Производительность компрессора сжатого воздуха: Производительность воздушных винтовых и поршневых компрессоров: формула расчета и проверка

Содержание

Производительность воздушных винтовых и поршневых компрессоров: формула расчета и проверка

Производительность компрессора – это характеристика, которая определяет его пропускную способность. Это значит, какой объем сжатого воздуха компрессор способен вмещать и выпускать в единицу времени за 1 цикл всасывания. Этот параметр напрямую зависит от рабочего давления агрегата, а его стандартные единицы измерения – м3/мин или л/мин.

Узнать производительность компрессора можно из описания товара на сайте или его технического паспорта. Эту характеристику выявляют во время тестирования оборудования при нормальных условиях, и поэтому она является теоретической. На практике показатели могут не соответствовать заявленным производителем. Согласно ГОСТ допустимое отклонение составляет 5%.

Показатели также могут быть неверными с точки зрения подхода к их определению. Речь идёт об импортных установках. У зарубежных производителей другая система подсчета, из-за чего могут возникнуть ошибки в подборе. Также важно отметить, что существует 2 параметра производительности:

  • по входу;
  • по выходу.

В паспорте обычно указывают входную производительность агрегата, и она может в разы превышать выходную. Это надо учитывать при выборе компрессора, как бытового так и профессионального.

Параметры винтовых и поршневых установок

Воздушные компрессоры поршневого и винтового типа отличаются по параметрам производительности. В среднем способность поршневых установок составляет от 55 до 7000 литров в минуту. У винтовых агрегатов, которые являются более мощными и энергоэффективными в сравнении с предыдущим видом, эта величина в разы больше: от 160 до 73000 л/мин.

Некоторые агрегаты оборудованы частотным преобразователем Это устройство, которое регулирует количество оборотов двигателя, вследствие чего меняется и пропускная способность. У таких установок производительность может меняться в пределах диапазона, который определяет производитель.

Примеры оборудования

Все модели

Как определить необходимые характеристики?

Рассчитать необходимую производительность можно за 3 шага.

  1. Определить количество потребителей, которые будут работать от сжатого воздуха, и их номинальный расход. На этом же этапе необходимо суммировать их расход.
  2. Рассчитать производительность по входу: для этого необходимо учесть коэффициент запаса, класс (бытовой, профессиональный) и тип техники (винтовой, поршневой), а также максимальное рабочее давление.
  3. Определить объем ресивера (это сосуд для хранения сжатого воздуха: подробнее про ресиверы мы писали в прошлой статье).

Каждый шаг сопровождается формулой, по которой высчитываются характеристики. Эту работу можно и нужно доверить мастеру, который сэкономит ваше время на выяснение всех величин, их подсчет и высчитывание конечного результата.

Если у вас нет специальных знаний в этой области, при самостоятельном подсчете вы рискуете не верно определить необходимые параметры. Доверьте это “ЭнергоПроф”. Позвоните нам по номеру 8 (800) 333-47-93. Наши специалисты сделают все расчеты за вас и помогут с выбором.

Производительность компрессора – что это?

Техника и системы автоматизации — ООО ТСА

Комплексные поставки систем автоматизации

Наш адрес:
г. Пенза, ул. Германа Титова, 18

Карта проезда

Режим работы:
пн-пт 9:00 – 18:00
сб-вс выходной

[email protected]

18.10.2022

Под производительностью компрессора понимают пропускную способность, т.е. какой объем сжатого воздуха оборудование выпустит за определенную единицу времени при одном цикле. Зависит этот показатель от рабочего давления. Обозначают производительность в кубических метрах — м³/мин или в литрах — л/мин. Параметр обычно указывают в техническом паспорте изделия.

Особенности определения производительности

Эта характеристика определяется при помощи тестирования. Условия для проведения тестов создаются оптимальные, поэтому в реальной жизни параметр может отличаться от указанного значения. В соответствии с ГОСТ допускается отклонение не более чем на 5%.

Стоит учесть, что при определении производительности учитывают два фактора: вход и выход. В паспорте изделия производители указывают входной показатель, который в несколько раз превышает этот параметр на выходе. От указанного значения реальная пропускная способность составляет порядка 60-70%.

При покупке нужно учитывать небольшой запас по данной характеристике. Ведь чем больше производительность, тем запас воздуха будет нагнетаться быстрее. Двигатель при этом сможет работать с перерывами и будет должным образом охлаждаться. Рабочий ресурс таких компрессоров значительно больше.

Технические характеристики на разных устройствах

Пропускная способность агрегатов зависит от их геометрии и типа:

  • Поршневые модели колеблются в пределах от 55 л/мин до 7000 л/мин. Показатель зависит от размера рабочей камеры. Однако не весь воздух полностью выходит из камеры. Оставшаяся часть занимает определенный объем, который называется вредным пространством. Эта особенность позволяет избежать ударов поршня о корпус, что могло бы повлечь выход механизма из строя.
  • Винтовое оборудование более мощное и энергетически эффективное, соответственно, и пропускная способность у таких устройств значительно больше. Производительность этих компрессоров варьируется от 160 л/мин до 73000 л/мин. Но здесь также реальный показатель отличается от теоретического. Это связано с различными перетечками внутри устройства, а также утечки наружу через уплотнители.

Некоторые современные модели оснащены частотным преобразователем. Этот элемент конструкции регулирует число оборотов двигателя. В результате у агрегата меняется пропускная способность в пределах установленного производителем диапазона.

Как выбрать компрессор

От показателя пропускной способности зависит то, для чего можно применить агрегат. Оборудование используется для разных нужд: для покраски автомобилей, для обдува станков в мастерской, для подключения пневматического инструмента и многого другого.

Если рассматривать компрессор для использования в условиях гаража, то необходимо обращать внимание на изделия с производительностью от 400 л/мин. Для производственных целей необходимо закупать агрегаты от 1500 л/мин. В промышленных же сферах используются габаритные установки с самыми высокими показателями. Такое оборудование применяется в строительстве, газо- и нефтедобыче, транспортной области, энергетике, дорожно-монтажных работах, фармацевтической и пищевой промышленности.

Производительность является одной из главных характеристик компрессоров. Вычислить необходимый параметр можно по общему показателю объема используемого воздуха. При работе с пневматическими инструментами, станками и иными приспособлениями подбирают подходящее давление. При превышении пропускной способности допустимых в инструменте показателей оборудование работать не будет.

г. Пенза, ул. Германа Титова, 18

+7 (927) 289-36-95

2018 © Все права
защищены

Наш адрес:
г. Пенза, ул. Германа Титова, 18

Карта проезда

Создание сайта – Веб-студия Три Дабл Ю

Измерение производительности установленных воздушных компрессоров

Измерение свободной подачи воздуха (FAD) воздушного компрессора может быть сложной задачей. С надлежащим расходомером и некоторыми математическими расчетами эта задача выполнима. Эта статья проливает свет на то, как выбрать расходомер, и обобщает параметры, которые необходимо учитывать при измерении FAD.

Конечной задачей воздушного компрессора является производство сжатого воздуха путем всасывания окружающего воздуха, повышения его давления или сжатия и подачи в сеть сжатого воздуха. Мощность воздушного компрессора определяется его номинальной мощностью и спецификациями FAD, указанными производителем, когда он новый. Однако со временем измерение на месте может оказаться очень полезным. Есть несколько простых вопросов, которые в конечном итоге объясняют производительность воздушного компрессора:

  • Сколько электроэнергии потребляет мой воздушный компрессор?
  • Сколько сжатого воздуха подает мой воздушный компрессор?
  • Какой у меня профиль давления?

Чтобы ответить на эти вопросы, вы можете самостоятельно измерить воздушный компрессор. Измерения производительности обычно бывают двух типов:

  • Временное измерение производительности, проводимое в рамках оценки системы или перед покупкой нового воздушного компрессора.
  • Постоянное измерение производительности, которое выполняется для постоянного мониторинга производительности с целью своевременного запуска обслуживания или капитального ремонта.

 

Как определяется FAD?

Расход измеряется в объеме в единицу времени. Но воздух легко сжимается, и его объем меняется в зависимости от температуры. Между тем, воздух, который всасывает воздушный компрессор, содержит влагу (водяной пар), а плотность воздуха (воздух на м3) меняется в зависимости от высоты над уровнем моря, температуры и погодных условий. Чтобы все говорили об одном и том же, были написаны отраслевые и международные стандарты. Например, ISO 1217 касается эксплуатационных испытаний поршневых воздушных компрессоров. Этот стандарт также распространяется на ротационные винтовые воздушные компрессоры.

Пункт 3.4.1 стандарта ISO1217 гласит:

«Фактический объемный расход компрессора — это фактический объем газа, сжатого и подаваемого в стандартную точку нагнетания, относительно условий общей температуры, общего давления и состава, преобладающих в стандартная точка входа».

Это фактический объем воздуха, подаваемый воздушным компрессором, относительно условий свободного воздуха на входе в компрессор. Таким образом, FAD – это количество свободного воздуха, всасываемого в компрессор, которое фактически подается воздушным компрессором на выходе из сжатого воздуха.

FAD использует единицы измерения объемного расхода, такие как м3/мин, л/с и т. д. Типы расходомеров, разрешенные ISO 1217, первоначально рассчитывают массовый расход воздуха, который затем преобразуется в объемный расход воздуха на входе на основе значения для плотность воздуха на входе в воздушный компрессор. В идеале это фактические условия, но для удобства ISO 1217 предлагает следующие условия, при условии, что фактические условия находятся в допустимых пределах:

  • Давление = 1 бар абс.
    0008
  • Температура = 20 °C
  • Относительная влажность = 0%

Поскольку производители воздушных компрессоров могут указывать свои FAD при различных условиях на входе, рекомендуется изучить техпаспорт воздушных компрессоров, а не просто брать номера на паспортной табличке!

Затем вносятся поправки на влажность на входе и количество воды, сконденсировавшейся перед расходомером, а также скорость двигателя по сравнению с его номинальной скоростью.

Поскольку производители воздушных компрессоров могут указывать свои FAD при различных условиях на входе, рекомендуется изучить техпаспорт воздушных компрессоров, а не просто брать номера на паспортной табличке!

Типовая паспортная табличка воздушного компрессора.

Для сжатия воздуха до более высокого давления требуется больше энергии. Кроме того, потери воздуха и использование управляющего воздуха увеличиваются с увеличением давления в воздушном компрессоре, поэтому двигатель компрессора не перегружается при более высоких давлениях.

Например, модуль сжатия в ротационном винтовом компрессоре с давлением 8 бар работает с другой скоростью, чем в машине с давлением 10 бар.

Этот отрывок из технического паспорта воздушного компрессора показывает зависимость FAD от давления. Обратите внимание, что потребляемая мощность при различных давлениях одинакова.

 

Что влияет на эффективность воздушного компрессора?

Существует несколько параметров, влияющих на эффективность воздушных компрессоров. В следующей таблице перечислены эти параметры и их влияние на два распространенных типа воздушных компрессоров — винтовой и центробежный. Влияние температуры на входе для винтовых и центробежных воздушных компрессоров различно, но в этой статье эти детали не рассматриваются.

Производители воздушных компрессоров измеряют производительность воздушных компрессоров в соответствии с международными стандартами (например, ISO 5389 для центробежных воздушных компрессоров) и описывают результаты в своих технических паспортах. Однако эти измерения выполняются в заводских условиях, а не в реальных условиях на месте.

Кроме того, производительность воздушного компрессора может ухудшиться в течение срока службы, и может потребоваться капитальный ремонт. Для оценки производительности воздушного компрессора рекомендуется провести измерение на месте. Кроме того, активные измерения, такие как мониторинг в реальном времени, очень важны для оценки производительности воздушных компрессоров в реальном времени.

Air Compressor Technology Ежемесячный электронный информационный бюллетень

С акцентом на Оптимизация со стороны предложения профилируются технологии воздушных компрессоров и системы управления компрессорами. В статьях об оценке системы подробно описывается, какие элементы управления компрессором позволяют потреблять кВтч в соответствии с потребностями системы.

Получать электронную рассылку

Методы измерения расхода нагнетания

Поток нагнетания воздушного компрессора содержит воздух, воду, масло и твердые частицы.

Некоторые методы измерения не работают, потому что они не могут работать с водой и маслом в потоке. Другие не подходят, так как вызывают падение давления, что, в свою очередь, приводит к трате энергии и денег. К расходомеру, используемому на выходе из компрессора, предъявляются следующие требования:

  • Устойчив к частицам.
  • Устойчив к каплям воды и масла.
  • Способность выдерживать высокие скорости и температуры до 70 °C.
  • Минимальная потеря давления, лучше отсутствие потери давления.
  • Врезной расходомер для временного измерения.

В следующей таблице представлено сравнение наиболее распространенных принципов расходомера с предыдущими требованиями.

На основании сравнения датчик расхода с трубкой Пито выделяется как лучший выбор для измерений на выходе из компрессора. Этот метод доказал свою надежность в промышленных приложениях. Это также стандартный метод измерения воздушной скорости в авиационной промышленности.

 
Современный расходомер с трубкой Пито для измерений на выходе.

 

Измерение расхода на стороне всасывания

В последнее время некоторые производители, особенно из Китая, представили тепловые массовые расходомеры, устанавливаемые на стороне всасывания воздушного компрессора для определения производительности компрессора. Во многих отношениях эти расходомеры украшают/преувеличивают характеристики, потому что они не учитывают:

  • Потери внутри воздушного компрессора, которые невозможно измерить.
  • Воздух, используемый для «накачки» (повышения давления) внутренних объемов воздушных компрессоров, измеряется как подаваемый воздух, но он хранится только внутри воздушного компрессора. Сбрасывается (во время продувки) в атмосферу при разгрузке воздушного компрессора.
  • Для воздушного компрессора, работающего под нагрузкой/разгрузкой, эта продувка воздухом может быстро стать серьезной ошибкой, особенно при низких средних нагрузках.
  • Установка иногда требует удаления впускного фильтра, что приводит к слишком высокому расходу. Падение давления на воздушном фильтре может снизить давление всасываемого воздуха на 1–3 процента.
  • Стандарты испытаний производительности воздушных компрессоров
  • требуют измерения расхода на выходе, а не на входе.
  • Сложный монтаж и громоздкое оборудование.
  • Применяется для краткосрочных испытаний, без постоянной установки.

Пользователь воздушного компрессора должен настаивать на измерении на выходе для определения производительности. Важно то, что выходит, а не то, что входит!

Типовой всасывающий расходомер с соединительными втулками.

 

Как рассчитать FAD на основе расхода нагнетания

Расход нагнетания, измеренный датчиком расхода с трубкой Пито, необходимо рассчитать в FAD с дополнительными измерениями рабочей температуры и рабочего давления.

Важно понимать, что рабочий поток на выходе из воздушного компрессора состоит из двух компонентов:

  • Расход воздуха, который вы хотите измерить.
  • Поток воды, удаляемый позже в секции подготовки воздуха.

Для точного измерения содержания воды необходимо измерить влажность в трубе. Это непростая задача, и вы должны учитывать условия почти полной влажности при высоких температурах. Многие датчики влажности не могут работать в таких условиях. Интересно, что при установке влажности в диапазоне от 80 до 99 процентов погрешность измерения составляет не более ±0,3%.

Основываясь на этом выводе, вы можете использовать постоянную настройку относительной влажности. Таким образом, вы можете вычесть содержание воды из расхода и рассчитать «расход сухого воздуха» при стандартных условиях (т. е. 20 °C, 1000 гПа).

Влажность на входе влияет на количество подаваемого сухого воздуха, но ошибка меньше, чем другие факторы. Например, в жаркий тропический день при температуре 32 °C и относительной влажности 75 % объем сухого воздуха на 3,5 % меньше объема всасываемого воздуха.

Атмосферное давление при изменении погоды может изменяться в два раза. Грязный воздухозаборный фильтр также может изменить поток всасываемого воздуха на 2–3 процента.

Используя газовый закон и следуя условиям всасывания, указанным производителем воздушного компрессора, вы в конечном итоге получите расчет FAD.

Рассчитанный таким образом FAD — это то, что «на самом деле» обеспечивает воздушный компрессор. Если вы хотите сравнить его с техническими данными воздушного компрессора, обязательно используйте те же условия всасывания.

Стратегии управления несколькими воздушными компрессорами с ЧРП — запись вебинара

Загрузите слайды и посмотрите запись БЕСПЛАТНОЙ веб-трансляции, чтобы узнать:

  • Стратегии управления для центрального управления с комбинацией воздушных компрессоров с фиксированной скоростью и частотно-регулируемым приводом
  • Тематические исследования для иллюстрации этих стратегий
  • Некоторые практические соображения по применению компрессоров с ЧРП 
  • Реальные установки нескольких воздушных компрессоров с ЧРП с акцентом на влияние надлежащих средств управления

Пригласить меня на вебинар

Как измерить мощность

Довольно часто одни амперы считаются точным измерением киловатт (кВт), которые затем используются для расчета удельной мощности при полной нагрузке (м3/мин/кВт) или для оценки расхода (м3/мин) воздушного компрессора. Это неправильно!

Если вы измеряете только ампер, вы не можете знать коэффициент мощности и дисбаланс между тремя фазами. Это приведет к ошибкам от 10 до 30 процентов.

Также очень сложно точно использовать эту предполагаемую мощность в кВт для расчета процента полной нагрузки в цикле управления мощностью. Эти сложные расчеты могут быть выполнены только с использованием краткосрочных данных, поскольку состояние воздушного компрессора и его органов управления меняется со временем.

Для правильного измерения мощности необходимо измерить ток и напряжение на всех трех фазах воздушных компрессоров с помощью измерителя мощности, который может рассчитать коэффициент мощности. Уравнение мощности выглядит следующим образом:

кВт = (A x V x 1,732 x PF) / 1000

Код:

  • кВт = Входные киловатты
  • A = ток двигателя (ампер) V = напряжение сети
  • PF = коэффициент мощности

 

Заключение

Измерение производительности воздушных компрессоров имеет важное значение. Имея постоянный мониторинг системы сжатого воздуха, вы получите еще больше преимуществ.

Ключевым моментом является выполнение профилактического обслуживания, чтобы компоненты обслуживались до того, как они выйдут из строя. Кроме того, следите за потреблением энергии, чтобы гарантировать, что инвестиции окупятся в очень короткие сроки. В сочетании с регулярными проверками утечек эти факторы позволят вам наслаждаться здоровой и эффективной системой сжатого воздуха.

 

Все фотографии предоставлены SUTO iTEC. Для получения дополнительной информации посетите сайт www.suto-itec.com.

Чтобы прочитать аналогичные статьи Air Compressor Technology , посетите сайт www.airbestpractices.com/technology/air-compressors.

 

Как сделать воздушный компрессор более эффективным

Сжатый воздух является одним из наиболее широко используемых видов энергии во многих отраслях промышленности, при этом примерно 70% производителей используют системы сжатого воздуха.

Сжатый воздух может быть одним из самых дорогих видов энергии для производственных предприятий, часто потребляя больше энергии, чем другое оборудование. Для одной лошадиной силы сжатого воздуха требуется восемь лошадиных сил электричества. Многие воздушные компрессоры работают с эффективностью всего 10 %, поэтому зачастую есть много возможностей для улучшения. К счастью, 50 % систем сжатого воздуха на малых и средних промышленных объектах имеют возможности для экономичного энергосбережения.

Эффективность воздушного компрессора

Что влияет на энергоэффективность воздушного компрессора? К таким факторам относятся тип, модель, размер, номинальная мощность двигателя, конструкция системы, механизмы управления, использование и график технического обслуживания. Основной причиной неэффективного сжатия воздуха является потеря тепла, выделяемая из-за повышенной температуры сжатого воздуха и из-за трения, вызванного множеством движущихся частей системы.

Когда речь идет об эффективности воздушного компрессора, важно изучить всю систему, которая включает не только сам воздушный компрессор, но и линии подачи, резервуары для хранения воздуха, осушители воздуха, ресиверы и доохладители. Выполняя правильные настройки вашей системы сжатого воздуха, вы можете сэкономить значительное количество энергии и денег.

Какие факторы делают воздушные компрессоры неэффективными?

Многие факторы могут способствовать неэффективности воздушного компрессора. Производительность воздушного компрессора может со временем стать менее эффективной, если действует любой из следующих факторов:

.
  1. Воздухозаборник низкого качества:  КПД воздушного компрессора может значительно снизиться, если поступающий воздух слишком горячий, содержит примеси или имеет высокую влажность.
  2. Несовместимые регуляторы давления воздуха:  Управление воздушным компрессором обеспечивает непостоянное или постоянное высокое давление. Когда воздушные компрессоры работают ближе к максимальному давлению, они могут увеличить нагрузку на систему и снизить эффективность.
  3. Недостатки системы проектирования:  Изъяны в конструкции системы могут привести к снижению эффективности воздушного компрессора. Недостатки конструкции могут включать распределительную систему неправильного размера, отсутствие системы рекуперации и повышенные потери тепла, ненужные изгибы труб и неустраненные утечки.
  4. Несоответствие воздушного компрессора:  Воздушный компрессор не соответствует потребностям ваших устройств в сжатом воздухе или плохо настроен. Когда воздушные компрессоры не соответствуют применению, эффективность компрессора и общая производительность значительно снижаются.
  5. Пониженное давление: Падение давления в системе воздушного компрессора может оказать заметное влияние на эффективность вашего воздушного компрессора. Падение давления может произойти из-за неправильного размера труб, избыточной влажности, грязных фильтров или больших расстояний по воздуху.
  6. Нерегулярное обслуживание:  Нерегулярное обслуживание приведет к преждевременному износу системы и увеличению затрат на ремонт. Из-за большого количества движущихся частей и интенсивного использования этих систем несоблюдение графика регулярного технического обслуживания может сделать воздушные компрессоры неэффективными.

Как повысить эффективность компрессора

Повышение эффективности воздушного компрессора обычно начинается с определения факторов, изнашивающих систему. Энергоэффективные компрессоры зависят как от элементов управления, так и от конструкции, чтобы обеспечить максимальную эффективность.

Для наиболее эффективной системы воздушного компрессора потребуются правильно настроенные элементы управления, работающие ближе к минимальному давлению, и хорошо обслуживаемая конструкция системы, соответствующая применению.

Повысьте эффективность вашей системы с помощью следующих подходов:

  • Улучшить качество воздухозаборника.
  • Совместите органы управления воздушным компрессором.
  • Улучшить дизайн системы.
  • Учитывайте потребность в сжатом воздухе.
  • Свести к минимуму падение давления.
  • Поддерживайте свой компрессор.

Максимизируя эффективность компрессора с помощью этих подходов, вы также можете повысить производительность воздушного компрессора и увеличить срок его службы.

 

Связаться с нами Узнать больше Найти ближайшего к вам дилера

 

Улучшение качества воздухозаборника

На производительность влияют три компонента системы сжатия воздуха:

  1. Температура: Температура всасываемого воздуха определяет плотность воздуха. Для сжатия холодного воздуха требуется меньше энергии, что делает его гораздо более эффективным для подачи в систему воздушного компрессора. Избегайте использования горячего воздуха, который имеет меньшую плотность, так как это значительно снизит вашу производительность.
  2. Состав: Чистый всасываемый воздух обеспечивает более плавное движение сжатого воздуха по системе. Грязь, пыль или другие примеси в воздухе будут скапливаться внутри воздушного компрессора. Эти загрязняющие вещества могут накапливаться на жизненно важных деталях и вызывать износ, а также уменьшать емкость хранилища.
  3. Влажность:  Влага может быть вредной для системы сжатия воздуха, поскольку она накапливается внутри системы, вызывая ржавчину компонентов. Это может привести к износу, а также к утечкам и уменьшению емкости хранилища. Сухой воздух с меньшей вероятностью повредит вашу систему сжатия воздуха и инструменты, выполняющие работу в месте использования.

Подходит для управления воздушным компрессором

Элементы управления воздушным компрессором согласовывают выходную мощность компрессора с требованиями компрессорной системы, которая может состоять из одного или нескольких компрессоров. Такие элементы управления необходимы для эффективности системы воздушного компрессора и высокой производительности.

Системы сжатого воздуха предназначены для поддержания определенного диапазона давления и подачи объема воздуха, который зависит от потребностей конечного пользователя. Система управления снижает мощность компрессора, когда давление достигает определенного уровня. С другой стороны, если давление падает, мощность компрессора увеличивается.

Самые точные системы управления могут поддерживать низкое среднее давление без снижения требований к системе. Падение ниже системных требований может привести к неисправности оборудования. Вот почему так важно, чтобы элементы управления системой соответствовали емкости хранилища.

Следующие элементы управления могут помочь повысить эффективность отдельных компрессоров:

  • Элементы управления пуском и остановом включают и выключают компрессоры в зависимости от давления.
  • Функции загрузки и разгрузки разгружают компрессор до давления нагнетания.
  • Модуляционное управление управляет потребностью в расходе, а многоступенчатое управление позволяет компрессорам работать в условиях частичной нагрузки.
  • Элементы управления
  • Dual-Control и Auto-Dual позволяют выбирать либо запуск/остановку, либо загрузку/разгрузку.
  • Переменный рабочий объем может работать в двух или более условиях частичной нагрузки.
  • Приводы с регулируемой скоростью постоянно регулируют скорость приводного двигателя в соответствии с изменяющимися требованиями.
  • Системы с несколькими компрессорами используют системные главные элементы управления для координации всех функций, необходимых для оптимизации сжатого воздуха.
  • Главные средства управления системой могут координировать работу систем сжатого воздуха, когда сложность превышает возможности локальных и сетевых средств управления. Такие элементы управления могут отслеживать компоненты системы и данные о тенденциях для улучшения функций обслуживания.
  • Контроллеры давления и расхода хранят воздух более высокого давления, который впоследствии можно использовать для удовлетворения колебаний спроса.

Хорошо спроектированная система должна использовать следующее:

  • Управление спросом
  • Хранение
  • Управление компрессором
  • Места с хорошим сигналом
  • Общая стратегия управления

Основной задачей такой системы является подача сжатого воздуха с самым низким стабильным давлением при сохранении колебаний с помощью накопленного сжатого воздуха с более высоким давлением.

Для нескольких компрессоров элементы управления последовательностью могут удовлетворить потребности, запустив компрессоры для удовлетворения системных нагрузок и отключив их, когда они не нужны. Сетевые элементы управления также помогают управлять нагрузкой для всей системы.

Улучшение конструкции системы

Существует шесть способов улучшить конструкцию вашей системы воздушного компрессора.

  1. Выровнять путь.  Узкие линии подачи или резкие изгибы этих линий подачи могут вызвать повышенное трение и перепады давления в системе, что означает, что меньшее давление достигает точки использования. Лучшая конструкция без такого количества изгибов и петель должна производить большее давление с использованием той же энергии.
  2. Экономьте энергию, когда это необходимо.  Накопительный резервуар или ресивер может смягчить краткосрочные изменения потребления и сократить циклы включения/выключения. Резервуар также может предотвратить падение давления в системе ниже минимальных требований к давлению, когда потребность в нем самая высокая. Падение давления может привести к увеличению давления в системе, что приведет к потере давления воздуха. Размер баков зависит от мощности компрессора. Например, для воздушного компрессора мощностью 50 лошадиных сил требуется ресивер объемом 50 галлонов.
  3. Охлаждение всасываемого воздуха.  Поскольку энергия, необходимая для сжатия холодного воздуха, меньше энергии, необходимой для сжатия более теплого воздуха, вы можете уменьшить энергию, необходимую для сжатия, переместив воздухозаборник компрессора в затененное место снаружи. Например, снижение температуры на 20 градусов по Фаренгейту может снизить эксплуатационные расходы почти на 3,8%.
  4. Используйте несколько небольших компрессоров.  Негабаритные воздушные компрессоры могут быть очень неэффективными, поскольку они потребляют больше энергии на единицу при работе с частичной нагрузкой. Такие системы могут выиграть от использования множества небольших компрессоров с управлением последовательностью, что позволяет отключать части системы простым отключением некоторых компрессоров.
  5. Утилизация отработанного тепла.  Отходящее тепло можно использовать для кипячения воды для отопления помещений и нагрева воды. Правильно спроектированная установка рекуперации тепла может восстановить 50-90% электроэнергии, используемой при сжатии воздуха.
  6. Разместите рядом с зонами повышенного спроса.  Расположив воздушные ресиверы рядом с источниками повышенного потребления, легче удовлетворить спрос при сниженной общей мощности компрессора.

 

Учитывать потребности в сжатом воздухе
  1. Изучите профиль нагрузки.  Правильно спроектированная система сжатого воздуха должна учитывать профиль нагрузки. Если потребность в воздухе сильно различается, система должна работать эффективно при частичной нагрузке. Несколько компрессоров обеспечат более экономичное использование энергии при больших колебаниях спроса.
  2. Свести к минимуму искусственный спрос.  Искусственная потребность – это избыточный объем воздуха, необходимый для нерегулируемого использования при использовании более высокого давления, чем необходимо для приложений. Если приложение требует 50 фунтов на квадратный дюйм, а получает 90 фунтов на квадратный дюйм, система производит неиспользованный воздух. Регуляторы давления на конечном потребителе могут свести к минимуму искусственный спрос.
  3. Определите необходимое давление.  Требуемые уровни давления должны учитывать потери в системе от фильтров, трубопроводов, сепараторов и осушителей. Повышение давления нагнетания увеличит спрос на нерегулируемое использование, например утечки. Другими словами, увеличение давления приведет к увеличению неэффективности. Например, увеличение давления в коллекторе на 2 фунта на кв. дюйм приведет к увеличению потребления энергии на целых 1 % из-за потребления нерегулируемого воздуха. Для экономии энергии следует подумать о том, как добиться высокой производительности при снижении давления в системе.
  4. Изучите спрос и предложение.  Убедитесь, что воздушные компрессоры не слишком велики для конечного использования. Учитывайте все конечное использование, определяя объем воздуха, необходимый для каждого применения. Общая оценка всей вашей системы сжатого воздуха должна помочь исследовать систему распределения на наличие проблем и свести к минимуму ненадлежащее использование воздуха.
  5. Используйте блок-схемы и профили давления.  Блок-схемы помогут идентифицировать все компоненты системы сжатия воздуха. Профиль давления показывает перепады давления в системе, что должно обеспечить обратную связь для регулировки элементов управления. Чтобы составить профиль давления, вам необходимо измерить давление на входе в компрессор, перепад давления в сепараторе воздуха/смазки и межступенчатое давление в многоступенчатых компрессорах. Регистрируя данные о давлении в системе и воздушном потоке, вы можете определить сбои в работе системы, периодические нагрузки, изменения в системе и общие условия. Изменениями давления и расхода воздуха можно управлять с помощью системных элементов управления, чтобы свести к минимуму влияние на производство.
  6. Использовать хранилище сжатого воздуха.  Хранилище может контролировать события потребления во время пиков потребления, уменьшая скорость затухания и величину падения давления. Он также может защитить важные операции от других событий в системе, отключив при необходимости компрессор.

 

Минимизация падения давления

Падение давления происходит при прохождении сжатого воздуха через распределительную систему. Чрезмерные перепады давления могут привести к снижению производительности и повышенному энергопотреблению. Падение давления перед сигналом компрессора приводит к более низкому рабочему давлению для конечного пользователя. Это требует более высоких давлений, чтобы соответствовать настройкам управления компрессором. Перед увеличением мощности или повышением давления в системе обязательно уменьшите перепады давления в системе. Для достижения наилучших результатов оборудование со сжатым воздухом следует эксплуатировать при самом низком эффективном рабочем давлении.

Ниже перечислены способы снижения перепадов давления:

    • Поддерживать надлежащий дизайн системы. Наиболее распространенной причиной чрезмерного падения давления является использование трубы несоответствующего размера между распределительным коллектором и производственным оборудованием. Это может произойти, если вы выбираете трубопровод на основе ожидаемой средней потребности в сжатом воздухе без учета максимальной скорости потока.
    • Обслуживание оборудования для фильтрации и сушки воздуха для минимизации влажности.
    • Убедитесь, что на фильтрах нет грязи, которая ограничивает поток воздуха и вызывает падение давления. Своевременное техническое обслуживание и замена фильтрующих элементов имеют решающее значение для снижения перепада давления.
    • Выбирайте сепараторы, осушители, фильтры и доохладители с минимально возможным перепадом давления. Типичный перепад давления для фильтра, шланга и регулятора давления составляет 7 фунтов на квадратный дюйм.
    • Выбирайте регуляторы, шланги, лубрикаторы и соединения, обеспечивающие наилучшую производительность при наименьшем перепаде давления.
    • Уменьшите расстояние, которое проходит воздух через систему сжатого воздуха.

Многие инструменты могут эффективно работать при подаче воздуха с давлением 80 фунтов на квадратный дюйм (psig) или меньше. Снижая давление нагнетания воздушного компрессора, вы можете уменьшить скорость утечки, повысить производительность и сэкономить деньги. Однако для снижения рабочего давления может потребоваться модификация регуляторов давления, фильтров и объема хранилища. Имейте в виду, что если давление в системе упадет ниже минимальных требований, оборудование может перестать работать должным образом.

Уменьшение перепада давления позволяет системе работать более эффективно при более низком давлении. Для машин, использующих большое количество сжатого воздуха, эксплуатация оборудования при более низких уровнях давления может обеспечить значительную экономию энергии. Такие компоненты, как большие воздушные цилиндры, могут быть необходимы для поддержания надлежащей функциональности при более низких уровнях давления, но экономия энергии должна превышать стоимость дополнительного оборудования.

Обслуживание вашего компрессора

Плохо обслуживаемые системы сжатия воздуха могут привести к напрасной трате энергии и денег. Поэтому важно постоянно проверять ваши системы на наличие утечек, преждевременного износа и накопления загрязняющих веществ.

Устранение утечек

Потери воздуха являются основной причиной потерь энергии в системах сжатия воздуха: от 20 до 30 % выходной мощности компрессора тратится впустую. Даже небольшие утечки могут быть очень дорогостоящими, поскольку со временем происходит утечка большого количества воздуха, если их не устранить. Имейте в виду, потеря воздуха пропорциональна размеру утечки и величине давления подачи в системе.

Утечки не только приводят к потере энергии, но и вызывают падение давления в системе, что снижает эффективность пневматических инструментов. Это отсутствие давления означает, что оборудование будет работать дольше для достижения тех же результатов. Увеличение времени работы также означает дополнительное техническое обслуживание и даже время простоя.

Обнаружение и устранение утечек может снизить потери энергии до уровня менее 10 % от выходной мощности компрессора. Утечки можно найти где угодно в системе сжатого воздуха, но большинство утечек происходит в регуляторах давления, открытых ловушках для конденсата и запорных клапанах, разъединителях, соединениях труб, резьбовых герметиках, муфтах, шлангах, трубах и фитингах.

Чтобы оценить утечку в вашей системе сжатого воздуха, выполните измерения, которые определят время, необходимое компрессору для загрузки и разгрузки. Утечки воздуха заставят компрессор включаться и выключаться из-за падения давления, вызванного утечками. Рассчитайте процент общей утечки, используя следующую форму: Утечка (%) = [(время под нагрузкой в ​​минутах x 100) / (время под нагрузкой в ​​минутах + время без нагрузки в минутах)]. В исправной системе процент должен быть меньше 10%. Плохо обслуживаемая система выявит утечку на 20% и более.

  • Обнаружение утечек : Ультразвуковой акустический детектор дает наилучшие шансы на обнаружение утечек, распознавая шипящие звуки. Преимущество ультразвуковых детекторов заключается в скорости, точности, простоте использования, универсальности и возможности проводить тесты во время работы оборудования.

Если у вас нет ультразвукового течеискателя, вы можете нанести кисточкой мыльную воду на вероятные проблемные места.

  • Устранение утечки : Как только вы обнаружите утечку, ее устранение может заключаться в простом подтягивании соединений. Однако может также потребоваться замена муфт, секций труб, шлангов, соединений, сифонов, фитингов и дренажей. Не забудьте нанести на них подходящий герметик для резьбы.

Пока вы не устраните утечку, вы можете уменьшить утечку, снизив давление в системе сжатого воздуха. Стабилизируйте давление в коллекторе системы на самом низком уровне, чтобы свести к минимуму скорость утечки.

  • Профилактика . Надлежащая программа предотвращения утечек может помочь выявить и устранить будущие утечки. Это также поможет поддерживать эффективную, стабильную и экономичную систему сжатия воздуха. Программа предотвращения утечек может быть полезной, если:
    • Определить стоимость утечек воздуха . Это послужит отправной точкой для определения эффективности ремонта.
    • Выявление утечек. Хотя ультразвуковой акустический течеискатель наиболее эффективен, ручной течеискатель также может помочь в выявлении утечек.
    • Документируйте утечки. Запишите размер, местоположение, тип и ориентировочную стоимость утечки, чтобы вы могли отслеживать, где и как происходят утечки.
    • Отдайте предпочтение более крупным утечкам.
    • Настройте элементы управления для максимального использования энергии.
    • Ремонт документов. Такая документация может указывать на оборудование, которое может вызывать повторяющиеся проблемы.
    • Периодические обзоры. Периодические проверки помогут сохранить эффективность вашей системы.

 

Замена фильтров .

Фильтры используются для обеспечения того, чтобы чистый воздух попадал к конечным пользователям. Пыль, грязь и жир могут забивать фильтры, вызывая падение давления воздуха в системе. Если фильтры не очищаются, перепады давления могут потребовать больше энергии для поддержания того же давления. Кроме того, обязательно используйте фильтры с низким перепадом давления и долговечными фильтрами, а также размер этих фильтров в зависимости от максимальной скорости потока.

Техническое обслуживание .

Убедитесь, что существуют процедуры обслуживания системы сжатого воздуха и что сотрудники должным образом обучены этим процедурам. Это должно обеспечить эффективную работу системы на долгие годы.

К счастью, существует множество подходов к повышению эффективности вашей системы сжатого воздуха. При надлежащем обслуживании нет никаких причин, по которым ваша система не может обеспечить экономию средств наряду с высокой производительностью.

Эффективные воздушные компрессоры Quincy

Quincy может обеспечить высокую производительность и минимальное энергопотребление благодаря функциям энергосбережения в своей линейке. Энергоэффективность означает экономию средств для вашего бизнеса.

Компрессоры с регулируемой скоростью: Семейство компрессоров с переменной скоростью Quincy QGV ®️ отличается энергоэффективной конструкцией в самом широком рабочем диапазоне. Наши приводы с регулируемой скоростью (VSD) автоматически регулируют скорость, чтобы производительность компрессора соответствовала потребностям, обеспечивая экономию энергии на 35 % по сравнению с обычными винтовыми компрессорами с фиксированной скоростью.

Управление переменной производительностью: Запатентованная Quincy технология Power$ync™ предлагает компрессор с регулируемой производительностью, который более эффективен для операций, требующих расхода от 50% до 100%. Если вся мощность компрессора не требуется так часто, Power$ync™ может легко уменьшить производительность воздушного потока. Наши компрессоры с регулируемой производительностью обеспечивают экономию энергии на 30 % по сравнению с обычными винтовыми компрессорами.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *