Намотка трансформатора своими руками: Трансформатор своими руками. Намотка трансформатора

Содержание

Трансформатор своими руками. Намотка трансформатора

Изготовить самодельный трансформатор – это стоящее дело, чтобы не тратить деньги на покупку трансформаторов.

Подбор материалов

Провод возьмем российский, у него прочнее изоляция. От старых катушек провод используется, если нет повреждения изоляции. Для изоляции подойдет бумага, пленка ФУМ. Для изоляции между обмотками лучше использовать лаковую ткань, несколько слоев изоляции. Для поверхностной наружной изоляции подходит кабельная бумага, лаковая ткань. А также можно мотать трансформатор, применяя изоленту ПВХ.

Пропитка нужна для повышения времени работы, но, она повышает паразитную емкость катушки. Для этой цели применяют лак. Для простого трансформатора можно использовать масляный лак. Покрывается каждый слой. Сразу все слои пропитать невозможно. Лак не должен быстро засохнуть до окончания намотки.

Каркас делают из стеклотекстолита или ему подобного материала.

Расчеты параметров самодельного трансформатора

На простом трансформаторе первичная обмотка имеет 440 витков для 220 вольт.

Получается на каждые два витка по 1 вольту. Формула для подсчета витков по напряжению:

N = 40-60 / S, где S – площадь сечения сердечника в см2.

Константа 40-60 зависит от качества металла сердечника.

Сделаем расчет для установки обмоток на магнитопровод. В нашем случае у трансформатора окно 53 мм по высоте и 19 мм по ширине. Каркас будет текстолитовый. Две щеки внизу и вверху 53 – 1,5 х 2 = 50 мм, каркас 19 – 1,5 = 17,5 мм, окно размером 50 х 17,5 мм.

Рассчитываем необходимый диаметр проводов. Мощность сердечника трансформатора своими руками по габаритам 170 ватт. На обмотке сети ток 170 / 220 = 0,78 ампера. Плотность тока 2 ампера на мм2, стандартный диаметр провода по таблице 0,72 мм. Заводская обмотка из провода 0,5, завод сэкономил на этом.

  • Обмотка простого трансформатора высокого напряжения 2,18 х 450 = 981 виток.
  • Низковольтная для накала 2,18 х 5 = 11 витков.
  • Низкого напряжения накальная 2,18 х 6,3 = 14 витков.

Количество витков первичной обмотки:

берем провод 0,35 мм, 50 / 0,39 х 0,9 = 115 витков на один слой. Количество слоев 981 / 115 = 8,5. Из середины слоя не рекомендуется делать вывод для обеспечения надежности.

Рассчитаем высоту каркаса с обмотками. Первичная из восьми слоев с проводом 0,74 мм, изоляцией 0,1 мм: 8 х (0,74 + 0,1) = 6,7 мм. Высоковольтную обмотку лучше экранировать от других обмоток для предотвращения помех высоких частот. Для того, чтобы мотать трансформатор, делаем обмотку экрана из одного слоя провода 0,28 мм с изоляцией из двух слоев с каждой стороны: 0,1 х 2 + 0,28 = 0,1 х 2 = 0,32 мм.

Первичная обмотка будет занимать места: 0,1 х 2 + 6,7 + 0,32 = 7,22 мм.

Повышающая обмотка из 17 слоев, толщина 0,39, изоляция 0,1 мм: 17 х (0,39 + 0,1) = 6,8 мм. Поверх обмотки делаем слои изоляции 0,1 мм.

Получается: 6,8 + 2 х 0,1 = 7 мм. Высота обмоток вместе:  7,22 + 7 = 14,22 мм. 3 мм осталось для накальных обмоток.

Можно сделать расчет внутренних сопротивлений обмоток. Для этого рассчитывается длина витка, берется длина провода в обмотке, определяется сопротивление, зная удельное сопротивление по таблице для меди.

При расчете сопротивления секции первичной обмотки получается разница около 6-ти Ом. Такое сопротивление даст падение напряжения 0,84 вольта при токе номинала 140 миллиампер. Чтобы компенсировать это падение напряжения, добавим два витка. Теперь во время нагрузки секции равны по напряжению.

Изготовление каркаса катушки трансформатора своими руками

Важны углы на деталях, и точность в размерах, что повлияет на сборку простого трансформатора.

На щечках отводим места для крепления выводных контактов обмоток, сверлим отверстия по расчетам. Когда каркас собран, то теперь скругляем острые грани, к которым будет прикасаться провод обмотки. Используем для этой цели надфиль. Провода не должны резко перегибаться, так как эмаль изоляции потрескается. Теперь проверим, вставляется ли в окно каркаса пластина. Она не должна болтаться, или туго входить. Каркас ставим на специальный станок или готовимся мотать трансформатор вручную. Толстые провода всегда мотаются руками.

Намотка трансформатора своими руками

Укладываем изоляцию первого слоя. Вставляем конец провода в отверстие выводной клеммы. Начинаем мотать провод, не забывая о его натяжении. Проверить можно так: намотанная катушка не будет проминаться от пальца. Провод растягивать нельзя, так как нарушится изоляция. Готовую катушку рекомендуется пропитать парафином, чтобы не испортить провод. Если обмотка гудит во время работы трансформатора, то изоляция провода стирается, провод изгибается и разрушается. По этой причине натяжение провода во время намотки имеет большое значение.

Витки во время намотки придвигаем друг к другу, уплотняем. Первый слой самый важный.

На слое не нужно оставлять пустое место. Наибольшее напряжение на последних витках составляет для первичной 60 + 60 / 2, 18 + 55 В. Изоляция из лака выдержит напряжение, если провод будет проваливаться в пустоту слоя, то может нарушиться изоляция. Пропитываем первый слой, затем второй и так далее. К изоляции между обмотками необходимо отнестись добросовестно. Она должна выдерживать до 1000 вольт. Вверху на изоляции рекомендуется подписать количество витков и размер провода, это пригодится при ремонте.

Слои самодельного трансформатора должны иметь правильную форму. По мере намотки катушка будет изгибаться у краев. Для этого слои нужно равнять во время намотки, не повредив изоляцию.

Вынужденные стыки провода лучше на ребре каркаса за сердечником. Соединять провод скруткой с пайкой, внакладку с пайкой. Длина контакта при соединении делается более 12 диаметров провода. Стык нужно изолировать бумагой или лаковой тканью. Пайка должна быть без острых углов.

Выводные концы обмоток делаются по-разному. Главное, чтобы была надежность и качество.

Окончание изготовления трансформатора своими руками

Припаиваем выводные концы обмоток, изолируем поверхность простого трансформатора, подписываем на нем данные характеристики и производим сборку сердечника. После этого надо проверить этот простой трансформатор своими руками.

Замеряем ток самодельного трансформатора вхолостую, он должен быть минимальным. Смотрим на нагрев. Если греется сердечник, то неправильно подобрано железо. Если нагрелись обмотки, значит, есть короткое замыкание. Если нормально, то замыкаем ненадолго вторичную обмотку, треска и сильного гудения не должно быть.

Пример как сделать самодельный трансформатор

Перейдем к изготовлению самого трансформатора. По готовому сердечнику рассчитаем мощность трансформатора, витки и провод, намотаем первичную и вторичную обмотки, соберем трансформатор полностью.

Чтобы мотать трансформатор напряжением 220 на 12 вольт нам необходимо подобрать магнитный сердечник. Подбираем магнитный сердечник Ш-образный, и каркас от старого трансформатора. Чтобы определить мощность, выдаваемую простым трансформатором, необходимо произвести предварительный расчет.

Расчет трансформатора

Рассчитываем диаметр провода первичной обмотки. Мощность трансформатора Р1 = 108 Вт:

Р1 = U1 x I1

где: I1 – ток в первичной обмотке;

тогда ток в первичной обмотке:

I1 = Р1 / U1 = 108 Вт / 220 В = 0,49 А.

Возьмем I1 = 0,5 ампера.

Из таблицы диаметр провода в зависимости от тока выбираем допустимый ток 0,56 А, диаметр 0,6 мм.

Самодельный трансформатор своими руками можно намотать без станка. На это уйдет два-три часа, не больше. Приготовим полоски бумаги для прокладки ее между слоями провода. Полоску вырезаем шириной равной расстоянию между щечками катушки трансформатора плюс еще пару миллиметров, чтобы бумага легла плотно, по краям витки не залезали друг на друга.

Длину полоски делаем с запасом два сантиметра для склеивания. По краям полоску слегка надрезаем ножницами, чтобы при изгибе бумага не рвалась.

Затем приклеиваем полоску бумаги на каркас, плотно пригладив ее.

Намотка первичной обмотки

Теперь берем провод от старой катушки, у которой провод с хорошей не потрескавшейся изоляцией. Конец провода вставляем в гибкую трубочку изоляции от старого использованного провода соответствующего подходящего диаметра. Просовываем конец обмотки в отверстие каркаса катушки (они уже имеются в старом каркасе).

Катушка мотается плотно, виток к витку. Намотав 3-4 витка, нужно прижать витки, друг к другу, чтобы намотка витков была плотной. Чтобы мотать трансформатор после намотки первого слоя, необходимо посчитать количество витков в ряду. У нас получилось 73 витка. Делаем прокладку полоской бумаги. Наматываем второй слой. Во время намотки нужно все время держать провод в натянутом состоянии, чтобы намотка получалась плотной. После второго слоя также делаем прокладку из бумаги. Если не хватает длины провода, то соединяем с ним другой провод путем спайки. Лудим лакированный провод, нагрев конец паяльником на таблетке аспирина. При этом лак хорошо снимается.

Когда намотка первичной обмотки закончена, то конец провода изолируем в трубочку и выводим наружу катушки. Между первичной и вторичной обмотками делаем обмоточную изоляцию. Можно мотать трансформатор дальше.

Вторичная обмотка

Рассчитаем диаметр провода вторичной обмотки самодельного трансформатора. Мощность вторичной обмотки примем:

Р2 = 100 ватт

Р2 = U2  x I2

где:

U2 = 18 вольт;

I2 – ток;

Допустимый ток во вторичной обмотке будет равен:

I2 = Р2 / U2 = 100 Вт / 18 В = 5,55 А.

Из таблицы диаметр в зависимости от тока: диаметр для тока 5,55 А – ближайшее значение в таблице 6,28 ампера. Для такого тока необходим диаметр провода 2 мм.

Берем провод, который мы получили при сматывании старого трансформатора. Наматываем провод вторичной обмотки по такому же принципу, как и первичную обмотку. Провод вторичной обмотки намного жестче, поэтому, чтобы он ровно ложился при намотке, периодически его необходимо осаживать ударами молотка через деревянный брусок, чтобы не повредить изоляцию. У нас получилось 3 слоя вторичной обмотки. Получился готовый намотанный каркас простого трансформатора.

Сборка трансформатора своими руками

Для ускорения сборки берем по две Ш-образные пластины. Вставляем их внутрь каркаса поочередно с двух сторон по две штуки.

Перекрывающие пластины пока не ставим. Они будут установлены позже. Если вставлять все пластины сразу всем пакетом, то между пластинами появляются зазоры и индуктивность всего сердечника падает. После сборки Ш-образных пластин самодельного трансформатора вставляем перекрывающие пластины, также по две штуки.

После сборки сердечника аккуратно обстукиваем его плоскости молотком для выравнивания пластин. При помощи стоек и шпилек будем стягивать сердечник. По правилам на шпильки надеваются бумажные гильзы для снижения потерь в сердечнике.

Концы обмоток зачищаем и лудим. Затем припаиваем к выводным планкам, которые можно прикрепить к каркасу трансформатора. Получился готовый трансформатор своими руками.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Похожее

Трансформатор своими руками: пошаговая инструкция

Несмотря на многообразие электрооборудования на рынке, далеко не во всех ситуациях можно найти подходящий преобразовательный агрегат для решения конкретной задачи. Поэтому многие обыватели пытаются изготовить  трансформатор своими руками для получения определенных параметров работы. Стоит отметить, что намотать трансформатор может каждый, даже без специализированного оборудования и особых навыков, но этот процесс довольно трудоемкий и кропотливый. Поэтому изначально вам придется определиться с типом и характеристиками прибора.

Что понадобится для сборки?

Все преобразователи подразделяются на две основные категории – повышающие и понижающие трансформаторы.

В зависимости от предназначения, конструктивных особенностей и места установки их можно разделить на такие категории:

Практически каждое из вышеперечисленных устройств вы можете воссоздать в домашних условиях. Наиболее простым вариантом является перемотка трансформатора из заводского изделия, так как он уже содержит необходимые элементы. Главное, чтобы первичная обмотка подходила по номиналу питающего напряжения и мощности. Куда хуже, если перематывать нужно обе обмотки, к примеру, если и первичная, и вторичная обмотка пробиты или получили механическое повреждение.

Для изготовления трансформатора своими руками вам понадобятся:

  • Магнитопровод – служит в качестве проводника магнитного потока, лучше взять из старого трансформатора, так как он изготовлен из электротехнической стали и обеспечивает необходимые параметры работы, характеризуется малыми потерями в железе.
  • Провода нужного вам сечения в лаковой, полимерной или стеклотканевой изоляции. Чем тоньше этот слой, тем плотнее прилягут витки к каркасу и друг к другу.
  • Каркас – служит в качестве основания для обмоток трансформатора, устанавливает габариты по ширине. Можно взять из старого трансформатора, а можно изготовить своими руками. Материалом для каркаса может послужить электротехнический картон, гетинакс или текстолит, важно чтобы он не занимал много места в зазоре между сердечником и проводом.
  • Изоляция – предназначена для электрического отделения токоведущих элементов друг от друга и от конструктивных элементов трансформатора. В промышленном производстве используется лакотканевая лента, фторопласт, парафиновая пропитка, но при самостоятельном изготовлении подойдет любой имеющийся у вас материал, главное, чтобы его диэлектрической прочности хватало для напряжения сети.
  • Намоточный станок – позволяет упростить процесс и обеспечить постоянное натяжение. Можно изготовить своими руками из ручной дрели или по принципу вертела на двух шарнирах. Важно, чтобы изготовленный станок имел как можно меньший люфт.

Помимо этого вам могут пригодиться: молоток с деревянной пресс-планкой, паяльник для соединения проводов, ножницы, пассатижи. Но перед изготовлением, обязательно рассчитайте параметры трансформатора.

Расчеты

Рис. 1: принципиальная схема трансформатора

Наиболее сложный вариант, если вы будете изготавливать трансформатор своими руками с нуля. В таком случае расчет электрической машины производится в зависимости от выходной мощности. Исходя из этого параметра, рассчитывается мощность первичной обмотки. Если вы используете заводской сердечник, то можно считать эти величины одинаковыми, если вы соберете его самостоятельно, то P2 = 0,9 * P1

Это приблизительный расчет с учетом потерь в сердечнике. В зависимости от качества шихтовки своими руками, разница мощностей может находиться в пределах от 5 до 20%.

В зависимости от мощности первички определяется сечение магнитопровода, которое вычисляется по формуле: S = √P1

Следует отметить, что мощность для вычислений берется в Ваттах, а размеры сердечника получаем в квадратных сантиметрах.

Далее определяется коэффициент передачи электромагнитной энергии: k = f/S, 

Где k – коэффициент передачи, f – частота сетевого напряжения переменного тока, S – площадь сечения магнитопровода.

Исходя из полученного коэффициента, определяется число витков в обмотках по величине входных и выходных напряжений: N1 = k*U1, N2 = k*U2

Это приблизительные вычисления, предназначенные для бытового применения радиолюбителями. Заводские трансформаторы имеют более сложную процедуру расчета, которая производится по справочникам и зависит от их типа и назначения (силовые, измерительные, трехобмоточные, тороидальные устройства и т.д.)

Далее рассчитывается сила тока в первичной обмотке трансформатора: I1 = P/ U1

Соответственно, ток, протекающий по вторичной обмотке трансформатора, вычисляется по  формуле: : I2 = P/ U2

Исходя из величины тока в каждой обмотке, выбирается сечение жилы. Но заметьте, что проводник в обмотке значительно хуже охлаждается, поэтому запас сечения делается на 20 – 30%. Проще выполнять данную работу медными проводами, но это требование не критично.

Таблица: выбор сечения, в зависимости от протекающего тока

Медный проводник Алюминиевый проводник
Сечение жил, мм2 Ток, А Сечение  жил. мм2 Ток, А
0,5 11
0,75 15
1 17
1.5 19 2,5 22
2.5 27 4 28
4 38 6 36
6 46 10 50
10 70 16 60
16 80 25 85
25 115 35 100
35 135 50 135
50 175 70 165
70 215 95 200
95 265 120 230
120 300    

Сборка повышающего трансформатора

Особенностью повышающего трансформатора является большее сечение жил первичной обмотки трансформатора по отношению к вторичной. Ярким примером может служить любой агрегат, повышающий напряжение питания 220 Вольт до 400, 500, 1000 В и т.д., соответственно класс изоляции трансформатора выбирается по номиналу вторичной обмотки, как в сетевых трансформаторах.

Заметьте, что проводник большого сечения не получится намотать самодельным станком, поскольку вы не сможете выдать достаточное усилие. Определить это довольно просто – если первые витки свободно двигаются по каркасу катушки или хуже того, вы видите явный зазор между жилой и каркасом, переходите к ручной намотке.

Для сборки вам потребуется выполнить такую последовательность действий:

  • Соберите основание из диэлектрического материала, для этого можно вырезать его по лекалу из картона. Сборка каркаса производится внахлест при помощи клея. Рис. 2: изготовьте каркас для трансформатора

Если у вас имеется готовый образец, можете переходить к следующему этапу.

  • Сделайте отверстия в щеке катушки под выводы в электрическую сеть и к потребителю. Проденьте в них выводы. Рис. 3: проденьте вывод первичной обмотки
  • Уложите первый слой изоляции под первичку. Рис. 4: нанесите слой изоляции на катушку
  • Намотайте первичную обмотку трансформатора – если позволяет толщина, используйте станок, в противном случае, сделайте это руками. При намотке каждые 4 -5 витков проверяйте жесткость фиксации и плотность прилегания. Рис. 5: намотайте первичку

В случае наличия видимых зазоров рекомендуется придавливать витки деревянной пресс-плашкой или прибивать их через плашку молотком.

  • Посчитайте количество витков, оно должно соответствовать расчетному, выводы проденьте в отверстия. Уложите слой изоляции на первичку.
  • После слоя изоляции намотайте вторичку, так как здесь будет использоваться более тонкий провод, эту процедуру проще выполнять на станке. Рис. 6: намотайте вторичную обмотку

Периодически проверяйте плотность витков и их фиксацию на стержне. Хорошая фиксация не должна прогибаться и деформироваться при нажатии пальцами.

  • Если все витки не помещаются в один слой, их выкладывают в несколько, тогда важно соблюдать одно и то же количество витков в каждом из них. Слои перекладываются диэлектрическим материалом, заметьте, что толщина изоляции не должна существенно влиять на общие габариты катушек. Рис. 7: заизолируйте первый слой
  • Выведете концы вторичной обмотки на щечку каркаса.
  • Поместите магнитопровод в окно каркаса, сборка сердечника выполняется поочередно с каждой стороны, иначе потери окажутся слишком большими. Затем сердечник распирается для плотности фиксации. Рис. 8: поместите катушки на сердечник

Мощные трансформаторы на большой номинал напряжения дополнительно пропитывается парафиновой изоляцией. Такая процедура приводит к повышению емкостных потерь, но создает дополнительную защиту от электрического тока.

Сборка понижающего трансформатора

Понижающий трансформатор будет отличаться большим количеством витков на первичке. В быту их можно часто встретить в блоках питания, сварочных аппаратах и прочем оборудовании. Правда, в импульсных блоках используется другая технология, поэтому ремонт таких устройств производится без трансформаторов.

Так как изготовление сварочного трансформатора своими руками довольно актуально для домашних самоделок, рассмотрим на примере этот вариант. Требования к процессу сборки соответствует предыдущему. Отличительной особенностью такого агрегата является большое сечение провода во вторичной обмотке, так как сварочный ток может достигать сотен ампер.

Процесс изготовления заключается в следующем:

  1. Возьмите старое или изготовьте основание для катушки.
  2. Зафиксируйте на трансформаторном каркасе слой изоляции.
  3. Намотайте первичную обмотку с попеременной изоляцией слоев.
  4. Заизолируйте первичку и намотайте вторичную обмотку, так как большой диаметр проводов не позволит сделать это вручную, используйте слесарный инструмент.
  5. Зафиксируйте выводы обеих катушек.
  6. Установите пластины сердечника.

Испытание

Для проверки работоспособности П-образных или тороидальных трансформаторов в домашних условиях можно воспользоваться обычным мультиметром. Для этого переведите измерительный прибор в режим прозвона и проверьте целостность каждой из обмоток. Затем  проверьте изоляцию между каждой из обмоток и магнитопроводом и сопротивление между обеими обмотками. Это наиболее простой комплекс испытаний, который даст общее представление об исправности самодельного агрегата.

Для проверки отсутствия короткозамкнутых витков используется лампа, включающаяся последовательно к первичной обмотке.

Помимо этого электрические машины испытываются в режиме холостого хода и короткого замыкания. Такие проверки показывают, насколько качественно собран преобразователь, но выполнять их в домашних условиях не обязательно.

Список использованной литературы

  • Подъяпольский А.Н. «Как намотать трансформатор» 1953
  • Кислицын А.Л. «Трансформаторы» 2001
  • Родштейн Л.П. «Электрические аппараты» 1989
  • Бартош А.И. «Электрика для любознательных» 2019

Намотка трансформатора своими руками: пошаговая инструкция

Намотать трансформатор своими руками – процесс не столько сложный, сколько длительный, требующий постоянной концентрации внимания.

Тем, кто приступает к такой работе в первый раз, бывает трудно разобраться, какой материал использовать и как проверить готовый прибор. Пошаговая инструкция, представленная ниже, даст новичкам ответы на все вопросы.

Подбор необходимых инструментов

Прежде чем приступить непосредственно к намотке, необходимо запастись всеми необходимыми для выполнения работы приспособлениями и инструментами:

  • Из двух стоек, скрепленных деревянной доской, и металлического прута между ними, имеющего форму рукояти, изготовить своеобразный вертел. Прут следует выбирать не толще 1 см и вставлять между стойками таким образом, чтобы его ось пронизывала каркас будущего устройства насквозь.

    Чаще всего для таких целей используют колодку из дерева, в которой проделывают отверстие для оси и «подгоняют» под размеры каркаса. Если под рукой окажется дрель – сделать это будет гораздо проще.

    Дрель нужно укрепить так, чтобы она находилась параллельно столу, а ее рукоять можно было свободно вращать. В патрон дрели следует вставить прут, предварительно надев на него колодку с закрепленным на ней каркасом трансформатора.

    Предпочтение лучше отдать пруту с резьбой, в этом случае колодку можно будет зафиксировать зажатием гайками с обеих сторон. В случаях, когда зажать каркас удается гайками, пластинами из текстолита или деревянными дощечками, в использовании колодки нет необходимости.

  • Механизм для намотки может заменить индуктор от телефона, станок для ниточных шпулей, прибор для перемотки пленки или какое-либо подобное устройство. Главное, чтобы процесс шел плавно, без срывов.
  • Еще одним приспособлением, без которого намотать трансформатор самостоятельно будет невозможно, является устройство для размотки. Обычно приборы такого рода работают по тому же принципу, что и приборы для намотки, разница лишь в том, что в данном случае можно обойтись без вращающей ручки.
  • Для подсчета числа витков понадобится отдельное устройство, например, счетчик воды, спидометр от велосипеда, электрический счетчик. Чтобы устройство заработало, его необходимо соединить с наматывающим станком гибким валиком. Если найти подобный прибор не удастся, то витки можно сосчитать устно.

Виды и способы, направления намотки обмоток трансформатора представлены на фото:

Изоляция слоев обмотки

В некоторых случаях между проводами требуется вставить прокладки для изоляции. Чаще всего для этого используют конденсаторную или кабельную бумагу.
Середину соседних трансформаторных обмоток следует изолировать сильнее. Для изоляции и выравнивания поверхности под следующий слой обмотки потребуется специальная лакоткань, которую нужно обернуть с обеих сторон бумагой. Если лакоткани не найдется, то решить проблему можно с помощью все той же бумаги, сложенной в несколько слоев.

Бумажные полосы для изоляции должны быть шире обмотки на 2-4 мм.

Для проверки неисправности трансформатора, прежде всего надо определить выводы всех его обмоток. Полезные советы о том, как проверить трансформатор мультиметром на работоспособность, читайте в следующей статье.

В этой публикации мы отвечаем на вопросы: для чего нужен блок питания 12в для светодиодной ленты.

Напряжение в наших электросетях оставляет желать лучшего. Как выбрать стабилизатор для дома 220в, узнайте из этого материала.

Алгоритм действий

  1. Провод с катушкой закрепить в устройстве намотке, а каркас трансформатора – в устройстве намотки. Вращения делать мягкие, умеренные, без срывов.
  2. Провод с катушки опустить на каркас.
  3. Между столом и проводом оставить минимум 20 см, чтобы можно было расположить на столе руку и фиксировать провод. Также на столе должны находиться все сопутствующие материалы: наждачная бумага, ножницы, бумага для изоляции, включенный паяльный инструмент, карандаш или ручка.
  4. Одной рукой плавно вращать намоточное устройство, а второй – фиксировать провод. Необходимо, чтобы провод ложился ровно, виток к витку.
  5. Трансформаторный каркас заизолировать, а выведенный конец провода продеть сквозь каркасное отверстие и ненадолго зафиксировать на оси намоточного устройства.
  6. Намотку следует начинать без спешки: необходимо «набить руку», чтобы получалось укладывать обороты друг рядом с другом.
  7. Нужно следить, чтобы угол провода и натяжение были постоянными. Мотать каждый последующий слой «до упора» не следует, т. к. провода могу соскользнуть и провалиться в каркасные «щечки».
  8. Счетное устройство (если есть) установить на ноль либо внимательно считать витки устно.
  9. Изолирующий материал склеить или прижать мягким кольцом из резины.
  10. Каждый последующий оборот на 1-2 витка делать тоньше предыдущего.

О намотке катушек трансформатора своими руками смотрите в видео-ролике:

Соединение проводов

Если в ходе наматывания произойдет разрыв, то:

  • тонкие провода (тоньше 0,1 мм) скрутить и заварить;
  • концы проводов средней толщины (менее 0,3 мм) следует освободить от изоляционного материала на 1-1.5 см, скрутить и спаять;
  • концы толстых проводов (толще 0,3 мм) нужно немного зачистить и спаять без скрутки;
  • место спайки (сварки) заизолировать.

Важные моменты

Если для намотки используется тонкий провод, то количество витков должно превышать несколько тысяч. Сверху обмотку необходимо защитить бумагой для изоляции или дерматином.

Если трансформатор обмотан толстым проводом, то наружная защита не требуется.

Испытание

После того, как с намоткой будет закончено, необходимо испытать трансформатор в действии, для этого следует подключить к сети его первичную обмотку.

Чтобы проверить прибор на возникновение коротких замыканий, следует последовательно подключить к источнику питания первичную обмотку и лампу.

Степень надежности изоляции проверяется посредством поочередного касания выведенным концом провода каждого выведенного конца сетевой обмотки.

Проводить испытание трансформатора следует очень внимательно и осторожно, дабы не попасть под напряжение повышающей обмотки.

Если неукоснительно следовать предложенной инструкции и не пренебрегать ни одним из пунктов, то намотка трансформатора вручную не будет представлять никаких сложностей, и справиться с ней сможет даже новичок.

Намотка трансформатора своими руками

Стоят сварочные инверторы недорого, приобрести их сегодня – не проблема. И все же многих домашних мастеров интересует вопрос, как сделать трансформатор (сварочный) своими руками. Насколько это сложно, и как будет работать самодельный аппарат. В принципе, сделать его при правильном подходе несложно. Главное – это намотка трансформатора, потому что от правильно подобранного количества витков, от сечения используемой проволоки зависит мощность агрегата, качество его работы.

Итак, перед тем как намотать сварочный трансформатор, необходимо рассчитать его по всем требуемым параметрам. Необходимо отметить, что проводимый расчет не всегда соответствует типовым правилам и схемам, потому что собирается сварочный аппарат подчас не из тех материалов, которые используются при сборке в заводских условиях. То есть, что нашли, то и использовали.

К примеру, использовалось не самое лучшее трансформаторное железо или обмоточная проволока. Но даже после такой намотки трансформаторы прекрасно варят, хотя гудят и сильно нагреваются. Добавим, что выбирая трансформаторное железо, нужно обращать внимание на такой показатель, как форма сердечника. Она бывает броневой или стержневой. Второй тип используется в самодельных сварочных трансформаторах чаще, потому что обладают лучшим коэффициентом полезного действия. Правда, трудоемкость намотки трансформатора своими руками здесь намного выше. Но это не пугает мастеров.

Добавим, что намотать трансформатор можно по нескольким схемам.

  • Сетевая обмотка – это когда обе катушки получаются равноправными по числу витков и соединены они последовательно.
  • Обе обмотки соединены по принципу встречно-параллельно.
  • Намотанный провод расположен с одной стороны сердечника.
  • То же самое, что и в предыдущем положении, только на двух сторонах, соединенных последовательно.

Самая простая схема – последняя. Ее обычно и используют для сборки трансформатора в домашних условиях. В ней вторичная обмотка состоит из двух равных половинок. И они расположены на противоположных плечах магнитопровода. Соединение, как уже было сказано выше, последовательное.

В основе расчета лежат теоретические параметры, на основе которых придется сделать выбор фактических параметров магнитопровода. Главным параметром сварки является ток, который подается на электрод. Так как в быту чаще всего используют электроды диаметром 2; 3 или 4 мм, то для них достаточен будет ток мощностью 120-130 ампер. Теперь можно правильно рассчитать мощность сварочного трансформатора вот по этой формуле:

P=U x I x cos φ /η

U – это напряжение холостого хода, I – это сила тока (120-130 А), cos φ – принимается равным 0,8, η – это коэффициент полезного действия, который для самодельных сварочных аппаратов составляет 0,7.

Расчетная величина мощности должна по таблице свериться с сечением магнитопровода. Табличное значение при таких параметрах обычно составляет 28 см², но фактически необходимо выбирать из диапазона 25-60 см². Теперь по другим таблицам справочников подбирается количество витков провода относительно сечения сердечника.

Очень важный момент – чем больше площадь используемого сердечника для трансформатора, тем меньше витков в катушке должно быть. Все дело в том, что большое количество наматываемых витков может не поместиться в отверстие магнитопровода. Сам расчет количества витков производится вот по этой формуле:

N = 4960 × U/(S × I), где U – это напряжение источника питания на первичной обмотке, I – это ток вторичной обмотки, по сути, это тот самый сварочный ток, S – площадь сечения сердечника.

А количество витков на вторичной обмотке можно вычислить, используя соотношение:

U1/U2=N1/N2

Напряжение холостого хода на вторичной обмотке в самодельных сварочных трансформаторах равно 45-50 вольтам.

Как намотать трансформатор

Итак, расчеты проведены, определены параметры используемых элементов повышающего трансформатора, определена схема намотки, можно переходить к самому процессу перемотки. Но перед этим необходимо разобраться с проводами, которые будут наматываться на сердечник.

На первичную обмотку наматывается медный провод в стеклотканевой или хлопчатобумажной изоляции. Никакой резины. Исходя из силы тока на первичной обмотке, равной 25 ампер, сечение наматывающего провода – 5-6 мм². Сечение провода на вторичной обмотке должно быть 30-35 мм², потому что по ней протекает ток большой силы (120-130 А). Особое внимание изоляции этого провода, она должна быть термостойкой. Теперь все готово, можно переходить к намотке тероидального трансформатора.

Перед тем как перемотать трансформатор, необходимо понять одну истину, что провода первичной обмотки подвергаются большим нагрузкам, потому что здесь используется проводник меньшего сечения. К тому же плотность уложенных витков здесь выше, поэтому они и греются больше. Вот почему качеству укладки в первичной обмотке надо уделить особое внимание.

Случается так, что самодельный трансформатор собирается не из цельного куска провода, а из нескольких отрезков. Ничего страшного в этом нет, ведь концы кусков можно соединить. Для этого нельзя использовать скрутку, лучше соединить два конца медной проволочкой в несколько витков, а затем пропаять стык и заизолировать.

Мотать витки надо аккуратно, плотно прижимая их друг к другу. При этом укладка провода должна проводиться не строго перпендикулярно касательной железа, а немного в сторону. Но как бы впереди должна идти внутренняя намотка. Это просто обеспечит простоту прижима следующего витка к предыдущему. При этом нет необходимости подравнивать провод.

Обратите внимание, чтобы в процессе перемотки трансформатора провод подавался в ровном состоянии. Перегибы и изгибы только усложнят сам производимый процесс. Поэтому лучше провод смотать на руку и натягивать во время укладки.

Для намотки тороидального трансформатора необходимо каждый уложенный слой изолировать. Для этого лучше использовать специальную пропитанную латоткань, которая при соприкосновении прилипает ко всему. Или можно использовать строительный скотч, который наматывается на трансформатор своими руками. Удобнее всего, если скотч нарезать на полоски шириною 15 мм. Ими легко покрывать слой провода, и при этом нужно постараться сделать так, чтобы внутренняя часть обмотки была покрыта изоляционным материалом в два слоя, а снаружи в один.

После чего всю обмотку надо смазать клеем ПВА. Он, во-первых, укрепит изоляцию, сделав ее монолитной. Во-вторых, обмотка не будет гудеть. ПВА жалеть не стоит, надо хорошо им обработать всю поверхность. После чего прибор надо высушить. А после еще намотать слой витков и так далее до полной готовности сварочного трансформатора. Намотка тороидального трансформатора своими руками закончена.

Перемотка трансформатора, правильно проведенная – это гарантия высокого качества и долгосрочной его эксплуатации. Перемотанный прибор будет работать точно так же, как практически новый. Конечно, он сильнее гудит, но во всем остальном это все тот же необходимый прибор.

Материалы для намотки

В качестве сердечника используют в основном профильные пластины, изготовленные из специального сплава. Их собирают по необходимой толщине, учитывая расчетное сечение сердечника. Существует несколько форм пластин, но чаще всего используются Ш-образные элементы.

Каркас трансформатора – это, в принципе, изолятор, который ограждает сердечник от обмоток. На нем же держится и катушка. Изготавливают каркас и диэлектрического материала, он должен быть тонким (0,5-2,0 мм), чтобы поместиться в окошке сердечника. Если будет перематываться старый трансформатор, то функции каркаса могут выполнять картон, текстолит и так далее. Размеры каркаса и его форма определяются параметрами сердечника. Но высота конструкции должна быть больше размеров обмотки.

Для тороидальных трансформаторов лучше использовать медные провода, покрытые защитной эмалью. Для сварочных аппаратов лучше использовать провода медные или алюминиевые с целлюлозной, хлопчатобумажной и ли стекловолокнистой изоляцией. Последний вид не самый лучший. Он прекрасно справляется с нагрузками, особенно с высокими температурами, но в процессе вибрации волокна расслаиваются, а это нарушение изоляционного слоя. Что касается выводных проводов, то оптимально, если они будут разного цвета. Это упростит способ подключения.

Как видите, перемотать свой собственный старый трансформатор не очень сложно. Это, конечно, займет много времени, но работать прибор будет неплохо. Во всяком случае он будет дешевле, чем покупать новый.

КАК НАМОТАТЬ ТРАНСФОРМАТОР - ИЗГОТОВЛЕНИЕ ТРАНСФОРМАТОРА СВОИМИ РУКАМИ

КАК НАМОТАТЬ ТРАНСФОРМАТОР СВОИМИ РУКАМИ

    При постройке приемника, усилителя или другой радиоаппаратуры радиолюбителю приходится сталкиваться с работой по переделке старого или по изготовлению нового трансформатора. Радиолюбители, впервые приступающие к такой работе, часто не представляют себе достаточно ясно, как произвести намотку, какой подобрать материал и как испытать изготовленный трансформатор. Сведения по этим вопросам, почерпнутые из журнальных статей и книг, обычно бывают недостаточны, и радиолюбителю приходится большую часть работы делать, полагаясь на свою смекалку или прибегать к помощи и советам более опытного товарища. На этой странице будут даны рекомендации по самостоятельному изготовлению сетевыого трансформатора.

ПРИСПОСОБЛЕНИЯ ДЛЯ НАМОТКИ ТРАНСФОРМАТОРА

    На заводах при массовом серийном или поточном производстве трансформаторы обычно наматываются на специальных, часто автоматизированных станках. Радиолюбителям трудно, конечно, рассчитывать на специальный намоточный станок, и поэтому намотку трансформаторов оии производят обычно или непосредственно от руки, или с помощью простых намоточных приспособлений.
    Рассмотрим, как можно из подручных материалов и при помощи обычных инструментов изготовить простые приспособления для намотки.
    Простейшее такое приспособление показано на фиг. 1. Оно состоят из двух стоек / (или металлической скобы), укрепленных на доске 2, и оси 3 из толстого (диаметром 8—10 мм) металлического прутка, продетого сквозь отверстия в стойках и изогнутого на одном конце в виде рукоятки.
    Для намотки провода на готовый каркас 4 изготовляют деревянную колодку 5, по размерам немного меньшую, чем окно каркаса. В колодке просверливают отверстие для насадки ее на ось. Каркас надевают на колодку, которая затем помещается на оси и закрепляется там шпилькой 5. Для того чтобы каркас не болтался и не съезжал с колодки, между ними надо вставить уплотняющий клин 7 из твердого картона или тонкой фанеры. Чтобы избежать при намотке осевого люфта, что очень важно для ровной укладки витков, на свободные участки оси между колодкой и стойками необходимо надеть отрезки трубок 8, которые можно изготовить из металлических листочков, обернув их вокруг оси 3.
Для снятия намотанного каркаса нужно вынуть шпильку 5 и вытащить ось 3.
    Более удобное и надежное намоточное приспособление выполняется из ручной дрели / (фиг. 2), которую надо зажать в тиски 2 или прикрепить к столу так, чтобы ничто не мешало свободному вращению рукоятки дрели. В патрон дрели зажимается металлический прут 3, на который насаживают колодку с каркасом. Прут диаметром 4—6 мм лучше всего нарезать, и тогда колодку с каркасом можно зажимать между двумя гайками 4. В этом случае можно обойтись без колодки, зажимая каркас двумя щечками из фанеры или текстолита с отверстиями в центре.
    В качестве намоточного приспособления удобно также использовать готовый станочек для текстильных шпулей, моталку для перемотки кинопленки, телефонный индуктор и пр. Особенно удобна моталка для кинопленки (после небольшой переделки), так как она сделана прочно и имеет мягкий безлюфтозый ход. Переделка ее заключается в замене короткого валика с замком для бобин с кинопленкой на длинную ось с резьбой и барашками для закрепления различных каркасов.

    Не меньшее значение для намоточных работ, чем сам намоточный станок, имеет размоточное приспособление, на которое надевается катушка с проводом или каркас старого трансформатора, провод которого используется для новой намотки. Чтобы у разматываемого провода не портилась изоляция, а также чтобы не было толчков (что важно при рядовой укладке витков), провод должен итти совершенно равномерно.
    Простейшее приспособление для размотки провода изображено на фиг. 3. Это обычный металлический пруток /, продетый в отверстия деревянных стоек 2, укрепленных на доске 3. Изготовление деревянной колодки для каркаса разматываемой катушки 4 в этом случае необязательно. Для того чтобы она не била и не прыгала при размотке, можно из толстого картона или бумаги свернутьнужного диаметра трубку 5, пропустить сквозь нее прут и достаточно плотно вставить ее в окно каркаса.
    Лучше, однако, изготовить специальное размоточное приспособление, изображенное на фиг. 4. Из полосы мягкой стали или другого подходящего материала сгибается скоба /, которая крепится к доске 2 (или столу). В вертикальных стойках скобы делают отверстия (диаметром 5—6 мм) с нарезкой (резьба М-5 или М-6), в которые ввинчивают заточенные с концов на конус болтики 3. Из металлического прута диаметром 5—6 мм изготовляется нарезанная по всей длине шпилька 4, с торцов которой высверлены неглубокие отверстия (3—4 мм). Конусы и шпилька комплектуются соответствующими гайками (лучше барашками) 5 и щечками 6 для зажима катушки или каркаса с проводом.   

    Весьма важным в процессе намотки является возможность точного счета числа витков. Простой, но требующий особого внимания способ — это устный отсчет каждого оборота (пли через один оборот) ручки станка. Если обмотка должна содержать большое число витков, то удобнее, отсчитав сотню витков, делать отметку на бумаге (в виде палочки), суммируя затем все отметки. В станочке с шестеренчатой передачей учитывается при этом коэффициент передачи, который следует всегда помнить.
    Гораздо лучше применение механического счетчика, в качестве которого можно приспособить велосипедный спидометр или счетный механизм от электросчетчика, водометра и т. д.
    Сочленение счетчика со станком можно выполнить при помощи гибкого валика (куска толстостенной резиновой трубки), соединяющего ось счетчика с осью станка (фиг. 5,а). В этом случае каждый раз при установке нового каркаса приходится разъединять сочленение осей, снимая гибкий валик, и после установки нового каркаса надевать его вновь. Более удобный, но и более сложный способ сочленения заключается в том, что счетчик связывается со станком посредством пары одинаковых шестерен (фиг. 5,б). При этом способе счетчик сцеплен со станком все время.   

КАРКАС

    Каркас трансформатора (или дросселя) нужен для изоляции обмоток от сердечника и для удержания в порядке обмоток, изоляционных прокладок и выводов. Поэтому он должен быть изготовлен из достаточно прочного изоляционного материала. Вместе с тем он должен выполняться из достаточно тонкого материала, для того чтобы не занимать много места в окне сердечника. Обычно материалом для каркаса служат плотный картон (прессшпан), фибра, текстолит, гетинакс и т. п. В зависимости от размеров трансформатора или дросселя толщина листового материала для каркаса берется от 0,5 до 2,0 мм.
    Для клейки картонного каркаса можно употреблять конторский универсальный клей или обычный столярный клей. Лучшим клеем, обладающим хорошей влагоустойчивостью, следует считать нитроклей (эмалит, геркулес). Гетинаксо-вые или текстолитовые каркасы обычно не склеиваются, а собираются «в замок».

    По размерам сердечника трансформатора определяются форма и размеры каркаса, после чего вычерчиваются, а затем нарезаются его детали. Если применяются трансформаторные пластины с просечкой среднего керна,то высоту каркаса делают на несколько миллиметров меньше высоты окна, чтобы без затруднений можно было вставлять пластины сердечника. Во избежание ошибок размеры пластин сердечника нужно тщательно измерить (если они неизвестны) и начертить на бумаге эскиз с размерами отдельных частей каркаса. Особенно важно согласование отдельных частей каркаса при сборке его «в замок». Соотношения размеров каркаса и пластин сердечника для разного типа пластин даны на фиг. 6.
    Обычный каркас для трансформатора можно изготовить так. Сначала вырезают щечки каркаса и выкраивают гильзу с отворотами на торцевых сторонах согласно фиг. 7. Сделав надрезы в местах сгиба, выкройку свертывают в коробочку, причем сторона / склеивается со стороной 5. После этого обе щечки надеваются на гильзу. Затем нужно отогнуть отвороты гильзы и, раздвинув щечки на края гильзы, приклеить отвороты к наружным плоскостям щечек. В углы на наружной стороне щечек можно вклеить кусочки того же картона, из которого изготовлялась гильза каркаса. Если клей достаточно прочен и надежен, то гильзу можно делать без отворотов, приклеивая щечки непосредственно на краях гильзы.

    Более сложным в изготовлении является сборный каркас, но зато он обладает большой прочностью и не требует склеивания. Детали сборного каркаса изображены на фиг. 8. Они изготовляются следующим образом. Размеры с эскиза путем разметки переносятся на лист материала (текстолита, гетинакса, фибры). Если материал не слишком толст, то детали вырезают ножницами. Затем напильником пропиливают в них пазы. В щечках /, после высверливания в них нескольких отверстий, выпиливают окна. После этого, разложив детали на столе, производят подгонку сторон 2 и 3 гильзы так, чтобы при сборке каркаса сошлись все пропилы и выступы «замка». При разметке и изготовлении деталей 2 у одной из них можно «замочную» часть сделать значительно больших размеров (контуры показаны пунктирам на фиг. 8) для размещения на ней контактов или лепестков для подпайки выводов обмоток. Чтобы не спутать детали, их следует перед сборкой пронумеровать. Порядок сборки каркаса ясен из фиг. 9.

    Сразу же после изготовления щечек лучше заранее насверлить в них «в запас» отверстия для выводов. При сборке каркаса или приклейке щечек необходимо учесть, с какой из сторон трансформатора (или с обеих) и на какой из сторон щечек будут сделаны выводы, чтобы правильно расположить стороны щечек, имеющие отверстия для выводов. Надо обратить внимание на то, чтобы стороны щечек с отверстиями в случае квадратного сечения сердечника не оказались закрытыми пластинами сердечника.
    Готовый склеенный или собранный каркас для трансформатора нужно подготовить к намотке, для чего следует напильником скруглить углы гильзы и щечек, а также снять заусеницы. Полезно (но необязательно) промазать или пропитать каркас шеллаком, бакелитом и пр.

ИЗОЛЯЦИОННЫЕ ПРОКЛАДКИ

    В ряде случаев между соседними рядами обмоток трансформатора образуется большое напряжение, и тогда прочность изоляции самого провода оказывается недостаточной. В таких случаях между рядами витков необходимо класть изоляционные прокладки из тонкой плотной бумаги, кальки, кабельной, конденсаторной или папиросной бумаги. Бумага должна быть ровной и при рассматривании на просвет в ней не должно быть видимых пор и проколов.
    Изоляция между обмотками в трансформаторе должна быть еще лучше, чем* между рядами витков, и тем лучше, чем выше напряжение. Лучшая изоляция — лакоткань, но кроме нее, нужна еще и плотная кабельная или оберточная бумага, которые прокладываются также и с целью выравнивания поверхности для удобства намотки сверху следующей обмотки. Один слой лакоткани всегда желателен, однако ее можно заменить двумя-тремя слоями кальки или кабельной бумаги.
    Измерив расстояние между щечками готового каркаса, можно приступить к заготовке изоляционных полос бумаги. Для того чтобы крайние витки обмотки не заваливались между краями полос и щечками, бумагу нарезают несколько более широкими полосами, чем расстояние между щёчками каркаса, а края на 1,5—2 мм надрезаются ножницами или просто загибаются. При намотке надрезанные или загнутые полосы закрывают крайние витки обмотки. Длина полос должна обеспечить перекрытие периметра намотки с нахлестом концов на 2—4 см.

    Для изоляции выводов, мест паек и отводов обмоток применяются отрезки кембриковых или хлорвиниловых трубок и кусочков лакоткани.
Для затяжки и закрепления начала и конца толстых обмоток (накальных и выходных), заготавливают куски (10—15 см) киперной ленты или полоски, вырезанные из лакоткани и сложенные для прочности втрое, вчетверо.
Если наружный ряд обмотки близко подходит к сердечнику, то из тонкого листового текстолита или картона вырезают прямоугольные пластинки, которые вставляются между обмоткой и сердечником после сборки трансформатора.

НАМОТОЧНЫЕ И ВЫВОДНЫЕ ПРОВОДА

    Обмотки трансформаторов, с которыми приходится иметь дело радиолюбителю, чаще всего выполняются проводом с эмалевой изоляцией марки ПЭ или ПЭЛ.
    В силовых трансформаторах для сетевых и повышающих обмоток применяется исключительно провод ПЭ, а для обмоток накала ламп — тот же провод или, при большом диаметре (1,5—2,5 мм), провод с двойной бумажной изоляцией марки ПБД.
    Выводы концов и отводы от обмоток, выполненных тонким проводом, делаются проводом несколько большего сечения, чем провод обмотки. Для них лучше брать гибкий многожильный провод с эластичной изоляцией (например, хлорвиниловой или резиновой). По возможности желательно брать провода с различной расцветкой, чтобы по ним можно было потом легко узнать любой вывод. Выводы от обметок, выполняемые толстым проводом, можно делать тем же проводом. На концы или отводы этих обмоток надо надеть кусочки тонкостенных изоляционных трубок. Выводные проводники должны быть такой длины, чтобы их можно было свободно присоединить к элементам схемы или к рас-шивочной планке (гребенке).

НАМОТКА

    Катушка с проводом, предназначенным для очередной намотки, зажимается между съемными щечками нарезной шпильки размоточного устройства. Шпилька с катушкой устанавливается в конусах этого устройства (фиг. 4). В зависимости от диаметра провода регулируются нажим конусов и степень притормаживания разматываемой катушки.
    Катушку необходимо зажимать так, чтобы она при размотке не била, так как от этого зависят успешность и легкость укладки провода виток к витку. Размоточное приспособление располагается впереди намоточного станка не ближе 1 м (дальше —лучше).
    Подготовленный каркас трансформатора зажимается между двумя свободно насаженными на шпильке щечками. Шпилька затем вставляется в патрон дрели или зажимается на валу намоточного станка. Каркас, так же как и катушку с проводом, надо хорошо отцентровать, чтобы он при намотке равномерно вращался и не бил. Зажимные щетки нужно располагать таким образом, чтобы не закрыть ими отверстий для выводов в каркасе.
    Устанавливать катушку с проводом на размоточном приспособлении и намоточный станок на столе надо так, как изображено на фиг. 10. Провод должен итти сверху катушки на верх каркаса трансформатора. Станок или дрель располагается над столом на такой высоте, чтобы между осью станка и плоскостью стола было расстояние 15—20 см\ тогда при намотке левую руку можно свободно положить на стол, не мешая вращению станка с каркасом.
    Перед тем как приступить к намотке, надо приготовить изоляционные прокладки, выводные проводники, изоляционную трубку для .выводов, лист бумаги и карандаш для отметок при счете витков, если нет счетчика, ножницы для подрезки прокладок, кусочек мелкой наждачной бумаги для зачистки изоляции и разогретый паяльник для припайки выводов. Самому надо свободно сесть против стола (верстака) и поупражняться во взаимодействиях рук. Правой рукой надо вращать намоточный станок с таким расчетом, чтобы провод ложился на каркас сверху, а левой — придерживать и натягивать провод, направляя его движение так, чтобы он ложился равномерно виток к витку (для этого левую руку надо положить на стол под ось станка или приспособления, вытянув ее как можно дальше вперед). Чем дальше от каркаса направлять провод, тем точнее и легче укладывается провод.

    Выверенный и закрепленный на станке или дрели каркас обертывают тонкой бумажной полоской. Чтобы полоска держалась, ее можно слегка приклеить.
    Выводной проводник или конец самого наматываемого провода обмотки можно закрепить двумя способами. Если провод тонкий, то вывод делают другим, гибким проводом. Такой вывод должен быть достаточно длинным, чтобы, пропустив его сквозь отверстие в каркасе, можно было обернуть им (одним оборотом) гильзу каркаса. К заранее зачищенному и залуженному на 2—3 мм кончику выводного проводника припаивают зачищенный конец наматываемого провода и, изолировав место спайки сложенным вдвое кусочком бумаги или лакоткани, начинают намотку (фиг. 11,а). Изолирующая накладка прижимается при намотке последующими витками (фиг. 11,6). Продетый в отверстие каркаса вывод надо несколько раз обернуть вокруг оси (шпильки) намоточного станка или привязать его к ней, чтобы при дальнейшей намотке он не выдернулся из каркаса. Для большей надежности выводы можно привязывать к гильзе несколькими витками крепкой нитки. Другой способ заключается в том, что выводной провод после пропуска его сквозь отверстия в щечке каркаса захватывается полоской прокладочной бумаги, край которой загибается под провод (фиг. 11,в). Затем полоска, которая должна иметь ширину каркаса, обертывается вокруг гильзы и прижимает выводной провод. Под полоску при этом (у конца выводного провода) нужно подложить изолирующую накладку, которая потом прикроет место спайки выводного и наматываемого проводов.
    К выступающему из-под прокладки залуженному концу выводного провода, находящемуся у другой щечки каркаса, припаивают зачищенный кончик наматываемого провода и производят намотку. Изолирующая накладка при этом будет прижата первыми витками обмотки, а выводной конец— витками ее первого ряда (фиг. 11,г).

    Намотку нужно производить сначала не спеша, приспосабливая руку так, чтобы провод шел и ложился виток к витку с некоторым натяжением. В процессе намотки данного ряда левую руку следует равномерно передвигать за укладкой витков, стараясь сохранять угол натяжения. Таким образом, последующие витки первого ряда прижимают предыдущие. К&ждый ряд надо на 2—3 мм не доматывать до щечки каркаса, чтобы предотвратить этим проваливание витков вдоль щечки. Особенно это важно при намотке высоковольтных обмоток (например, повышающей в силовом или анодной в выходном трансформаторах).
    Перед началом намотки (когда заправлен и припаян первый вывод) счетчик оборотов нужно поставить на нуль или записать его показания. При отсутствии счетчика обороты считают про себя или вслух, причем каждая сотня оборотов отмечается на бумаге палочкой.
    После намотки каждого ряда провод надо оставлять натянутым, чтобы во время наложения бумажной прокладки намотанная часть обмотки не распускалась. Для этого можно прижать провод к щечке каркаса бельевым зажимом. Прокладка должна закрывать весь ряд обмотки. Она склеивается или же временно (до удержания ее витками следующего ряда) прижимается к обмотке резиновым кольцом, которое можно изготовить из тонкой шнуровой резинки.
    Последний вывод обмотки можно делать так же, как и первый. Перед намоткой последнего полного или неполного ряда этот выводной проводник вместе с бумажной прокладкой (фиг. 11,0) нужно уложить на каркасе и, обернув каркас полосой прокладки, прижать проводник резиновым кольцом. После намотки последнего ряда наматываемый провод обрезается и после зачистки припаивается к залуженному кончику выводного проводника (фиг. 11,д). Если выводной конец должен выходить из щечки, около которой кончается последний ряд обмотки, то заготовка выводного конца делается в виде петли (фиг. 11,е), которая укладывается на каркасе точно так же, как и обычный выводной проводник.
    Отводы от части витков обмотки, наматываемой не слишком тонким проводом (от 0,3 мм и более), можно делать в виде петли тем же проводом (не обрезая его), как это показано на фиг. 12,а. Петля в этом случае пропускается через отверстие сложенной вдвое бумажной полоски, которая затягивается после прижатия ее к обмотке последующими витками (фиг. 12,6). Можно обойтись и без-бумажной полоски, если на петлеобразный отвод надеть изоляционную трубку. Отводы от обмотки, выполняемой тонким проводом (менее 0,3 мм), делаются обычно гибким выводным проводником, который припаивается к проводу, как показано на фиг. 12,в.   

    Начало и конец обмоток из толстого провода выводятся непосредственно (без отдельных выводных проводов) через отверстия в щечках каркаса. На выходящие из каркаса концы нужно только надеть гибкие изоляционные трубки. Крепление концов обмотки производится с помощью узкой хлопчатобумажной ленты. Ленту складывают вдвое, образуя петлю, в которую пропускается первый выводной конец провода. Придерживая затем ленту рукой и намотав на нее туго 6—8 витков, петлю затягивают (фиг. 13,а). Так же закрепляется и второй выводной конец обмотки. Не домотав в этом случае 6—8 последних витков, на каркас кладут сложенную петлей ленту, наматывают последние витки, ко торые прижимают эту ленту к каркасу, и, пропустив в петлю конец обмотки, затягивают петлю (фиг. 13,6). Если обмотка из толстого провода содержит небольшое число витков (не более 10), то выводные концы можно закреплять лентой путем двусторонней затяжки, как показано на фиг. 13,в.
    В многослойных обмотках из толстого провода после каждого ряда рекомендуется делать бумажные прокладки. Если каркас не особенно прочный, то каждый последующий ряд надо делать на один-два витка меньше, а пустоты между обмоткой и щечками каркаса заполнить потом шпагатом или нитками. Это важно в том случае, когда сверху еще будут другие обмотки.
    При обрывах провода во время намотки или когда обмотка выполняется из отдельных кусков провода, концы проводов соединяют следующим образом. У проводов небольшого диаметра (до 0,3 мм) концы на 10—15 мм зачищают наждачной бумагой, аккуратно скручивают их и спаивают. Место соединения проводов затем изолируется кусочком прокладочной бумаги или лакоткани. Концы более толстых проводов обычно спаиваются без скрутки. Тонкие провода (0,1 мм и меньше) можно сваривать, скрутив концы на 10—15 мм (без зачистки изоляции) и помещая их затем в пламя спиртовки, газа или нескольких спичек. Соединение проводов в этом случае считается надежным, если на конце скрутки образуется небольшой шарик.
    Обмотки из тонкого провода с числом витков в несколько тысяч можно наматывать не виток к витку, а «в навал». Однако укладывать витки следует равномерно, чтобы обмотка не имела бугров и провалов. Примерно через каждый миллиметр толщины такой намотки надо делать бумажные прокладки.
    Для симметрирования двух обмоток или половин обмоток часто применяют каркасы, перегороженные посредине щечкой. Сначала наматывается одна половина обмотки, а затем каркас перевертывают на 180° и наматывается другая половина. Так как витки каждой половины обмотки будут при этом намотаны в разные стороны, то при последовательном включении половин нужно соединить их начала или концы. Выводы от обмоток в этом случае удобнее делать с противоположных сторон каркаса.
    Обмотки трансформатора или дросселя можно выполнять и без каркаса. Намотка производится в основном так же, как и с каркасом, но прокладки между обмотками (или рядами) делают очень широкими (в три раза шире обмотки) .
По окончании намотки каждой секции выступающие края прокладки разрезают на углах ножницами или лезвием безопасной бритвы и, загибая их, закрывают намотанную секцию (фиг. 14). Торцевые стороны намотанных обмоток
нужно залить потом смолкой (от сухих элементов и бата!рей).

    Снаружи, если верхний ряд витков последней обмотки намотан толстым проводом и выполнен достаточно аккуратно, катушку можно ничем не обертывать. Если же верхняя обмотка сделана из тонкого провода, да еще намотана не виток к витку, то катушку следует обернуть бумагой или дерматином.
    Для того чтобы при монтаже трансформатора можно было легко разобраться в выводах и отводах, желательно применять разноцветные выводные проводники. Например, выводы сетевой обмотки трансформатора делать желтыми, начало и конец повышающей обмотки — красными, отвод от середины повышающей обмотки и провод от экрана — черными и т. д. Можно, конечно, применять и одноцветные выводные проводники, но тогда необходимо на каждый вывод надевать картонную бирку с соответствующим обозначением.

СБОРКА СЕРДЕЧНИКА И МОНТАЖ ВЫВОДОВ ТРАНСФОРМАТОРА

    Закончив намотку трансформатора, приступают к сборке его сердечника. Если выводы обмоток сделаны с одной стороны щечки каркаса, то он кладется на стол выводами вниз. Если же выводы сделаны с обеих сторон щечек, то каркас надо расположить так, чтобы внизу оказалось наибольшее число выводов и наиболее толстые из них; верхние же выводы надо сложить в несколько раз и привязать их временно к обмотке, чтобы они не мешали при сборке сердечника (фиг. 15,я). Это особенно важно при форме пластин сердечника с просечкой на среднем керне.
    Пластины сердечника силового трансформатора собираются без зазора, в перекрышку (поочередно то слева, то справа), как показано на фиг. 15,6. Сердечники же выходных трансформаторов или дросселей фильтра часто собирают с воздушным зазором, вставляя пластины только с одной стороны (фиг. 15,е). Чтобы этот зазор оставался неизменным, в стык между пластинами и накладками сердечника вставляют полоску бумаги или картона. В пластинах с просечкой на среднем керне толщина зазора определяется толщиной просечки.
    Если каркас не очень прочен, то заполнять его пластинами (особенно в конце сборки) надо очень осторожно, так как иначе можно острым краем среднего керна разрезать гильзу и повредить обмотку. Для предотвращения этого желательно в окно каркаса вставить и загнуть защитную полоску из мягкой стали (фиг. 15,6).

    При сборке сердечника из пластин с просечкой среднего керна нужно применять вспомогательную направляющую пластинку (фиг. 15,г), вырезав ее, например, из одной пластины сердечника.
    Окно каркаса заполняется возможно большим числом пластин. Если трансформатор был разобран и перематывался, то при его новой сборке надо использовать все вынутые раньше пластины. В процессе сборки сердечник следует несколько раз поджимать, просунув для этого в окно каркаса линейку или пруток. Последние пластины, если они входят туго, можно забить молотком, легко ударяя им через деревянную подкладку. После этого, поворачивая трансформатор разными сторонами и ставя его на ровную поверхность, надо легкими ударами молотка через деревянную подкладку подравнять сердечник.
    Сердечник, после его сборки, должен быть хорошо стянут. Если в пластинах имеются отверстия, то он стягивается болтиками через накладные планки или угольники (фиг. 16,а и б). Вместе с этим> можно установить и щнток с лепестками для подпайки выводных концов обмоток.
    Сердечник небольшого размера, собранный из пластин без отверстий, можно стянуть одной общей скобой, вырезанной из нетолстой мягкой стали (фиг. 16,в).

    Очень удобно для крепления трансформатора и стягивания его сердечника использовать шасси, на котором трансформатор должен быть установлен. В шасси вырезают окно для прохода нижней части катушки с выводами, устанавливают трансформатор и стягивают сердечник болтиками через общую накладную рамку (фиг. 16,г). Выводные концы при этом соединяются с соответствующими участками схемы либо непосредственно, либо через установленный на шасси щиток с контактными лепестками.

ПРОСТЕЙШИЕ ИСПЫТАНИЯ

    Трансформатор, после его намотки и сборки необходимо испытать.
    Силовые трансформаторы испытываются путем включения первичной (сетевой) обмотки в электросеть.
Для проверки отсутствия коротких замыканий в обмотках трансформатора можно рекомендовать следующий простой способ. В сеть последовательно с первичной обмоткой / проверяемого трансформатора включается электрическая лампа Л (фиг. 17), рассчитанная на соответствующее напряжение сети. Для трансформаторов мощностью 50—100 вт берут лампу 15— 25 вт, а для трансформаторов 200—300 вт — лампу 50— 75 вт. При исправном трансформаторе лампа должна гореть примерно «в четверть накала». Если при этом замкнуть накоротко какую-либо из обмоток трансформатора, то лампа будет гореть почти полным накалом. Таким путем проверяются целость обмоток, правильность выводов и отсутствие короткозамкнутых витков в трансформаторе.   

    После этого, проследив за тем, чтобы выводы обмоток не были замкнуты, первичную обмотку трансформатора надо включить на один-два часа непосредственно в сеть (замкнув выключателем Вк лампу Л). В это время можно вольтметром измерить напряжение на всех обмотках трансформатора и убедиться в соответствии их величин с расчетными.
    Кроме того, нужно испытать надежность изоляции между отдельными обмотками трансформатора. Для этого одним из выводных концов повышающей обмотки // надо поочередно коснуться каждого из выводов сетевой обмотки /. В этом случае напряжение повышающей обмотки совместно с напряжением сетевой обмотки будет действовать на изоляцию между этими обмотками. Таким же образом, прикасаясь выводным концом повышающей обмотки // к выводным концам других обмоток, испытывается изоляция и этих обмоток. Отсутствие искры или слабое искрение (за счет емкости между обмотками) при этом показывает достаточность изоляции между обмотками трансформатора.
    Испытание трансформатора нужно производить внимательно, соблюдая осторожность, чтобы не попасть под высокое напряжение повышающей обмотки.
    Другие виды трансформаторов (выходные и т. п.) с обмотками из достаточно большого числа витков испытываются таким же образом. Измеряя при этом напряжения на обмотках трансформатора, можно определить коэффициент трансформации.
    Убедившись в результате испытания в исправности изготовленного трансформатора, последний можно считать готовым к установке и монтажу.
   
    Программу для расчета трансформатора можно скачать здесь

 

А. Н. ПОДЪЯПОЛЬСКИЙ


Адрес администрации сайта: [email protected]
   

 

Трансформатор своими руками в домашних условиях

Трансформатор переводится с латинского как «превращатель», «преобразователь». Это электромагнитное устройство статического типа, предназначенное для преобразования переменного напряжения или электрического тока. Основу любого трансформатора составляет замкнутый магнитопровод, который иногда называют сердечником. На сердечник наматываются обмотки, которых может быть 2−3 и более в зависимости от вида трансформатора. Когда на первичной обмотке возникает переменное напряжение, внутри сердечника возбуждается магнитный ток. Он, в свою очередь, вызывает на остальных обмотках токовое переменное напряжение с точно такой же частотой.

Обмотки различаются между собой количеством витков, что определяет коэффициент изменения величины напряжения. Иными словами, если вторичная обмотка имеет в своём составе в два раза меньше витков, то на ней возникает переменное напряжение по величине в два раза меньшее, чем на обмотке первичной. Но мощность тока при этом не меняется. Это делает возможным работу с токами большой силы при относительно небольшом напряжении.

Виды трансформаторов

В зависимости от формы магнитопровода различают три вида трансформаторов:

  • Броневой. Имеет квадратную форму с двумя боковыми, одним центральным и двумя поперечными стержнями. При этом эффективно используется только центральный стержень. Именно на него надевается обмотка. Поэтому КПД данного устройства не очень высокое. Образует два витка магнитного поля. Данный трансформатор рассчитан на большие нагрузки. Этим объясняется его очень большой вес.
  • Стержневой. В каком-то смысле похож на первый вид. По форме это половинка от броневого магнитопровода. Имеет в своём составе два боковых сердечника и два поперечных. Магнитное поле одновитковое, и, как следствие, мощность у него меньше. КПД у такого трансформатора составляет 40%.
  • Тороидальный. Своё название получил за счёт оригинальной формы. В математике существует такое понятие, как тороидальная поверхность. Если говорить проще — это объёмный круг или форма бублика. Благодаря такой форме магнитопровода тороидальные трансформаторы имеют самый высокий уровень КПД, приближающийся к 100%. Поэтому такие трансформаторы всегда имеют меньшие размеры при одинаковой мощности, по сравнению с другими видами. Ввиду того, что обмотки равномерно распределяются по всей площади сердечника, происходит более эффективное охлаждение витков. Что, в свою очередь, позволяет максимально нагружать такие устройства без возникновения опасности перегрева.

Материалы пластин

Сердечники для трансформаторов изготавливают либо из металла, либо из феррита. Феррит, или ферромагнетик, — это железо с особым строением кристаллической решётки. Применение феррита увеличивает КПД трансформатора. Поэтому чаще всего сердечник трансформатора изготавливается именно из феррита. Существует несколько способов изготовления сердечника:

  • Из наборных металлических пластин.
  • Из намотанной металлической ленты.
  • В виде отлитого из металла монолита.

Любой трансформатор может работать как в повышающем, так и в понижающем режиме. Поэтому условно все трансформаторы делятся на две большие группы. Повышающие: на выходе напряжение больше, чем на входе. Например, было 12 В, стало 220 В. Понижающие: на выходе напряжение ниже, чем на входе. Было 220, а стало 12 вольта. Но в зависимости от того, на какую обмотку подаётся первичное напряжение, можно понижающий трансформатор превратить в повышающий, который 10 А превратит в 100 А.

Тороидальный трансформатор своими руками

Тороидальный трансформатор, или просто тор, чаще всего изготавливают в домашних условиях в качестве главной детали для домашнего сварочного аппарата и не только. По сути, это самый распространённый вариант трансформатора, впервые изготовленный ещё Фарадеем в 1831 году.

Преимущества и недостатки тора

Тор обладает несомненными достоинствами по сравнению с другими видами:

  • Относительно небольшие размеры.
  • Очень сильный выходной сигнал.
  • Обмотки имеют маленькую длину, и, как следствие, эти устройства характеризуются небольшим сопротивлением и очень высоким КПД.
  • Благодаря своей форме легко устанавливаются и также легко демонтируются в случае необходимости.

Простейший тор состоит из двух обмоток на своём кольцевидном сердечнике. Первичная обмотка соединяется с источником электрического тока, вторичная идёт к потребителю электроэнергии. Посредством магнитопровода происходит объединение обмоток и усиление их индукции. Когда включается питание, в обмотке первичной возникает переменный магнитный поток. Соединяясь со вторичной обмоткой, этот поток порождает в ней электромагнитную силу. Величина этой силы зависит от количества намотанных витков. Изменяя число витков, можно преобразовывать любое напряжение.

Расчет мощности тороидального трансформатора

Изготовление сварочного тороидального трансформатора в домашних условиях начинается с расчёта его мощности. Основным параметром будущего тора является ток, который будет подаваться на сварочные электроды. Чаще всего для бытовых нужд вполне достаточно электродов диаметром 2−5 мм. Соответственно, для таких электродов мощность тока должна быть в пределах 110−140 А.

Мощность будущего трансформатора рассчитывается по следующей формуле:

U — напряжение холостого хода

cos f — коэффициент мощности, равный 0.8

n — коэффициент полезного действия, равный 0.7

Далее расчётная величина мощности с помощью соответствующей таблицы сверяется с размером площади сечения сердечника. Для домашних сварочных трансформаторов это значение, как правило, равно 20−70 кв. см в зависимости от конкретной модели.

После этого с помощью следующей таблицы подбирается количество витков провода по отношению к площади сечения сердечника. Закономерность простая: чем больше площадь сечения магнитопровода, тем меньшее количество витков наматывается на катушку. Непосредственное количество витков вычисляется по следующей формуле:

U — напряжение тока на первичной обмотке.

I — ток вторичной обмотки, или сварочный ток.

S — площадь сечения магнитопровода.

Количество витков на вторичной обмотке вычисляется по следующей формуле:

Тороидальный сердечник

Тороидальные трансформаторы имеют достаточно сложный сердечник. Лучше всего его изготавливать из специальной трансформаторной стали (сплав железа с кремнием) в виде стальной ленты. Лента предварительно свёртывается в габаритный рулон. Такой рулон, по сути, уже имеет форму тора.

Где взять готовый сердечник? Неплохой тороидальный сердечник можно обнаружить на старом лабораторном автотрансформаторе. В этом случае будет необходимо размотать старые обмотки и намотать новые на уже готовый сердечник. Перемотка трансформатора своими руками ничем не отличается от намотки нового трансформатора.

Особенности намотки тора

Первичная обмотка осуществляется медным проводом в стеклотканевой или хлопчатобумажной изоляции. Ни в коем случае нельзя использовать провода в резиновой изоляции. Для силы тока на первичной обмотке в 25 А наматывающийся провод должен иметь сечение 5−7 мм. На вторичной необходимо использовать провод значительно большего сечения — 30−40 мм. Это необходимо ввиду того, что на вторичной обмотке будет протекать ток значительно большей силы — 120−150 А. В обоих случаях изоляция провода должна быть термостойкой.

Для того чтобы правильно перемотать и собрать самодельный трансформатор, необходимо понимать некоторые детали процесса его работы. Нужно грамотно осуществлять намотку проводов. Первичная обмотка производится с помощью провода меньшего сечения, а количество самих витков здесь значительно больше, это приводит к тому, что первичная обмотка испытывает очень большие нагрузки и, как следствие, может очень сильно греться в процессе работы. Поэтому укладка первичной обмотки должна производиться особенно тщательно.

В процессе намотки каждый намотанный слой необходимо изолировать. Для этого используют либо специальную лакоткань, либо строительный скотч. Предварительно изоляционный материал нарезается на полоски шириной 1−2 см. Изоляцию укладывают таким образом, что внутренняя часть обмотки покрывается двойным слоем, а внешняя, соответственно, одним слоем. После этого весь изоляционный слой обмазывается толстым слоем клея ПВА. Клей в этом случае несёт двойную функцию. Он укрепляет изоляцию, превращая её в единый монолит, а также значительно уменьшает звук гудения трансформатора во время работы.

Приспособления для намотки

Намотка тора — сложный процесс, занимающий много времени. Для того чтобы как-то его облегчить, используют специальные приспособления для намотки.

  • Так называемый вилочный челнок. Предварительно на него наматывается необходимое количество провода, и затем посредством челночных движений производят последовательную намотку провода на сердечник трансформатора. Этот способ годится лишь в том случае, если наматываемый провод достаточно тонок и гибок, а внутренний диаметр тора настолько велик, что позволяет свободно протаскивать челнок. При этом намотка происходит достаточно медленно, поэтому если необходимо намотать большое количество витков, то придётся потратить на это очень много времени.
  • Второй способ более продвинутый и требует для своего осуществления специального оборудования. Но зато с его помощью можно намотать трансформатор практически любого размера и с очень большой скоростью. При этом качество намотки будет очень высоким. Приспособление называется «размыкаемый обод». Суть процесса состоит в следующем: намоточный обод аппарата вставляется в отверстие тора. После этого намоточный обод замыкается в единое кольцо. Затем на него наматывается необходимое количество обмоточной проволоки. И в заключение намоточный провод сматывается с обода аппарата на катушку тора. Такой станок можно изготовить в домашних условиях. Его чертежи находятся в свободном доступе в Интернете.

Намотать трансформатор своими руками – процесс не столько сложный, сколько длительный, требующий постоянной концентрации внимания.

Тем, кто приступает к такой работе в первый раз, бывает трудно разобраться, какой материал использовать и как проверить готовый прибор. Пошаговая инструкция, представленная ниже, даст новичкам ответы на все вопросы.

Подбор необходимых инструментов

Прежде чем приступить непосредственно к намотке, необходимо запастись всеми необходимыми для выполнения работы приспособлениями и инструментами:

    Из двух стоек, скрепленных деревянной доской, и металлического прута между ними, имеющего форму рукояти, изготовить своеобразный вертел. Прут следует выбирать не толще 1 см и вставлять между стойками таким образом, чтобы его ось пронизывала каркас будущего устройства насквозь.


Чаще всего для таких целей используют колодку из дерева, в которой проделывают отверстие для оси и «подгоняют» под размеры каркаса. Если под рукой окажется дрель – сделать это будет гораздо проще.

Дрель нужно укрепить так, чтобы она находилась параллельно столу, а ее рукоять можно было свободно вращать. В патрон дрели следует вставить прут, предварительно надев на него колодку с закрепленным на ней каркасом трансформатора.

Предпочтение лучше отдать пруту с резьбой, в этом случае колодку можно будет зафиксировать зажатием гайками с обеих сторон. В случаях, когда зажать каркас удается гайками, пластинами из текстолита или деревянными дощечками, в использовании колодки нет необходимости.

  • Механизм для намотки может заменить индуктор от телефона, станок для ниточных шпулей, прибор для перемотки пленки или какое-либо подобное устройство. Главное, чтобы процесс шел плавно, без срывов.
  • Еще одним приспособлением, без которого намотать трансформатор самостоятельно будет невозможно, является устройство для размотки. Обычно приборы такого рода работают по тому же принципу, что и приборы для намотки, разница лишь в том, что в данном случае можно обойтись без вращающей ручки.
  • Для подсчета числа витков понадобится отдельное устройство, например, счетчик воды, спидометр от велосипеда, электрический счетчик. Чтобы устройство заработало, его необходимо соединить с наматывающим станком гибким валиком. Если найти подобный прибор не удастся, то витки можно сосчитать устно.
  • Виды и способы, направления намотки обмоток трансформатора представлены на фото:

    Изоляция слоев обмотки

    В некоторых случаях между проводами требуется вставить прокладки для изоляции. Чаще всего для этого используют конденсаторную или кабельную бумагу.

    Середину соседних трансформаторных обмоток следует изолировать сильнее. Для изоляции и выравнивания поверхности под следующий слой обмотки потребуется специальная лакоткань, которую нужно обернуть с обеих сторон бумагой. Если лакоткани не найдется, то решить проблему можно с помощью все той же бумаги, сложенной в несколько слоев.

    Бумажные полосы для изоляции должны быть шире обмотки на 2-4 мм.

    неисправности трансформатора, прежде всего надо определить выводы всех его обмоток. Полезные советы о том, как проверить трансформатор мультиметром на работоспособность, читайте в следующей статье.

    В этой публикации мы отвечаем на вопросы: для чего нужен блок питания 12в для светодиодной ленты.

  • Провод с катушкой закрепить в устройстве намотке, а каркас трансформатора – в устройстве намотки. Вращения делать мягкие, умеренные, без срывов.
  • Провод с катушки опустить на каркас.
  • Между столом и проводом оставить минимум 20 см, чтобы можно было расположить на столе руку и фиксировать провод. Также на столе должны находиться все сопутствующие материалы: наждачная бумага, ножницы, бумага для изоляции, включенный паяльный инструмент, карандаш или ручка.
  • Одной рукой плавно вращать намоточное устройство, а второй – фиксировать провод. Необходимо, чтобы провод ложился ровно, виток к витку.
  • Трансформаторный каркас заизолировать, а выведенный конец провода продеть сквозь каркасное отверстие и ненадолго зафиксировать на оси намоточного устройства.
  • Намотку следует начинать без спешки: необходимо «набить руку», чтобы получалось укладывать обороты друг рядом с другом.
  • Нужно следить, чтобы угол провода и натяжение были постоянными. Мотать каждый последующий слой «до упора» не следует, т. к. провода могу соскользнуть и провалиться в каркасные «щечки».
  • Счетное устройство (если есть) установить на ноль либо внимательно считать витки устно.
  • Изолирующий материал склеить или прижать мягким кольцом из резины.
  • Каждый последующий оборот на 1-2 витка делать тоньше предыдущего.
  • О намотке катушек трансформатора своими руками смотрите в видео-ролике:

    Если в ходе наматывания произойдет разрыв, то:

    • тонкие провода (тоньше 0,1 мм) скрутить и заварить;
    • концы проводов средней толщины (менее 0,3 мм) следует освободить от изоляционного материала на 1-1.5 см, скрутить и спаять;
    • концы толстых проводов (толще 0,3 мм) нужно немного зачистить и спаять без скрутки;
    • место спайки (сварки) заизолировать.

    Если для намотки используется тонкий провод, то количество витков должно превышать несколько тысяч. Сверху обмотку необходимо защитить бумагой для изоляции или дерматином.

    Если трансформатор обмотан толстым проводом, то наружная защита не требуется.
    Испытание

    После того, как с намоткой будет закончено, необходимо испытать трансформатор в действии, для этого следует подключить к сети его первичную обмотку.

    Чтобы проверить прибор на возникновение коротких замыканий, следует последовательно подключить к источнику питания первичную обмотку и лампу.

    Степень надежности изоляции проверяется посредством поочередного касания выведенным концом провода каждого выведенного конца сетевой обмотки.

    Проводить испытание трансформатора следует очень внимательно и осторожно, дабы не попасть под напряжение повышающей обмотки.

    Если неукоснительно следовать предложенной инструкции и не пренебрегать ни одним из пунктов, то намотка трансформатора вручную не будет представлять никаких сложностей, и справиться с ней сможет даже новичок.

    Изготовить самодельный трансформатор – это стоящее дело, чтобы не тратить деньги на покупку трансформаторов.

    Подбор материалов

    Провод возьмем российский, у него прочнее изоляция. От старых катушек провод используется, если нет повреждения изоляции. Для изоляции подойдет бумага, пленка ФУМ. Для изоляции между обмотками лучше использовать лаковую ткань, несколько слоев изоляции. Для поверхностной наружной изоляции подходит кабельная бумага, лаковая ткань. А также можно мотать трансформатор, применяя изоленту ПВХ.

    Пропитка нужна для повышения времени работы, но, она повышает паразитную емкость катушки. Для этой цели применяют лак. Для простого трансформатора можно использовать масляный лак. Покрывается каждый слой. Сразу все слои пропитать невозможно. Лак не должен быстро засохнуть до окончания намотки.

    Каркас делают из стеклотекстолита или ему подобного материала.

    Расчеты параметров самодельного трансформатора

    На простом трансформаторе первичная обмотка имеет 440 витков для 220 вольт. Получается на каждые два витка по 1 вольту. Формула для подсчета витков по напряжению:

    N = 40-60 / S, где S – площадь сечения сердечника в см 2 .

    Константа 40-60 зависит от качества металла сердечника.

    Сделаем расчет для установки обмоток на магнитопровод. В нашем случае у трансформатора окно 53 мм по высоте и 19 мм по ширине. Каркас будет текстолитовый. Две щеки внизу и вверху 53 – 1,5 х 2 = 50 мм, каркас 19 – 1,5 = 17,5 мм, окно размером 50 х 17,5 мм.

    Рассчитываем необходимый диаметр проводов. Мощность сердечника трансформатора своими руками по габаритам 170 ватт. На обмотке сети ток 170 / 220 = 0,78 ампера. Плотность тока 2 ампера на мм 2 , стандартный диаметр провода по таблице 0,72 мм. Заводская обмотка из провода 0,5, завод сэкономил на этом.

    • Обмотка простого трансформатора высокого напряжения 2,18 х 450 = 981 виток.
    • Низковольтная для накала 2,18 х 5 = 11 витков.
    • Низкого напряжения накальная 2,18 х 6,3 = 14 витков.

    Количество витков первичной обмотки:

    берем провод 0,35 мм, 50 / 0,39 х 0,9 = 115 витков на один слой. Количество слоев 981 / 115 = 8,5. Из середины слоя не рекомендуется делать вывод для обеспечения надежности.

    Рассчитаем высоту каркаса с обмотками. Первичная из восьми слоев с проводом 0,74 мм, изоляцией 0,1 мм: 8 х (0,74 + 0,1) = 6,7 мм. Высоковольтную обмотку лучше экранировать от других обмоток для предотвращения помех высоких частот. Для того, чтобы мотать трансформатор, делаем обмотку экрана из одного слоя провода 0,28 мм с изоляцией из двух слоев с каждой стороны: 0,1 х 2 + 0,28 = 0,1 х 2 = 0,32 мм.

    Первичная обмотка будет занимать места: 0,1 х 2 + 6,7 + 0,32 = 7,22 мм.

    Повышающая обмотка из 17 слоев, толщина 0,39, изоляция 0,1 мм: 17 х (0,39 + 0,1) = 6,8 мм. Поверх обмотки делаем слои изоляции 0,1 мм.

    Получается: 6,8 + 2 х 0,1 = 7 мм. Высота обмоток вместе: 7,22 + 7 = 14,22 мм. 3 мм осталось для накальных обмоток.

    Можно сделать расчет внутренних сопротивлений обмоток. Для этого рассчитывается длина витка, берется длина провода в обмотке, определяется сопротивление, зная удельное сопротивление по таблице для меди.

    При расчете сопротивления секции первичной обмотки получается разница около 6-ти Ом. Такое сопротивление даст падение напряжения 0,84 вольта при токе номинала 140 миллиампер. Чтобы компенсировать это падение напряжения, добавим два витка. Теперь во время нагрузки секции равны по напряжению.

    Изготовление каркаса катушки трансформатора своими руками

    Важны углы на деталях, и точность в размерах, что повлияет на сборку простого трансформатора.

    На щечках отводим места для крепления выводных контактов обмоток, сверлим отверстия по расчетам. Когда каркас собран, то теперь скругляем острые грани, к которым будет прикасаться провод обмотки. Используем для этой цели надфиль. Провода не должны резко перегибаться, так как эмаль изоляции потрескается. Теперь проверим, вставляется ли в окно каркаса пластина. Она не должна болтаться, или туго входить. Каркас ставим на специальный станок или готовимся мотать трансформатор вручную. Толстые провода всегда мотаются руками.

    Намотка трансформатора своими руками

    Укладываем изоляцию первого слоя. Вставляем конец провода в отверстие выводной клеммы. Начинаем мотать провод, не забывая о его натяжении. Проверить можно так: намотанная катушка не будет проминаться от пальца. Провод растягивать нельзя, так как нарушится изоляция. Готовую катушку рекомендуется пропитать парафином, чтобы не испортить провод. Если обмотка гудит во время работы трансформатора, то изоляция провода стирается, провод изгибается и разрушается. По этой причине натяжение провода во время намотки имеет большое значение.

    Витки во время намотки придвигаем друг к другу, уплотняем. Первый слой самый важный.

    На слое не нужно оставлять пустое место. Наибольшее напряжение на последних витках составляет для первичной 60 + 60 / 2, 18 + 55 В. Изоляция из лака выдержит напряжение, если провод будет проваливаться в пустоту слоя, то может нарушиться изоляция. Пропитываем первый слой, затем второй и так далее. К изоляции между обмотками необходимо отнестись добросовестно. Она должна выдерживать до 1000 вольт. Вверху на изоляции рекомендуется подписать количество витков и размер провода, это пригодится при ремонте.

    Слои самодельного трансформатора должны иметь правильную форму. По мере намотки катушка будет изгибаться у краев. Для этого слои нужно равнять во время намотки, не повредив изоляцию.

    Вынужденные стыки провода лучше на ребре каркаса за сердечником. Соединять провод скруткой с пайкой, внакладку с пайкой. Длина контакта при соединении делается более 12 диаметров провода. Стык нужно изолировать бумагой или лаковой тканью. Пайка должна быть без острых углов.

    Выводные концы обмоток делаются по-разному. Главное, чтобы была надежность и качество.

    Окончание изготовления трансформатора своими руками

    Припаиваем выводные концы обмоток, изолируем поверхность простого трансформатора, подписываем на нем данные характеристики и производим сборку сердечника. После этого надо проверить этот простой трансформатор своими руками.

    Замеряем ток самодельного трансформатора вхолостую, он должен быть минимальным. Смотрим на нагрев. Если греется сердечник, то неправильно подобрано железо. Если нагрелись обмотки, значит, есть короткое замыкание. Если нормально, то замыкаем ненадолго вторичную обмотку, треска и сильного гудения не должно быть.

    Пример как сделать самодельный трансформатор

    Перейдем к изготовлению самого трансформатора. По готовому сердечнику рассчитаем мощность трансформатора, витки и провод, намотаем первичную и вторичную обмотки, соберем трансформатор полностью.

    Чтобы мотать трансформатор напряжением 220 на 12 вольт нам необходимо подобрать магнитный сердечник. Подбираем магнитный сердечник Ш-образный, и каркас от старого трансформатора. Чтобы определить мощность, выдаваемую простым трансформатором, необходимо произвести предварительный расчет.

    Расчет трансформатора

    Рассчитываем диаметр провода первичной обмотки. Мощность трансформатора Р1 = 108 Вт:

    где: I1 – ток в первичной обмотке;

    тогда ток в первичной обмотке:

    Возьмем I1 = 0,5 ампера.

    Из таблицы диаметр провода в зависимости от тока выбираем допустимый ток 0,56 А, диаметр 0,6 мм.

    Самодельный трансформатор своими руками можно намотать без станка. На это уйдет два-три часа, не больше. Приготовим полоски бумаги для прокладки ее между слоями провода. Полоску вырезаем шириной равной расстоянию между щечками катушки трансформатора плюс еще пару миллиметров, чтобы бумага легла плотно, по краям витки не залезали друг на друга.

    Длину полоски делаем с запасом два сантиметра для склеивания. По краям полоску слегка надрезаем ножницами, чтобы при изгибе бумага не рвалась.

    Затем приклеиваем полоску бумаги на каркас, плотно пригладив ее.

    Намотка первичной обмотки

    Теперь берем провод от старой катушки, у которой провод с хорошей не потрескавшейся изоляцией. Конец провода вставляем в гибкую трубочку изоляции от старого использованного провода соответствующего подходящего диаметра. Просовываем конец обмотки в отверстие каркаса катушки (они уже имеются в старом каркасе).

    Катушка мотается плотно, виток к витку. Намотав 3-4 витка, нужно прижать витки, друг к другу, чтобы намотка витков была плотной. Чтобы мотать трансформатор после намотки первого слоя, необходимо посчитать количество витков в ряду. У нас получилось 73 витка. Делаем прокладку полоской бумаги. Наматываем второй слой. Во время намотки нужно все время держать провод в натянутом состоянии, чтобы намотка получалась плотной. После второго слоя также делаем прокладку из бумаги. Если не хватает длины провода, то соединяем с ним другой провод путем спайки. Лудим лакированный провод, нагрев конец паяльником на таблетке аспирина. При этом лак хорошо снимается.

    Когда намотка первичной обмотки закончена, то конец провода изолируем в трубочку и выводим наружу катушки. Между первичной и вторичной обмотками делаем обмоточную изоляцию. Можно мотать трансформатор дальше.

    Вторичная обмотка

    Рассчитаем диаметр провода вторичной обмотки самодельного трансформатора. Мощность вторичной обмотки примем:

    Допустимый ток во вторичной обмотке будет равен:

    Из таблицы диаметр в зависимости от тока: диаметр для тока 5,55 А – ближайшее значение в таблице 6,28 ампера. Для такого тока необходим диаметр провода 2 мм.

    Берем провод, который мы получили при сматывании старого трансформатора. Наматываем провод вторичной обмотки по такому же принципу, как и первичную обмотку. Провод вторичной обмотки намного жестче, поэтому, чтобы он ровно ложился при намотке, периодически его необходимо осаживать ударами молотка через деревянный брусок, чтобы не повредить изоляцию. У нас получилось 3 слоя вторичной обмотки. Получился готовый намотанный каркас простого трансформатора.

    Сборка трансформатора своими руками

    Для ускорения сборки берем по две Ш-образные пластины. Вставляем их внутрь каркаса поочередно с двух сторон по две штуки.

    Перекрывающие пластины пока не ставим. Они будут установлены позже. Если вставлять все пластины сразу всем пакетом, то между пластинами появляются зазоры и индуктивность всего сердечника падает. После сборки Ш-образных пластин самодельного трансформатора вставляем перекрывающие пластины, также по две штуки.

    После сборки сердечника аккуратно обстукиваем его плоскости молотком для выравнивания пластин. При помощи стоек и шпилек будем стягивать сердечник. По правилам на шпильки надеваются бумажные гильзы для снижения потерь в сердечнике.

    Концы обмоток зачищаем и лудим. Затем припаиваем к выводным планкам, которые можно прикрепить к каркасу трансформатора. Получился готовый трансформатор своими руками.

    Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад если вы найдете на моем сайте еще что-нибудь полезное.

    Как производится намотка трансформатора своими руками?

    Несмотря на многообразие электрооборудования на рынке, далеко не во всех ситуациях можно найти подходящий преобразовательный агрегат для решения конкретной задачи. Поэтому многие обыватели пытаются изготовить  трансформатор своими руками для получения определенных параметров работы. Стоит отметить, что намотать трансформатор может каждый, даже без специализированного оборудования и особых навыков, но этот процесс довольно трудоемкий и кропотливый. Поэтому изначально вам придется определиться с типом и характеристиками прибора.

    Что понадобится для сборки?

    None В зависимости от предназначения, конструктивных особенностей и места установки их можно разделить на такие категории:

    Практически каждое из вышеперечисленных устройств вы можете воссоздать в домашних условиях. Наиболее простым вариантом является перемотка трансформатора из заводского изделия, так как он уже содержит необходимые элементы. Главное, чтобы первичная обмотка подходила по номиналу питающего напряжения и мощности. Куда хуже, если перематывать нужно обе обмотки, к примеру, если и первичная, и вторичная обмотка пробиты или получили механическое повреждение.

    Для изготовления трансформатора своими руками вам понадобятся:

    • Магнитопровод – служит в качестве проводника магнитного потока, лучше взять из старого трансформатора, так как он изготовлен из электротехнической стали и обеспечивает необходимые параметры работы, характеризуется малыми потерями в железе.
    • Провода нужного вам сечения в лаковой, полимерной или стеклотканевой изоляции. Чем тоньше этот слой, тем плотнее прилягут витки к каркасу и друг к другу.
    • Каркас – служит в качестве основания для обмоток трансформатора, устанавливает габариты по ширине. Можно взять из старого трансформатора, а можно изготовить своими руками. Материалом для каркаса может послужить электротехнический картон, гетинакс или текстолит, важно чтобы он не занимал много места в зазоре между сердечником и проводом.
    • Изоляция – предназначена для электрического отделения токоведущих элементов друг от друга и от конструктивных элементов трансформатора. В промышленном производстве используется лакотканевая лента, фторопласт, парафиновая пропитка, но при самостоятельном изготовлении подойдет любой имеющийся у вас материал, главное, чтобы его диэлектрической прочности хватало для напряжения сети.
    • Намоточный станок – позволяет упростить процесс и обеспечить постоянное натяжение. Можно изготовить своими руками из ручной дрели или по принципу вертела на двух шарнирах. Важно, чтобы изготовленный станок имел как можно меньший люфт.

    Помимо этого вам могут пригодиться: молоток с деревянной пресс-планкой, паяльник для соединения проводов, ножницы, пассатижи. Но перед изготовлением, обязательно рассчитайте параметры трансформатора.

    Расчеты

    Рис. 1: принципиальная схема трансформатораНаиболее сложный вариант, если вы будете изготавливать трансформатор своими руками с нуля. В таком случае расчет электрической машины производится в зависимости от выходной мощности. Исходя из этого параметра, рассчитывается мощность первичной обмотки. Если вы используете заводской сердечник, то можно считать эти величины одинаковыми, если вы соберете его самостоятельно, то P2 = 0,9 * P1Это приблизительный расчет с учетом потерь в сердечнике. В зависимости от качества шихтовки своими руками, разница мощностей может находиться в пределах от 5 до 20%.

    В зависимости от мощности первички определяется сечение магнитопровода, которое вычисляется по формуле: S = √PСледует отметить, что мощность для вычислений берется в Ваттах, а размеры сердечника получаем в квадратных сантиметрах.

    Далее определяется коэффициент передачи электромагнитной энергии: k = f/S, Где k – коэффициент передачи, f – частота сетевого напряжения переменного тока, S – площадь сечения магнитопровода.

    Исходя из полученного коэффициента, определяется число витков в обмотках по величине входных и выходных напряжений: N1 = k*U, N2 = k*UЭто приблизительные вычисления, предназначенные для бытового применения радиолюбителями. Заводские трансформаторы имеют более сложную процедуру расчета, которая производится по справочникам и зависит от их типа и назначения (силовые, измерительные, трехобмоточные, тороидальные устройства и т.д.)Далее рассчитывается сила тока в первичной обмотке трансформатора: I1 = P1 / U1Соответственно, ток, протекающий по вторичной обмотке трансформатора, вычисляется по  формуле: : I2 = P2 / U2Исходя из величины тока в каждой обмотке, выбирается сечение жилы. Но заметьте, что проводник в обмотке значительно хуже охлаждается, поэтому запас сечения делается на 20 – 30%. Проще выполнять данную работу медными проводами, но это требование не критично.

    Таблица: выбор сечения, в зависимости от протекающего тока.

    Медный проводникАлюминиевый проводник
    Сечение жил, ммТок, АСечение  жил. ммТок, А

    Сборка повышающего трансформатора

    Особенностью повышающего трансформатора является большее сечение жил первичной обмотки трансформатора по отношению к вторичной. Ярким примером может служить любой агрегат, повышающий напряжение питания 220 Вольт до 400, 500, 1000 В и т.д., соответственно класс изоляции трансформатора выбирается по номиналу вторичной обмотки, как в сетевых трансформаторах.

    Заметьте, что проводник большого сечения не получится намотать самодельным станком, поскольку вы не сможете выдать достаточное усилие. Определить это довольно просто – если первые витки свободно двигаются по каркасу катушки или хуже того, вы видите явный зазор между жилой и каркасом, переходите к ручной намотке.

    Для сборки вам потребуется выполнить такую последовательность действий:

    • Соберите основание из диэлектрического материала, для этого можно вырезать его по лекалу из картона. Сборка каркаса производится внахлест при помощи клея. Рис. 2: изготовьте каркас для трансформатора

    Если у вас имеется готовый образец, можете переходить к следующему этапу.

    В случае наличия видимых зазоров рекомендуется придавливать витки деревянной пресс-плашкой или прибивать их через плашку молотком.

    • Посчитайте количество витков, оно должно соответствовать расчетному, выводы проденьте в отверстия. Уложите слой изоляции на первичку.
    • После слоя изоляции намотайте вторичку, так как здесь будет использоваться более тонкий провод, эту процедуру проще выполнять на станке. Рис. 6: намотайте вторичную обмотку

    Периодически проверяйте плотность витков и их фиксацию на стержне. Хорошая фиксация не должна прогибаться и деформироваться при нажатии пальцами.

    • Если все витки не помещаются в один слой, их выкладывают в несколько, тогда важно соблюдать одно и то же количество витков в каждом из них. Слои перекладываются диэлектрическим материалом, заметьте, что толщина изоляции не должна существенно влиять на общие габариты катушек. Рис. 7: заизолируйте первый слой
    • Выведете концы вторичной обмотки на щечку каркаса.
    • Поместите магнитопровод в окно каркаса, сборка сердечника выполняется поочередно с каждой стороны, иначе потери окажутся слишком большими. Затем сердечник распирается для плотности фиксации. Рис. 8: поместите катушки на сердечник

    Мощные трансформаторы на большой номинал напряжения дополнительно пропитывается парафиновой изоляцией. Такая процедура приводит к повышению емкостных потерь, но создает дополнительную защиту от электрического тока.

    Сборка понижающего трансформатора

    Понижающий трансформатор будет отличаться большим количеством витков на первичке. В быту их можно часто встретить в блоках питания, сварочных аппаратах и прочем оборудовании. Правда, в импульсных блоках используется другая технология, поэтому ремонт таких устройств производится без трансформаторов.

    Так как изготовление сварочного трансформатора своими руками довольно актуально для домашних самоделок, рассмотрим на примере этот вариант. Требования к процессу сборки соответствует предыдущему. Отличительной особенностью такого агрегата является большое сечение провода во вторичной обмотке, так как сварочный ток может достигать сотен ампер.

    Процесс изготовления заключается в следующем:

    1. Возьмите старое или изготовьте основание для катушки.
    2. Зафиксируйте на трансформаторном каркасе слой изоляции.
    3. Намотайте первичную обмотку с попеременной изоляцией слоев.
    4. Заизолируйте первичку и намотайте вторичную обмотку, так как большой диаметр проводов не позволит сделать это вручную, используйте слесарный инструмент.
    5. Зафиксируйте выводы обеих катушек.
    6. Установите пластины сердечника.

    Испытание

    Для проверки работоспособности П-образных или тороидальных трансформаторов в домашних условиях можно воспользоваться обычным мультиметром. Для этого переведите измерительный прибор в режим прозвона и проверьте целостность каждой из обмоток. Затем  проверьте изоляцию между каждой из обмоток и магнитопроводом и сопротивление между обеими обмотками. Это наиболее простой комплекс испытаний, который даст общее представление об исправности самодельного агрегата.

    Для проверки отсутствия короткозамкнутых витков используется лампа, включающаяся последовательно к первичной обмотке. Помимо этого электрические машины испытываются в режиме холостого хода и короткого замыкания. Такие проверки показывают, насколько качественно собран преобразователь, но выполнять их в домашних условиях не обязательно.

    Видео инструкции

    Приветствую, Самоделкины!

    В этой статье речь пойдет о том, как правильно мотать импульсный трансформатор. Автор YouTube канала «Open Frime TV» Роман, не так давно собирал импульсный блок питания на микросхеме IR2153, а сейчас он расскажет, как самостоятельно намотать импульсный трансформатор для самодельного блока питания. Так уж сложилось, что первый намотанный автором трансформатор был на ферритовом кольце, и после этого он уже не мог мотать на ш-образных, и на то есть несколько причин. Первое – это относительно небольшое место намотки ш-образных сердечников, а у тороидальных же можно растянуть по всему кольцу. И отсюда появляется вторая проблема, если намотали много витков, то потом закрыть половинки сердечника сложно.

    Да, вы можете сказать, что обратной стороной медали будет распространенность таких сердечников в блоках питания компьютера, но вы попробуйте сначала разберите нормально сердечник, не сломав его. Хотя уже было экспериментально доказано, что поломанный сердечник после склейки работает так же, как и новый, но душе спокойнее, когда используется цельный феррит.

    Еще одно, при одинаковых размерах ферритовое кольцо имеет большую мощность, чем ш-образный сердечник. Вот к примеру, несколько сердечников. Ш-образный может выдать мощность 150-180Вт, а примерно такой же по размеру тороид может выдать 250Вт. Для сравнения, вот еще один тороид, который всего на 1 см больше предыдущего, а этот уже может выдать 600Вт мощности. Автор надеется, что приведенные им доводы были весьма вескими, и советует переходить на намотку трансформаторов на тороидальные сердечники. Ну а теперь собственно переходим к намотке. Для этого нам понадобится сердечник. Они бывают разных типов. Вот такие, еще производства СССР и вот такие сделанные в Китае:

    Можно использовать как те, так и другие. У сердечников, изготовленных в Советском Союзе должна быть маркировка 2000НМ, а при выборе китайских необходимо следить за проницаемостью, она должна быть в районе 2000-2200.

    С этим разобрались, идем дальше. Как видим, китайские сердечники уже покрыты краской и по сути можно мотать прямо на сердечник без изоляции. Но тогда провод будет скользить по поверхности. Если вас, как и автора такое не устраивает, то для изоляции можно использовать вот такую желтую высоковольтную майларовую ленту:

    Или же можно использовать вот такой термоскотч:

    Применять в данном случае классическую синюю изоленту крайне нежелательно, так как при нагреве она сильно задерживает тепло. Перед изготовлением трансформатора вы уже знаете какое напряжение и мощность он должен выдать. Вот и автор придумал себе следующее техническое задание: необходимо намотать трансформатор на 24В, мощностью 80Вт для будущего проекта паяльной станции. С расчетами нам поможет следующая программа:

    Ссылку на нее автор оставил в описании под видеороликом (ссылка ИСТОЧНИК в конце статьи). В программе водим необходимое значение. Если делаете импульсный блок питания по схеме автора, то просто повторяете действия как на экране (более подробно это показано в видеоролике автора внизу страницы).Отличия будут в нескольких параметрах. Первое – это частота. Она зависит от номинала вот этого резистора:

    Посчитать ее можно в онлайн калькуляторе. Сюда достаточно забить номинал конденсатора и резистора. На выходе получим частоту. Также у вас будут свои выходные напряжения и диаметры проводов.

    Когда разобрались с данными приступаем к выбору сердечника. Если у вас есть в наличие сердечники, то замеряем их размер с помощью линейки или штангенциркуля, а потом ищем в программе такой же типоразмер. Когда указали свой сердечник, программа покажет габаритную мощность, и вы уже понимаете подходит он или нужно искать новый.

    Если в наличии нет сердечников, то просто начните перебирать разные размеры. Таким образом находим нужный сердечник, а потом остается только купить его в магазине. Надеюсь, вам стал понятен принцип выбора сердечников.

    У автора в наличии были сердечники с минимальной мощностью 250Вт, их можно спокойно использовать. Да, будет небольшой перерасход материала, но это не страшно, лучше большая мощность, чем меньшая. Автор решил использовать сердечник с заведомо большей мощности, потому что на нем будет нагляднее видно процесс намотки.

    Как вы помните, нам нужно получить напряжение 24В на выходе, но по расчетам получается 26В. В таком случае можно изменять частоту и искать такое значение, при котором на выходе будет нужное напряжение. Вместе с изменением частоты изменяются и параметры обмотки.

    Вот к примеру, мы нашли частоту 38кГц, при которой на выходе получаем напряжение ровно 24В. Переходим в онлайн калькулятор, и изменяя номинал резистора, находим значение, при котором будет нужная частота в 38кГц, а потом уже непосредственно при запайке резистора на плату, на нем выставляем нужный номинал.

    Можно переходить к намотке. Изолируем сердечник. Теперь можно мотать первичную обмотку, но на глаз равномерно распределить будет сложно, поэтому сделаем разметку. Нам понадобится листик и транспортир. Делаем 2 диаметра: внутренний и наружный. Ставим точку отсчета и с помощью транспортира делим нашу разметку на то количество, сколько нужно витков. Потом вырезаем ее, и с помощью скотча приклеиваем на сердечник.

    Далее нужно отмотать необходимую длину провода для намотки. Сделать это можно зная длину одного витка, а также количество витков. Замеряем один виток и умножаем на количество, а также добавляем 5% из-за того, что провод ложится не виток к витку, а немного растянуто, а еще и выводы необходимо сделать.

    Когда узнали длину провода, отматываем его, отрезаем и можно мотать. Для этого автор пользуется вот таким приспособлением:

    На него наматывается провод и потом спокойно продевая его в сердечник производится намотка строго по разметке. Для крепления витков можно использовать суперклей.

    Теперь осталось подпаять многожильный провод к первички и заизолировать тем же термоскотчем. Вот и все – первичка готова, приступаем к изготовлению вторички. Направление намотки первички и вторички может не совпадать – это неважно. Процедура намотки вторички практически не отличается от намотки первичной обмотки, такая же разметка, витков правда меньше, но процесс идентичен.

    А теперь самое важное. Вот здесь путается большинство людей, это то, как сделать среднюю точку. Итак, сейчас автор продемонстрирует это максимально наглядно. Вот мы намотали одну половину вторички – это будет средней точкой.

    Автор намеренно не разрезает провод, а делаю вот такую петельку. Теперь же продолжаем намотку. Провод ложем виток к витку к прошлой обмотке, при этом сохраняя направление намотки.

    Теперь мы имеем 3 вывода. Там, где по одному проводу – это начало и конец обмотки, а петелька – средняя точка. Тут все предельно ясно.

    Если нужно мотать в несколько слоев, то можно сразу мотать двумя жилами, и повторить ту же операцию с петелькой. После намотки вторички изолируем ее и на этом изготовление трансформатора завершено. Можно еще капроновыми нитками пройтись по всей длине и укрепить обмотки, но это уже на ваше усмотрение.

    Теперь можно протестировать наш самодельный трансформатор. Для этого воспользуемся вот такой платой. Подпаяли трансформатор к плате, и производим замер выходного напряжения.

    Как видим оно совпадает с расчетным. Теперь можно подключить нашу электронную нагрузку и посмотреть, как держит мощность трансформатор.

    Как видим, при увеличении мощности просадка напряжения есть, правда незначительная. Ну и напоследок проверим защиту от короткого замыкания. Как видим все отлично, блок справляется.

    Ну а на этом все. Благодарю за внимание. До новых встреч! Видео:

    Источник Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь

    Идея 8.6 Описание 8.6 Исполнение Итоговая оценка: 8.57 из 10 (голосов: 7 / История оценок) FacebookВКонтактеTwitterОК

    Изготовить самодельный трансформатор – это стоящее дело, чтобы не тратить деньги на покупку трансформаторов.

    Подбор материалов

    Провод возьмем российский, у него прочнее изоляция. От старых катушек провод используется, если нет повреждения изоляции. Для изоляции подойдет бумага, пленка ФУМ.

    Для изоляции между обмотками лучше использовать лаковую ткань, несколько слоев изоляции. Для поверхностной наружной изоляции подходит кабельная бумага, лаковая ткань. А также можно мотать трансформатор, применяя изоленту ПВХ.

    Пропитка нужна для повышения времени работы, но, она повышает паразитную емкость катушки. Для этой цели применяют лак. Для простого трансформатора можно использовать масляный лак.

    Покрывается каждый слой. Сразу все слои пропитать невозможно. Лак не должен быстро засохнуть до окончания намотки.

    Каркас делают из стеклотекстолита или ему подобного материала.

    Расчеты параметров самодельного трансформатора

    На простом трансформаторе первичная обмотка имеет 440 витков для 220 вольт. Получается на каждые два витка по 1 вольту. Формула для подсчета витков по напряжению: N = 40-60 / S, где S – площадь сечения сердечника в см2.

    Константа 40-60 зависит от качества металла сердечника.

    Сделаем расчет для установки обмоток на магнитопровод. В нашем случае у трансформатора окно 53 мм по высоте и 19 мм по ширине. Каркас будет текстолитовый. Две щеки внизу и вверху 53 – 1,5 х 2 = 50 мм, каркас 19 – 1,5 = 17,5 мм, окно размером 50 х 17,5 мм.

    Рассчитываем необходимый диаметр проводов. Мощность сердечника трансформатора своими руками по габаритам 170 ватт. На обмотке сети ток 170 / 220 = 0,78 ампера. Плотность тока 2 ампера на мм, стандартный диаметр провода по таблице 0,72 мм. Заводская обмотка из провода 0,5, завод сэкономил на этом.

    • Обмотка простого трансформатора высокого напряжения 2,18 х 450 = 981 виток.
    • Низковольтная для накала 2,18 х 5 = 11 витков.
    • Низкого напряжения накальная 2,18 х 6,3 = 14 витков.

    Количество витков первичной обмотки: берем провод 0,35 мм, 50 / 0,39 х 0,9 = 115 витков на один слой. Количество слоев 981 / 115 = 8,5. Из середины слоя не рекомендуется делать вывод для обеспечения надежности.

    Рассчитаем высоту каркаса с обмотками. Первичная из восьми слоев с проводом 0,74 мм, изоляцией 0,1 мм: 8 х (0,74 + 0,1) = 6,7 мм. Высоковольтную обмотку лучше экранировать от других обмоток для предотвращения помех высоких частот. Для того, чтобы мотать трансформатор, делаем обмотку экрана из одного слоя провода 0,28 мм с изоляцией из двух слоев с каждой стороны: 0,1 х 2 + 0,28 = 0,1 х 2 = 0,32 мм.

    Первичная обмотка будет занимать места: 0,1 х 2 + 6,7 + 0,32 = 7,22 мм. Повышающая обмотка из 17 слоев, толщина 0,39, изоляция 0,1 мм: 17 х (0,39 + 0,1) = 6,8 мм. Поверх обмотки делаем слои изоляции 0,1 мм.

    Получается: 6,8 + 2 х 0,1 = 7 мм. Высота обмоток вместе:  7,22 + 7 = 14,22 мм. 3 мм осталось для накальных обмоток.

    Можно сделать расчет внутренних сопротивлений обмоток. Для этого рассчитывается длина витка, берется длина провода в обмотке, определяется сопротивление, зная удельное сопротивление по таблице для меди.

    При расчете сопротивления секции первичной обмотки получается разница около 6-ти Ом. Такое сопротивление даст падение напряжения 0,84 вольта при токе номинала 140 миллиампер. Чтобы компенсировать это падение напряжения, добавим два витка. Теперь во время нагрузки секции равны по напряжению.

    Изготовление каркаса катушки трансформатора своими руками

    Важны углы на деталях, и точность в размерах, что повлияет на сборку простого трансформатора.

    На щечках отводим места для крепления выводных контактов обмоток, сверлим отверстия по расчетам. Когда каркас собран, то теперь скругляем острые грани, к которым будет прикасаться провод обмотки. Используем для этой цели надфиль. Провода не должны резко перегибаться, так как эмаль изоляции потрескается. Теперь проверим, вставляется ли в окно каркаса пластина. Она не должна болтаться, или туго входить. Каркас ставим на специальный станок или готовимся мотать трансформатор вручную. Толстые провода всегда мотаются руками.

    Намотка трансформатора своими руками

    Укладываем изоляцию первого слоя. Вставляем конец провода в отверстие выводной клеммы. Начинаем мотать провод, не забывая о его натяжении.

    Проверить можно так: намотанная катушка не будет проминаться от пальца. Провод растягивать нельзя, так как нарушится изоляция. Готовую катушку рекомендуется пропитать парафином, чтобы не испортить провод.

    Если обмотка гудит во время работы трансформатора, то изоляция провода стирается, провод изгибается и разрушается. По этой причине натяжение провода во время намотки имеет большое значение.

    Витки во время намотки придвигаем друг к другу, уплотняем. Первый слой самый важный.

    На слое не нужно оставлять пустое место. Наибольшее напряжение на последних витках составляет для первичной 60 + 60 / 2, 18 + 55 В. Изоляция из лака выдержит напряжение, если провод будет проваливаться в пустоту слоя, то может нарушиться изоляция.

    Пропитываем первый слой, затем второй и так далее. К изоляции между обмотками необходимо отнестись добросовестно. Она должна выдерживать до 1000 вольт.

    Слои самодельного трансформатора должны иметь правильную форму. По мере намотки катушка будет изгибаться у краев. Для этого слои нужно равнять во время намотки, не повредив изоляцию.

    Вынужденные стыки провода лучше на ребре каркаса за сердечником. Соединять провод скруткой с пайкой, внакладку с пайкой. Длина контакта при соединении делается более 12 диаметров провода. Стык нужно изолировать бумагой или лаковой тканью. Пайка должна быть без острых углов.Выводные концы обмоток делаются по-разному. Главное, чтобы была надежность и качество.

    Окончание изготовления трансформатора своими руками

    Припаиваем выводные концы обмоток, изолируем поверхность простого трансформатора, подписываем на нем данные характеристики и производим сборку сердечника. После этого надо проверить этот простой трансформатор своими руками.

    Замеряем ток самодельного трансформатора вхолостую, он должен быть минимальным. Смотрим на нагрев. Если греется сердечник, то неправильно подобрано железо.

    Если нагрелись обмотки, значит, есть короткое замыкание. Если нормально, то замыкаем ненадолго вторичную обмотку, треска и сильного гудения не должно быть.

    Пример как сделать самодельный трансформатор

    Перейдем к изготовлению самого трансформатора. По готовому сердечнику рассчитаем мощность трансформатора, витки и провод, намотаем первичную и вторичную обмотки, соберем трансформатор полностью.

    Чтобы мотать трансформатор напряжением 220 на 12 вольт нам необходимо подобрать магнитный сердечник. Подбираем магнитный сердечник Ш-образный, и каркас от старого трансформатора. Чтобы определить мощность, выдаваемую простым трансформатором, необходимо произвести предварительный расчет.

    Расчет трансформатора

    Рассчитываем диаметр провода первичной обмотки. Мощность трансформатора Р = 108 Вт:

    Р = Ux Iгде: I1 – ток в первичной обмотке;

    тогда ток в первичной обмотке: I1 = Р1 / U1 = 108 Вт / 220 В = 0,49 А.

    Возьмем I= 0,5 ампера.

    Из таблицы диаметр провода в зависимости от тока выбираем допустимый ток 0,56 А, диаметр 0,6 мм.

    Самодельный трансформатор своими руками можно намотать без станка. На это уйдет два-три часа, не больше. Приготовим полоски бумаги для прокладки ее между слоями провода. Полоску вырезаем шириной равной расстоянию между щечками катушки трансформатора плюс еще пару миллиметров, чтобы бумага легла плотно, по краям витки не залезали друг на друга.

    Длину полоски делаем с запасом два сантиметра для склеивания. По краям полоску слегка надрезаем ножницами, чтобы при изгибе бумага не рвалась.Затем приклеиваем полоску бумаги на каркас, плотно пригладив ее.

    Намотка первичной обмотки

    Теперь берем провод от старой катушки, у которой провод с хорошей не потрескавшейся изоляцией. Конец провода вставляем в гибкую трубочку изоляции от старого использованного провода соответствующего подходящего диаметра. Просовываем конец обмотки в отверстие каркаса катушки (они уже имеются в старом каркасе).

    Катушка мотается плотно, виток к витку. Намотав 3-4 витка, нужно прижать витки, друг к другу, чтобы намотка витков была плотной. Чтобы мотать трансформатор после намотки первого слоя, необходимо посчитать количество витков в ряду. У нас получилось 73 витка. Делаем прокладку полоской бумаги. Наматываем второй слой. Во время намотки нужно все время держать провод в натянутом состоянии, чтобы намотка получалась плотной. После второго слоя также делаем прокладку из бумаги. Если не хватает длины провода, то соединяем с ним другой провод путем спайки. Лудим лакированный провод, нагрев конец паяльником на таблетке аспирина. При этом лак хорошо снимается.

    Когда намотка первичной обмотки закончена, то конец провода изолируем в трубочку и выводим наружу катушки. Между первичной и вторичной обмотками делаем обмоточную изоляцию. Можно мотать трансформатор дальше.

    Вторичная обмотка

    Рассчитаем диаметр провода вторичной обмотки самодельного трансформатора. Мощность вторичной обмотки примем: Р2 = 100 ваттР2 = U2  x I2где:

    U = 18 вольт;

    I – ток;

    Допустимый ток во вторичной обмотке будет равен: I2 = Р2 / U2 = 100 Вт / 18 В = 5,55 А.

    Из таблицы диаметр в зависимости от тока: диаметр для тока 5,55 А – ближайшее значение в таблице 6,28 ампера. Для такого тока необходим диаметр провода 2 мм.

    Берем провод, который мы получили при сматывании старого трансформатора. Наматываем провод вторичной обмотки по такому же принципу, как и первичную обмотку. Провод вторичной обмотки намного жестче, поэтому, чтобы он ровно ложился при намотке, периодически его необходимо осаживать ударами молотка через деревянный брусок, чтобы не повредить изоляцию.

    У нас получилось 3 слоя вторичной обмотки. Получился готовый намотанный каркас простого трансформатора.

    Сборка трансформатора своими руками

    Для ускорения сборки берем по две Ш-образные пластины. Вставляем их внутрь каркаса поочередно с двух сторон по две штуки.

    Перекрывающие пластины пока не ставим. Они будут установлены позже. Если вставлять все пластины сразу всем пакетом, то между пластинами появляются зазоры и индуктивность всего сердечника падает. После сборки Ш-образных пластин самодельного трансформатора вставляем перекрывающие пластины, также по две штуки.После сборки сердечника аккуратно обстукиваем его плоскости молотком для выравнивания пластин. При помощи стоек и шпилек будем стягивать сердечник. По правилам на шпильки надеваются бумажные гильзы для снижения потерь в сердечнике.

    Концы обмоток зачищаем и лудим. Затем припаиваем к выводным планкам, которые можно прикрепить к каркасу трансформатора. Получился готовый трансформатор своими руками.

    Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните накарту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

    Поделиться ссылкой:

    Источники:

    Основы электроники: трансформатор

    Строительство трансформатора

    Теория предыстории: что делает трансформатор?

    Как электричество генерируется в огромных количествах на огромных атомных электростанциях (или ветряных электростанциях, солнечных полях и т. Д.), А затем поступает в розетку вашей гостиной с правильным напряжением для питания вашего телевизора, чтобы вы могли посмотреть последний эпизод Колесо фортуны? Первый трансформатор (создан в 1885 г.) на выставке в Германии
    Трансформатор - это устройство, которое регулирует уровни переменного напряжения, что делает экономически возможным более эффективную и экономичную передачу и распределение электроэнергии на большие расстояния.

    Трансформатор рассматривается многими как один из важнейших электрических компонентов, играющих ключевую роль в современном обществе. Без этого мы, вероятно, не смогли бы обеспечить электричеством столько домов и офисов, сколько мы делаем сегодня, а также не смогли бы обеспечить им более сельские районы мира.

    Можно подумать, что технология, столь важная для нашей повседневной жизни, будет иметь сложную структуру, но если вы ее разложите, трансформатор - это всего лишь несколько основных частей с широким диапазоном теоретических возможностей.

    Структура трансформатора


    Сердечник

    Сердечник трансформатора представляет собой металлическую конструкцию, которая обернута витками изолированного провода и пропускает магнитный поток. Сердечник обычно изготавливается из железа или стали и может быть выполнен в нескольких конфигурациях: квадратной, тороидальной, Е-образной, с цельным, воздушным и даже с многослойным стальным сердечником. Также можно использовать зазор в сердечнике для ограничения тока короткого замыкания. Каждая комбинация имеет свои собственные свойства минимизировать потери или быть наиболее эффективной при использовании на высоких частотах, в зависимости от области применения.

    Обмотки

    Входные и выходные напряжения / токи трансформатора зависят от количества витков провода, известного как «коэффициент трансформации». Есть первичная сторона и вторичная сторона, и количество обмоток на каждой стороне представляет собой соотношение, прямо пропорциональное соотношению напряжений. Обе стороны зависят друг от друга через свойство индукции и магнитный поток, который течет через сердечник трансформатора.

    Квадратный магнитный сердечник трансформатора
    Для расчета коэффициента оборотов используйте следующую формулу:


    Где

    В P = Напряжение на первичной стороне
    В S = Напряжение на вторичной стороне
    I P = Ток на первичной стороне
    I S = Ток на вторичной стороне
    N P = Количество обмоток первичной обмотки
    N S = Количество витков вторичной обмотки
    a = Передаточное число

    Как видите, первичные и вторичные напряжения прямо пропорциональны количеству витков на первичной и вторичной стороне соответственно, но обратно пропорциональны первичному и вторичному токам.

    The Project


    Этот комплект DIY Transformer Kit обеспечивает отличный практический опыт по намотке собственного трансформатора и вычислению различных соотношений витков.

    Предупреждение: Если вы не уверены в опасностях, связанных с вашим конкретным проектом, проконсультируйтесь с кем-нибудь, кто имеет опыт, прежде чем начинать свой проект.


    Роб Урбанович демонстрирует, как наматывать собственный трансформатор в своем видео на YouTube.

    Необходимые инструменты и компоненты:

    (2) Магнитный провод 26 AWG
    (1) Магнитный провод 20 AWG
    (1) Горизонтальное крепление на катушке трансформатора
    (2) Ферритовый сердечник E (без зазоров)
    Паяльник
    Припой
    Калькулятор
    Изолента
    Питание от переменного тока до переменного тока источник

    Направление:

    1.Начнем с расчета коэффициента поворотов по формуле:

    2. Намотка трансформатора несколько сотен раз займет некоторое время, поэтому убедитесь, что у вас есть время сделать это за один присест и вы можете одновременно сосредоточиться на счете. В этом уроке мы будем использовать пример создания повышающего трансформатора и увеличения выходной мощности трансформатора, чтобы удвоить входную.

    3. Возьмите один конец более тонкого провода (26 AWG) и припаяйте его к контакту соединителя в углу шпульки.

    4. Обмотайте вторичную обмотку с рассчитанным числом оборотов. В нашем примере мы намотаем 800 витков. Постарайтесь намотать его относительно туго и равномерно по этой стороне сердечника.

    5. По завершении 800 витков припаяйте конец к другому штырю углового соединителя на бобине трансформатора. Рекомендуется использовать булавку рядом с предыдущей, чтобы вам было легче отслеживать.

    6. Используя более толстую проволоку (20 AWG), припаяйте один конец к третьему углу шпульки.

    7. Обмотайте первичную сторону с половиной витков вторичной стороны. В нашем примере это будет 400 витков. Опять же, попробуйте намотать его относительно плотно и равномерно по всей стороне сердечника.

    8. Припаяв конец провода к последнему углу бобины, оберните все изолентой, чтобы защитить его от окружающей среды и исключить возможность случайного короткого замыкания.

    9. Защелкните каждую деталь E-образного сердечника на шпульке так, чтобы центр буквы E проходил через сердцевину шпульки.

    Примечание: У вас есть возможность добавить дополнительный центральный отвод, припаяв провод к самому железному сердечнику, чтобы создать более совершенный трансформатор.

    10. Вы заметите, что были использованы только четыре контакта. Это сделано в основном для безопасности и простоты. Следуя нашему примеру, вы можете добавить переменное напряжение к первичной стороне, чтобы удвоить его напряжение на вторичной стороне. Не забудьте измерить его мультиметром, прежде чем использовать его в каких-либо приложениях.

    Ваш проект завершен - поздравляем!

    Вопросы для обсуждения

    1.Когда происходит передача максимальной мощности от источника к нагрузке?
    2. Что приведет к увеличению числа витков провода на вторичной обмотке трансформатора?
    3. Что даст трансформатор с обмоткой 100: 200 по сравнению с трансформатором с обмоткой 400: 800?
    4. Для чего нужен трансформатор с центральным отводом?

    ссылку

    http://edisontechcenter.org/Transformers.html

    Как сделать понижающий трансформатор

    Обновлено 15 декабря 2020 г.

    Крис Дезил

    Трансформаторы - это простые, но чрезвычайно полезные электрические устройства, которые работают благодаря явлению, известному как электромагнитная индукция.Если поместить проводящий провод в изменяющееся магнитное поле, поле индуцирует электрический ток в проводе, а там, где есть ток, возникает разность потенциалов или напряжение. Обратное также верно. Изменяющийся ток в проводнике создает магнитное поле. Поскольку ток должен изменяться (в потоке), трансформаторы работают только с электричеством переменного тока, что является преимуществом переменного тока перед мощностью постоянного тока.

    Напряжение зависит от того, сколько раз проводник проходит через магнитное поле.Вы можете преобразовать напряжение в одной цепи - первичной цепи - в другое напряжение во вторичной цепи, регулируя количество раз, когда проводники каждой цепи проходят через магнитное поле. Устройство, которое это делает, представляет собой трансформатор, а когда он снижает напряжение во вторичной цепи, это понижающий трансформатор. Это именно то, что делает трансформатор на линии электропередачи за пределами вашего дома. Сделать понижающий трансформатор самому несложно, но он не будет таким большим и мощным, как на линии электропередачи.Однако он будет работать точно так же.

    Трансформаторы используют обмотки

    В трансформаторе используется один проводник, намотанный несколько раз вокруг центрального сердечника для первичной цепи, и другой проводник, также несколько раз намотанный вокруг того же или другого сердечника для вторичной цепи. Соотношение количества обмоток в этих катушках определяет напряжение во вторичной катушке. Формула трансформатора, которая следует из закона Фарадея, следующая:

    \ frac {N_s} {N_p} = \ frac {V_s} {V_p}

    , где N s и N p - количество обмоток в вторичная и первичная обмотки соответственно, а V s и V p - напряжения.

    В понижающем трансформаторе вторичное напряжение меньше первичного, поэтому количество обмоток вторичной обмотки должно быть меньше количества обмоток первичной обмотки. Если вам известно напряжение в первичной цепи и у вас есть цель для вторичной катушки, вы достигнете своей цели, отрегулировав количество обмоток на обеих катушках.

    Построение понижающего трансформатора

    Наиболее эффективные трансформаторы имеют ферромагнитные сердечники, потому что этот материал намагничивается первичной обмоткой и передает энергию вторичной обмотке более эффективно, чем катушки могут делать сами.Самый простой способ получить ферромагнитную катушку - найти большую стальную шайбу в строительном магазине или на ремонтной мастерской. Он должен быть от 2 до 3 дюймов в диаметре.

    Для изготовления катушек можно использовать любой провод, но лучше всего магнитный провод 28 калибра, который представляет собой очень тонкий медный провод, покрытый изоляцией. Чтобы создать первичную катушку, плотно оберните провод вокруг шайбы не менее 500 раз, удерживая провода плотно вместе. При необходимости намотайте его слоями. Тщательно подсчитайте количество обмоток и запишите количество.Когда вы закончите наматывать, оставьте два конца свободными для подключения к источнику питания и оберните провода малярной лентой, чтобы они оставались на месте.

    Поскольку вы собираете понижающий трансформатор, количество обмоток вторичной обмотки будет меньше. Фактическое число зависит от желаемого напряжения, и вы можете рассчитать его, используя формулу трансформатора. Намотайте вторичную катушку поверх первичной, оставив концы свободными для подключения к счетчику. Оберните катушку малярной лентой, а затем оберните весь трансформатор изолентой, чтобы изолировать его.Трансформатор готов к тестированию.

    Пример расчета

    Предположим, вы хотите понизить напряжение 120 В в домашней розетке до 12 В. Соотношение напряжений составляет 12/120 = 1/10, поэтому, если первичная обмотка имеет 500 обмоток, вторичная обмотка должна иметь 50.

    Обратите внимание, что использование домашнего напряжения в этом расчете является только примером, и ток, проходящий под ним. Большое напряжение приведет к быстрому нагреву проводов, и было бы опасно пытаться снизить его.Этот элементарный трансформатор безопаснее использовать для гораздо меньших входных напряжений от более безопасных источников. Не оставляйте трансформатор подключенным на какое-либо время.

    Как рассчитать обмотку трансформатора

    Обновлено 28 декабря 2020 г. распределительные сети, которые преобразуют токи высокого напряжения в те, которые вы используете в бытовых приборах.Эти трансформаторы имеют простую конструкцию для большинства типов трансформаторов, но могут сильно различаться по степени изменения входного напряжения в зависимости от конструкции.

    Формула обмотки трансформатора

    Трансформаторы, которые используются в системах распределения электроэнергии, имеют простую конструкцию, в которой используется катушка, намотанная на магнитный сердечник в различных областях.

    Эти катушки с проводом принимают входящий ток и изменяют напряжение в соответствии с коэффициентом поворота трансформатора , который равен

    \ frac {N_P} {N_S} = \ frac {V_P} {V_S}

    для числа обмотки первичной обмотки и вторичной обмотки N p и N s соответственно, а напряжение первичной обмотки и вторичной обмотки V p и V s соответственно.

    Эта формула обмотки трансформатора сообщает вам долю, на которую трансформатор изменяет входящее напряжение, и что напряжение обмоток катушки прямо пропорционально количеству обмоток самих катушек.

    Имейте в виду, что, хотя эта формула называется «соотношением», на самом деле это дробь, а не соотношение. Например, если у вас есть одна обмотка в первичной обмотке и четыре обмотки во вторичной обмотке трансформатора, это будет соответствовать доле 1/4, что означает, что трансформатор снижает напряжение на значение 1/4.Но соотношение 1: 4 означает, что для одного из чего-то есть четыре из чего-то другого, что не всегда означает то же самое, что и дробь.

    ,

    Трансформаторы могут увеличивать или уменьшать напряжение и известны как повышающие трансформаторы , или понижающие трансформаторы , , в зависимости от того, какое действие они выполняют. Это означает, что коэффициент трансформации трансформатора всегда будет положительным, но может быть больше единицы для повышающих трансформаторов или меньше единицы для понижающих трансформаторов.

    Формула обмотки трансформатора верна только тогда, когда углы первичной и вторичной обмоток совпадают по фазе друг с другом. Это означает, что для данного источника питания переменного тока (AC), который переключается вперед и назад между прямым и обратным током, ток в первичной и вторичной обмотках синхронизируется друг с другом во время этого динамического процесса.

    Могут быть некоторые трансформаторы с коэффициентом трансформации 1, которые не изменяют напряжение, а вместо этого используются для разделения различных цепей друг от друга или для небольшого изменения сопротивления цепи.

    Калькулятор конструкции трансформатора

    Вы можете понять свойства трансформаторов, чтобы определить, что калькулятор конструкции трансформатора будет учитывать в качестве метода определения того, как сконструировать трансформаторы.

    Хотя первичная и вторичная обмотки трансформатора отделены друг от друга, первичная обмотка индуцирует ток во вторичных обмотках с помощью метода индуктивности. Когда источник питания переменного тока подается через первичные обмотки, ток течет по виткам и создает магнитное поле с помощью метода, называемого взаимной индуктивностью.

    Формула обмотки трансформатора и магнетизм

    Магнитное поле описывает, в каком направлении и насколько сильный магнетизм будет действовать на движущуюся заряженную частицу. Максимальное значение этого поля составляет dΦ / dt , скорость изменения магнитного потока Φ за небольшой промежуток времени.

    Поток - это измерение того, сколько магнитного поля проходит через определенную площадь поверхности, например прямоугольную. В трансформаторе силовые линии магнитного поля направляются наружу от магнитной катушки, вокруг которой намотаны провода.

    Магнитный поток связывает обе обмотки вместе, а сила магнитного поля зависит от силы тока и количества обмоток. Это может дать нам калькулятор конструкции трансформатора , который учитывает эти свойства.

    Закон индуктивности Фарадея, который описывает, как магнитные поля индуцируются в материалах, диктует, что напряжение любой из обмоток индуцирует

    либо для первичных обмоток, либо для вторичных обмоток. Обычно это называется наведенной электродвижущей силой ( ЭДС ).

    Если бы вы измерили изменение магнитного потока за небольшой период времени, вы могли бы получить значение dΦ / dt и использовать его для вычисления ЭДС . Общая формула для магнитного потока:

    \ Phi = BA | cos {\ theta}

    для магнитного поля B , площадь поверхности плоскости в поле A и угол между магнитным полем линии и направление, перпендикулярное площади θ .

    Вы можете учесть геометрию обмоток вокруг магнитопровода трансформатора, чтобы измерить поток. Askat

    для источника переменного тока, где ω - угловая частота ( 2πf для частоты f ) и Φ max - максимальный поток.В этом случае частота f относится к количеству волн, которые проходят через заданное место каждую секунду. Инженеры также называют произведение тока на количество витков обмотки « ампер-витков, » - мерой силы намагничивания катушки.

    Примеры калькулятора обмоток трансформатора

    Если вы хотите сравнить экспериментальные результаты того, как обмотки трансформаторов влияют на их использование, вы можете сравнить наблюдаемые экспериментальные свойства с характеристиками калькулятора обмоток трансформатора.

    Компания-разработчик программного обеспечения Micro Digital предлагает онлайн-калькулятор обмотки трансформатора для расчета стандартного калибра проводов (SWG) или американского калибра проводов (AWG). Это позволяет инженерам изготавливать провода соответствующей толщины, чтобы они могли нести заряды, необходимые для их целей. Калькулятор оборотов трансформатора подскажет вам индивидуальное напряжение на каждом витке обмотки.

    Другие калькуляторы, например, от компании-производителя Flex-Core, позволяют рассчитать размер провода для различных практических применений, если вы введете номинальную нагрузку, номинальный вторичный ток, длину провода между трансформатором тока и измерителем и входную нагрузку. метра.

    Трансформатор тока создает напряжение переменного тока во вторичной обмотке, пропорциональное току в первичной обмотке. Эти трансформаторы снижают токи высокого напряжения до более низких значений, используя простой метод контроля фактического электрического тока. Нагрузка - это сопротивление самого измерительного прибора пропускаемому через него току.

    Hyperphysics предлагает интерактивный интерфейс расчета мощности трансформатора, который позволяет использовать его в качестве калькулятора конструкции трансформатора или в качестве калькулятора сопротивления трансформатора.Чтобы использовать его, вам необходимо ввести частоту напряжения питания, индуктивность первичной обмотки, индуктивность вторичной обмотки, количество катушек первичной обмотки, количество катушек вторичной обмотки, вторичное напряжение, сопротивление первичной обмотки, сопротивление вторичной обмотки, сопротивление нагрузки вторичной обмотки и взаимная индуктивность.

    Взаимная индуктивность M учитывает влияние изменения нагрузки на вторичную обмотку на ток через первичную обмотку с ЭДС:

    ЭДС = -M \ frac {\ Delta I_1} {\ Delta t }

    для изменения тока через первичную обмотку ΔI 1 и изменения во времени Δt .

    Любой онлайн-калькулятор обмотки трансформатора делает предположения о самом трансформаторе. Убедитесь, что вы знаете, как каждый веб-сайт рассчитывает заявленные ценности, чтобы вы могли понять теорию и принципы, лежащие в основе трансформаторов в целом. Насколько они близки к формуле обмотки трансформатора, вытекающей из физики трансформатора, зависит от этих свойств.

    Советы по дизайну для перемотки собственных трансформаторов, октябрь 1944 г. Radio News

    Не многие перематывают трансформаторы в наши дни, но даже в 1955 году, когда появились «Советы по дизайну для перемотки Собственные трансформеры »в журнале Radio News появилась статья не так много перематывали трансформаторы.Но многие радиомонтажники сделали это, потому что замена была дорогостоящей, и замена на другие, кроме обычные трансформаторы могут занять много времени. Поиска на Интернет и доставка через пару дней. Поскольку многие - если не большинство, по необходимости - мастерские по ремонту электроники сохранили подписки на доступную торговлю журналы, опубликовавшие подобные статьи, оказали большую услугу. Автор Джеймс Долан предоставляет всю необходимую информацию для разработки вашего собственный трансформатор с нуля или для модификации существующего трансформатора для соответствия ваши конкретные требования.Во многих магазинах хранились тематические учетные карточки. файл с названием журнала, номером выпуска и заголовком статьи для быстрого ознакомления.

    Советы по дизайну для перемотки собственных трансформаторов

    Многим военнослужащим по необходимости приходится перематывать мелкие неисправные радиотрансформаторы ввиду современной нехватки.

    Джеймс Э. Долан

    Сохраните те старые сердечники трансформатора. Многие из них можно использовать для самостоятельной разработки агрегаты для специальных работ.

    Отсутствие приоритета, особая опытная работа, актуальность, стремление к проектированию. и построить свой собственный трансформатор, любая из этих причин может побудить вас попытаться проектирование и изготовление собственных трансформаторов. Эта статья предназначена для оказания помощи потенциальному производителю трансформаторов, который экономил запасы cores с намерением когда-нибудь что-нибудь из них сделать. Конструктору трансформаторов открыта возможность построения трансформаторов для его собственное специальное использование, в соответствии с его собственными спецификациями и любого электрического размера он желает.

    Поскольку экспериментатор обычно планирует использовать ядра, которые у него есть под рукой, независимо от того, они из какой-то старой заброшенной широковещательной работы или чего-то, что он однажды перегрузил слишком часто, или части полюсного трансформатора, полученные в результате мудрого союза с в какой-то местной энергетической компании, в этой статье будет предпринята попытка показать, как эти ядра можно найти хорошее применение.

    Первое, что нужно учитывать - это размер сердечники под рукой, как физические, так и электрические. Возьмите небольшую записную книжку, а затем измерить все имеющиеся ядра и записать эту информацию в свой ноутбук.В первую очередь при проектировании мы обращаем внимание на мощность трансформатора, который мы планируем сделать. Соответственно, было бы разумно перечислить наш трансформатор основной запас в отношении мощности, которую они будут нести. Также перечислено, следует - толщина сердечника, площадь поперечного сечения центральной стойки, если сердцевина является оболочкой, а площадь поперечного сечения одной ножки, если она является стержневым. Площадь и длина и ширина окна. в сердечнике, в который должны входить готовые катушки, также следует записать.Довольно неприятно наматывать катушку, а затем обнаруживать, что окно сердечник слишком мал для полной обмотки. Хорошо позволить От 10% до 40% дополнительного места при вычислении размера катушки, если вы не у вас есть какой-то намоточный станок, например, хороший токарный станок с надлежащим переключить передачи, под рукой, чтобы намотать катушки, иначе вы не будет достигать зазоров между обмотками, указанных в общих таблицах проводов, которые дают столько витков на квадратный дюйм.Не пытайтесь втиснуть обмотку в малейшее возможное пространство; допустить ваши ошибки и отклониться от совершенства, которое вы обязательно сделаете.

    Единственный инструмент, необходимый для первой части нашей работы, - это хорошая линейка; мера внешние размеры жил, их длина и ширина, площадь окна, и толщина сердечника. По этим рисункам вычислите площадь поперечного сечения. Не забудьте плотно зажать сердечник при измерении толщины, иначе возникнет ошибка. приведет к вашему вычислению.

    Мощность, которую будет обрабатывать ядро, определяется по графику. данные для этой цели. На этом графике слева указаны номинальные мощности. вертикальный столбец и площадь поперечного сечения в основании графика. А Кривая на графике отмечена как «Площадь в ваттах». Найдите площадь поперечного сечения . на базовой шкале и проведите по вертикальной линии, проведенной в точке, представляющей площадь до кривой «Площадь в ваттах». Где эта вертикальная линия встречается с кривой проведите горизонтальную линию слева от столбца мощности.Это укажет возможности ядра по управлению мощностью.

    Рис. 1 - Внимательно следуйте этим кривым при проектировании вашего собственные радиотрансформаторы для достижения максимальной эффективности и рабочих характеристик.

    Следующее соображение - это использование, которое предлагается для имеющихся сердечников. Если возникает потребность в трансформаторе, есть ли у вас сердечник, который можно использовать с целью? Это первый вопрос, на который необходимо ответить; Найди мощность.Мощность равна произведению напряжения на силу тока, или:

    W = EI .......... (1)

    Таким образом, мы должны умножить напряжение на силу тока каждой вторичной обмотки и сложите их вместе, чтобы определить требуемую мощность. Давайте спроектируем и построим трансформатор, который выдает 5 вольт при 3 амперах с центральным ответвлением; 6.3 вольт на 4 ампера с центральным отводом; и иметь высоковольтную обмотку 450-0-450 вольт и который обеспечит ток 200 миллиампер.Трансформатор будет работают от 115 вольт, 60-тактного тока. Применяя нашу формулу (1), имеем 5 х 3 равно 15; 6,3 х 4 равно 25,2; и 450 x 200 миллиампер или 0,2 ампера, равно 90. Эти продукты представляют собой мощности отдельных вторичных обмоток. Добавьте их В результате получается общая вторичная мощность, в данном случае 130 Вт. В первичная мощность определяется путем добавления к этой цифре потерь в сердечнике и обмотки. Обычно эти потери составляют около 10% от номинала трансформатора.Следовательно, если мы разделим вторичную мощность на 0,9, мы найдем первичную мощность; таким образом:

    W p = W s /0.9 ....... (2)

    , где W p представляет первичную мощность, а W s представляет вторичная мощность.

    Если это сделано, первичная мощность трансформатора составляет 144 Вт. Позволять мы называем это 150 Вт, чтобы обеспечить легкое рабочее значение.

    Мы можем остановиться здесь и свериться с ранее сделанной диаграммой в нашей записной книжке. с указанием имеющихся ядер и данных о них.Есть ли у нас под рукой ядро, которое выдержит 150 ватт? Возможно, лист кремнистой стали нужно покупать у местного дилера стали и разрезал его, чтобы сделать трансформатор с сердечником. Возможно, мы иметь под рукой 200-ваттный сердечник, из которого мы можем вычесть несколько слоев, чтобы используйте его для 150-ваттного приложения.

    Теперь из-за коэффициента мощности трансформатора мы не можем разделить эту мощность. значение на 115 вольт, чтобы найти ток, но необходимо принять этот коэффициент мощности в учетную запись.Поскольку коэффициент мощности обычно составляет около 90%, мы можем найти первичный ток, умножив первичное напряжение на 0,9 и разделив первичную мощность этим продуктом.

    I p = W p / (E p x 0,9) .............. (3)

    Если для первичного напряжения используется 115 вольт, этот продукт (E p х 0,9) становится 103,5; если первичное напряжение составляет 110 вольт, продукт становится 99. Если мы хотим обеспечить простую оценку стоимости, мы можем назвать этот продукт 100, что будет представлять первичное напряжение немногим более 110 вольт.Если мы используем коэффициент 100 в предлагаемой нами конструкции трансформатора с первичной мощностью 150 Вт, мы находим, что наш первичный ток будет 1,50 ампер.

    Следующим этапом проектирования является расчет витков в обмотках. На графике показаны витки первичной обмотки 115-вольтной первичной обмотки с использованием магнитного потока сердечника. плотность 75 000 линий на квадратный дюйм. Поскольку все виды стали будут в ядер, которые мы будем использовать, необходимо выбрать достаточно высокое значение для хорошей работы и все еще не настолько высокого, чтобы вызвать чрезмерные потери в сердечнике с более бедные марки стали.Эта таблица составлена ​​исходя из предположения, что первичное напряжение как 115 вольт и частота 60 циклов в секунду. Это легко использовать график; имея площадь жилы (поперечное сечение) на базовой линии, возвести вертикальная линия от основания в точке, представляющей поперечное сечение жилы области до линии, обозначенной «Площадь для поворотов». В том месте, где эта вертикаль пересекает отмеченную таким образом кривую протяните горизонтальную линию до правой стороны график, на котором будут указаны витки в первичной цепи.

    Возвращаясь к предлагаемому трансформатору, который мы строим, отмечается Опять же, ядро ​​должно нести 150 Вт. Просматривая наш график, мы обнаруживаем, что площадь поперечного сечения, необходимая для этой мощности 150 Вт, составляет 2,2 кв. дюймы. В первичной обмотке будет 270 витков провода, как показано в разделе «Площадь до витков». изгиб.

    Поскольку у нас есть первичные витки на графике, мы можем найти вторичные витки для каждой обмотки по формуле, согласно которой отношение первичных напряжение к первичным виткам прямо пропорционально соотношению вторичных напряжение на вторичных витках.Математически это: E p / N p = E с / N с

    Эта формула стала более удобной за счет преобразования ее в более работоспособную форму. в котором коэффициенты изменены для указания количества оборотов на вольт, а не пропорционального проблема соотношения. Таким образом, количество витков на вольт - это количество витков, деленное на напряжение, один член нашей новой формулы должен быть в такой форме:

    N s = N p / E p x E s

    В новой формуле теперь указано, что количество витков вторичной обмотки равно первичному. напряжение, деленное на количество витков первичной обмотки, и полученный результат умножается на вторичное напряжение.В предлагаемом нами трансформаторе мы нашли первичный оказывается 270; подставляя это значение и вставляя первичное напряжение в в нашем уравнении (5) имеем:

    N с = 270/115 x E с = E с х 2,35.

    Теперь, заменив различные вторичные напряжения вместо E s в нашей формуле мы легко можем найти наши второстепенные витки. Предлагаемый нами трансформатор имеет три вторичных обмотки, 5 вольт, 6.3 вольта и 900 вольт, все с отводом от средней точки. Используя приведенную выше формулу, мы находим, что для 5-вольтовой обмотки требуется 12 витков; в На обмотку 6,3 В требуется 14,8 или 15 витков; а обмотка на 900 вольт требует 2115 оборотов. Центральные ответвители будут на каждой обмотке на 6, 7 1/2 и 1058 витков. соответственно. Небольшая диаграмма, показывающая особенности дизайна различных обмотки теперь должны быть построены. На этой диаграмме должно быть показано первичное напряжение, ток, витки, размер провода и площадь поперечного сечения обмотки.В будут показаны те же данные для каждой вторичной обмотки. Изоляция провода также должна указывается для каждой обмотки. Возвращаясь к предложенному нами трансформатору, мы обнаружили что сердечник должен иметь площадь поперечного сечения 2,2 квадратных дюйма. У нас есть под рукой сердечник раковинного типа, центральная ножка которого имеет ширину 1 1/2 дюйма и толщиной 1 1/2 дюйма. Удалив несколько слоев, мы можем сделать это ядро до 2,2 в поперечном сечении, чтобы соответствовать нашей цели. Окно этого ядро имеет длину 2 1/4 дюйма и ширину 3/4 дюйма.Теперь наша задача - найти если наша катушка поместится в это окно. Площадь окна составляет 1,688 квадратных дюйма.

    Теперь необходимо выбрать размер провода, который будет использоваться для различных обмотки. Как правило, провод должен иметь площадь поперечного сечения между 750 и 1500 круговых милов на ампер тока, чтобы избежать чрезмерных потерь в меди и для предотвращения перегрева змеевика. Изучив проволочный стол, мы находим, что нет.14 имеет площадь поперечного сечения 4107 круговых мил, что допустимо для обмоток 3 и 4 ампера. Обмотка 1 1/2 ампера требует провод меньшего диаметра, поэтому выбираем провод №19 с площадью поперечного сечения 1288 круговых мил. Обмотка высокого напряжения, по которой проходит ток 0,2 Ампер должен иметь площадь около 150 круговых мил. Находим, что провод № 28 имеет площадь 151 круговой мил, что удовлетворительно для наших целей.

    Теперь наша диаграмма проводов и информации о витках должна быть построена и для трансформатор, который мы предлагаем построить, показан на схеме I.Когда мы добавляем последний столбец нашей диаграммы, мы найдем требуемую площадь поперечного сечения для провода в катушке в данном случае 0,922 квадратных дюйма.

    Необходимо сделать припуск на изоляцию, которая должна быть размещена вокруг сердечник и между обмотками. Допустимая толщина изоляции 0,050 дюйма. для изоляции вокруг жилы; так как намоточное пространство составляет 2 1/4 дюйма в длину, это означает 2 1/44 X 0,050 или 0,11 квадратного дюйма изоляции в этой точке.Там необходимо учитывать четыре катушки, первичную и три вторичных, и между ними будет вставлена ​​изоляция толщиной 0,025 дюйма.

    Поскольку эти катушки снова имеют длину 2 1/44 дюйма, это означает, что данная изоляция будет занимать 0,056 между каждой парой катушек. Поскольку есть четыре катушки с тремя промежутки между ними, это означает, что изоляция между катушками составит до 0,170 квадратных дюймов. В дополнение к этой изоляции, покрывающая изоляция будет необходимо, чтобы покрыть внешнюю часть катушки.Пусть эта изоляция будет 2 1/4 дюйма. длинные и толщиной 0,025; это займет 0,06 квадратных дюйма. Каждый конец катушки должен быть утеплен. Утеплитель будет толщиной 0,050 и шириной 3/4 или 0,08 дюйма. квадратный дюйм для обоих концов. Площадь изоляции катушки - это общая всех этих индивидуальных изоляционных материалов, или 0,42 квадратных дюйма для изоляции.

    Добавление этой области изоляции к площади, необходимой для провода, даст общая площадь окна сердечника, необходимая для размещения катушек.В предлагаемом нами дизайне для наших обмоток требуется 0,922 кв. дюйма, а для изоляции - 0,42 кв. дюйм. Для готовой катушки потребуется 1,342 квадратных дюйма. Мы не сделали любые поправки на неравномерность и другие неточности ручного намотки или ручная конструкция катушки. Необходимо сделать от 10% до целых Припуск 40% на обмотку и изоляцию. Если вы будете осторожны, более низкие проценты будет применяться, в противном случае катушки следует рассматривать как требующие 30% или 40% расчетных требований к площади.В нашем случае мы будем рассчитывать на будьте очень осторожны и оставьте 20% дополнительного места. Это 20% площади 1,342 кв. дюймов составляет 0,268 квадратных дюйма, и добавляя это к нашей вычисленной площади, мы находим полная площадь с учетом припусков составляет 1,610 квадратных дюймов. Как окно в ядро, которое мы выбрали для этой работы, имеет достаточный размер, чтобы вместить этот размер обмотки мы можем продолжить наш дизайн. (Площадь нашего окна составляет 1,688 кв. дюйм.)

    Таблица I. Конструктивные особенности различных обмоток.

    Теперь найдите среднюю длину витка каждой вторичной обмотки и умножьте это среднее значение. длина витка по количеству витков в каждой вторичной обмотке, чтобы найти длину провода требуется для каждого вторичного. Это касается и первичного. Запишите эту длину, так как это наше руководство по закупкам для наших требований к проводам. Из проволочного стола найти сопротивление на 1000 футов каждого размера провода, используемого в различных вторичные. Рассчитайте сопротивление вторичных обмоток.Умножение сопротивление каждой обмотки току, проходящему через обмотку, будет дайте нам падение напряжения в каждой обмотке. Если падение напряжения нежелательно будучи слишком высоким, чтобы дать нам желаемые характеристики напряжения и тока затем добавьте несколько витков в недостающие обмотки, чтобы компенсировать это напряжение. уронить. Теперь возведите в квадрат ток каждой обмотки и умножьте его на сопротивление. каждой соответствующей обмотки. Это даст продукт, который представляет собой I 2 R или потери меди, вызванные теплом в обмотках, возникающим при прохождении тока.Обратите внимание на эти потери в меди и их сумму, поскольку этот коэффициент будет использоваться в ближайшее время в вычисление КПД трансформатора. Нахождение потерь, присутствующих в ядре трансформатор легко сделать, рассчитав кубическое содержимое сердечника, и, зная, что кремнистая сталь весит 0,27 фунта на кубический дюйм, мы можем вычислить вес сердечника. Конечно, тоже несложно поставить сердечник на весах и прочтите вес, если они у вас под рукой. Наши основные потери будут около 1.7 Вт на фунт материала сердцевины. Умножьте вес сердечника на 1,7 и результатом будут потери в сердечнике в ваттах. Добавьте эти показатели потерь вместе с потерями в меди и потерях в сердечнике, а также их сумма даст нам общие потери нашего трансформатора.

    Возьмите мощность вторичных обмоток и умножьте ее на 100. Разделите это произведение на ту же мощность плюс общие потери, включая потери в меди и железные потери.Это приведет к процентному коэффициенту, который будет эффективностью трансформатора. Выражается математически:

    Эфф. = (W с x 100) / (W с + потери)

    КПД должен быть около 90% или выше. Если вы использовали меньший размер провода где-то потому что он у вас был под рукой, возможно, вы увеличили медь потеря; если потери в сердечнике кажутся высокими, не уменьшайте размер сердечника, а используйте провод большего размера на одной или нескольких обмотках для уменьшения потерь в меди.

    Собираем в одну кучу все расчеты нашего последнего параграфа для предлагаемого трансформатора. Во-первых, мы обнаруживаем, что наша средняя длина поворота составляет примерно 7 дюймов. Есть 270 витков первичной обмотки, что требует 157 футов эмалевого провода №19. В качестве второстепенного # 1 и №2 используйте провод одного и того же размера, мы можем рассматривать как одновременно, так и наш провод здесь требуется 16 футов эмалированного провода №14. Вторичный № 3 потребует 1232 фута эмалированной проволоки №28. Сопротивление на фут для этих размеров проводов это: 0.002525 Ом на фут для № 14; 0,008051 Ом на стопу для эмали №19; и 0,065 Ом на фут для провода № 25. Сопротивление различных обмоток являются:

    Первичный 1,26 Ом; вторичный № 1, 0,018 Ом; вторичный № 2, 0,022 Ом; вторичный №3, 80 Ом.

    Падение напряжения на обмотке:

    Вторичный № 1 0,054 В; вторичный № 2, 0,088 вольт; вторичная №3, 16 вольт.

    Падение напряжения на вторичной обмотке №3 не вызывает возражений.Чтобы компенсировать для наших падений напряжения во вторичных обмотках № 1 и 2, а также для преодоления сопротивления в выводах от трансформатора к розеткам добавим по одному витку на каждую этих обмоток. Таким образом, мы даем им новое значение 13 и 16 витков соответственно. с центральными метчиками теперь на 6 1/2 и 8 оборотов. Изменить ранее сделанный график к этим новым ценностям.

    Текущий квадрат, умноженный на сопротивление каждой обмотки:

    Первичный, 2.8 Вт; вторичный №1 0,16 ватт; вторичный №2, 0,35 Вт; вторичный # 3, 3,2 Вт. Общие потери в меди составляют 6,51 Вт.

    Поскольку сердечник имеет внешние размеры 4 1/2 на 3 3/4 дюйма и весит 4,6 фунтов, потери в сердечнике составляют 7,8 Вт. Общие потери складываются из меди и потери в сердечнике или 14,3 Вт. КПД трансформатора:

    с x 100) / (Ш с + потери) или (130 х 100) / (130 + 14,3)

    Выполняя указанные математические операции, мы обнаруживаем, что наша эффективность составляет почти 91%.Поскольку наш показатель эффективности - это наша проверка полезности наших дизайн и наша эффективность более 90% в этом случае дизайн полностью удовлетворительный и мы можем пойти дальше и сконструировать наш трансформатор.

    Опубликовано: 5 марта, 2021 г.

    ТРАНСФОРМАТОРЫ - прикладное промышленное электричество

    Что такое повышающие и понижающие трансформаторы

    Это действительно очень полезное устройство. С его помощью мы можем легко умножить или разделить напряжение и ток в цепях переменного тока.Действительно, трансформатор сделал передачу электроэнергии на большие расстояния реальностью, поскольку напряжение переменного тока может быть «повышено», а ток «понижен» для снижения потерь мощности сопротивления проводов вдоль линий электропередач, соединяющих генерирующие станции с нагрузками. На обоих концах (как на генераторе, так и на нагрузках) уровни напряжения снижаются трансформаторами для более безопасной работы и менее дорогостоящего оборудования.

    Трансформатор, который увеличивает напряжение от первичной к вторичной (больше витков вторичной обмотки, чем витков первичной обмотки), называется повышающим трансформатором .

    Напротив, трансформатор, предназначенный для работы с точностью до наоборот, называется понижающим трансформатором .

    Давайте еще раз рассмотрим фотографию, показанную в предыдущем разделе:

    Рис. 8.1. Поперечное сечение трансформатора, показывающее первичную и вторичную обмотки, имеет высоту несколько дюймов (приблизительно 10 см).

    Это понижающий трансформатор, что подтверждается большим числом витков первичной обмотки и малым числом витков вторичной обмотки. В качестве понижающего блока этот трансформатор преобразует низковольтную слаботочную мощность в низковольтную сильноточную мощность.Провод большего сечения, используемый во вторичной обмотке, необходим из-за увеличения тока. Первичная обмотка, которая не должна проводить такой большой ток, может быть изготовлена ​​из провода меньшего сечения.

    Обратимость работы трансформатора

    Если вам интересно, может ли работать с любым из этих типов трансформатора в обратном направлении (питание вторичной обмотки от источника переменного тока и передача питания первичной обмотке нагрузки) для выполнения противоположной функции: может функционировать повышающий как понижение и виза-верса.

    Однако, как мы видели в первом разделе этой главы, эффективная работа трансформатора требует, чтобы индуктивности отдельных обмоток были спроектированы для определенных рабочих диапазонов напряжения и тока, поэтому, если трансформатор будет использоваться «в обратном направлении», как это должны использоваться в пределах исходных проектных параметров напряжения и тока для каждой обмотки, чтобы не оказаться неэффективным (или чтобы не повредить чрезмерным напряжением или током!).

    Таблички конструкции трансформатора

    Трансформаторы часто сконструированы таким образом, что не очевидно, какие провода ведут к первичной обмотке, а какие - к вторичной.В электроэнергетике, чтобы избежать путаницы, используется одно из условных обозначений «H» для обмотки более высокого напряжения (первичная обмотка в понижающем блоке; вторичная обмотка в повышающем) и «X». обозначения низковольтной обмотки. Следовательно, у простого силового трансформатора будут провода с маркировкой «H 1 », «H 2 », «X 1 » и «X 2 ». Обычно это имеет значение для нумерации проводов (H 1 по сравнению с H 2 и т. Д.), который мы рассмотрим немного позже в этой главе.

    Практическое значение повышающих и понижающих трансформаторов

    Тот факт, что напряжение и ток «скачкообразно изменяются» в противоположных направлениях (одно вверх, другое вниз), имеет смысл, если вы вспомните, что мощность равна напряжению, умноженному на ток, и поймете, что трансформаторы не могут производить мощность , а только преобразовывают ее . Любое устройство, которое могло бы выдавать больше энергии, чем потребляло, нарушило бы закон сохранения энергии в физике, а именно, что энергия не может быть создана или уничтожена, а только преобразована.Как и в случае с первым рассмотренным нами примером трансформатора, эффективность передачи энергии от первичной к вторичной стороне устройства очень хорошая.

    Практическое значение этого становится более очевидным, когда рассматривается альтернатива: до появления эффективных трансформаторов преобразование уровня напряжения / тока могло быть достигнуто только за счет использования двигателей / генераторных установок. Чертеж моторно-генераторной установки показывает основной принцип работы: (Рисунок ниже)

    Рисунок 8.2 Мотор-генератор иллюстрирует основной принцип работы трансформатора.

    В такой машине двигатель механически соединен с генератором, который предназначен для выработки требуемых уровней напряжения и тока при скорости вращения двигателя. Хотя и двигатели, и генераторы являются довольно эффективными устройствами, использование обоих таким образом усугубляет их неэффективность, так что общий КПД находится в диапазоне 90% или меньше. Кроме того, поскольку для двигателей / генераторных установок, очевидно, требуются движущиеся части, механический износ и балансировка являются факторами, влияющими как на срок службы, так и на производительность.С другой стороны, трансформаторы способны преобразовывать уровни переменного напряжения и тока с очень высоким КПД без движущихся частей, что делает возможным широкое распространение и использование электроэнергии, которую мы считаем само собой разумеющимся.

    Справедливости ради следует отметить, что моторные / генераторные установки не обязательно заменялись трансформаторами для всех приложений . Хотя трансформаторы явно превосходят мотор-генераторные установки для преобразования переменного напряжения и уровня тока, они не могут преобразовывать одну частоту переменного тока в другую или (сами по себе) преобразовывать постоянный ток в переменный или наоборот.Электродвигатели / генераторные установки могут выполнять все эти задачи с относительной простотой, хотя и с уже описанными ограничениями эффективности и механических факторов.

    Мотор-генераторные установки также обладают уникальным свойством накопления кинетической энергии: то есть, если подача питания двигателя на мгновение прерывается по какой-либо причине, его угловой момент (инерция этой вращающейся массы) будет поддерживать вращение генератора на короткое время. 2µA} {I} [/ латекс]

    Где,

    [латекс] L = \ text {индуктивность катушки Генри} [/ латекс]

    [латекс] N = \ text {Количество витков в катушке провода (прямой провод = 1)} [/ латекс]

    [латекс] \ mu = \ text {Проницаемость основных материалов (абсолютная, а не относительная)} [/ латекс]

    [латекс] A = \ text {Площадь катушки в квадратных метрах} [/ латекс]

    [латекс] I = \ text {Среднее значение рулона в метрах} [/ латекс]

    Итак, должно быть очевидно, что наши две катушки индуктивности должны иметь отношение витков катушки 10: 1, поскольку 10 в квадрате равняется 100.Это похоже на то же соотношение, которое мы обнаружили между первичным и вторичным напряжениями и токами (10: 1), поэтому мы можем, как правило, сказать, что коэффициент трансформации напряжения и тока равен отношению витков обмотки между первичной и вторичной обмотками.

    Рисунок 8.3 Пример понижающего трансформатора.

    Понижающий трансформатор: (много витков: несколько витков).

    Повышающий / понижающий эффект отношения витков обмотки в трансформаторе аналогичен передаточному отношению зубчатых колес в механических зубчатых передачах, преобразуя значения скорости и крутящего момента во многом таким же образом:

    Рисунок 8.4 Зубчатая передача понижает крутящий момент, уменьшая крутящий момент, одновременно увеличивая скорость.

    Повышающие и понижающие трансформаторы для целей распределения электроэнергии могут быть гигантскими по сравнению с показанными ранее силовыми трансформаторами, причем некоторые блоки могут быть высотой с дом. На следующей фотографии показан трансформатор подстанции высотой около двенадцати футов:

    Рисунок 8.5 Трансформатор подстанции.

    Существуют приложения, в которых необходима гальваническая развязка между двумя цепями переменного тока без какого-либо преобразования уровней напряжения или тока.В этих случаях используются трансформаторы под названием изолирующие трансформаторы с коэффициентами трансформации 1: 1. Настольный изолирующий трансформатор показан на рисунке ниже.

    Рисунок 8.6 Разделительный трансформатор изолирует питание от линии питания.

    Поскольку трансформаторы по сути являются устройствами переменного тока, нам необходимо знать фазовые соотношения между первичной и вторичной цепями. Мы можем изобразить формы волны для первичной и вторичной цепей и увидеть фазовые соотношения.

    Рисунок 8.7 Вторичное напряжение V (3,5) синфазно с первичным напряжением V (2) и понижено в десять раз.

    Вторичное напряжение V (3,5) синфазно с первичным напряжением V (2) и понижено в десять раз.

    При переходе от первичной обмотки V (2) к вторичной обмотке V (3,5) напряжение снижалось в десять раз, а ток увеличивался в десять раз. Формы сигналов как тока, так и напряжения являются синфазно при переходе от первичного к вторичному.

    Рисунок 8.8 Первичный и вторичный токи синфазны. Вторичный ток увеличивается в десять раз.

    Условные обозначения трансформатора

    Похоже, что и напряжение, и ток для двух обмоток трансформатора синфазны друг с другом, по крайней мере, для нашей резистивной нагрузки. Это достаточно просто, но было бы неплохо узнать , каким образом мы должны подключить трансформатор, чтобы обеспечить правильное соотношение фаз. В конце концов, трансформатор - это не что иное, как набор индукторов с магнитной связью, а на индукторах обычно нет какой-либо маркировки полярности.Если бы мы посмотрели на трансформатор без маркировки, у нас не было бы возможности узнать, каким образом подключить его к цепи, чтобы получить синфазное (или не синфазное на 180 °) напряжение и ток:

    Рисунок 8.9 На практике полярность трансформатора может быть неоднозначной.

    Поскольку это практическая проблема, производители трансформаторов разработали своего рода стандарт маркировки полярности для обозначения фазового соотношения. Он называется условным обозначением точек и представляет собой не что иное, как точку, помещенную рядом с каждым соответствующим плечом обмотки трансформатора:

    Рисунок 8.10 Пара точек указывает полярность.

    Обычно трансформатор поставляется с какой-то схематической диаграммой, на которой отмечены выводы проводов для первичной и вторичной обмоток. На схеме будет пара точек, похожая на то, что видно выше. Иногда точки будут опускаться, но когда метки «H» и «X» используются для обозначения проводов обмотки трансформатора, предполагается, что нижние индексы обозначают полярность обмоток. Провода «1» (H 1 и X 1 ) показывают, где обычно размещаются точки маркировки полярности.

    Подобное расположение этих точек рядом с верхними концами первичной и вторичной обмоток говорит нам о том, что любая мгновенная полярность напряжения, наблюдаемая на первичной обмотке, будет такой же, как и на вторичной обмотке. Другими словами, фазовый сдвиг от первичного к вторичному будет равен нулю градусов.

    С другой стороны, если точки на каждой обмотке трансформатора не совпадают , а не , фазовый сдвиг будет 180 ° между первичной и вторичной обмотками, например:

    Рисунок 8.11 Не в фазе: основной красный - точка, дополнительный черный - точка.

    Конечно, условное обозначение точек указывает только на то, какой конец каждой обмотки находится относительно другой обмотки (ов). Если вы хотите самостоятельно изменить соотношение фаз, все, что вам нужно сделать, это поменять местами соединения обмотки следующим образом:

    Рисунок 8.12 В фазе: основной красный - точка, дополнительный красный - точка.

    Трансформаторы «повышают» или «понижают» напряжение в соответствии с соотношением витков первичной и вторичной обмоток.

    [латекс] \ text {Коэффициент передачи напряжения} = \ frac {N_ {вторичный}} {N_ {primary}} [/ latex]

    [латекс] \ text {Текущий коэффициент передачи} = \ frac {N_ {primary}} {N_ {secondary}} [/ latex]

    Где,

    [латекс] N = \ text {Количество витков в обмотке} [/ латекс]

    • Трансформатор, предназначенный для увеличения напряжения от первичной к вторичной, называется повышающим трансформатором .Трансформатор, предназначенный для понижения напряжения с первичной обмотки на вторичную, называется понижающим трансформатором .
    • Коэффициент трансформации трансформатора будет равен квадратному корню из отношения его первичной индуктивности к вторичной индуктивности (L).

    [латекс] \ text {Коэффициент передачи напряжения} = \ sqrt {\ frac {L_ {secondary}} {L_ {primary}}} [/ latex]

    • Имея возможность передавать мощность от одной цепи к другой без использования соединительных проводов между двумя цепями, трансформаторы обеспечивают полезную функцию гальванической развязки .
    • Трансформаторы, предназначенные для обеспечения гальванической развязки без скачков напряжения и тока вверх или вниз, называются изолирующими трансформаторами .
    • Фазовое соотношение напряжения и тока между первичной и вторичной цепями трансформатора прямое: в идеале нулевой сдвиг фазы.
    • Условное обозначение точек - это тип маркировки полярности для обмоток трансформатора, показывающий, какой конец обмотки находится относительно других обмоток.

    Трансформаторы с несколькими вторичными обмотками

    Трансформаторы - очень универсальные устройства. Базовая концепция передачи энергии между взаимными индукторами достаточно полезна между одной первичной и одной вторичной обмотками, но трансформаторы не обязательно должны быть сделаны с двумя наборами обмоток. Рассмотрим схему трансформатора:

    Рисунок 8.13. Трансформатор с несколькими вторичными обмотками обеспечивает несколько выходных напряжений.

    Здесь три катушки индуктивности имеют общий магнитный сердечник, магнитно «связывая» или «связывая» их вместе.Связь между коэффициентами витков обмотки и отношениями напряжений, наблюдаемая с одной парой взаимных индукторов, все еще сохраняется здесь для нескольких пар катушек.

    Вполне возможно собрать трансформатор, подобный приведенному выше (одна первичная обмотка, две вторичные обмотки), в котором одна вторичная обмотка является понижающей, а другая - повышающей. Фактически, такая конструкция трансформатора была довольно распространена в цепях питания вакуумных ламп, которые требовались для подачи низкого напряжения на нити ламп (обычно 6 или 12 вольт) и высокого напряжения для пластин ламп (несколько сотен вольт) от источника питания. номинальное первичное напряжение 110 вольт переменного тока.

    С таким трансформатором возможны не только напряжения и токи совершенно разных величин, но все цепи электрически изолированы друг от друга.

    Рисунок 8.14 Фотография многообмоточного трансформатора с шестью обмотками, первичной и пятью вторичными обмотками.

    Трансформатор на рисунке выше предназначен для обеспечения высокого и низкого напряжения, необходимого в электронной системе с использованием электронных ламп. Низкое напряжение требуется для питания нитей вакуумных трубок, в то время как высокое напряжение требуется для создания разности потенциалов между пластиной и катодными элементами каждой трубки.Одного трансформатора с несколькими обмотками достаточно, чтобы обеспечить все необходимые уровни напряжения от одного источника 115 В. Провода для этого трансформатора (их 15!) На фотографии не показаны, они скрыты от глаз.

    Если электрическая изоляция между вторичными цепями не имеет большого значения, аналогичный эффект может быть получен путем «постукивания» одной вторичной обмотки в нескольких точках по ее длине, как показано на рисунке ниже.

    Рис. 8.15. Вторичная обмотка с одним ответвлением обеспечивает несколько напряжений.

    Многополюсный коммутирующий трансформатор

    Ответвитель - это не что иное, как соединение проводов, сделанное в некоторой точке обмотки между концами. Неудивительно, что соотношение витков обмотки / величины напряжения обычного трансформатора сохраняется для всех сегментов обмотки с ответвлениями. Этот факт можно использовать для производства трансформатора с несколькими передаточными числами:

    Рис. 8.16. Вторичная обмотка с ответвлениями, использующая переключатель для выбора одного из многих возможных напряжений.

    Переменный трансформатор

    Продолжая концепцию отводов обмотки, мы получаем «регулируемый трансформатор», в котором скользящий контакт перемещается по длине открытой вторичной обмотки и может соединяться с ней в любой точке по ее длине.Эффект эквивалентен наличию отвода обмотки на каждом витке обмотки и переключателя с полюсами на каждом положении отвода:

    Рисунок 8.17 Скользящий контакт на вторичной обмотке непрерывно изменяет вторичное напряжение.

    Одно из применений переменного трансформатора для потребителей - это регуляторы скорости для модельных поездов, особенно поездов 1950-х и 1960-х годов. Эти трансформаторы были по существу понижающими блоками, максимальное напряжение, получаемое от вторичной обмотки, было существенно меньше, чем первичное напряжение от 110 до 120 вольт переменного тока.Контакт с регулируемой разверткой обеспечивает простое средство управления напряжением с небольшими потерями энергии, намного более эффективное, чем управление с использованием переменного резистора!

    Подвижно-скользящие контакты слишком непрактичны для использования в крупных промышленных силовых трансформаторах, но многополюсные переключатели и отводы обмотки являются обычным явлением для регулировки напряжения. В энергосистемах необходимо периодически производить регулировку, чтобы приспособиться к изменениям нагрузки в течение месяцев или лет во времени, и эти схемы переключения обеспечивают удобное средство.Как правило, такие «переключатели ответвлений» не предназначены для работы с током полной нагрузки, а должны срабатывать только тогда, когда трансформатор обесточен (отсутствует питание).

    Автотрансформатор

    Принимая во внимание, как мы можем отвести любую обмотку трансформатора, чтобы получить эквивалент нескольких обмоток (хотя и с потерей гальванической развязки между ними), имеет смысл полностью отказаться от гальванической развязки и построить трансформатор из одной обмотки. Действительно, это возможно, и получившееся устройство называется автотрансформатором :

    . Рисунок 8.18 Этот автотрансформатор повышает напряжение с помощью одной обмотки с ответвлениями, экономя медь и жертвуя изоляцией.

    Автотрансформатор, изображенный выше, выполняет функцию повышения напряжения. Понижающий автотрансформатор будет выглядеть примерно так, как показано на рисунке ниже.

    Рисунок 8.19. Этот автотрансформатор понижает напряжение с помощью одной обмотки с ответвлениями, экономящей медь. Автотрансформаторы

    находят широкое применение в приложениях, требующих небольшого повышения или понижения напряжения на нагрузке. Альтернативой обычному (изолированному) трансформатору было бы либо иметь правильное соотношение первичной / вторичной обмоток, предназначенное для работы, либо использовать понижающую конфигурацию с вторичной обмоткой, подключенной последовательно («повышающий») или последовательно. противодействующая («вздергивающая») мода.Для иллюстрации того, как это будет работать, приведены первичные, вторичные напряжения и напряжения нагрузки.

    Конфигурации автотрансформатора

    Во-первых, «бустерная» конфигурация. На рисунке ниже полярность вторичной катушки ориентирована так, что ее напряжение напрямую складывается с первичным напряжением.

    Рисунок 8.20. Обычный трансформатор, подключенный как автотрансформатор для повышения сетевого напряжения.

    Далее «раскладывающаяся» конфигурация. На рисунке ниже полярность вторичной катушки ориентирована так, что ее напряжение напрямую вычитается из первичного напряжения:

    Рисунок 8.21 Обычный трансформатор, подключенный как автотрансформатор для понижения напряжения в сети.

    Основным преимуществом автотрансформатора является то, что та же функция повышения или понижения достигается только с одной обмоткой, что делает его дешевле и легче в производстве, чем обычный (изолирующий) трансформатор, имеющий как первичную, так и вторичную обмотки.

    Автотрансформатор с вариатором

    Как и у обычных трансформаторов, обмотки автотрансформатора могут иметь ответвления для изменения передаточного числа.Кроме того, их можно сделать бесступенчато регулируемыми с помощью скользящего контакта, чтобы постучать по обмотке в любой точке по ее длине. Последняя конфигурация достаточно популярна, чтобы заслужить собственное имя: Variac . (рисунок ниже)

    Рис. 8.22. Вариак - это автотрансформатор со скользящим ответвлением.

    Маленькие вариаторы для настольного использования - это популярное оборудование для экспериментаторов в области электроники. Они могут понижать (а иногда и повышать) напряжение переменного тока в домашних условиях с широким и точным диапазоном регулировки простым поворотом ручки.

    • Трансформаторы могут быть оснащены более чем одной парой первичной и одной вторичной обмоток. Это позволяет использовать несколько коэффициентов повышения и / или понижения в одном устройстве.
    • Обмотки трансформатора также можно «отводить»: то есть пересекаться во многих точках для разделения одной обмотки на секции.
    • Переменные трансформаторы могут быть изготовлены с помощью подвижного плеча, который перемещается по длине обмотки, контактируя с обмоткой в ​​любой точке по ее длине.Обмотка, конечно же, должна быть оголенной (без изоляции) в области движения плеча.
    • Автотрансформатор - это одинарная катушка индуктивности с ответвлениями, используемая для повышения или понижения напряжения, как трансформатор, за исключением того, что обеспечивает гальваническую развязку.
    • A Variac - регулируемый автотрансформатор.

    Поскольку трехфазные сети так часто используются в системах распределения электроэнергии, вполне логично, что нам потребуются трехфазные трансформаторы, чтобы иметь возможность повышать или понижать напряжение.Это верно лишь отчасти, поскольку обычные однофазные трансформаторы могут быть объединены вместе для преобразования мощности между двумя трехфазными системами в различных конфигурациях, устраняя необходимость в специальном трехфазном трансформаторе. Однако для этих задач созданы специальные трехфазные трансформаторы, которые могут работать с меньшими требованиями к материалам, меньшими размерами и меньшим весом, чем их модульные аналоги.

    Обмотки и соединения трехфазного трансформатора

    Трехфазный трансформатор состоит из трех наборов первичной и вторичной обмоток, каждый набор намотан на одну ногу узла железного сердечника.По сути, это выглядит как три однофазных трансформатора, совместно использующих объединенный сердечник, как показано на рисунке ниже.

    Рисунок 8.23 ​​Сердечник трехфазного трансформатора имеет три набора обмоток.

    Эти наборы первичной и вторичной обмоток будут соединены в конфигурации Δ или Y, чтобы сформировать единый блок. Различные комбинации способов, которыми эти обмотки могут быть соединены вместе, будут в центре внимания этого раздела.

    Независимо от того, используются ли комплекты обмоток с общим сердечником или каждая пара обмоток представляет собой отдельный трансформатор, варианты соединения обмоток одинаковы:

    Первичный - Вторичный

    • Y - Y
    • Y - Δ
    • Δ - Y
    • Δ - Δ

    Причины выбора конфигурации Y или Δ для соединений обмоток трансформатора те же, что и для любого другого трехфазного приложения: соединения Y обеспечивают возможность нескольких напряжений, в то время как соединения Δ имеют более высокий уровень надежности (если одна обмотка выходит из строя в открытом состоянии, два других могут поддерживать полное линейное напряжение нагрузки).

    Вероятно, наиболее важным аспектом соединения трех наборов первичной и вторичной обмоток для формирования трехфазного трансформатора является уделение внимания правильному фазированию обмоток (точки, используемые для обозначения «полярности» обмоток). Помните правильное соотношение фаз между фазными обмотками Δ и Y: (рисунок ниже)

    Рисунок 8.24 (Y) Центральная точка «Y» должна связывать либо все «-», либо все «+» точки намотки вместе. (Δ) Полярности обмоток должны складываться вместе (от + до -).

    Правильная синхронизация фаз, когда обмотки не показаны в стандартной конфигурации Y или Δ, может быть непростой задачей. Позвольте мне проиллюстрировать это, начиная с рисунка ниже.

    Рисунок 8.23. Входы A1, A2, A3 могут быть подключены к «Δ» или «Y», как и выходы B1, B2, B3.

    Разводка фаз для трансформатора «Y-Y»

    Три отдельных трансформатора должны быть соединены вместе для преобразования энергии из одной трехфазной системы в другую. Сначала я покажу электрические соединения для конфигурации Y-Y:

    Рисунок 8.25 Разводка фаз для трансформатора «Y-Y».

    Обратите внимание на рисунок выше, как все концы обмотки, отмеченные точками, подключены к своим соответствующим фазам A, B и C, в то время как концы без точек соединены вместе, образуя центры каждой буквы «Y». Соединение первичной и вторичной обмоток по схеме «Y» позволяет использовать нейтральные проводники (N 1 и N 2 ) в каждой энергосистеме.

    Разводка фаз для трансформатора «Y-Δ»

    Теперь посмотрим на конфигурацию Y-Δ:

    Рисунок 8.26 Подключение фаз для трансформатора «Y-Δ».

    Обратите внимание на то, как вторичные обмотки (нижний набор, рисунок выше) соединены в цепочку, сторона «точки» одной обмотки соединена со стороной «без точки» следующей, образуя петлю Δ. В каждой точке соединения между парами обмоток выполняется подключение к линии второй энергосистемы (A, B и C).

    Фазовая проводка для трансформатора «Δ-Y»

    Теперь давайте рассмотрим систему Δ-Y на рисунке ниже.

    Рисунок 8.27. Подключение фаз для трансформатора «Δ-Y».

    Такая конфигурация (рисунок выше) позволит обеспечить несколько напряжений (между фазой или между фазой и нейтралью) во второй энергосистеме от исходной энергосистемы, не имеющей нейтрали.

    Подключение фаз для трансформатора «Δ-Δ»

    И, наконец, перейдем к конфигурации Δ-Δ:

    Рисунок 8.28. Схема подключения фаз для трансформатора «Δ-Δ».

    Когда нет необходимости в нейтральном проводе во вторичной энергосистеме, предпочтительны схемы подключения Δ-Δ (рисунок выше) из-за присущей надежности конфигурации Δ.

    Фазовая проводка для трансформатора «V» или «открытый Δ»

    Учитывая, что Δ-конфигурация может удовлетворительно работать без одной обмотки, некоторые разработчики энергосистем предпочитают создавать батарею трехфазных трансформаторов только с двумя трансформаторами, представляя конфигурацию Δ-Δ с отсутствующей обмоткой как на первичной, так и на вторичной стороне:

    Рис. 8.29 «V» или «разомкнутый Δ» обеспечивает питание 2 φ только с двумя трансформаторами.

    Эта конфигурация называется «V» или «Open-Δ». Конечно, каждый из двух трансформаторов должен быть большего размера, чтобы выдерживать такое же количество мощности, как три в стандартной Δ-конфигурации, но общие размеры, вес и стоимость часто того стоят.Однако следует иметь в виду, что при отсутствии одного набора обмоток в форме Δ эта система больше не обеспечивает отказоустойчивость нормальной системы Δ-Δ. Если один из двух трансформаторов выйдет из строя, это определенно повлияет на напряжение и ток нагрузки.

    Пример из реальной жизни

    На следующей фотографии (рисунок ниже) показана группа повышающих трансформаторов на плотине гидроэлектростанции Гранд-Кули в штате Вашингтон. С этой точки зрения можно увидеть несколько трансформаторов (зеленого цвета), которые сгруппированы по три: по три трансформатора на гидроэлектрический генератор, соединенные вместе проводом в той или иной форме трехфазной конфигурации.

    На фотографии не показаны соединения первичной обмотки, но кажется, что вторичные обмотки соединены по Y-образной схеме, так как из каждого трансформатора выступает только один большой высоковольтный изолятор. Это говорит о том, что другая сторона вторичной обмотки каждого трансформатора имеет потенциал земли или близок к нему, что может быть верно только в системе Y. В здании слева находится электростанция, в которой размещены генераторы и турбины. Справа наклонная бетонная стена - нижняя поверхность плотины:

    Рисунок 8.Плотина гидроэлектростанции Гранд-Кули, 30

    Мощность

    Как уже отмечалось, трансформаторы должны быть хорошо спроектированы, чтобы обеспечить приемлемую связь по мощности, точное регулирование напряжения и низкие искажения тока возбуждения. Кроме того, трансформаторы должны быть спроектированы так, чтобы без проблем передавать ожидаемые значения тока первичной и вторичной обмоток. Это означает, что проводники обмотки должны быть изготовлены из проволоки соответствующего калибра, чтобы избежать проблем с нагревом.

    Идеальный трансформатор

    Идеальный трансформатор должен иметь идеальное соединение (без индуктивности рассеяния), идеальное регулирование напряжения, идеально синусоидальный ток возбуждения, отсутствие гистерезиса или потерь на вихревые токи и достаточно толстый провод, чтобы выдерживать любой ток.К сожалению, для достижения этих проектных целей идеальный трансформатор должен быть бесконечно большим и тяжелым. Таким образом, при разработке практической конструкции трансформатора необходимо идти на компромиссы.

    Кроме того, изоляция проводов обмотки является проблемой там, где встречаются высокие напряжения, как это часто бывает в повышающих и понижающих распределительных трансформаторах. Обмотки должны быть не только хорошо изолированы от стального сердечника, но и каждая обмотка должна быть достаточно изолирована от другой, чтобы поддерживать электрическую изоляцию между обмотками.

    Номинальные характеристики трансформатора

    С учетом этих ограничений трансформаторы рассчитаны на определенные уровни напряжения и тока первичной и вторичной обмоток, хотя номинальный ток обычно выводится из номинального значения вольт-ампер (ВА), присвоенного трансформатору. Например, возьмите понижающий трансформатор с номинальным напряжением первичной обмотки 120 В, номинальным напряжением вторичной обмотки 48 В и номинальной мощностью 1 кВА (1000 ВА) в ВА. Максимальные токи обмотки можно определить как таковые: кВА (1000 ВА).Максимальные токи обмотки можно определить как таковые:

    [латекс] \ text {Максимальный ток обмотки} [/ латекс]

    [латекс] \ tag {8.1} I_ {Max} = \ frac {S} {E} [/ latex]

    Иногда обмотки имеют номинальный ток в амперах, но это обычно наблюдается на небольших трансформаторах. Большие трансформаторы почти всегда рассчитываются по напряжению обмотки и

    ВА или кВА.

    Потери энергии

    Трансформаторы передают мощность с минимальными потерями.Как было сказано ранее, КПД современных силовых трансформаторов обычно превышает 95%. Однако хорошо знать, куда уходит часть этой утраченной силы и что вызывает ее потерю.

    Конечно, есть потери мощности из-за сопротивления обмоток проводов. Если не используются сверхпроводящие провода, всегда будет рассеиваться мощность в виде тепла через сопротивление проводников с током. Поскольку трансформаторы требуют таких длинных проводов, эти потери могут быть существенным фактором.Увеличение диаметра обмоточного провода - один из способов минимизировать эти потери, но только при значительном увеличении стоимости, размера и веса.

    Вихретоковые потери

    Помимо резистивных потерь, большая часть потерь мощности трансформатора связана с магнитными эффектами в сердечнике. Возможно, наиболее значительным из этих «потерь в сердечнике» являются потери на вихревые токи , которые представляют собой рассеивание резистивной мощности из-за прохождения индуцированных токов через железо сердечника. Поскольку железо является проводником электричества, а также отличным «проводником» магнитного потока, в железе будут индуцироваться токи, точно так же, как есть токи, индуцированные во вторичных обмотках из-за переменного магнитного поля.Эти индуцированные токи - как описано в пункте закона Фарадея о перпендикулярности - стремятся проходить через поперечное сечение сердечника перпендикулярно виткам первичной обмотки. Их круговое движение дало им необычное название: как водовороты в потоке воды, которые циркулируют, а не движутся по прямым линиям.

    Железо является хорошим проводником электричества, но не так хорошо, как медь или алюминий, из которых обычно делаются проволочные обмотки. Следовательно, эти «вихревые токи» должны преодолевать значительное электрическое сопротивление, когда они циркулируют по сердечнику.Преодолевая сопротивление утюга, они рассеивают энергию в виде тепла. Следовательно, у нас есть источник неэффективности трансформатора, который трудно устранить.

    Индукционный нагрев

    Это явление настолько ярко выражено, что его часто используют как средство нагрева черных металлов (железосодержащих). На фотографии ниже показан блок «индукционного нагрева», повышающий температуру большого участка трубы. Петли из проволоки, покрытые высокотемпературной изоляцией, охватывают окружность трубы, вызывая вихревые токи внутри стенки трубы за счет электромагнитной индукции.Чтобы максимизировать эффект вихревых токов, используется высокочастотный переменный ток, а не частота линии электропередачи (60 Гц). Блоки в правой части изображения вырабатывают высокочастотный переменный ток и регулируют величину тока в проводах, чтобы стабилизировать температуру трубы на заранее определенном «заданном уровне».

    Рисунок 8.31 Индукционный нагрев: Первичная изолированная обмотка наводит ток во вторичную железную трубу с потерями.

    Снижение вихревых токов

    Основная стратегия уменьшения этих расточительных вихревых токов в сердечниках трансформаторов состоит в том, чтобы сформировать железный сердечник в виде листов, каждый из которых покрыт изолирующим лаком, чтобы сердечник был разделен на тонкие пластинки.В результате ширина сердечника очень мала для циркуляции вихревых токов:

    Рисунок 8.32 Разделение стального сердечника на тонкие изолированные пластинки сводит к минимуму потери на вихревые токи.

    Ламинированные сердечники , подобные показанному здесь, входят в стандартную комплектацию почти всех низкочастотных трансформаторов. Напомним, что на фотографии трансформатора, разрезанного пополам, железный сердечник состоял из множества тонких листов, а не из одной цельной детали. Потери на вихревые токи увеличиваются с увеличением частоты, поэтому трансформаторы, предназначенные для работы от высокочастотной энергии (например, 400 Гц, используемой во многих военных и авиационных приложениях), должны использовать более тонкие пластинки, чтобы снизить потери до приемлемого минимума.Это имеет нежелательный эффект увеличения стоимости изготовления трансформатора.

    Другой аналогичный метод минимизации потерь на вихревые токи, который лучше подходит для высокочастотных приложений, - это изготовление сердечника из железного порошка, а не из тонких листов железа. Подобно ламинированным листам, эти гранулы железа по отдельности покрыты электроизоляционным материалом, который делает сердечник непроводящим, за исключением ширины каждой гранулы. Сердечники из порошкового железа часто используются в трансформаторах, работающих с радиочастотными токами.

    Магнитный гистерезис

    Еще одна «потеря в сердечнике» - это магнитный гистерезис . Все ферромагнитные материалы имеют тенденцию сохранять некоторую степень намагниченности после воздействия внешнего магнитного поля. Эта тенденция оставаться намагниченным называется «гистерезисом», и требуются определенные затраты энергии, чтобы преодолеть это противодействие, изменяющееся каждый раз, когда магнитное поле, создаваемое первичной обмоткой, меняет полярность (дважды за цикл переменного тока).

    Этот тип потерь может быть уменьшен за счет правильного выбора материала сердечника (выбор сплава сердечника с низким гистерезисом, о чем свидетельствует «тонкая» гистерезисная кривая B / H) и проектирования сердечника с минимальной магнитной индукцией (большая площадь поперечного сечения ).

    Скин-эффект на высоких частотах

    Потери энергии в трансформаторе увеличиваются с увеличением частоты. Скин-эффект внутри проводников обмотки уменьшает доступную площадь поперечного сечения для потока электрического заряда, тем самым увеличивая эффективное сопротивление при повышении частоты и создавая большие потери мощности из-за резистивной диссипации. Потери в магнитном сердечнике также увеличиваются из-за того, что более высокие частоты, вихревые токи и эффекты гистерезиса становятся более серьезными. По этой причине трансформаторы значительных размеров предназначены для эффективной работы в ограниченном диапазоне частот.

    В большинстве систем распределения электроэнергии, где частота сети очень стабильна, можно подумать, что чрезмерная частота никогда не будет проблемой. К сожалению, это происходит в виде гармоник, создаваемых нелинейными нагрузками.

    Как мы видели в предыдущих главах, несинусоидальные сигналы эквивалентны аддитивным сериям нескольких синусоидальных сигналов с разными амплитудами и частотами. В энергосистемах эти другие частоты являются целыми числами, кратными основной (линейной) частоте, что означает, что они всегда будут выше, а не ниже проектной частоты трансформатора.В значительной степени они могут вызвать серьезный перегрев трансформатора. Силовые трансформаторы могут быть спроектированы для обработки определенных уровней гармоник энергосистемы, и эта способность иногда обозначается рейтингом «K-фактор».

    Паразитная емкость и индуктивность

    Помимо номинальной мощности и потерь мощности, трансформаторы часто имеют другие нежелательные ограничения, о которых следует знать разработчикам схем. Подобно их более простым аналогам - индукторам - трансформаторы обладают емкостью из-за изоляционного диэлектрика между проводниками: от обмотки к обмотке, от витка к витку (в одной обмотке) и от обмотки к сердечнику.

    Частота резонанса трансформатора

    Обычно эта емкость не имеет значения в силовых приложениях, но приложения с малым сигналом (особенно высокочастотные) могут плохо переносить эту причуду. Кроме того, эффект наличия емкости наряду с расчетной индуктивностью обмоток дает трансформаторам способность резонировать с на определенной частоте, что определенно является проблемой проектирования в сигнальных приложениях, где приложенная частота может достигать этой точки (обычно резонансная частота мощности трансформатор находится далеко за пределами частоты переменного тока, для которой он был разработан).

    Удерживание флюса

    Сдерживание потока (обеспечение того, чтобы магнитный поток трансформатора не ускользнул, чтобы создать помехи другому устройству, и убедиться, что магнитный поток других устройств экранирован от сердечника трансформатора) - еще одна проблема, которую разделяют как индукторы, так и трансформаторы.

    Индуктивность утечки

    Тесно связана с проблемой сдерживания флюса индуктивность рассеяния. Поскольку индуктивность рассеяния эквивалентна индуктивности, последовательно соединенной с обмоткой трансформатора, она проявляется как последовательное сопротивление с нагрузкой.Таким образом, чем больше ток потребляет нагрузка, тем меньше напряжения на выводах вторичной обмотки. Обычно при проектировании трансформатора требуется хорошее регулирование напряжения, но существуют и исключительные области применения. Как указывалось ранее, для схем разрядного освещения требуется повышающий трансформатор с «слабым» (плохим) регулированием напряжения для обеспечения пониженного напряжения после возникновения дуги в лампе. Один из способов выполнить этот критерий проектирования - спроектировать трансформатор с путями рассеяния магнитного потока в обход вторичной (ых) обмотки (ов).Результирующий поток рассеяния будет создавать индуктивность рассеяния, которая, в свою очередь, приведет к плохому регулированию, необходимому для разрядного освещения.

    Насыщенность ядра

    Трансформаторы

    также ограничены в своей работе из-за ограничений магнитного потока сердечника. Для трансформаторов с ферромагнитным сердечником необходимо учитывать пределы насыщения сердечника. Помните, что ферромагнитные материалы не могут поддерживать бесконечную плотность магнитного потока: они имеют тенденцию «насыщаться» на определенном уровне (продиктованном материалом и размерами сердечника), а это означает, что дальнейшее увеличение силы магнитного поля (ммс) не приводит к пропорциональному увеличению магнитного поля. поток поля (Φ).

    Когда первичная обмотка трансформатора перегружена из-за чрезмерного приложенного напряжения, магнитный поток сердечника может достигать уровней насыщения в пиковые моменты цикла синусоидальной волны переменного тока. Если это произойдет, напряжение, индуцированное во вторичной обмотке, больше не будет соответствовать форме волны, как напряжение, питающее первичную катушку. Другими словами, перегруженный трансформатор будет искажать форму волны от первичной до вторичной обмоток, создавая гармоники на выходе вторичной обмотки. Как мы обсуждали ранее, содержание гармоник в энергосистемах переменного тока обычно вызывает проблемы.

    Пиковые трансформаторы

    Специальные трансформаторы, известные как трансформаторы максимального напряжения , используют этот принцип для создания коротких импульсов напряжения вблизи пиков формы волны напряжения источника. Ядро рассчитано на быстрое и резкое насыщение при уровнях напряжения значительно ниже пикового. Это приводит к сильно обрезанной форме волны синусоидального потока, а вторичные импульсы напряжения возникают только при изменении потока (ниже уровней насыщения):

    Рис. 8.33. Осциллограммы напряжения и магнитного потока для пикового трансформатора.

    Работа на частотах ниже нормы

    Другой причиной ненормального насыщения сердечника трансформатора является работа на частотах ниже нормы. Например, если силовой трансформатор, предназначенный для работы на частоте 60 Гц, вынужден работать на частоте 50 Гц, поток должен достигать более высоких пиковых уровней, чем раньше, чтобы создать такое же противоположное напряжение, необходимое для балансировки с напряжением источника. Это верно, даже если напряжение источника такое же, как и раньше.

    Рисунок 8.34. Магнитный поток выше в сердечнике трансформатора, работающем на 50 Гц, по сравнению с 60 Гц для того же напряжения.

    Поскольку мгновенное напряжение обмотки пропорционально скорости изменения мгновенного магнитного потока в трансформаторе, форма волны напряжения, достигающая того же пикового значения, но требующая более длительного времени для завершения каждого полупериода, требует, чтобы магнитный поток поддерживал та же скорость изменения, что и раньше, но на более длительные периоды времени. Таким образом, если поток должен расти с той же скоростью, что и раньше, но в течение более длительных периодов времени, он поднимется до более высокого пикового значения.

    С математической точки зрения, это еще один пример исчисления в действии.Поскольку напряжение пропорционально скорости изменения потока, мы говорим, что форма волны напряжения - это производная формы волны потока, «производная» - это операция вычисления, определяющая одну математическую функцию (форму волны) с точки зрения скорости: из-за смены другого. Однако, если мы возьмем противоположную точку зрения и свяжем исходную форму волны с ее производной, мы можем назвать исходную форму волны интегралом производной формы волны. В этом случае форма волны напряжения является производной формы волны магнитного потока, а форма волны магнитного потока является интегралом формы волны напряжения.

    Интеграл любой математической функции пропорционален площади, накопленной под кривой этой функции. Поскольку каждый полупериод сигнала 50 Гц накапливает большую площадь между ним и нулевой линией графика, чем будет форма сигнала 60 Гц - а мы знаем, что магнитный поток является интегралом напряжения, - поток будет достигать более высоких значений в рисунок ниже.

    Рис. 8.35. Изменение потока с той же скоростью возрастает до более высокого уровня при 50 Гц, чем при 60 Гц.

    Еще одна причина насыщения трансформатора - наличие постоянного тока в первичной обмотке.Любая величина постоянного напряжения, падающего на первичную обмотку трансформатора, вызовет дополнительный магнитный поток в сердечнике. Это дополнительное «смещение» или «смещение» магнитного потока подтолкнет форму волны переменного магнитного потока ближе к насыщению в одном полупериоде, чем в другом.

    Рис. 8.36. Постоянный ток в первичной обмотке смещает пики формы сигнала в сторону верхнего предела насыщения.

    Для большинства трансформаторов насыщение сердечника является очень нежелательным эффектом, и его можно избежать за счет хорошей конструкции: спроектировав обмотки и сердечник так, чтобы плотности магнитного потока оставались значительно ниже уровней насыщения.Это гарантирует, что соотношение между mmf и Φ будет более линейным на протяжении всего цикла потока, что хорошо, поскольку способствует меньшим искажениям в форме волны тока намагничивания. Кроме того, проектирование сердечника для низких плотностей магнитного потока обеспечивает безопасный запас между нормальными пиками магнитного потока и пределами насыщения сердечника, чтобы приспособиться к случайным, ненормальным условиям, таким как изменение частоты и смещение постоянного тока.

    Пусковой ток

    Когда трансформатор первоначально подключен к источнику переменного напряжения, может возникнуть значительный скачок тока через первичную обмотку, называемый пусковым током .Это аналогично пусковому току, наблюдаемому у электродвигателя, который запускается при внезапном подключении к источнику питания, хотя бросок тока трансформатора вызван другим явлением.

    Мы знаем, что скорость изменения мгновенного потока в сердечнике трансформатора пропорциональна мгновенному падению напряжения на первичной обмотке. Или, как указывалось ранее, форма волны напряжения является производной формы волны магнитного потока, а форма волны магнитного потока является интегралом формы волны напряжения.В непрерывно работающем трансформаторе эти две формы сигнала сдвинуты по фазе на 90 °. Поскольку поток (Φ) пропорционален магнитодвижущей силе (mmf) в сердечнике, а mmf пропорционален току обмотки, форма волны тока будет синфазной с формой волны магнитного потока, и оба будут отстать от формы волны напряжения на 90 °:

    Рисунок 8.37. Непрерывный установившийся режим: магнитный поток, как и ток, отстает от приложенного напряжения на 90 °.

    Предположим, что первичная обмотка трансформатора внезапно подключается к источнику переменного напряжения в точный момент времени, когда мгновенное напряжение достигает своего положительного пикового значения.Чтобы трансформатор создавал противоположное падение напряжения, чтобы уравновеситься с этим приложенным напряжением источника, должен создаваться магнитный поток быстро возрастающей величины. В результате ток в обмотке увеличивается быстро, но на самом деле не быстрее, чем при нормальных условиях:

    Рисунок 8.38. Подключение трансформатора к сети при пиковом напряжении переменного тока: поток быстро увеличивается от нуля, как и в установившемся режиме.

    И магнитный поток сердечника, и ток катушки начинаются с нуля и достигают тех же пиковых значений, которые наблюдаются при непрерывной работе.Таким образом, в этом сценарии нет «всплеска», «броска» или тока.

    В качестве альтернативы, давайте рассмотрим, что произойдет, если подключение трансформатора к источнику переменного напряжения произойдет в точный момент времени, когда мгновенное напряжение равно нулю. Во время непрерывной работы (когда трансформатор был запитан в течение некоторого времени) это момент времени, когда и магнитный поток, и ток обмотки достигают своих отрицательных пиков, испытывая нулевую скорость изменения (dΦ / dt = 0 и di / dt = 0). По мере того, как напряжение достигает своего положительного пика, формы волны магнитного потока и тока нарастают до своих максимальных положительных скоростей изменения и повышаются до своих положительных пиков по мере того, как напряжение опускается до нулевого уровня:

    Рисунок 8.39 Запуск при e = 0 В - это не то же самое, что непрерывный запуск на рисунке выше. Эти ожидаемые формы сигналов неверны - Φ и i должны начинаться с нуля.

    Однако существует значительная разница между работой в непрерывном режиме и условием внезапного пуска, предполагаемым в этом сценарии: во время непрерывной работы уровни магнитного потока и тока были на своих отрицательных пиках, когда напряжение было в нулевых точках; Однако в трансформаторе, который простаивает, и магнитный поток, и ток обмотки должны начинаться с ноль .

    Когда магнитный поток увеличивается в ответ на возрастающее напряжение, он будет увеличиваться от нуля вверх, а не от ранее отрицательного (намагниченного) состояния, как это обычно бывает в трансформаторе, который какое-то время находится под напряжением. Таким образом, в трансформаторе, который только что «запускается», магнитный поток будет примерно в два раза превышать нормальную пиковую величину, поскольку он «интегрирует» область под первым полупериодом формы волны напряжения:

    Рис. 8.40. Начиная с e = 0 В, Φ начинается с начального состояния Φ = 0, увеличиваясь в два раза по сравнению с нормальным значением, если предположить, что это не насыщает сердечник.

    Начиная с e = 0 В, Φ начинается с начального состояния Φ = 0, увеличиваясь в два раза по сравнению с нормальным значением, если предположить, что это не насыщает сердечник.

    В идеальном трансформаторе ток намагничивания также увеличился бы примерно в два раза по сравнению с нормальным пиковым значением, генерируя необходимый mmf для создания этого потока, превышающего нормальный. Однако большинство трансформаторов не спроектированы с достаточным запасом между нормальными пиками магнитного потока и пределами насыщения, чтобы избежать насыщения в таких условиях, и поэтому сердечник почти наверняка будет насыщаться в течение этого первого полупериода напряжения.Во время насыщения для генерации магнитного потока необходимо непропорционально большое количество ммс. Это означает, что ток обмотки, который создает МДС, вызывающую магнитный поток в сердечнике, непропорционально возрастет до значения , легко превышающего , вдвое превышающего нормальный пик:

    Рисунок 8.41 Начиная с e = 0 В, ток также увеличивается в два раза по сравнению с нормальным значением для ненасыщенного сердечника или значительно выше в случае (рассчитанном на) насыщение.

    Это механизм, вызывающий пусковой ток в первичной обмотке трансформатора при подключении к источнику переменного напряжения.Как видите, величина пускового тока сильно зависит от точного времени, когда электрическое подключение к источнику выполнено. Если трансформатор имеет некоторый остаточный магнетизм в его сердечнике в момент подключения к источнику, бросок тока может быть еще более серьезным. Из-за этого устройства максимальной токовой защиты трансформатора обычно бывают «медленного действия», чтобы выдерживать такие скачки тока без размыкания цепи.

    Тепло и шум

    Помимо нежелательных электрических эффектов, трансформаторы могут также проявлять нежелательные физические эффекты, наиболее заметными из которых являются выделение тепла и шума.Шум - это прежде всего неприятный эффект, но нагрев - потенциально серьезная проблема, поскольку изоляция обмотки будет повреждена, если будет допущен перегрев. Нагрев можно свести к минимуму за счет хорошей конструкции, гарантирующей, что сердечник не приближается к уровням насыщения, что вихревые токи сведены к минимуму, и что обмотки не будут перегружены или работают слишком близко к максимальной допустимой нагрузке.

    У больших силовых трансформаторов сердечник и обмотки погружены в масляную ванну для передачи тепла и глушения шума, а также для вытеснения влаги, которая в противном случае может нарушить целостность изоляции обмотки.Теплоотводящие «радиаторные» трубки на внешней стороне корпуса трансформатора обеспечивают конвективный путь потока масла для передачи тепла от сердечника трансформатора к окружающему воздуху:

    Рис. 8.42. Большие силовые трансформаторы погружены в теплоизолирующее масло.

    Безмасляные или «сухие» трансформаторы часто оцениваются с точки зрения максимального «повышения» рабочей температуры (превышения температуры окружающей среды) в соответствии с системой буквенных классов: A, B, F или H. Эти буквенные коды: расположены в порядке от наименьшей термостойкости к высшей:

    • Класс A: Повышение температуры обмотки не более чем на 55 ° Цельсия при температуре окружающего воздуха 40 ° Цельсия (максимальной).
    • Класс B: Повышение температуры обмотки не более чем на 80 ° C при температуре окружающего воздуха 40 ° C (максимум).
    • Класс F: Повышение температуры обмотки не более чем на 115 ° Цельсия при температуре окружающего воздуха 40 ° Цельсия (максимальной).
    • Класс H: Повышение температуры обмотки не более чем на 150 ° C при температуре окружающего воздуха 40 ° C (макс.).

    Звуковой шум - это эффект, в основном возникающий из явления магнитострикции : небольшое изменение длины, проявляемое ферромагнитным объектом при намагничивании.Знакомый «гул», слышимый вокруг больших силовых трансформаторов, - это звук расширения и сжатия железного сердечника с частотой 120 Гц (в два раза выше частоты системы, которая в США составляет 60 Гц) - один цикл сжатия и расширения сердечника для каждого пика напряжения. форма волны магнитного потока плюс шум, создаваемый механическими силами между первичной и вторичной обмотками. Опять же, поддержание низких уровней магнитного потока в сердечнике является ключом к минимизации этого эффекта, что объясняет, почему феррорезонансные трансформаторы, которые должны работать в режиме насыщения для большей части формы волны тока, работают как в горячем состоянии, так и с шумом.

    Потери из-за наматывающих магнитных сил

    Еще одно шумовое явление в силовых трансформаторах - это физическая сила реакции между первичной и вторичной обмотками при большой нагрузке. Если вторичная обмотка разомкнута, через нее не будет тока и, следовательно, не будет создаваемой ею магнитодвижущей силы (ммс). Однако, когда вторичная обмотка «загружена» (в настоящее время подается на нагрузку), обмотка генерирует МДС, которой противодействует «отраженная» МДС в первичной обмотке, чтобы предотвратить изменение уровней магнитного потока сердечника.Эти противоположные МДС, возникающие между первичной и вторичной обмотками в результате вторичного (нагрузочного) тока, создают физическую силу отталкивания между обмотками, которая заставляет их вибрировать. Разработчики трансформаторов должны учитывать эти физические силы при конструкции обмоток обмоток, чтобы обеспечить адекватную механическую опору для выдерживания напряжений. Однако в условиях большой нагрузки (высокого тока) эти напряжения могут быть достаточно большими, чтобы вызвать слышимый шум, исходящий от трансформатора.

    • Силовые трансформаторы ограничены по количеству мощности, которую они могут передавать от первичной обмотки (обмоток) ко вторичной. Большие блоки обычно имеют номинальные значения в ВА (вольт-амперы) или кВА (киловольт-амперы).
    • Сопротивление в обмотках трансформатора снижает эффективность, поскольку ток рассеивает тепло, тратя энергию.
    • Магнитные эффекты в железном сердечнике трансформатора также способствуют снижению эффективности. Среди эффектов вихревые токи (циркулирующие индукционные токи в железном сердечнике) и гистерезис (потеря мощности из-за преодоления тенденции железа к намагничиванию в определенном направлении).
    • Повышенная частота приводит к увеличению потерь мощности в силовом трансформаторе. Присутствие гармоник в энергосистеме является источником частот, значительно превышающих нормальные, что может вызвать перегрев больших трансформаторов.
    • И трансформаторы, и катушки индуктивности обладают определенной неизбежной емкостью из-за изоляции проводов (диэлектрика), отделяющей витки обмотки от стального сердечника и друг от друга. Эта емкость может быть достаточно значительной, чтобы дать трансформатору естественную резонансную частоту , что может быть проблематичным в сигнальных приложениях.
    • Индуктивность утечки возникает из-за того, что магнитный поток не на 100% связан между обмотками трансформатора. Любой поток, не связанный с , передающий энергию от одной обмотки к другой, будет накапливать и выделять энергию, как работает (само) индуктивность. Индуктивность утечки имеет тенденцию ухудшать регулировку напряжения трансформатора (вторичное напряжение «проседает» больше при заданной величине тока нагрузки).
    • Магнитное насыщение сердечника трансформатора может быть вызвано чрезмерным первичным напряжением, работой на слишком низкой частоте и / или наличием постоянного тока в любой из обмоток.Насыщение можно минимизировать или избежать с помощью консервативной конструкции, которая обеспечивает достаточный запас прочности между пиковыми значениями плотности магнитного потока и пределами насыщения сердечника.
    • Трансформаторы часто испытывают значительные пусковые токи при первоначальном подключении к источнику переменного напряжения. Пусковой ток наиболее велик, когда подключение к источнику переменного тока выполняется в момент, когда мгновенное напряжение источника равно нулю.
    • Шум - обычное явление, проявляемое трансформаторами, особенно силовыми трансформаторами, и в первую очередь вызвано магнитострикцией сердечника.Физические силы, вызывающие вибрацию обмотки, также могут создавать шум в условиях большой (сильноточной) нагрузки вторичной обмотки.

    Как спроектировать собственный инверторный трансформатор

    Проектирование инверторного трансформатора может быть сложной задачей. Однако с помощью различных формул и одного практического примера, показанного здесь, необходимые операции, наконец, становятся очень простыми.

    В данной статье на практическом примере объясняется процесс применения различных формул для изготовления инверторного трансформатора.Различные формулы, необходимые для проектирования трансформатора, уже обсуждались в одной из моих предыдущих статей.

    Обновление: подробное объяснение можно также изучить в этой статье: Как сделать трансформаторы. Мощность переменного тока очень похожа на мощность, получаемую от розеток переменного тока в вашем доме.

    Хотя инверторы сегодня широко доступны на рынке, разработка собственного индивидуального инверторного блока может доставить вам огромное удовлетворение и, более того, это очень весело.

    В Bright Hub я уже опубликовал множество схем инверторов, от простых до сложных синусоидальных и модифицированных синусоидальных схем.

    Однако люди продолжают спрашивать меня о формулах, которые можно легко использовать для проектирования инверторного трансформатора.

    Популярный спрос побудил меня опубликовать одну такую ​​статью, в которой подробно рассматриваются расчеты конструкции трансформатора. Хотя объяснение и содержание были на должном уровне, к большому сожалению, многие из вас просто не смогли понять процедуру.

    Это побудило меня написать эту статью, которая включает в себя один пример, подробно иллюстрирующий, как использовать и применять различные шаги и формулы при разработке собственного трансформатора.

    Давайте быстро рассмотрим следующий прилагаемый пример: Предположим, вы хотите спроектировать инверторный трансформатор для инвертора на 120 ВА, используя 12-вольтовый автомобильный аккумулятор на входе и требующий 230 вольт на выходе. Теперь, если просто разделить 120 на 12, получится 10 ампер, это станет требуемым вторичным током.

    Хотите узнать, как спроектировать основные схемы инвертора?

    В нижеследующем объяснении первичная сторона упоминается как сторона трансформатора, которая может быть подключена к стороне батареи постоянного тока, в то время как вторичная сторона означает выходную сторону 220 В переменного тока.

    Имеющиеся данные:

    • Вторичное напряжение = 230 Вольт,
    • Первичный ток (выходной ток) = 10 Ампер.
    • Первичное напряжение (выходное напряжение) = 12-0-12 вольт, что равно 24 вольт.
    • Выходная частота = 50 Гц

    Расчет напряжения инверторного трансформатора, тока, количества витков

    Шаг № 1 : Сначала нам нужно найти площадь сердечника CA = 1,152 × √ 24 × 10 = 18 кв. См, где 1,152 - константа.

    Мы выбираем CRGO в качестве материала сердечника.

    Шаг № 2 : Расчет оборотов на вольт TPV = 1 / (4,44 × 10 –4 × 18 × 1,3 × 50) = 1,96, за исключением 18 и 50, все они являются константами.

    Шаг № 3 : Расчет вторичного тока = 24 × 10/230 × 0,9 (предполагаемая эффективность) = 1,15 А,

    Сопоставив вышеуказанный ток в таблице A, мы получаем приблизительное значение вторичного медного провода. толщина = 21 SWG.

    Следовательно, количество витков для вторичной обмотки рассчитывается как = 1,96 × 230 = 450

    Шаг 4: Затем Площадь вторичной обмотки становится = 450/137 (из таблицы A) = 3 .27 кв. См.

    Теперь, требуемый первичный ток составляет 10 А, поэтому из Таблицы A мы сопоставим эквивалентную толщину медного провода = 12 SWG.

    Шаг № 5 : Расчет первичного числа витков = 1,04 (1,96 × 24) = 49. Значение 1,04 включено, чтобы обеспечить добавление нескольких дополнительных витков к общей сумме, чтобы компенсировать потери в обмотке.

    Шаг № 6 : Расчет площади первичной обмотки = 49/12.8 (из таблицы A) = 3,8 кв. См.

    Следовательно, общая площадь обмотки составляет = (3,27 + 3,8) × 1,3 (площадь изоляции добавлена ​​на 30%) = 9 кв. См.

    Шаг № 7 : Расчет общей площади получаем = 18 / 0,9 = 20 кв. См.

    Шаг 8: Далее ширина языка становится = √20 = 4,47 см.

    Снова сверяясь с таблицей B, мы завершаем, что тип сердечника составляет приблизительно 6 (E / I) , используя указанное выше значение.

    Шаг № 9 : Наконец рассчитывается стек as = 20 / 4,47 = 4,47 см

    Таблица A

    SWG ------- (AMP) ------- Обороты за кв. см.
    10 ----------- 16,6 ---------- 8,7
    11 ----------- 13,638 ------- 10,4
    12- ---------- 10,961 ------- 12,8
    13 ----------- 8,579 --------- 16,1
    14 ----- ------ 6,487 --------- 21,5
    15 ----------- 5,254 --------- 26,8
    16 ------- ---- 4,151 --------- 35,2
    17 ----------- 3,178 --------- 45.4
    18 ----------- 2,335 --------- 60,8
    19 ----------- 1,622 --------- 87,4
    20 ----------- 1,313 --------- 106
    21 ----------- 1,0377 -------- 137
    22-- --------- 0,7945 -------- 176
    23 ----------- 0,5838 --------- 42
    24 ----- ------ 0,4906 --------- 286
    25 ----------- 0,4054 --------- 341
    26 ------- ---- 0,3284 --------- 415
    27 ----------- 0,2726 --------- 504
    28 --------- - 0,2219 --------- 609
    29 ----------- 0,1874 --------- 711
    30 ----------- 0,1558 --------- 881
    31 ----------- 0.1364 --------- 997
    32 ----------- 0,1182 --------- 1137
    33 ----------- 0,1013- -------- 1308
    34 ----------- 0,0858 --------- 1608
    35 ----------- 0,0715 --- ------ 1902
    36 ----------- 0,0586 ---------- 2286
    37 ----------- 0,0469 ---- ------ 2800
    38 ----------- 0,0365 ---------- 3507
    39 ----------- 0,0274 ---- ------ 4838
    40 ----------- 0,0233 ---------- 5595
    41 ----------- 0,0197 ---- ------ 6543
    42 ----------- 0,0162 ---------- 7755
    43 ----------- 0,0131 ---- ------ 9337
    44 ----------- 0.0104 --------- 11457
    45 ----------- 0,0079 --------- 14392
    46 ----------- 0,0059- -------- 20223
    47 ----------- 0,0041 --------- 27546
    48 ----------- 0,0026 --- ------ 39706
    49 ----------- 0,0015 --------- 62134
    50 ----------- 0,0010 ----- ---- 81242

    Таблица B

    Тип ------------------- Язык ---------- Обмотка
    №---- ----------------- Ширина ------------- Площадь
    17 (E / I) ----------- --------- 1,270 ------------ 1,213
    12A (E / 12I) --------------- 1,588 ---- ------- 1.897
    74 (E / I) -------------------- 1,748 ----------- 2,284
    23 (E / I) - ------------------ 1.905 ----------- 2.723
    30 (E / I) ------------ -------- 2.000 ----------- 3.000
    21 (E / I) -------------------- 1.588- ---------- 3.329
    31 (E / I) -------------------- 2.223 ----------- 3.703
    10 (E / I) -------------------- 1.588 ----------- 4.439
    15 (E / I) - ------------------- 2.540 ----------- 4.839
    33 (E / I) ----------- ---------- 2,800 ---------- 5,880
    1 (E / I) --------------------- --2.461 ---------- 6.555
    14 (E / I) --------------------- 2.540 ---------- 6.555
    11 (E / I) --------------------- 1.905 --------- 7,259
    34 (U / T) -------------------- 1/588 --------- 7,259
    3 (E / I) - --------------------- 3,175 --------- 7,562
    9 (Ед. / Т.) ----------- ----------- 2,223 ---------- 7,865
    9А (U / T) -------------------- 2,223 ---------- 7,865
    11A (E / I) ------------------- 1,905 ----------- 9.072
    4A (E / I) --------------------- 3.335 ----------- 10.284
    2 (E / I) - ---------------------- 1.905 ----------- 10.891
    16 (английский / русский) -------- ------------- 3.810 ----------- 10.891
    5 (E / I) ---------------------- 3.810 ----------- 12.704
    4AX (U / T) ---------------- 2.383 ----------- 13.039
    13 (E / I) -------------- ------ 3,175 ----------- 14,117
    75 (U / T) ------------------- 2,540 ---- ------- 15,324
    4 (E / I) ---------------------- 2,540 ---------- 15,865
    7 (E / I) ---------------------- 5.080 ----------- 18.969
    6 (E / I) - -------------------- 3.810 ---------- 19.356
    35A (U / T) ----------- ------ 3,810 ---------- 39,316
    8 (E / I) --------------------- 5,080 --- ------- 49.803

    Что такое электрические трансформаторы? | Triad Magnetics

    Трансформаторы - это электрические устройства, способные изменять уровень напряжения переменного тока (AC) в цепи.Они работают только с цепями переменного тока, а не с цепями постоянного тока (DC). Основные компоненты трансформатора - это две отдельные катушки с проволокой, намотанные на один сердечник. Катушка, подключенная к входному источнику или источнику напряжения, является первичной катушкой, катушка, подключенная к выходному выходу или выходу напряжения, является вторичной катушкой, а сердечник представляет собой электромагнитное устройство, которое препятствует (ограничивает) или усиливает (увеличивает) поток напряжения в соответствии с требованиями к выходу. .

    Более глубокое исследование того, как работают трансформаторы, их различные типы и общие области применения, помогает лучше понять критически важную функцию, которую они выполняют, обеспечивая полезную мощность для работы компьютеров, бытовой техники, осветительных приборов и многих других электрические и электронные устройства.


    Как работают трансформаторы и их различные типы

    Трансформаторы не вырабатывают электроэнергию. Вместо этого они передают его из одной цепи переменного тока в другую. Этот процесс передачи начинается, когда электрический ток входит в трансформатор. Ток поступает через соединение с первичной обмоткой (также называемой обмоткой, потому что она наматывается на часть сердечника). Эта обмотка вокруг сердечника преобразует электрическую энергию в магнитное поле, которое затем течет через сердечник в обмотки вторичной катушки.Вторичная катушка превращает электромагнитный поток обратно в электрическую энергию с необходимым выходным напряжением.

    Как указано выше, основной трансформатор состоит из четырех основных компонентов:

    • Входные соединения: Также называемое первичной стороной, входное соединение - это место, где мощность поступает на трансформатор.
    • Выходные соединения: Выходное соединение - или вторичная сторона - трансформатора передает преобразованную мощность (повышенную или пониженную) за пределы трансформатора на нагрузку.
    • Обмотки трансформатора: В большинстве случаев первичная и вторичная обмотки представляют собой не отдельные катушки, а несколько катушек, связанных с их основным входным или выходным источником для уменьшения магнитного потока (мера силы электрического поля через заданную поверхность). Величина увеличения или уменьшения напряжения зависит от соотношения витков первичной и вторичной обмоток или количества витков каждой катушки вокруг сердечника. Например, трансформатор с соотношением витков 3: 1 преобразует 3 вольта в 1 вольт в понижающем трансформаторе, а коэффициент 3: 5 преобразует 3 вольта в 5 вольт в повышающем трансформаторе.
    • Сердечники трансформатора: Сердечник трансформатора усиливает магнитную связь между первичной и вторичной цепями. Он обеспечивает контролируемый путь магнитного потока через трансформатор от первичной обмотки ко вторичной обмотке. Сердечники - это не сплошной стальной стержень. Вместо этого они состоят из множества тонких ламинированных листов стали. Эта конструкция помогает ограничить или исключить накопление тепла внутри трансформатора. В трансформаторах используются два типа сердечников - сердечник и корпус, которые отличаются друг от друга расположением первичной и вторичной катушек.Обмотки наматываются вокруг сердечника в варианте с сердечником, в то время как в варианте с оболочкой сердечник окружает обмотки.

    Существует много различных типов трансформаторов, и Triad Magnetics предлагает широкий ассортимент этих стандартных продуктов для самых разных применений. Различные категории трансформаторов включают:

    Силовые трансформаторы

    Силовые трансформаторы увеличивают или уменьшают линейное напряжение и, если это необходимо для работы интегральной схемы или других специализированных схем, могут помочь с преобразованием напряжения переменного тока в напряжение постоянного тока.Эти трансформаторы работают на одной из трех частот, измеряемых в герцах (Гц), или на количестве циклов в секунду. Хотя некоторые импульсные силовые трансформаторы работают на частотах 2,5 мегагерца и выше, стандартные линейные силовые трансформаторы работают на частотах 50, 60 и 400 Гц.

    Поскольку частота остается постоянной от источника к выходу в силовом трансформаторе, герц является важным измерением, которое влияет на размер сердечника и количество тепла, выделяемого трансформатором.Это измерение, наряду с первичным напряжением, вторичным среднеквадратичным напряжением и током, монтажными характеристиками и, иногда, пробивным напряжением между первичными и вторичными частями, необходимо учитывать при проектировании или покупке силового трансформатора.

    Разделительные трансформаторы и автотрансформаторы

    Изолирующие трансформаторы и автотрансформаторы - это два противоположных типа силовых трансформаторов.

    Изолирующие трансформаторы состоят из первичной и вторичной обмоток, которые не соединены, поскольку они намотаны независимо друг от друга.Такая конструкция позволяет этим устройствам изолировать части схемы, предотвращая сотрясение.

    С другой стороны, автотрансформаторы используют часть первичной обмотки как часть вторичной обмотки, что создает прямое соединение между двумя линиями с помощью медного провода. Эти устройства используют меньше меди в катушках, что делает их менее дорогими и более компактными. Их основное применение - это приборы американского производства, предназначенные для зарубежных рынков, где линейное напряжение составляет 230 В, а устройство должно работать при 115 В.

    Аудио трансформаторы

    Аудиотрансформатор выполняет другую функцию, чем силовой или развязывающий трансформатор. Аудио преобразователи преобразуют электрические сигналы, несущие звук. Катушки в аудиопреобразователях имеют различные уровни импеданса (сопротивление электрической цепи, измеряемое в омах) в диапазоне частот от 20 Гц до 100 000 Гц. Различные уровни импеданса в аудиокомпонентах возникают из-за изменений материала сердечника или коэффициента трансформации трансформатора и влияют на качество звука.

    Импульсные трансформаторы

    Этот тип трансформатора обрабатывает импульсы электрических токов очень высокой частоты без искажения сигнала. Разработка импульсного трансформатора для одновременного повышения или понижения импульса связана с соотношением витков катушек. Этот тип трансформатора может передавать импульс переменного тока от одной цепи к другой, одновременно блокируя сигналы постоянного тока.


    Применение и использование трансформаторов

    Силовые трансформаторы и изолированные трансформаторы присутствуют на различных этапах распределения электроэнергии, от электростанции до розеток в доме или офисе.Повышающие трансформаторы преобразуют мощность электростанции в более высокое напряжение для улучшения передачи, в то время как понижающие трансформаторы на подстанциях и барабанах трансформаторов снижают напряжение для общего использования. Хотя это их наиболее распространенный вариант использования, существует бесчисленное множество других электрических и электронных применений трансформаторов, в том числе:

    • Настенные трансформаторы (т.е. зарядные электронные устройства)
    • Электростанции и возобновляемые источники энергии
    • Средства автоматизации и управления промышленными процессами
    • Системы освещения
    • Мелкая бытовая техника (например, компьютеры, телевизоры, тостеры, микроволновые печи)
    • Крупная бытовая техника (например, стиральные машины, сушилки, копировальные аппараты)
    • Усилители звука и динамики
    • Медицинские устройства (включая оборудование для МРТ и компьютерной томографии, кислородные насосы и контроллеры капельницы)

    Выбор наиболее оптимального типа трансформатора зависит от характеристик конкретного приложения.Некоторые из технических характеристик, которые следует учитывать, включают:

    • входное напряжение (т.е. первичное напряжение),
    • выходное напряжение (т.е. вторичное напряжение),
    • выходной ток,
    • Уровень мощности
    • и
    • Размер трансформатора
    • (от рисового зерна до большого полуприцепа).

    Свяжитесь с Triad Magnetics сегодня для ваших нужд трансформатора

    Трансформаторы различных типов и форм позволяют безопасно использовать широкий спектр электрических и электронных устройств.Это простое устройство с относительно простой функцией, но они являются важным элементом электроснабжения домов и рабочих мест.

    Triad Magnetics поставляет разнообразные трансформаторы для широкого спектра применений. Свяжитесь с нами, чтобы узнать больше о широком ассортименте трансформаторов, которые у нас есть, или запросите смету на трансформатор, который наилучшим образом соответствует вашим потребностям, у одного из наших экспертов.

    Автор: alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *