манометр. В соответствии с требованиями эксплуатационной документацией, эти емкости (ресиверы) должны проходить регламентное обслуживание и испытания. Об их результатах должны быть сделаны записи в журнале обслуживания.

При организации эксплуатации компрессорного и сопутствующего оборудования необходимо пользоваться руководящими и другими нормативными документами, обнародованными контрольными органами, например, Ростехнадзора.

Критерии выбора компрессорного оборудования

Чем должен руководствоваться потребитель, выбирая воздушный компрессор. Самое главное он должен понимать, для каких целей будет использовано приобретаемое оборудование. Сразу надо оговориться, что существуют отдельные отрасли, и технологические операции могут быть использованы только компрессоры, работающие без масла.

Ключевыми параметрами компрессорного оборудования являются:

  1. Расход воздуха (производительность).
  2. Рабочее давление.
  3. Требования к чистоте воздуха.

Как правило, эти параметры должны быть определены инженерами — технологами, которые разрабатывают технологические процессы с участием компрессорного оборудования.

Схема теплотехнического контроля поршневого компрессораСхема теплотехнического контроля поршневого компрессора

Например, расход воздуха, может быть рассчитан по следующей схеме:

  1. Расчёт количества воздуха при непрерывной эксплуатации.
  2. Внесение коррективов в полученное значение с учетом времени работы оборудования в смену или сутки.

При подборе оборудования необходимо учитывать рост числа потребителей сжатого воздуха.

Системы управления компрессорного оборудования

Для обеспечения того, чтобы воздух находился под постоянным давлением в компрессорных системах, устанавливают регулирующее оборудование. Самая простая система состоит из датчика давления и простейшей системы настройки.  Она позволяет поддерживать в ресивере постоянное давление. При превышении заданных параметров происходит отключение компрессора, а после того, как давление упало до определенного минимума, срабатывает автоматика и включает компрессор. Такие, или почти такие системы, устанавливают практически на всех компрессорных установках. Их наличие обеспечивает безопасную эксплуатацию оборудования.

Бытовые устройства

Для выполнения определенных работ, которые выполняют дома или в гараже применяют бытовые компрессоры. Как правило, это небольшие по размеру поршневые компрессоры с электроприводом. Мощность такого изделия составляет 2,2 кВт. Такие компрессоры в состоянии нагнетать воздух до 8 атм.

По большей части они могут спокойно обеспечивать давление 10 атм. Для хранения сжатого воздуха используют ресиверы емкостью до 100 литров.

Как правило, их используют при выполнении окрасочных работ, внутренних и наружных.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

stankiexpert.ru

Компрессор - это... Что такое Компрессор?

        устройство для сжатия и подачи воздуха или другого газа под давлением. Степень повышения давления в К. более 3. Для подачи воздуха с повышением его давления менее чем в 2—3 раза применяют воздуходувки (См. Воздуходувка), а при напорах до 10 кн/м2 (1000 мм вод. cm.)Вентиляторы. К. впервые стали применяться в середине 19 в., в России строятся с начала 20 в.          Основы теории центробежных машин были заложены Л. Эйлером, теория осевых К. и вентиляторов создавалась благодаря трудам Н. Е. Жуковского (См. Жуковский), С. А. Чаплыгина и других учёных.

         По принципу действия и основным конструктивным особенностям различают К. поршневые, ротационные, центробежные, осевые и струйные. К. также подразделяют по роду сжимаемого газа (воздушные, кислородные и др.), по создаваемому давлению рн (низкого давления — от 0,3 до 1 Мн/м2, среднего — до 10 Мн/м2 и высокого — выше 10 Мн/м2), по производительности, то есть объёму всасываемого Vвс (или сжатого) газа в единицу времени (обычно в м3/мин) и другим признакам. К. также характеризуются частотой оборотов n и потребляемой мощностью N.

         Поршневой К. в основном состоит из рабочего цилиндра и поршня; имеет всасывающий и нагнетательный клапаны, расположенные обычно в крышке цилиндра. Для сообщения поршню возвратно-поступательного движения в большинстве поршневых К. имеется кривошипно-шатунный механизм с коленчатым валом. Поршневые К. бывают одно- и многоцилиндровые, с вертикальным, горизонтальным, V- или W-oбразным и другим расположением цилиндров, одинарного и двойного действия (когда поршень работает обеими сторонами), а также одноступенчатого или многоступенчатого сжатия. Действие одноступенчатого воздушного поршневого К. заключается в следующем. При вращении коленчатого вала 1 соединённый с ним шатун 2 сообщает поршню 3 возвратные движения. При этом в рабочем цилиндре 4 из-за, увеличения объёма, заключённого между днищем поршня и крышкой цилиндра 5, возникает разрежение и атмосферный воздух, преодолев своим давлением сопротивление пружины, удерживающей всасывающий клапан 9, открывает его и через воздухозаборник (с фильтром) 8 поступает в рабочий цилиндр. При обратном ходе поршня воздух будет сжиматься, а затем, когда его давление станет больше давления в нагнетательном патрубке на величину, способную преодолеть сопротивление пружины, прижимающей к седлу нагнетательный клапан 7, воздух открывает последний и поступает в трубопровод 6. При сжатии газа в К. его температура значительно повышается. Для предотвращения самовозгорания смазки К. оборудуются водяным (труба 10 для подвода воды) или воздушным охлаждением. При этом процесс сжатия воздуха будет приближаться к изотермическому (с постоянной температурой), который является теоретически наивыгоднейшим (см. Термодинамика). Одноступенчатый К., исходя из условий безопасности и экономичности его работы, целесообразно применять со степенью повышения давления при сжатии до β = 7—8. При больших сжатиях применяются многоступенчатые К., в которых, чередуя сжатие с промежуточным охлаждением, можно получать газ очень высоких давлений — выше 10 Мн/м2. В поршневых К. обычно предусматривается автоматическое регулирование производительности в зависимости от расхода сжатого газа для обеспечения постоянного давления в нагнетательном трубопроводе. Существует несколько способов регулирования. Простейший из них — регулирование изменением частоты вращения вала.

         Ротационные К. имеют один или несколько роторов, которые бывают различных конструкций. Значительное распространение получили ротационные пластинчатые К., имеющие ротор 2 с пазами, в которые свободно входят пластины 3. Ротор расположен в цилиндре корпуса 4 эксцентрично. При его вращении по часовой стрелке пространства, ограниченные пластинами, а также поверхностями ротора и цилиндра корпуса, в левой части К. будут возрастать, что обеспечит всасывание газа через отверстие 1. В правой части К. объёмы этих пространств уменьшаются, находящийся в них газ сжимается и затем подаётся из К. в холодильник 5 или непосредственно в нагнетательный трубопровод. Корпус ротационного К. охлаждается водой, для подвода и отвода которой предусмотрены трубы 6 и 7. Степень повышения давления в одной ступени пластинчатого ротационного К. обычно бывает от 3 до 6. Двухступенчатые пластинчатые ротационного К. с промежуточным охлаждением газа обеспечивают давление до 1,5 Мн/м2.

         Принципы действия ротационного и поршневого К. в основном аналогичны и отличаются лишь тем, что в поршневом все процессы происходят в одном и том же месте (рабочем цилиндре), но в разное время (из-за чего и потребовалось предусмотреть клапаны), а в ротационном К. всасывание и нагнетание осуществляются одновременно, но в различных местах, разделенных пластинами ротора. Известны другие конструкции ротационного К., в том числе винтовые, с двумя роторами в виде винтов. Для удаления воздуха с целью создания разрежения в каком-либо пространстве применяют роторные водокольцевые вакуум-насосы. Регулирование производительности ротационного К. осуществляется обычно изменением частоты вращения их ротора.

         Центробежный К. в основном состоит из корпуса и ротора, имеющего вал 1 с симметрично расположенными рабочими колёсами. Центробежный 6-ступенчатый К. разделён на три секции и оборудован двумя промежуточными холодильниками, из которых газ поступает в каналы 12 и 13. Во время работы центробежного К. частицам газа, находящимся между лопатками рабочего колеса, сообщается вращательное движение, благодаря чему на них действуют центробежные силы. Под действием этих сил газ перемещается от оси К. к периферии рабочего колеса, претерпевает сжатие и приобретает скорость. Сжатие продолжается в кольцевом диффузоре из-за снижения скорости газа, то есть преобразования кинетической энергии в потенциальную. После этого газ по обратному направляющему каналу поступает в другую ступень К. и т.д.

         Получение больших степеней повышения давления газа в одной ступени (более 25—30, а у промышленных К. — 8—12) ограничено главным образом пределом прочности рабочих колёс, допускающих окружные скорости до 280—500 м/сек. Важной особенностью центробежных К. (а также осевых) является зависимость давления сжатого газа, потребляемой мощности, а также кпд от его производительности. Характер этой зависимости для каждой марки К. отражается на графиках, называемых рабочими характеристиками.

         Регулирование работы центробежных К. осуществляется различными способами, в том числе изменением частоты вращения ротора, дросселированием газа на стороне всасывания и др.

         Осевой К. имеет ротор 4, состоящий обычно из нескольких рядов рабочих лопаток 6. На внутренней стенке корпуса 2 располагаются ряды направляющих лопаток 5. Всасывание газа происходит через канал 3, а нагнетание через канал 1. Одну ступень осевого К. составляет ряд рабочих и ряд направляющих лопаток. При работе осевого К. вращающиеся рабочие лопатки оказывают на находящиеся между ними частицы газа силовое воздействие, заставляя их сжиматься, а также перемещаться параллельно оси К. (откуда его название) и вращаться. Решётка из неподвижных направляющих лопаток обеспечивает главным образом изменение направления скорости частиц газа, необходимое для эффективного действия следующей ступени. В некоторых конструкциях осевых К. между направляющими лопатками происходит и дополнительное повышение давления за счёт уменьшения скорости газа. Степень повышения давления для одной ступени осевого К. обычно равна 1,2—1,3, т. е. значительно ниже, чем у центробежных К., но кпд у них достигнут самый высокий из всех разновидностей К.

         Зависимость давления, потребляемой мощности и кпд от производительности для нескольких постоянных частот вращения ротора при одинаковой температуре всасываемого газа представляют в виде рабочих характеристик. Регулирование осевых К. осуществляется так же, как и центробежных. Осевые К. применяют в составе газотурбинных установок (см. Газотурбинный двигатель).

         Техническое совершенство осевых, а также ротационных, центробежных и поршневых К. оценивают по их механическому кпд и некоторым относительным параметрам, показывающим, в какой мере действительный процесс сжатия газа приближается к теоретически наивыгоднейшему в данных условиях.

         Струйные К. по устройству и принципу действия аналогичны струйным Насосам. К ним относят струйные аппараты для отсасывания или нагнетания газа или парогазовой смеси. Струйные К. обеспечивают более высокую степень сжатия, чем струйные насосы. В качестве рабочей среды часто используют водяной пар.

         Основные типы К., их параметры и области применения показаны в табл.

         Типы компрессоров и их характеристика

        --------------------------------------------------------------------------------------------------------------------------------------------------

        | Тип компрессора                    | Предельные параметры          | Область применения               |

        |------------------------------------------------------------------------------------------------------------------------------------------------|

        | Поршневой                             VВС = 2—5 м3/мин                   | Химическая                            |

        |                                               РН = 0,3—200 Мн/м2               | промышленность,                    |

        |                                               | (лабораторно до 7000 Мн/м2)  | холодильные установки,         |

        |                                               n = 60—1000 об/мин               | питание пневматических         |

        |                                               N до 5500 квт                         | систем, гаражное хозяйство.   |

        |------------------------------------------------------------------------------------------------------------------------------------------------|

        | Ротационный                          VВС = 0,5—300 м3/мин            | Химическая                            |

        |                                               РН = 0,3—1,5 Мн/м2                | промышленность, дутье в       |

        |                                               n = 300—3000 об/мин             | некоторых металлургических  |

        |                                               N до 1100 квт                         | печах и др.                             |

        |------------------------------------------------------------------------------------------------------------------------------------------------|

        | Центробежный                       VВС = 10—2000 м3/мин            | Центральные компрессорные  |

        |                                               РН = 0,2—1,2 Мн/м2                | станции в металлургической,  |

        |                                               n = 1500—10000 (до 30000)     | машиностроительной,             |

        |                                               об/мин                                    | горнорудной,                           |

        |                                               N до 4400 квт (для                  | нефтеперерабатывающей       |

        |                                               | авиационных — до десятков  | промышленности                     |

        |                                               | тысяч квт)                              |                                                |

        |------------------------------------------------------------------------------------------------------------------------------------------------|

        | Осевой                                   | VВС = 100—20000 м3/мин        | Доменные и сталелитейные     |

        |                                               РН = 0,2—0,6 Мн/м2                | заводы, наддув поршневых     |

        |                                               n = 2500—20000 об/мин          | двигателей, газотурбинных     |

        |                                               N до 4400 квт (для                  | установок, авиационных          |

        |                                               | авиационных — до 70000 квт) | реактивных двигателей и др.   |

        --------------------------------------------------------------------------------------------------------------------------------------------------

        

         Лит.: Шерстюк А. Н., Компрессоры, М.—Л., 1959; Рис В. Ф., Центробежные компрессорные машины, 2 изд., М.— Л., 1964; Френкель М. И., Поршневые компрессоры, 3 изд., Л., 1969: Центробежные компрессорные машины, М., 1969.

         Е. А. Квитковская.

        Рис. 1. Поршневой компрессор: 1 — коленчатый вал; 2 — шатун; 3 — поршень; 4 — рабочий цилиндр; 5 — крышка цилиндра; 6 — нагнетательный трубопровод; 7 — нагнетательный клапан; 9 — воздухозаборник; 9 — всасывающий клапан; 10 — труба для подвода охлаждающей воды.

        Рис. 1. Поршневой компрессор: 1 — коленчатый вал; 2 — шатун; 3 — поршень; 4 — рабочий цилиндр; 5 — крышка цилиндра; 6 — нагнетательный трубопровод; 7 — нагнетательный клапан; 9 — воздухозаборник; 9 — всасывающий клапан; 10 — труба для подвода охлаждающей воды.

        Рис. 2. Ротационный пластинчатый компрессор: 1 — отверстие для всасывания воздуха; 2 — ротор; 3 — пластина; 4 — корпус; 5 — холодильник; 6 и 7 — трубы для отвода и подвода охлаждающей воды.

        Рис. 2. Ротационный пластинчатый компрессор: 1 — отверстие для всасывания воздуха; 2 — ротор; 3 — пластина; 4 — корпус; 5 — холодильник; 6 и 7 — трубы для отвода и подвода охлаждающей воды.

        Рис. 3. Центробежный компрессор: 1 — вал; 2, 6, 8, 9, 10 и 11 — рабочие колёса; 3 и 7 — кольцевые диффузоры; 4 — обратный направляющий канал; 5 — направляющий аппарат; 12 и 13 — каналы для подвода газа из холодильников;14 — канал для всасывания газа.

        Рис. 3. Центробежный компрессор: 1 — вал; 2, 6, 8, 9, 10 и 11 — рабочие колёса; 3 и 7 — кольцевые диффузоры; 4 — обратный направляющий канал; 5 — направляющий аппарат; 12 и 13 — каналы для подвода газа из холодильников;14 — канал для всасывания газа.

        Рис. 4. Осевой компрессор: 1 — канал для подачи сжатого газа; 2 — корпус; 3 — канал для всасывания газа; 4 — ротор; 5 — направляющие лопатки; 6 — рабочие лопатки.

        Рис. 4. Осевой компрессор: 1 — канал для подачи сжатого газа; 2 — корпус; 3 — канал для всасывания газа; 4 — ротор; 5 — направляющие лопатки; 6 — рабочие лопатки.

dic.academic.ru

Компрессор - это... Что такое Компрессор?

Компрессор (от лат. compressio — сжатие) — устройство для сжатия и подачи газов под давлением (воздуха, паров хладагента и т. д.).

Компрессорный агрегат Corcen для перекачки паровой фазы СНГ

Компрессорная установка — совокупность компрессора, привода и вспомогательного оборудования (газоохладителя, осушителя сжатого воздуха и т. д.).

Компрессоры называются дожимающими, если давление всасываемого газа существенно превышает атмосферное. Производительность компрессоров обычно выражают в единицах объёма газа сжатого в единицу времени (м.куб. в минуту, м.куб. в час). Производительность обычно считают по показателям приведённым к нормальным условиям. При этом различают производительность по входу и по выходу. Эти величины практически равны при маленькой разнице давлений между входом и выходом. При большой разнице у, скажем, поршневых компрессоров, выходная производительность может при тех же оборотах падать более чем в два раза по сравнению с входной производительностью, измеренной при нулевом перепаде давления между входом и выходом.

Классификация

Общепринятая классификация механических компрессоров по принципу действия. Под принципом действия понимают основную особенность процесса повышения давления, зависящую от конструкции компрессора.

Объёмные компрессоры

Это машины, в которых процесс сжатия происходит в рабочих камерах, изменяющих свой объём периодически, попеременно сообщающихся с входом и выходом компрессора. Объёмные машины по геометрической форме рабочих органов и способу изменения объёма рабочих камер можно разделить на поршневые, мембранные и роторные (винтовые, ротационно-пластинчатые, жидкостно-кольцевые, с катящимся ротором, газодувки Рутс (насос Рутса), спиральные) компрессоры.

Поршневые компрессоры

Могут быть одностороннего или двухстороннего действия, крейцкопфные и бескрейцкопфные, смазываемые и без применения смазки (сухого трения или сухого сжатия), (при высоких давлениях сжатия применяются также плунжерные).

Роторные компрессоры

К объёмным машинам с вращающим сжимающим элементом (роторным машинам) относятся: винтовые компрессоры, ротационно-пластинчатые, жидкостно-кольцевые и другие конструкции компрессорных машин.

Лопастные компрессоры

Машины динамического действия, в которых сжатие газа происходит в результате взаимодействия потока с вращающейся и неподвижной решётками лопастей. Характерной особенностью лопастных машин является отсутствие пульсации развиваемого ими давления. К лопастным относятся осерадиальные, осевые и вихревые машины, лопастные компрессоры также называют турбокомпрессорами.

Прочая классификация

По назначению (применению) компрессоры классифицируются по отрасли производства, для которых они предназначены (химические, энергетические, общего назначения и т. д.), по роду сжимаемого газа (воздушный, кислородный, хлорный, азотный, гелиевый и т. д.).

По способу отвода теплоты — с жидкостным или воздушным охлаждением.

По типу приводного двигателя  — с приводом от электродвигателя, двигателя внутреннего сгорания, паровой или газовой турбины.

По устройству компрессоры могут быть одноступенчатыми и многоступенчатыми.

По конечному давлению различают:

  • Вакуум-компрессоры, газодувки — машины, которые отсасывают газ из пространства с давлением ниже атмосферного или выше. Воздуходувки и газодувки подобно вентиляторам создают поток газа, однако, обеспечивая возможность достижения избыточного давления от 10 до 100 кПа (0,1..1 атм.), в некоторых специальных исполнениях - до 200 кПа (2 атм.). В режиме всасывания воздуходувки могут создавать разрежение как правило 10..50 кПа, в отдельных случаях до 90 кПа и работать как вакуумный насос низкого вакуума[1].
  • Компрессоры низкого давления, предназначенные для нагнетания газа при давлении от 0,15 до 1,2 МПа.
  • Компрессоры среднего давления — от 1,2 до 10 МПа.
  • Компрессоры высокого давления — от 10 до 100 МПа.
  • Компрессоры сверхвысокого давления, предназначенные для сжатия газа выше 100 МПа.

Старейшие заводы-изготовители компрессорного оборудования СНГ, работающие по сей день

  • ЗАО «Невский Завод», год основания: 1857[2]
  • ОАО «Компрессор» основан в 1877 году.
  • ОАО «Полтавский турбомеханический завод» (Украина) год основания: 1885.
  • ООО "Московский компрессорный завод «Борец» год основания: 1897.
  • ОАО Бежецкий завод «АСО» год основания: 1917.
  • ПАО «Мелком» год основания: 1930.[3]
  • ОАО «Пензкомпрессормаш» год основания: 1933.
  • ОАО «Уральский компрессорный завод» год основания: 1933. [4]
  • ОАО «Казанский завод компрессорного машиностроения» год основания: 1951.
  • ОАО «Компрессорный завод» (г. Краснодар) год основания 1952.
  • ОАО НПАО «ВНИИкомпрессормаш» год основания: 1967
  • СП ООО «Орёлкомпрессормаш» год основания: 1994

Литература

  • Абдурашитов С. А. Насосы и компрессоры. — М.: Недра, 1974.
  • Михайлов А. К., Ворошилов В. П. Компрессорные машины. — М.: Энергоатомиздат, 1989. — 288 с. — ISBN 5-283-00090-7.
  • Воронецкий А. В. Современные центробежные компрессоры. — М.: Премиум Инжиниринг, 2007. — 140 с.
  • Шерстюк А. Н., Компрессоры, М.—Л., 1959

Ссылки

См. также

Примечания

dic.academic.ru

Компрессор. Принцип действия, устройство, виды компрессоров.

Компрессор (от латинского слова compressio - сжатие) - энергетическая машина или устройство для повышения давления (сжатия) и перемещения газообразных веществ.

Компрессорная установка - это совокупность компрессора, привода и вспомогательного оборудования (газоохладителя, осушителя сжатого воздуха и т. д.).

Общепринятая классификация механических компрессоров по принципу действия, под принципом действия понимают основную особенность процесса повышения давления, зависящую от конструкции компрессора. По принципу действия все компрессоры можно разделить на две большие группы: динамические и объёмные.


Объёмные компрессоры

В компрессорах объёмного принципа действия рабочий процесс осуществляется в результате изменения объёма рабочей камеры. Номенклатура компрессоров данного типа разнообразна (более десятка видов), основные из которых: поршневые, винтовые, роторно-шесте-рён- чатые, мембранные, жидкостно-кольцевые, воздуходувки Рутса, спиральные, компрессор с катящимся ротором.



Рис. 1. Классификация объемных компрессоров

Поршневые компрессоры (рис. 2-3) могут быть одностороннего или двухстороннего действия, крейцкопфные и бескрейцкопфные, смазываемые и без применения смазки (сухого трения или сухого сжатия), при высоких давлениях сжатия применяются также плунжерные.

Роторные компрессоры - это машины с вращающим сжимающим элементом, конструктивно подразделяются на винтовые, ротационнопластинчатые, жидкостно-кольцевые, бывают и другие конструкции.

 



Рис. 2. Схема работы поршневого компрессора



Рис. 3. Поршневой компрессор: 1 - коленчатый вал; 2 - шатун; 3 - поршень; 4 - рабочий цилиндр; 5 - крышка цилиндра; 6 - нагнетательный трубопровод; 7 - нагнетательный клапан; 8 - воздухозаборник; 9 - всасывающий клапан; 10 - труба для подвода охлаждающей воды



Рис. 4. Одноступенчатый поршневой компрессор одинарного действия

Поршневой компрессор в основном состоит из рабочего цилиндра и поршня; имеет всасывающий и нагнетательный клапаны, расположенные обычно в крышке цилиндра. Для сообщения поршню возвратно-поступательного движения в большинстве поршневых компрессорах имеется кривошипно-шатунный механизм с коленчатым валом. Поршневые компрессоры бывают одно и многоцилиндровые, с вертикальным, горизонтальным, V или W - образным и другим расположением цилиндров, одинарного и двойного действия (когда поршень работает обеими сторонами), а также одноступенчатого или многоступенчатого сжатия.

Действие одноступенчатого воздушного поршневого компрессора (рис. 3) заключается в следующем. При вращении коленчатого вала 1 соединённый с ним шатун 2 сообщает поршню 3 возвратные движения. При этом в рабочем цилиндре 4 из-за, увеличения объёма, заключённого между днищем поршня и крышкой цилиндра 5, возникает разрежение и атмосферный воздух, преодолев своим давлением сопротивление пружины, удерживающей всасывающий клапан 9, открывает его и через воздухозаборник (с фильтром) 8 поступает в рабочий цилиндр. При обратном ходе поршня воздух будет сжиматься, а затем, когда его давление станет больше давления в нагнетательном патрубке на величину, способную преодолеть сопротивление пружины, прижимающей к седлу нагнетательный клапан 7, воздух открывает последний и поступает в трубопровод 6. При сжатии газа в компрессоре его температура значительно повышается.

Для предотвращения самовозгорания смазки компрессоры оборудуются водяным (труба 10 для подвода воды) или воздушным охлаждением. При этом процесс сжатия воздуха будет приближаться к изотермическому (с постоянной температурой), который является теоретически самым выгодным. Одноступенчатый компрессор, исходя из условий безопасности и экономичности его работы, целесообразно применять со степенью повышения давления при сжатии до b = 7 - 8. При больших сжатиях применяются многоступенчатые компрессоры, в которых, чередуя сжатие с промежуточным охлаждением, можно получать газ очень высоких давлений - выше 10 Мн/м2. В поршневых компрессорах обычно предусматривается автоматическое регулирование производительности в зависимости от расхода сжатого газа для обеспечения постоянного давления в нагнетательном трубопроводе. Существует несколько способов регулирования. Простейший из них - регулирование изменением частоты вращения вала.

Принципы действия ротационного и поршневого компрессора в основном аналогичны и отличаются лишь тем, что в поршневом все процессы происходят в одном и том же месте (рабочем цилиндре), но в разное время (из-за чего и потребовалось предусмотреть клапаны), а в ротационном компрессоре всасывание и нагнетание осуществляются одновременно, но в различных местах, разделенных пластинами ротора. Известны другие конструкции ротационного компрессора, в том числе винтовые, с двумя роторами в виде винтов. Для удаления воздуха с целью создания разрежения в каком-либо пространстве применяют роторные водокольцевые вакуумнасосы. Регулирование производительности ротационного компрессора осуществляется обычно изменением частоты вращения их ротора.

Ротационные компрессоры имеют один или несколько роторов, которые бывают различных конструкций. Значительное распространение получили ротационные пластинчатые компрессоры (рис. 5), имеющие ротор 2 с пазами, в которые свободно входят пластины 3, ротор расположен в цилиндре корпуса 4 эксцентрично. При его вращении по часовой стрелке пространства, ограниченные пластинами, а также поверхностями ротора и цилиндра возрастать корпуса, в левой части компрессора будут возрастать, что обеспечит всасывание газа через отверстие 1. В правой части компрессора объёмы этих пространств уменьшаются, находящийся в них газ сжимается и затем подаётся из компрессора в холодильник 5 или непосредственно в нагнетательный трубопровод. Корпус ротационного компрессора охлаждается водой, для подвода и отвода которой предусмотрены трубы 6 и 7. Степень повышения давления в одной ступени пластинчатого ротационного компрессора обычно бывает от 3 до 6.



Рис. 5. Ротационный пластинчатый компрессор: 1 - отверстие для всасывания воздуха; 2 - ротор; 3 - пластина; 4 - корпус; 5 - холодильник; 6 и 7 - трубы для отвода и подвода охлаждающей воды


Винтовые компрессоры

Конструкция винтового блока состоит из двух массивных винтов и корпуса. При этом винты во время работы находятся на некотором расстоянии друг от друга, и этот зазор уплотняется масляной пленкой. Трущихся элементов нет.

Таким образом, ресурс винтового блока практически неограничен и достигает более чем 200-300 тысяч часов. Регламентной замене подлежат лишь подшипники винтового блока.


Пластинчато-роторные компрессоры

Конструкция пластинчато-роторного блока состоит из одного ротора, статора и минимум восьми пластин, масса которых, а соответственно и толщина ограничены. На пластину в процессе работы действуют силы: центробежная и трения/упругости масляной пленки.

Так как масляная пленка нормализуется и становится равномерной и достаточной лишь после нескольких минут работы компрессора, то во время стартов и остановов идет трение пластин о статор и соответственно повышенный их износ и выработка.

Чем большее давление должен нагнетать такой блок, тем большая разницы давлений в соседних камерах сжатия, и тем большая должна быть центробежная сила для недопущения перетоков сжимаемого воздуха из камеры с большим давлением в камеру с меньшим. В свою очередь, чем больше центробежная сила, тем больше и сила трения в моменты пуска и остановки и тем тоньше масляная пленка во время работы - это является основной причиной, почему данная технология получила широкое распространение в области вакуума (то есть давление до 1 бара) и в области нагнетания давления до 0,3-0,4 МПа.

Так как масляная пленка между пластинами и статором имеет толщину всего несколько микрон, то любая пыль, тем более твердые частички крупнее размеров, выступают как абразив, который царапает статор и делает выработку по пластинам. Это приводит к тому, что возникают перепуски сжимаемого воздуха из одной камеры сжатия в другую и производительность заметно падает.

В отличие от небольших вакуумных насосов, где широко применяется пластинчато-роторная технология, в компрессорах большой производительности и давлением выше 0,5 МПа со временем необходимо будет менять весь блок в сборе, так как замена отдельно пластин эффективна лишь в случае восстановления геометрии статора, а такие большие статоры восстановлению (шлифовке) не подлежат.

Производители обычно не дают никаких данных по ресурсу пластинчато-роторного блока, так как он очень сильно зависит от качества воздуха и режима работы компрессора. Для газовых компрессоров, качающих газ практически не останавливаясь круглый год, ресурс может действительно достигать и более 100 тысяч часов потому, что масляная пленка равномерна и достаточна все время работы без остановок.

А при промышленном использовании, где разбор воздуха крайне неравномерен и компрессор запускают и останавливают десятки раз в день, большую часть времени нормальной для работы масляной пленки внутри блока нет, что является причиной агрессивного износа пластин. В таком случае ресурс блока не более 25 тысяч часов.


Динамические компрессоры

В компрессорах динамического принципа действия газ сжимается в результате подвода механической энергии от вала, и дальнейшего взаимодействия рабочего вещества с лопатками ротора. В зависимости от направления движения потока и типа рабочего колеса такие компрессоры бывают центробежные (рис. 6) и осевые (рис. 7).



Рис. 6. Центробежный компрессор: 1 - вал; 2, 6, 8, 9, 10 и 11 - рабочие колёса; 3 и 7 - кольцевые диффузоры; 4 - обратный направляющий канал; 5 - направляющий аппарат; 12 и 13 - каналы для подвода газа из холодильников; 14 - канал для всасывания газа

Центробежный компрессор в основном состоит из корпуса и ротора, имеющего вал 1 с симметрично расположенными рабочими колёсами. Центробежный 6-ступенчатый компрессор разделён на три секции и оборудован двумя промежуточными холодильниками, из которых газ поступает в каналы 12 и 13. Во время работы центробежного компрессора частицам газа, находящимся между лопатками рабочего колеса, сообщается вращательное движение, благодаря чему на них действуют центробежные силы. Под действием этих сил газ перемещается от оси компрессора к периферии рабочего колеса, претерпевает сжатие и приобретает скорость. Сжатие продолжается в кольцевом диффузоре из-за снижения скорости газа, то есть преобразования кинетической энергии в потенциальную. После этого газ по обратному направляющему каналу поступает в другую ступень компрессор и т.д.

Получение больших степеней повышения давления газа в одной ступени (более 25-30, а у промышленных компрессоров - 8-12) ограничено главным образом пределом прочности рабочих колёс, допускающих окружные скорости до 280-500 м/сек. Важная особенность центробежных компрессоров (а также осевых) - зависимость давления сжатого газа, потребляемой мощности, а также КПД от его производительности. Характер этой зависимости для каждой марки компрессоров отражается на графиках, называемых рабочими характеристиками.

Регулирование работы центробежных компрессоров осуществляет различными способами, в том числе изменением частоты вращения ротора, дросселированием газа на стороне всасывания и другими.

Рис. 7. Осевой компрессор: 1 - канал для подачи сжатого газа; 2 - корпус; 3 - канал для всасывания газа; 4 - ротор; 5 - направляющие лопатки; 6 - рабочие лопатки

Осевой компрессор (рис. 7) имеет ротор 4, состоящий обычно из нескольких рядов рабочих лопаток 6, на внутренней стенке корпуса 2 располагаются ряды направляющих лопаток 5, всасывание газа происходит через канал 3, а нагнетание через канал 1. Одну ступень осевого компрессора составляет ряд рабочих и ряд направляющих лопаток. При работе осевого компрессора вращающиеся рабочие лопатки оказывают на находящиеся между ними частицы газа силовое воздействие, заставляя их сжиматься, а также перемещаться параллельно оси компрессора (откуда его название) и вращаться. Решётка из неподвижных направляющих лопаток обеспечивает главным образом изменение направления скорости частиц газа, необходимое для эффективного действия следующей ступени. В некоторых конструкциях осевых компрессорах между направляющими лопатками происходит и дополнительное повышение давления за счёт уменьшения скорости газа. Степень повышения давления для одной ступени осевого компрессора обычно равна 1,2-1,3, то есть значительно ниже, чем у центробежных компрессоров, но КПД у них достигнут самый высокий из всех разновидностей компрессоров.

Зависимость давления, потребляемой мощности и кпд от производительности для нескольких постоянных частот вращения ротора при одинаковой температуре всасываемого газа представляют в виде рабочих характеристик. Регулирование осевых компрессоров осуществляется так же, как и центробежных. Осевые компрессоры применяют в составе газотурбинных установок.

Техническое совершенство осевых, а также ротационных, центробежных и поршневых компрессоров оценивают по их механическому КПД и некоторым относительным параметрам, показывающим, в какой мере действительный процесс сжатия газа приближается к теоретически самому выгодному в данных условиях.

Струйные компрессоры по устройству и принципу действия аналогичны струйным насосам. К ним относят струйные аппараты для отсасывания или нагнетания газа или парогазовой смеси. Струйные компрессоры обеспечивают более высокую степень сжатия, чем струйные насосы. В качестве рабочей среды часто используют водяной пар.

Турбокомпрессоры - это динамические машины, в которых сжатие газа происходит в результате взаимодействия потока с вращающейся и неподвижной решётками лопастей.

Прочие классификации

По назначению компрессоры классифицируются по отрасли производства, для которых они предназначены (химические, холодильные, энергетические, общего назначения и т. д.). По роду сжимаемого газа (воздушный, кислородный, хлорный, азотный, гелиевый, фреоновый, углекислотный и т. д.). По способу отвода теплоты - с жидкостным или воздушным охлаждением.

По типу приводного двигателя они бывают с приводом от электродвигателя, двигателя внутреннего сгорания, паровой или газовой турбины. Дизельные газовые компрессоры широко используются в отдаленных районах с проблемами подачи электроэнергии. Они шумные и требуют вентиляции для выхлопных газов. С электрическим приводом компрессоры широко используются в производстве, мастерских и гаражах с постоянным доступом к электричеству. Такие изделия требуют наличия электрического тока, напряжением 110-120 Вольт (или 230-240 Вольт). В зависимости от размера и назначения, компрессоры могут быть стационарными или портативными. По устройству компрессоры могут быть одноступенчатыми и многоступенчатыми.

По конечному давлению различают:

- вакуум-компрессоры, газодувки - машины, которые отсасывают газ из пространства с давлением ниже атмосферного или выше. Воздуходувки и газодувки подобно вентиляторам создают поток газа, однако, обеспечивая возможность достижения избыточного давления от 10 до 100 кПа (0,01-0,1 МПа), в некоторых специальных исполнениях - до 200 кПа (0,2 МПа). В режиме всасывания воздуходувки могут создавать разрежение, как правило, 10-50 кПа, а в отдельных случаях - до 90 кПа и работать как вакуумный насос низкого вакуума;

- компрессоры низкого давления, предназначенные для нагнетания газа при давлении от 0,15 до 1,2 МПа;

- компрессоры среднего давления - от 1,2 до 10 МПа;

- компрессоры высокого давления - от 10 до 100 МПа.

- компрессоры сверхвысокого давления, предназначенные для сжатия газа выше 100 МПа.

Рис. 8. Пример чертежей компрессора


Производительность компрессоров

Производительность компрессоров обычно выражают в единицах объёма газа сжатого в единицу времени (м3/мин, м3/час). Производительность обычно считают по показателям, приведённым к нормальным условиям. При этом различают производительность по входу и по выходу, эти величины практически равны при маленькой разнице давлений между входом и выходом, но при большой разнице, например, у поршневых компрессоров, выходная производительность может при тех же оборотах падать более чем в 2 раза по сравнению с входной производительностью, измеренной при нулевом перепаде давления между входом и выходом. Компрессоры называются дожимающими, если давление всасываемого газа заметно превышает атмосферное.


Агрегатирование компрессоров

Агрегатирование представляет собой процесс установки компрессора и двигателя на раму. В связи с тем, что компрессоры поршневого типа характеризуются неравномерной тряской, результатом которой при отсутствии соответствующего основания или опоры становится чрезмерная вибрация, агрегатирование должно выполняться с учетом качественно спроектированного фундамента.

www.eti.su

Компрессор

Компрессор - устройство для сжатия и подачи воздуха или другого газа под давлением. Степень повышения давления в компрессоре более 3. Для подачи воздуха с повышением его давления менее чем в 2-3 раза применяют воздуходувки, а при напорах до 10 кн/м2 (1000 мм вод. cm.) вентиляторы. Компрессор впервые стали применяться в России с начала 20 в.

Если взять компрессор, привод и дополнительное оборудование, то получится компрессорная установка.

Компрессорная установка в свою очередь — это совокупность компрессора, привода и вспомогательного оборудования, например: газоохладителя или осушителя сжатого воздуха.

В промышленности компрессоры начали применять в середине 19 века, произошло это в Европе, в России же, компрессоры начали применять позже — в начале 20 века.

Область применения компрессорной техники - технологические процессы химической, нефтехимической, нефтеперерабатывающей, газовой, металлургической, пищевой промышленности и ряде других отраслей.

Компрессоры могут эксплуатироваться в составе стационарных или передвижных машин или установок. Соответственно этому различают стационарные, передвижные, переносные, прицепные, самоходные, транспортные (авиационные, автомобильные, судовые, железнодорожные) компрессоры.

Виды компрессоров

По применимости в газовой (рабочей) среде компрессоры разделяют на:

  • Газовые - для сжатия любого газа или смеси газов, кроме воздуха; в зависимости от вида газа они называются кислородными, водородными, аммиачными и т. д.;

  • Воздушные -для сжатия воздуха; значительную группу таких компрессоров составляют компрессоры общего назначения, предназначенные для сжатия атмосферного воздуха до давления 0,8 ? 1,5 МПа и выполненные без учета каких-либо специфических требований;

  • Циркуляционные - для обеспечения циркуляции газа в замкнутом технологическом контуре;

  • Многоцелевые (специальные) -для попеременного сжатия различных газов;

  • Многослужебные (специальные) - для одновременного сжатия различных газов.

Компрессоры также подразделяют по создаваемому давлению рн (низкого давления-от 0,3 до 1 Мн/м2, среднего - до 10 Мн/м2 и высокого - выше 10 Мн/м2), по производительности, то есть объёму всасываемого Vвс (или сжатого) газа в единицу времени (обычно в м3/мин) и другим признакам.

Компрессоры также характеризуются частотой оборотов n и потребляемой мощностью N. В настоящее время компрессоры выпускаются двух типов: мембранные и поршневые. Различаются они по принципу действия. Чтобы не вдаваться в подробности механики и инженерной мысли, остановимся на следующем. Поршневые практически бесшумны, но достаточно дороги. Мембранные при работе гудят, многие довольно сильно. Зато значительно дешевле.

По принципу действия и основным конструктивным особенностям различают компрессоры:

  • Поршневые

  • Ротационные

  • Центробежные

  • Осевые

  • Струйные

  • Мембранные

Поршневой компрессор в основном состоит из рабочего цилиндра и поршня; имеет всасывающий и нагнетательный клапаны, расположенные обычно в крышке цилиндра. Для сообщения поршню возвратно-поступательного движения в большинстве поршневых компрессоров имеется кривошипно-шатунный механизм с коленчатым валом. Поршневые компрессоры бывают одно- и многоцилиндровые, с вертикальным, горизонтальным, V- или W-oбразным и другим расположением цилиндров, одинарного и двойного действия (когда поршень работает обеими сторонами), а также одноступенчатого или многоступенчатого сжатия.

Ротационные компрессоры имеют один или несколько роторов, которые бывают различных конструкций. Значительное распространение получили ротационные пластинчатые компрессоры, имеющие ротор с пазами, в которые свободно входят пластины.

Принципы действия ротационного и поршневого компрессоров в основном аналогичны и отличаются лишь тем, что в поршневом все процессы происходят в одном и том же месте (рабочем цилиндре), но в разное время (из-за чего и потребовалось предусмотреть клапаны), а в ротационном компрессоре всасывание и нагнетание осуществляются одновременно, но в различных местах, разделенных пластинами ротора.

Центробежный компрессор в основном состоит из корпуса и ротора, имеющего вал с симметрично расположенными рабочими колёсами. Центробежный 6-ступенчатый компрессор разделён на три секции и оборудован двумя промежуточными холодильниками, из которых газ поступает в каналы. Во время работы центробежного компрессора частицам газа, находящимся между лопатками рабочего колеса, сообщается вращательное движение, благодаря чему на них действуют центробежные силы. Под действием этих сил газ перемещается от оси компрессора к периферии рабочего колеса, претерпевает сжатие и приобретает скорость.

Осевой компрессор имеет ротор, состоящий обычно из нескольких рядов рабочих лопаток. При работе осевого компрессора вращающиеся рабочие лопатки оказывают на находящиеся между ними частицы газа силовое воздействие, заставляя их сжиматься, а также перемещаться параллельно оси компрессора (откуда его название) и вращаться. Между направляющими лопатками происходит и дополнительное повышение давления за счёт уменьшения скорости газа. Осевые компрессоры применяют в составе азотурбинных установок.

Техническое совершенство осевых, а также ротационных, центробежных и поршневых компрессоров оценивают по их механическому кпд и некоторым относительным параметрам, показывающим, в какой мере действительный процесс сжатия газа приближается к теоретически наивыгоднейшему в данных условиях.

Струйные компрессоры по устройству и принципу действия аналогичны струйным насосам. К ним относят струйные аппараты для отсасывания или нагнетания газа или парогазовой смеси. Струйные компрессор обеспечивают более высокую степень сжатия, чем струйные насосы. В качестве рабочей среды часто используют водяной пар.

Основным узлом мембранного компрессора является мембранный блок, в котором происходит сжатие газа. Мембранный блок выполняет роль цилиндра в компрессоре. При работе компрессора мембраны блоков полностью изолируют сжимаемый газ от рабочей жидкости, чем обеспечивается сохранение высокого качества газа, что является большим преимуществом мембранных компрессоров над поршневыми. Агрегаты предназначены для сжатия различных сухих газов, кроме кислорода, без загрязнения их маслом и продуктами износа трущихся частей. Могут использоваться в производствах и научных исследованиях, где к чистоте перекачиваемого газа и герметичности компрессора предъявляются жесткие требования. В случае прорыва мембран срабатывает автоматическая защита.

Основные типы компрессоров, их параметры и области применения показаны в таблице

 

Типы компрессоров и их характеристика

Тип компрессора

Предельные параметры

Область применения

Поршневой

VВС = 2-5 м³/мин РН = 0,3-200 Мн/м² (лабораторно до 7000 Мн/м²) n = 60-1000 об/мин N до 5500 квт

Химическая промышленность, холодильные установки, питание пневматических систем, гаражное хозяйство.

Ротационный

VВС = 0,5-300 м³/мин РН = 0,3-1,5 Мн/м² n = 300-3000 об/мин N до 1100 квт

Химическая промышленность, дутье в некоторых металлургических печах и др.

Центробежный

VВС = 10-2000 м3/мин РН = 0,2-1,2 Мн/м² n = 1500-10000 (до 30000) об/мин N до 4400 квт (для авиационных ? до десятков тысяч квт)

Центральные компрессорные станции в металлургической, машиностроительной, горнорудной, нефтеперерабатывающей промышленности.

Осевой

VВС = 100-20000 м³/мин РН = 0,2-0,6 Мн/м² n = 2500-20000 об/мин N до 4400 квт (для авиационных ? до 70000 квт)

Доменные и сталелитейные заводы, наддув поршневых двигателей, газотурбинных установок, авиационных реактивных двигателей и др.

По применению можно выделить:

автомобильные компрессоры — да, ими накачивают шины или камеры;

бытовые компрессоры — аквариумные, для аэрографии или холодильника;

промышленные компрессоры;

и медицинские компрессоры.

Компрессоры. Типы

Самые простые — это безмасляные компрессоры. Такое название они получили вследствие того, что благодаря применению специальных материалов и узлов (в том числе и необслуживаемых подшипников) удалось упростить конструкцию за счет отсутствия системы смазки. Это решение позволяет не только удешевить само оборудование, но и свести к минимуму его обслуживание, снизить требования к правильному размещению (такой агрегат может работать в наклонном положении или даже на боку), а также получить на выходе воздух без малейшей примеси масла (этим грешат его «старшие братья»).

С другой стороны, при отсутствии смазки, естественно, снижается ресурс контактирующих деталей, к тому же не стоит надеяться на высокую производительность, поскольку большие нагрузки приведут к еще более быстрому выходу из строя компрессионной головки. Кроме того, такие устройства работают в интенсивном тепловом режиме, поскольку сжатие воздуха сопровождается солидным тепловыделением, поэтому они не приспособлены к продолжительной эксплуатации. Тем не менее за счет невысокой стоимости (от $150 до $350) и сравнительно малых размеров такие компрессоры широко используются на тех предприятиях, потребности которых в сжатом воздухе невелики, как, впрочем, и объемы работ. Самые производительные устройства этой серии способны «выдать» не более 240 л/мин.

Самые маленькие и недорогие — необслуживаемые безмасляные компрессоры

Реальной альтернативой необслуживаемым стали масляные компрессоры с прямой передачей. В них предусмотрена полноценная система смазки, а вращение от привода к компрессионной головке передается напрямую, поскольку они связаны единым валом. Такая простота решения не позволяет в полной мере решить проблему теплоотвода, поскольку одной крыльчатке приходится охлаждать два агрегата. Отчасти решить проблему удается использованием алюминиевых ребристых корпусов. Такие компрессорыкомплектуются небольшими ресиверами объемом от 20 до 50 литров, их производительность редко превышает 200— 250 л/мин, а стоимость примерно та же, что у агрегатов предыдущей конструкции.

Компрессоры с прямой передачей не рассчитаны на продолжительную работу.

 

 

 

 

 

 

Если же мощности такого «малыша» не хватает, стоит присмотреться к компрессорам другой конструкции — с клиноременной передачей. Как следует из их названия, связь между двигателем и компрессионной головкой в этом случае осуществляется с помощью ременной передачи. Благодаря наличию двух валов (на каждый из них устанавливается крыльчатка) проще организовать охлаждение таких агрегатов, а следовательно, возможна более длительная непрерывная эксплуатация. В основном, с помощью таких компрессоров на «СТО» делают кузовной ремонт двери или капота, в общем красят)). Применение полноценной системы смазки на ременных компрессорах позволяет получить более высокие выходные характеристики компрессора и увеличить объем ресивера. Конечно, столь существенное усложнение конструкции не может не повлечь за собой ее удорожание.

Средний компрессор с клиноременной передачей обойдется в $450—1000. Однако, несмотря на более высокую стоимость и возросшие по сравнению с предыдущим вариантом габариты, именно такие устройства рекомендует владельцам небольших сервисных станций большинство профессиональных продавцов подобной техники. Если наблюдается явный дефицит производственных площадей на СТО, возможно, следует отдать предпочтение моделям с вертикально расположенным ресивером, который при тех же выходных параметрах занимает меньше места.   Ременной компрессор — оптимальный вариант для большинства автосервисов.

 

 

 

 

 

 

Так устроены наиболее популярные у «сервисменов» компрессоры. Есть и другие, позволяющие получить еще более высокие характеристики.

Винтовые компрессоры отличаются надежностью и большим ресурсом работы при гораздо более низком уровне шума и вибрации, но их высокая стоимость часто делает подобное приобретение невыгодным. Тем не менее находятся покупатели и для такой техники: ее используют на крупных станциях техобслуживания с разветвленной сетью пневмомагистралей. Повышения производительности иногда добиваются и усовершенствованием обычных компрессоров с клиноременной передачей. В частности, это достигается за счет размещения двух компрессионных головок, нагнетающих воздух в один ресивер. Первая из них выполняет функцию основной, вторая подключается в том случае, если ее «коллега» не справляется со своими обязанностями.

Существуют специальные шумозащитные исполнения. Их применяют в тех случаях, когда компрессор размещается непосредственно в рабочем цеху (обычно он «живет» в специальном отдельном помещении). Правда, защитные кожухи создают дополнительные проблемы с теплоотводом, поэтому такие компрессоры не рекомендуется использовать при высокой температуре окружающей среды.

Винтовые компрессоры обладают хорошими характеристиками, но они по карману только крупным предприятиям.

studfile.net

это... Виды компрессоров, назначение, устройство и принцип работы :: SYL.ru

Новый этап развития в строительстве и производственной сфере переживает компрессорное оборудование. Современная генерация агрегатов данного типа характеризуется высокой мощностью, большими объемами подачи сжатого воздуха и долговечностью. Также наблюдается и процесс активного внедрения компрессоров в бытовую сферу. Рядовому домашнему пользователю сжатый воздух может помочь в работе с краскопультом и строительным инструментом, требуя минимальных усилий. В то же время компрессор бытовой имеет небольшие размеры и не требует особого внимания в процессе технического обслуживания. Но в любом случае для правильного выбора такого помощника необходимо подробнее разобраться с его устройством и рабочими параметрами.

компрессор это

Что такое компрессор?

Под компрессорными установками понимается широкий спектр агрегатов, нагнетающих сжатый воздух. В некотором смысле это генераторы воздушных потоков, которые используются как усилие для выполнения определенных рабочих действий. К примеру, сжатый воздух является рабочей средой для пневматических строительных инструментов. Станция направляет его к оборудованию, в результате чего выполняется конечная функция. В техническом отношении компрессор – это сложная машина, построенная на механической рабочей группе. В процессе работы оператор должен учитывать параметры состояния установки, в некоторых случаях регулируя давление подачи воздуха. Также существуют модели, которые в постоянном режиме работают без участия пользователя – ими управляет автоматика. Обычно это производственные компрессоры, которые входят в конвейерные линии обработки разных материалов.

Конструкция агрегата

компрессор электрический

Устройство компрессоров определяется типом конструкции. Наиболее распространены поршневые воздушные модели. Они могут быть масляными и безмасляными. В обоих случаях непосредственную выработку сжатого воздуха обеспечивает поршень за счет возвратно-поступательных движений. Но и сама поршневая группа нуждается в энергетической поддержке. Функцию привода могут выполнять двигатели разных типов. В частности, компрессор электрический работает на электромоторе. Такие станции выгодны своей бесшумностью, но они же зависимы от сети, что не всегда допустимо при организации рабочего процесса. Существуют и другие варианты энергоснабжения, которые будут рассмотрены отдельно. В обязательный состав практически всех компрессоров входит и емкость с воздухом. Это ресивер, от объема которого напрямую зависит производительность компрессорной установки.

Принцип работы

В поршневых агрегатах работа осуществляется за счет возвратно-поступательного действия в цилиндре. В целях обеспечения максимального эффекта компрессии небольшой промежуток от наружной поверхности поршня до внутренней стены цилиндра уплотняют демпфирующими кольцами. Циркуляция принимаемых и выпускаемых воздушных масс происходит в цилиндре между клапанами. Действие поршня реализуется за счет работы шатуна, работающего от кривошипного механизма, который активизируется двигателем. Но также распространен и винтовой компрессор. Устройство и принцип работы данного агрегата можно описать через группу валов, которые вращаются друг другу навстречу. Получается эффект динамической машины. На разных этапах рабочего цикла нарезы и кромки валов могут формировать замкнутое или открытое пространство, управляя, таким образом, потоками воздуха. В обоих механизмах могут использоваться средства для смазки – это касается масляных моделей. Техническая жидкость обволакивает механические элементы, оберегая их от разрушающего воздействия трения. Для винтовых и для поршневых механизмов применяются разные типы масел, в основном отличающиеся тепловой стойкостью.

Характеристики компрессоров

виды компрессоров

В выборе опытные пользователи компрессорного оборудования учитывают такие параметры, как давление, мощность с производительностью и объем ресивера. Давление в данном случае измеряется в Барах – единица, которая соответствует одному атмосферу. Обычно компрессоры располагают давлением на уровне 10 Бар и это довольно существенная величина, поэтому важно учитывать, что этот же параметр у обслуживаемого инструмента должен быть ниже. Мощность определяет, насколько интенсивным будет вращение тех же винтов, роторов или поршня – соответственно, обусловит и уровень производительности. Силовой потенциал в среднем составляет 1,5-2 кВт. При таких значениях производительность соответствует примерно 150-200 л/мин. Максимально современный компрессорный агрегат способен обеспечивать порядка 500 л/мин. В случае с мощностью, и в расчетах производительности должен быть остаток в 15-20% на случай перегрузок. Емкость ресивера может составлять и 10-20 л в случае с бытовым компрессором, и 500-700 л, если речь идет о промышленном агрегате.

Разновидности поршневых моделей

Принципиальным отличием между разными поршневыми моделями можно назвать потребность в смазке. Масляный компрессор – это агрегат, который требует регулярного и обильного снабжения техническими жидкостями, минимизирующими эффект трения. Своего рода антифрикционная добавка, увеличивающая срок службы элементов.

компрессор промышленный

Безмасляные модели выигрывают за счет небольших размеров и возможности подачи чистого воздуха. Но нельзя сказать, что механизмы таких компрессоров полностью избавляются от смазки. Она присутствует, но распространяется по другим каналам, не контактируя с ресивером, в котором циркулирует воздух. Более того, снабжение маслом обеспечивается в автоматическом режиме специальными раздатчиками. И масляные, и безмасляные виды компрессоров находят свое место в разных сферах. Для понимания практической разницы между двумя устройствами можно сказать, что первые лучше работают в условиях интенсивного производства, а вторые скорее годятся для обслуживания малогабаритного пневматического инструмента.

Разновидности приводных систем

Тип привода в данном случае – это разновидность двигателя, благодаря которому механическая начинка выполняет свою функцию генерации воздуха. Уже говорилось, что существует электрический компрессор, который выигрывает у конкурентных моделей за счет тихой работы, но его подключение к сети накладывает определенные ограничения. К плюсам таких агрегатов относят также экологическую чистоту и скромные размеры.

Если же требуется высокая производительность, то отдавать предпочтение стоит компрессорам на жидком топливе. Как правило, это наиболее мощные генераторы сжатого воздуха, которые можно использовать на производствах. Промышленные виды компрессоров практически все формируются бензиновыми и дизельными станциями. Но, важно не забывать, что наличие традиционных ДВС увеличивает габариты компрессора и повышает ответственность техобслуживания.

Расходные материалы и аксессуары

компрессорный агрегат

В процессе своей работы компрессор взаимодействует с пневматическим оборудованием посредством специальных каналов, передающих сжатый воздух. Простейший бытовой компрессор комплектуется адаптерами, переходниками и фитингами, которые позволяют организовать соединение и с небольшим краскопультом, и с массивной распылительной установкой.

Также в качестве обязательного компонента выступает измерительный прибор – манометр. Он может быть стрелочным, электронным или автоматическим, и его присутствие как таковое крайне рекомендуется специалистами. Также следует не забывать, что компрессор – это машина, работающая при высоком давлении и напряжении. Причем некоторые модели вместе с воздушной струей могут распылять и абразивные частицы. Поэтому работать с такими установками желательно в специальной экипировке с очками и рукавицами.

Производители компрессоров

Крупнейшие изготовители промышленного оборудования выпускают компрессоры разных видов. Среди лидеров сегмента можно назвать Fubag, Abac, Metabo и Fini. Это передовики сегмента, предлагающие, кроме повышенных рабочих характеристик, также и эффективные защитные системы с эргономическими достоинствами конструкции. Именно фирмы Abac и Fubag предлагают высокомощный 500-литровый компрессор. Промышленный агрегат данного производства, по словам пользователей, приятно удивляет не только эксплуатационными возможностями, но и современным технологичным управлением.

Сферы применения

компрессор бытовой

Простейшие задачи, которые выполняют воздушные компрессоры, охватывают весь спектр функций пневматического инструмента. Шлифмашины, гайковерты, долото, пескоструйные аппараты функционально обеспечивает компрессор. Это универсальный источник сжатого воздуха для малогабаритной пневматики как минимум.

Если говорить о более серьезных задачах, то к ним можно отнести накачку надувных изделий, покрасочные работы, а также абразивную зачистку. Опять же, за счет сжатого воздуха можно формировать довольно активную струю, способную на высокой скорости доставлять инородные частицы. Этой возможностью можно объяснить производственное назначение компрессора, благодаря которому обслуживаются станочные механизмы, распыляющие песок.

Заключение

назначение компрессора

Принцип работы компрессорного оборудования давно применяется в самых разных сферах. На данном же этапе развития в погоне за потребителем производители стремятся пересматривать и конструкции, и технико-эксплуатационные возможности таких агрегатов. В итоге появляется компрессор промышленный, в перечень задач которого входит обеспечение сложных операций гидроабразивной резки. Это мощные дизельные установки, которые внешне напоминают небольшие электростанции. С другой стороны, не теряет актуальности и малогабаритный компрессор, точечно обслуживающий малогабаритные инструменты – такие модели добавляют в функциональности, эргономике и степени автономности.

www.syl.ru

Автор: admin

Отправить ответ

avatar
  Подписаться  
Уведомление о