Полная проверка ротора электродвигателя
Любой электроинструмент рано или поздно выходит из строя. Основная причина ̶̶ неисправность электродвигателя. Отдавать инструмент на диагностику в мастерскую ̶̶ дорого и отнимает много времени. Поэтому найти причину поломки лучше самостоятельно. Тем боле, что, сделать это не сложно.Электродвигатель состоит из двух частей: статор и ротор. Ротор (его еще называют якорем) самая сложная деталь. Состоит из вала с магнитопроводом, в который уложена обмотка. Концы обмотки подсоединены к пластинам (ламелям) коллектора.
Приступим к диагностике. Основное приспособление, которое нам понадобится – мультиметр.
Для начала разберем электродвигатель и извлечем якорь. Необходимо его осмотреть. Часто повреждение обмотки видно невооруженным глазом. Если обрыва проводов и места короткого замыкания не видно, проводим три теста.
1. Тест на 180 градусов
- Мультиметр устанавливаем в режим измерения сопротивления, предел измерения 200 Ом.
- Щупы подсоединяем к двум ровно противоположным контактом коллектора. Две эти точки находятся друг от друга на 180 градусов.
- Измеряем сопротивление. Запоминаем или записываем.
- Далее производим замеры по кругу, между остальными противоположными пластинами.
Подводим итоги. Сами значения сопротивления нам неинтересны. Главное, чтобы они были одинаковы. То есть, если мультиметр при первом измерении показал, например, значение 1,5 Ом, то и между остальными противоположными пластинами должно быть такое же сопротивление. Если сопротивление между некоторыми точками больше ̶̶ значит в этой обмотке обрыв. Если сопротивление, наоборот, меньше ̶̶ короткое замыкание.
На графике отчетливо отслеживается внутренне замыкание в одной из обмоток.
2. Тестирование соседних контактов
- Прибор остается в том же положении – измерение сопротивления, предел 200 Ом.
- Щупы мультиметра подключаем к двум соседним пластинам коллектора.
- Производим измерение, запоминаем результат.
- Далее производим замер между следующей парой контактов. И так далее, по кругу.
- Сравниваем результаты.
В этом тесте, как и в предыдущем, главное – равенство значений. И, так же как и в прошлом тесте, увеличение сопротивления обозначает обрыв провода обмотки, а уменьшение сопротивления – короткое замыкание.
На графике видно внутренне, межвитковое замыкание в одной из обмоток.
3. Проверка замыкания на корпус
- Мультиметр установлен в режим измерения сопротивления ̶̶ 200 Ом.
- Один щуп прибора ставим на пластину коллектора, второй на корпус якоря (вал или магнитопровод).
- Поочередно производим замеры между каждой ламелью и корпусом.
Если мультиметр показывает «1» ̶̶ замыкания на корпус нет. Если показывает какие-либо значения, или «0» и издает звуковой сигнал, то изоляция пробита.
Результаты проверки
Якорь электродвигателя исправен если:
1. Сопротивление между всеми противоположными контактами равно.
2. Сопротивление между всеми соседними контактами равно.
3. Сопротивление между пластинами коллектора и корпусом равно бесконечности «1».
Рекомендации
У электронных мультиметров, особенно бытового назначения, есть некоторая погрешность. Поэтому лучше использовать стрелочный прибор. Если же такового нет, желательно определить и учитывать погрешность в измерениях. Делается это следующим образом:
- в режиме измерения сопротивления, с пределом 200 Ом, соединяем щупы вместе;
- если показания прибора «ноль» ̶̶ погрешности нет;
- если вместо нуля какая либо другая цифра, это и будет погрешность.
Допустим, мультиметр показал 0,1 Ом. Значит, в первом и втором тесте разница сопротивлений менее чем 0,1 Ом не считается повреждением.
Техника безопасности
Во время проверки ротора, необходимо соблюдать следующие меры безопасности:
- перед разборкой отключить электродвигатель от сети;
- в поврежденном якоре могут быть острые кромки, оторванные пластины коллектора или торчать поврежденные провода, поэтому необходимо использовать рабочие перчатки.
Смотрите видео
Как проверить электродвигатель? | Кабель.РФ: всё об электрике
На любом предприятии как тяжелой, так и легкой промышленности невозможно обойтись без электродвигателей переменного и постоянного тока, которыми комплектуются различные станки, вентиляторы, насосы и другие механизмы. Такие электрические машины также широко используются и в быту. В процессе эксплуатации этих приборов могут возникать непредвиденные поломки. Поэтому тем, кто хочет заняться их нахождением и устранением самостоятельно, нужно знать, как проверить электродвигатель на исправность.
Асинхронный трехфазный двигательАсинхронный трехфазный двигатель
Алгоритм проверки электродвигателей
Прежде, чем перейти к описанию методов выявления возможных неполадок в электродвигателях, напомним, что лучше эту работу поручить специалистам.
Наиболее часто встречающимися неисправностями являются снижение мощности на валу, посторонние шумы при работе, а также неравномерное вращение ротора или его полная остановка. Последние две неполадки могут быть вызваны механическими и электрическими причинами. В первую очередь нужно проверить исправность подшипников и добавить смазку или заменить их в случае необходимости.
Однако причина неполноценной работы двигателя или полного выхода его из строя может носить совершенно другой характер. Неполадки могут быть вызваны замыканием обмоток статора на корпус, короткими и межвитковыми замыканиями или обрывами провода в обмотках.
Замыкание на корпус
Проверка электродвигателя на наличие замыкания обмоток статора на корпус выполняется с помощью специального прибора – мегаомметра, однако при его отсутствии можно воспользоваться мультиметром, выставив предел измерений сопротивления на максимум. Этот метод определения подходит как для двигателей постоянного, так и переменного тока. Перед началом работ двигатель отключается от питающей сети.
Для стрелочного тестера необходимо выполнить калибровку – накоротко замкнуть щупы и выставить стрелку прибора на «ноль». Далее один из щупов прибора надежно фиксируется на корпусе электродвигателя или на винте заземления, который расположен в клеммной коробке. После этого выполняются замеры сопротивления изоляции обмоток. Для этого вторым щупом нужно поочередно прикоснуться к выводам обмоток статора и зафиксировать показатели. Данные измерений не должны быть менее 1 МОм для асинхронных двигателей и 0,5 МОм – для машин постоянного тока.
Проверка сопротивления обмоток мегаомметромПроверка сопротивления обмоток мегаомметром
Проверка целостности обмоток статора
Зная, как проверить электродвигатель мультиметром, можно без труда выявить короткое замыкание или обрыв провода. Перед началом измерений в трехфазных двигателях нужно снять перемычки, соединяющие концы обмоток. Предел измерений нужно выставить минимальный, так как сопротивление обмоток имеет небольшие величины, особенно у мощных двигателей. Полученные данные не должны отличаться друг от друга.
Если замер в одной из обмоток показывает большое сопротивление, это свидетельствует об обрыве провода в обмотке.
Проверка обмоток трехфазного двигателяПроверка обмоток трехфазного двигателя
В том случае, когда показания прибора стремятся к «нулю», значит начало и конец обмоток замкнуты накоротко.
В однофазных двигателях с двумя рабочими обмотками перед началом измерений нужно отсоединить пусковой и рабочий конденсаторы. Сопротивление обмоток должно быть одинаковым. В двигателях с пусковой обмоткой, из-за того что она выполняется проводом меньшего сечения, показания мультиметра будут различаться. Сопротивление рабочей обмотки должно быть меньше сопротивления пусковой обмотки на 40-50°С.
Для полноценной диагностики важно знать, как проверить обмотку электродвигателя на наличие межвитковых замыканий. Самым простым способом выявления такой неисправности у трехфазных двигателей являются замеры потребляемого тока каждой фазы в рабочем режиме. У двигателя с наличием межвиткового замыкания в одной из обмоток фактический потребляемый ток будет отличаться от номинального значения более чем на 15°С.
У разобранного двигателя межвитковые замыкания иногда можно определить визуально по наличию почернения и прогаров на изоляции обмоточных проводов в обмотках. Кроме того, существует способ обнаружения межвиткового замыкания с помощью стального шарика. Для этого на обмотки подается пониженное напряжение, после чего в статор вводится небольшой стальной шарик (например, от шарикоподшипника). В двигателях с исправной обмоткой шарик будет совершать вращение вслед за магнитным полем. Если же в обмотке есть межвитковое замыкание – шарик остановится на том месте, где витки соединяются.
Обнаружение межвиткового замыкания с помощью токоизмерительных клещейОбнаружение межвиткового замыкания с помощью токоизмерительных клещей
Как проверить якорь электродвигателя
В коллекторных двигателях постоянного и переменного тока кроме проверки целостности обмоток статора обязательно нужно протестировать обмотки якоря. Это можно сделать с помощью мультиметра.
Проверка якоряПроверка якоря
Для этого предел измерений сопротивления устанавливается на минимальное значение. После этого последовательно замеряется сопротивление между двумя соседними ламелями коллектора. Данные измерений не должны отличаться друг от друга.
Последним шагом проверки является измерение сопротивления между корпусом якоря и коллекторными пластинами. Этот показатель должен стремиться к бесконечности. К сожалению, проверить межвитковое замыкание в якоре без специальных приборов не получится.
Если Вам понравился этот материал, поделитесь им в социальных сетях!
Также рекомендуем статью как выбрать сечение кабеля.
Заказать электродвигатель можно на нашем сайте. Менеджеры Кабель.РФ® помогут Вам подобрать нужную марку электродвигателя с учетом Ваших пожеланий и потребностей.
А для того, чтобы не пропустить выход новых статей, ставьте “лайк” и подписывайтесь на наш канал: Кабель. РФ: всё об электрике.
Якоря на межвитковое замыкание, решение проблемы
Электрические машины состоят из ротора и статора. Статор представляет собой неподвижные обмотки, уложенные в корпус. Якорь — это подвижная часть, поэтому на нее как правило попадают частички грязи и смазки и под воздействием температуры образуется окисленный налет. Он может послужить причиной неисправной работы или выхода из строя ротора электрической машины. Обнаруживается он визуальным осмотром. Нагар может стать причиной межвиткового замыкания в якоре. Как таковой, ротор электродвигателя при нормальных условиях эксплуатации не изнашивается. Со временем подлежат замене только токосъемные щетки, если их длина уже не соответствует допустимому размеру. Однако длительные нагрузки становятся причиной нагрева обмоток статора, что в результате и способствует образованию нагара. Межвитковое замыкание якоря может случиться при механических повреждениях. Недопустимо на трущихся поверхностях наличие сколов, вмятин, царапин и трещин.
Диагностировать эту неисправность возможно и в домашних условиях. Проводят эту процедуру при помощи катушки индуктивности, называемую дросселем.
При помощи данного устройства, вам удастся узнать направление сброса, а также порядок, в котором катушки обмотки подключены к ламелям коллектора.
Таким образом, осуществляется проверка якоря на межвитковое замыкание.
Изготовить такой прибор своими руками совсем не трудно, достаточно ознакомится с содержанием нашей пошаговой инструкции.
Для сборки прибора, потребуется П—образное трансформаторное железо. Его можно извлечь из вибрационного насоса типа Малыш.
Шаг №1
Разбираем конструкцию и достаем П— образное трансформаторное железо.Для этого предварительно необходимо нагреть нижнюю часть насоса, чтобы полимер, которым залиты катушки, расплавился.
Шаг №2
Далее при помощи подручного инструмента срезаем края на трансформаторном железе, как показано на фото. При обработке помните, что железо слоеное, поэтому все операции нужно выполнять внимательно, чтобы не образовались задиры. После на наждачном станке снимаем все острые кромки на изделии. Это необходимо для сохранения целостности эмаль-провода.
Соблюдать строгие размеры углов не обязательно, главное, чтобы якоря разных размеров легко располагались в приготовленом месте.
Шаг №3
Следующим действием будет изготовление катушек. Чтобы выиграть в размере устройства и дроссель не оказался слишком громоздким, изготовим не одну, а две катушки, которые разместим по обеим сторонам П-образного железа. Для этого на понадобится:
- картон;
- мерительный инструмент;
- карандаш;
- острый нож;
- ножницы.
Измеряем все размеры П-образного трансформаторного железа по их максимальным значениям. Далее переносим их на картон и вычерчиваем развертку корпуса будущей катушки. При этом обязательно нужно учесть размер паза сердечника. Далее тупым концом ножниц проводим по всем линиям перегиба. Это поможет изгибать картон без проблем. Вырезаем развертку. Таким же образом делаем выкройку на другую сторону. Теперь нам нужно подготовить крышки для катушек. Их понадобится 8 штук. Размечаем на картоне заготовки для крышек. Наружный контур вырезаем ножницами, внутренний острым ножом.
Далее склеиваем крышки с подготовленными развертками и получаем два остова будущих катушек.
Шаг №4
Теперь необходимо намотать провод на катушки. Для этого воспользуемся расчетом трансформатора. Сначала определяем площадь сечения сердечника путем перемножения его длины и ширины. В нашем случае площадь составила 3,7 см х 2,2 см = 8,14 см2. Далее делим 13200/8,14=1621 виток. Это количество округляем до 1700 витков и поровну распределяем между двумя катушками, получается по 850 витков. Такое количество можно без проблем намотать в ручном режиме. При этом ошибка в 20-40 витков не повлияет на результат. Но все же лучше ошибиться в сторону увеличения. Перед началом наматывания необходимо сделать отверстия, в которые будут выходить концы провода. На свободный конец провода надевается термоусадочный кембрик. Конец провода вставляется в отверстие и далее идет процесс наматывания. По его окончании на другой конец припаиваем проводок с кембриком и вставляем в другое отверстие. Точно так наматываем вторую катушку.
Шаг№5
После того, как обе катушки готовы, надеваем их на П—образный сердечник, при этом выводы проводов должны располагаться внизу с одной стороны. Важно, чтобы катушки были накручены идентично, витки направлены одинаково, а их окончания выведены в одну сторону. Далее следует соединение начал индукционных катушек и подача сетевого напряжения (220В) на их концы.
Шаг №6
Для тестирования самодельного дросселя воспользуемся прибором заводского изготовления. Сначала проверим якорь на межвитковое замыкание промышленным устройством и места прилипания пластины пометим мелом. При проверке ротора нашим дросселем пластина будет примагничиваться в тех же местах. Подведем итоги, прибор выполнен правильно, результаты идентичны.
Шаг №7
Снимаем катушки с сердечника и изолируем изолентой. Ставим их обратно припаиваем питание. Дроссель готов к эксплуатации, можно приступать к проверке наличия межвиткового замыкания в якоре.
Для этого необходимо включить изготовленное нами устройство, в его вырез уложить якорь и не спеша повернуть его.
Проверка межвиткового замыкания при помощи аналогового тестера
Впрочем проверить якорь на межвитковое замыкание можно и при помощи мультимера. В этом случае удастся только узнать есть обрыв в обмотках якоря или нет. Более точным прибором будет аналоговый тестер. С его помощью замеряем сопротивление между каждыми двумя ламелями. Оно должно быть идентичным. После устанавливаем прибор на 200 кОм, Один щуп замыкаем на массу , а другой прикладываем к каждой ламели. Если якорь не звонится на массу то он скорее всего исправен или его нужно проверить при помощи дросселя.
Индикатор для обнаружение межвиткового замыкания якоря
Для обнаружение межвиткового замыкания якоря можно использовать нехитрый индикатор который можно собрать по приведенной ниже схеме.
Для того чтобы спаять такой элементарный индикатор понадобится немного денежных средств, свободное время и ваши руки.
Приобретаем 5 транзисторов, 8 резисторов, 4 конденсатора, 2 светодиода и батарейку. Кроме того самостоятельно наматываем две катушки.
Подготавливаем печатную плату и собираем прибор. Выполнять проверку межвиткового замыкания с помощью такого индикатора очень удобно. Весомым аргументом в пользу прибора является то, что ним можно без проблем находить межвитковое замыкание и на статорах как указано ниже в видео.
Если на якоре обнаружено межвитковое замыкание, что делать?
Нужно проверить все, если металлическая линейка притягивается в определенном пазу, это значит, что его катушках имеет место быть межвитковое замыкание.
Кроме того, внимательно просмотрите коллектор.
Если между его ламелями возникает замыкание, это также говорит о наличии межвиткового замыкания.
Чаще всего в таких ситуациях приходится полностью перематывать якорь, поскольку даже одна обмотка без нанесения повреждений остальным представляется весьма проблематичной.
Кроме того, узнать о наличии межвиткового замыкания можно, просто тщательно осмотрев провод и шинки якоря.
Например, при этом может быть обнаружено, что витки помяты или согнуты, а также что между ними виднеются различного рода частицы, проводящие ток, например, припой, протекший после пропайки.
В таком случае поломку можно ликвидировать, удалив инородные тела или исправив помятости на шинке.
Поэтому, якоря на межвитковое замыкание чинить намного проще, чем, кажется.
Кроме того, рекомендуется покрыть детали лаком после устранения замыкания.
Помимо всего прочего, еще одним признаком наличия межвиткового замыкания является искрение щеток.
Речь идет о ситуациях, когда наблюдаются местные нагревы обмотки.
Таковы основные признаки, по которым можно обнаружить межвитковое замыкание в якоре.
А так же вы можете посмотреть
видео проверка якоря стартера Подобрано для вас:Как проверить трехфазный двигатель тестером. Как проверить якорь электродвигателя Как прозвонить трехфазный электродвигатель
Модификации электродвигателей друг с другом различаются, равно как и их дефекты. Не каждая неисправность может быть диагностирована с помощью тестера, но в большинстве случаев – вполне возможно.
Ремонт начинают со зрительного осмотра: есть ли повреждённые части, не залит ли водой электродвигатель, не появился ли запах горелой изоляции и так далее. Обмотка в асинхронном двигателе может сгореть из-за короткого замыкания между двумя соседними витками. Агрегат перегревается из-за перегрузок, возникновения больших токов.
Нередко обгоревшие обмотки видны при визуальном осмотре, и в этом случае любые измерения будут лишними. Когда никаких шансов на исправление нет, нужно удалить и заменить обмотки на новые. Иногда требуется более тщательно проверить электродвигатель.
Для начала необходимо изучить конфигурацию двигателя, например, какие обмотки используются. Все вращающиеся машины имеют две части: статор и ротор.
В электродвигателях постоянного тока имеются:
- обмотка возбуждения, имеющая важное значение для производства магнитного поля. Она позволяет преобразовать энергию из механической в электрическую и наоборот;
- обмотка якоря, несущая нагрузку току и регулирующая переменный ток для уменьшения вихревых потерь.
Двигатель переменного тока, обычно состоит из двух частей:
- статора, имеющего катушку для создания вращающегося магнитного поля;
- ротора, прикрепленного к выходному валу и предназначенного для производства второго вращающегося магнитного поля.
Как проверить цельность обмоток мотора?
При помощи мультиметра и нескольких подручных средств можно проверить:
- асинхронные движки одно-, трёхфазные;
- коллекторные электродвигатели постоянного, переменного тока;
- асинхронные моторы с короткозамкнутым, фазным ротором.
Тестирование обмоток катушки
Существует простой тест, используемый для проверки состояния катушки мотора. Для чего измеряется сопротивление обмоток, которое варьируется в зависимости от длины, толщины и материала провода. Если сопротивление слишком низкое, это указывает на короткое замыкание изоляции между витками.
Можно использовать мультиметр, но лучше проверить это с мегомметром, потому что на нём используется более высокое напряжение при проверке сопротивления. Это исключает ложные показания, вызванные индуктивностью катушки мотора.
Тест показывает качество изоляции провода, которое определяется по сопротивлению измеряемой детали системы. Полученные результаты сверяются с табличными данными допустимых сопротивлений изоляции кабеля до 1 кВ, изложенными в правилах устройства электроустановок (ПУЭ). По результатам проверки может быть предсказан сбой, прежде чем он произойдёт на самом деле. Это позволяет в производственном цеху осуществить ремонт или замену оборудования во время работы.
Как проверяется катушка электродвигателя мультиметром можно посмотреть на видео:
Диагностика якоря
Проверить исправность электродвигателя тоже можно с помощью цифрового специального устройства проверки якорей Э236. Для этого помещают якорь на призму приборчика, который потом подключают к сети.
Процесс диагностики включает в себя следующие шаги:
- располагают ножовочное полотно параллельно пазу исследуемой детали;
- удерживая одной рукой металл, другой медленно проворачивают якорь.
При наличии межвиткового замыкания полотно, близкорасположенное к пазу, начнет вибрировать и притягиваться к механизму.
Наглядная демонстрация проверки якоря показана по видео:
Чтобы оперативно прозвонить обрыв в цепях движка, можно воспользоваться рабочим стендом с источником постоянного тока, инвертором, цифровым вольтметром, компаратором напряжений, световым индикатором и зуммером обрыва.
На нём же можно определить междувитковое замыкание.
Заключение
Далеко не всегда имеется возможность приобрести дорогостоящие аппараты специального назначения. Поэтому важно знать, как проверить двигатель простым мультиметром, очень нужным в хозяйстве электроизмерительным прибором. Он заменяет множество отдельных инструментов, необходимых для проверки цепей.
Посмотреть видео урок проверки статора на обрыв можно здесь:
Многие приборы, с которыми имеет дело человек, в своей конструкции предусматривают наличие электрического двигателя. В процессе работы, в нем могут возникать неисправности по различным причинам, которые придется выявлять и устранять.
Электрический двигатель занимается преобразованием электрической энергии в механическую, с целью приведения в движение различных механизмов и машин. Преобладающее большинство электрических двигателей являются двигателями вращательного движения.
Конструкция мотора
По своей механической конструкции любой электродвигатель складывается из двух элементов:
- статора – неподвижной части мотора (индуктор). Включает в себя станину и магнитные полюса. В своей комплектации может включать постоянные магниты, электромагниты с обмотками, короткозамкнутые обмотки. Его назначение – создать в системе магнитный поток;
- ротор – начинает вращение после подачи напряжения к обмоткам двигателя (якорь). Он представляет собой катушки с токопроводящими обмотками. Они способствуют устранению неравномерности крутящего момента и снижению коммутируемого тока, что приводит к нормальному взаимодействию магнитных полей индуктора и ротора.
Также имеется щеточно-коллекторный узел, который выступает между ротором и статором связующим звеном. В нем сконцентрированы все выводы роторных катушек. Этот участок является переключателем тока со скользящими контактами. Дополнительно выполняет функцию датчика углового положения ротора.
Существуют несколько вариантов обмотки катушки медной проволокой:
- катушки только на роторе;
- только на статоре;
- обмотка на подвижной и неподвижной частях.
Катушка – это несколько витков, уложенных соответствующими сторонами в два паза и соединенные между собой последовательно. А обмоткой называют несколько катушечных групп, уложенных в пазы и соединенных по определенной схеме.
У большинства электродвигателей ротор размещен внутри статора.
Щетки являются неподвижным контактом, который подводит ток к ротору. Задачей щеточно-коллекторного узла является обеспечение вращения ротора в одном и том же направлении.
Важно! Самостоятельный ремонт электродвигателя неквалифицированными работниками, может закончиться трагически.
Трудности диагностирования
Целью любой диагностики является обнаружение и профилактика неисправностей. Что касается диагностики обмотки двигателя, то самой сложной задачей является добраться непосредственно до предмета диагностирования. Чтобы это произошло, понадобится не только демонтировать двигатель, но и разобрать его.
Учитывая то, что ротор находится внутри станины, то в процессе снимается и ротор, и подшипники. А в случае выявления сгоревшей обмотки статора, ремонт будет не только объемным, но и очень дорогим, так как не каждый специалист возьмется за перемотку двигателя.
Коммутирующая аппаратура
Такая аппаратура служит для управления агрегатами электрооборудования. В зависимости от способа управления они подразделяются на:
- прямое – для коммутации цепей с током не больше 35 А. К ним относятся выключатели, переключатели и кнопки;
- дистанционное – состоит из контактной группы, электромагнита и рычажнопружинного механизма;
- автоматическое;
- программное – происходит автоматическое включение, выключение и переключение.
По принципу своей работы выключатели и переключатели могут быть:
- перекидными – имеют фиксированное положение контактов и рукояти управления, чтобы вернуть в исходное положение, понадобиться приложить усилие;
- нажимными – процесс обеспечивается кинематической схемой самовозврата.
В зависимости от токовой нагрузки в цепи, коммутирующие устройства подразделяются на:
Подробности диагностики электрической части
Чтобы найти поврежденный участок изоляции обмотки понадобится, разъединить фазные обмотки и измерить сопротивление на каждой обмотке. Проверку нужно начинать от магнитопровода, в результате чего выявляется участок с покоробленной изоляцией. Чтобы обнаружить такие места, можно применить несколько подходов:
- измерить напряжение между концов обмотки и магнитопровода;
- определить направление тока в частях обмотки;
- делить обмотку на части;
- способ «прожигания».
Первый способ предусматривает подачу пониженного напряжения (переменного либо постоянного) на фазную обмотку мотора с покоробленной изоляцией. Затем выполняют замеры напряжения между концами магнитопровода и обмотки. Соотношение полученных значений даст понимание о нахождении места повреждения.
При втором способе на концы фазной обмотки и магнитопровод подают постоянное напряжение. Подключают реостат, для того чтобы регулировать ток. Направления токов в обоих концах обмотки будут обратными. К концам каждой катушечной группы дотрагиваются двумя проводами милливольтметра. Стрелка прибора будет постоянно отклоняться в одну сторону до тех пор, пока не прикоснется концами к группе с покоробленной изоляцией. После этого участка стрелка прибора будет отклоняться в противоположную сторону.
Третий метод подразумевает разделение фазовой обмотки соединенной с магнитопроводом путем распайки междукатушечных соединений. Затем занимаются поиском покоробленной изоляции с помощью мегомметра или контрольной лампочки. Такие разделения делают до тех пор, пока не найдется неисправная катушка.
А вот если фазную обмотку с нарушенной изоляцией и магнитопровод присоединить к источнику пониженного напряжения (сварочному генератору или трансформатору), то постепенно нагреваясь в проблемном месте начнется дымление, а временами искрение (изоляция «прожигается»).
Диагностика асинхронных моторов
Для того что двигатель работал долго, следует обращать внимание на шум подшипников во время работы. Избегать свистящих, хрустящих или царапающих звуков. Они говорят о том, что смазки недостаточно и требуется ее восполнить. Повреждение обоймы, шариков, сепараторов отражаются глухими ударами.
Если наблюдается перегрев или нетипичный шум в работе подшипников, то следует обязательно их разобрать и осмотреть. Со всех деталей удаляется старая смазка и происходит их промывание бензином.
Перед тем как установить новые подшипники, их прогревают в масле, для того чтобы новая смазка заполнила их рабочую часть на треть.
Следует систематически проверять контактные кольца. Если обнаружены появления ржавчины, то поверхность зачищается мягкой наждачной бумагой, с последующим протиранием керосином.
При моторе постоянного тока
Чтобы выполнить проверку такого двигателя, делают замеры сопротивления его обмоток. Полученные результаты дадут возможность судить о техсостоянии контактных соединений обмоток.
С этой целью используются такие методы:
- амперметра-вольтметра – применяется двухконтактный щуп с пружинами в изоляционной рукоятке. Этим способом замеряют сопротивления последовательной обмотки возбуждения;
- одинарного или двойного моста и микроомметром;
Проверка прочности изоляции и измерение ее сопротивления выполняются также, как и у асинхронного двигателя.
Проверка мотора прямого привода
Существует два варианта проверки:
- подать напряжение на стартерную и роторную обмотку двигателя, предварительно подсоединив поочередно эти элементы. Недостаток метода в том, что даже если он начнет вращаться, то это не говорит о его исправном функционировании;
- требуется взять специальное оборудование – автотрансформатор мощностью от 500 ватт. Этот способ более безопасен, потому что дает возможность регулировать скорость оборотов.
Последовательность диагностики
При осуществлении диагностики совершаются такие операции:
- электрическая машина отсоединяется от сети;
- щетками производится очищение от пыли и грязи;
- сжатым воздухом из компрессора обдуваются все элементы;
- осматривается щеточно-коллекторный механизм на поломки щеткодержателя и сколов на щетках, износ щеток, царапины и выбоины на поверхности коллектора;
- для обнаружения поломок в электрической части понадобиться прозвонить обмотку электродвигателя мультиметром. Возможны обрывы электрической цепи, замыкание отдельных цепей между собой, витковые замыкания;
- замена неисправных участков обмотки;
- осмотр подшипников и в случае необходимости заменить на новые;
- сборка двигателя;
- обследование вращающих узлов на наличие ровной нагрузки на двигатель;
- испытание на холостом ходу и под нагрузкой.
Если выбивает защиту?
Чтобы защитить обмотки электродвигателя от перегрева и токовых перегрузок, подключается электротепловое реле. Мотор подсоединяется к выходным контактам реле. Данное реле внутри состоит из трех биметаллических пластин. Эти пластины взаимодействуют с механизмом подвижной системы, которая принимает участие в схеме защиты мотора через дополнительные контакты.
Под действием проходящего по пластине тока, она постепенно нагревается и выгибается, чем больший ток пройдет через нее, тем быстрее сработает защита и отключит нагрузку.
Если при работе электродвигателя отчетливо слышится визг или скрипение, которые отсутствовали на небольших оборотах, то причина очевидно в недостаточном количестве смазки в подшипниках, либо же их сильное загрязнение.
Также на изношенный подшипник указывает мощная вибрация вала, который вращается по инерции. Возможно, это говорит о дисбалансе колеса вентилятора. Допускается вариант, что у него отломилась одна из лопастей.
Важно! В случае обнаружения нарушений изоляции обмотки, ремонт двигателя лучше производить в специальных сервисных центрах.
Если ситуация требует проведения диагностики обмотки электродвигателя, то не имея общих понятий электротехники, желательно доверить эту работу настоящим профессионалам. Этот трудоемкий процесс требует не только навыков в работе, но также использования специальной техники, которая позволит провести качественный ремонт.
Наладка движков неизменного тока
Наладку движков неизменного тока делают в последующем объеме: наружный осмотр, измерение сопротивлений обмоток неизменному току, измерение сопротивлений изоляции обмоток относительно корпуса и меж собой, испытание междувитковой изоляции обмотки якоря, пробный запуск.
Наружный осмотр мотора неизменного тока, как и осмотр асинхронного двигателя , начинают со щитка. На щитке двигателя постоянного тока должны быть указаны последующие данные:
- наименование либо товарный символ завода-изготовителя,
- заводской номер машины,
- номинальные данные (мощность, напряжение, ток, частота вращения),
- метод возбуждения машины,
- масса и ГОСТ машины.
Выводы обмотки мотора постоянного тока должны быть накрепко изолированы друг от друга и от корпуса, расстояние меж ними и корпусом должно быть более 12-15 мм. Повышенное внимание при наружном осмотре обращают на коллектор и щеточный механизм (щетки, траверсу и щеткодержатели), потому что их состояние в значимой мере оказывает влияние на коммутацию машины, а как следует, и на устойчивость ее работы.
При осмотре коллектора убеждаются в отсутствии на рабочей поверхности следов резца, выбоин, пятен лака и краски, также следов нагара от неудовлетворительной работы щеточного механизма. Изоляция меж коллекторными пластинами должна быть выбрана на глубину 1-2 мм, с краев пластинок должна быть снята фаска шириной 0,5-1 мм (зависимо от мощности мотора). Промежутки меж пластинами должны быть совсем чисты – в их не должно быть железных стружек либо опилок, пыли от графитовых щеток, масла, лака и т. п.
На работу мотора неизменного тока, а в особенности его щеточного механизма, оказывают влияние биение коллектора и его вибрация. Чем выше окружная скорость коллектора, тем меньше величина допустимого биения. Для быстроходных движков максимально допустимая величина биения не должна превосходить 0,02-0,025 мм. Величину амплитуды вибрации определяют индикатором часового типа.
При проведении измерения наконечник индикатора придавливают к поверхности в том направлении, в каком нужно произвести измерение вибрации. Потому что поверхность коллектора прерывающаяся (чередуются пластинки коллектора и впадины), употребляют отлично притертую щетку, в которую должен упираться наконечник индикатора. Корпус индикатора должен быть укреплен на основании, не подверженном вибрации.
При измерении стрелка индикатора колеблется с частотой измеряемой вибрации в границах определенного угла, величина которого и оценивается по шкале индикатора в сотых толиках мм. Но этот устройство позволяет определять вибрации при частоте вращения менее 750 об/мин. Для движков, частота вращения которых превосходит 750 об/мин, нужно воспользоваться особыми приборами-виброметрами либо вибрографами, которые позволяют определять либо записывать вибрацию тех либо других узлов машины.
Биение также определяют при помощи индикатора. Биение коллектора определяют как в прохладном, так и в нагретом состоянии машины. При измерении обращают свое внимание на поведение стрелки индикатора. Плавное движение стрелки показывает на достаточную цилиндричность поверхности, а подергивание стрелки свидетельствует о местных нарушениях цилиндричности поверхности, в особенности небезопасной для щеточного механизма мотора. Измерение биения носит условный нрав, потому что опыт работы оказывает, что есть движки, у каких при малых частотах вращения значения биений значительны, а при номинальной скорости они работают удовлетворительно. Поэтому окончательное заключение о качестве работы коллектора можно дать только после проверки работы мотора под нагрузкой.
Осматривая механическую часть мотора неизменного тока, следует уделять свое внимание на состояние паек н соединений обмоток, подшипниковых узлов, на равномерность зазора (при разобранном движке). Зазор, измеренный в диаметрально обратных точках меж якорем и главными полюсами мотора, не должен отличаться от среднего значения более чем на 10% при зазорах наименее 3 мм и менее чем на 5% при зазорах более 3 мм.
После проверки биений и вибраций приступают к регулировке щеточного механизма мотора. Щетки в обоймах должны свободно передвигаться, но не должны пошатываться. Обычный зазор меж щеткой и обоймой в направлении вращения не должен превосходить 0,1- 0,4 мм, в продольном направлении 0,2-0,5 мм.
Обычное удельное давление щеток на коллектор зависимо от марки материала щетки должно быть более 150-180 г/см2 для графитовых щеток, 220- 250 г/см2 для медно-графитовых. Во избежание неравномерного рассредотачивания тока давление отдельных щеток не должно отличаться от среднего более чем на 10%. Величину удельного давления определяют следующим образом . Между коллектором и щеткой помещают лист тонкой бумаги, к щетке прикрепляют динамометр, а затем, оттягивая динамометром щетку, находят такое положение, когда можно будет свободно вытянуть лист бумаги. Показание динамометра в этот момент соответствует Давлению щетки на коллектор. Удельное давление определяют путем деления показания динамометра на площадь основания щетки.
Правильная установка щеток является одним из важнейших факторов нормальной работы машины. Щеткодержатели устанавливают таким образом, чтобы щетки стояли строго параллельно пластинам коллектора и расстояния между их сбегающими краями были равны полюсному делению машины с погрешностью не более 2%.
У двигателей, имеющих несколько траверс, щеткодержатели размещают таким образом, чтобы щетки перекрывали по возможности большую часть длины коллектора (так называемое шахматное расположение). Это позволит участвовать в коммутации всей длине коллектора, что способствует более равномерному его износу. Однако при таком размещении щеток необходимо следить за тем, чтобы щетки не выступали при работе (с учетом разбега вала) за край коллектора. Щетки перед пуском двигателя в ход тщательно притирают к коллектору (рис. 1) стеклянной (но не карборундовой) бумагой с зернами средней крупности. Зерна карборундовой бумаги могут внедриться в тело щетки и затем при работе наносить царапины на коллектор, тем самым ухудшая условия коммутации машины.
Как
проверить коллекторный электродвигатель мультиметром — обмотки статора и ротораЧитайте так же:
Электродвигатель постоянного тока. Принцип работы.Электродвигатели постоянного тока можно найти во многих портативных бытовых устройствах, автомобилях.
Прежде чем приступить к проверке правильности включения обмоток, изучают маркировку выводов машины конкретного типа. В двигателях постоянного тока выводы обмоток маркируют согласно ГОСТ 183-66 первыми прописными буквами их наименования с добавлением после них цифры 1 – для начала обмотки и 2 – для ее конца. При наличии в двигателе других обмоток такого же наименования, начала и концы их маркируют цифрами 3-4, 5-6 и т. д. Обозначения выводов могут соответствовать схемам возбуждения и направлениям вращения двигателя, которые приведены на рис. 2.
Правильность включения обмоток полюсов проверяют для уточнения чередования их полярности. Чередование полярности дополнительных и главных полюсов для любой машины должно быть строго определенным для данного направления вращения машины. При переходе от полюса к полюсу по направлению вращения машины, работающей в режиме двигателя, после каждого главного полюса следует дополнительный полюс той же полярности, например N-п, S-s. Чередование полярности полюсов может быть определено несколькими способами: внешним осмотром, с помощью магнитной стрелки, и с помощью специальной катушки.
Первый способ применяют в тех случаях, когда направление намотки обмоток можно проследить визуально.
Рис. 1. Притирание щеток к коллектору: а – неправильно; б – правильно
Рис. 2. Обозначения выводов обмоток двигателей постоянного тока при различных схемах возбуждения и направлениях вращения
Зная направление намотки обмотки и пользуясь правилом «буравчика», определяют полярность полюсов. Этот способ удобен для катушек последовательной обмотки возбуждения, направление намотки которой благодаря значительному сечению витков определить очень легко.
Второй способ применяют в основном для катушек обмоток параллельного возбуждения. Сущность этого способа заключается в следующем. В обмотку двигателя подают ток, подвешивают на нитке магнитную стрелку, полярность концов которой помечена, и подносят ее поочередно к каждому полюсу. В зависимости от полярности полюса стрелка повернется к нему концом противоположной полярности.
Читайте так же:
При использовании указанного способа необходимо помнить, что стрелка обладает способностью перемагиичиваться, поэтому опыт необходимо производить как можно быстрее. Способ магнитной стрелки редко применяют для определения полярности обмотки последовательного возбуждения, так как для создания достаточно сильного поля необходимо пропустить через обмотку значительный ток.
Третий способ определения полярности обмоток применим для любой обмотки, он носит название способа пробной катушки. Катушка может иметь любую форму – торроидальную, прямоугольную, цилиндрическую. Катушку наматывают с возможно большим числом витков из тонкой изолированной медной проволоки на каркас из картона, целлулоида и т. п. Катушку присоединяют к чувствительному гальванометру и прикладывают к поверхности полюса (рис. 3), а затем быстро сдергивают с него и замечают направление отклонения стрелки милливольтметра.
Соединение обмоток считают правильным, если под каждыми двумя соседними полюсами стрелки прибора отклоняются в разные стороны, при условии, что пробная катушка обращена к полюсам одной и той же стороной. Проверку правильности присоединения обмотки добавочных полюсов по отношению к обмотке якоря производят по схеме, приведенной на рис. 4.
При замыкании ключа К стрелка милливольтметра будет отклоняться. При правильном включении намагничивающая сила обмотки дополнительных полюсов направлена встречно намагничивающей силе обмотки якоря, поэтому обмотка якоря и обмотка дополнительных полюсов должны включаться встречно, т. е. минус (или плюс) якоря следует соединить с минусом (или с плюсом) обмотки дополнительных полюсов.
Рис. 3. Определение полярности полюсов двигателей постоянного тока с помощью пробной катушки
Рис. 4. Схема проверки правильности включения обмотки добавочных полюсов по отношению к обмотке якоря
Для проверки взаимного включения обмотки дополнительных полюсов и компенсационной обмотки можно использовать схему, приведенную на рис. 5, для небольших по мощности двигателей .
При нормальней работе двигателя постоянного тока магнитный поток, создаваемый компенсационной обмоткой, должен совпадать по направлению с магнитным потоком обмотки дополнительных полюсов. После определения полярности обмоток компенсационная обмотка и обмотка дополнительных полюсов должны включаться согласованно, т. е. минус одной обмотки следует соединить с плюсом другой.
Рис. 5. Схема проверки правильности включения обмотки дополнительных полюсов к компенсационной обмотке
Прежде чем определять полярность щеток и производить необходимые измерения сопротивлений обмоток, устанавливают щетки на нейтраль. Под нейтралью электрического двигателя понимается такое взаимное расположение обмоток главных полюсов и якоря, когда коэффициент трансформации между ними равен нулю. Для установки щеток на нейтраль собирают схему (рис. 6).
Обмотку возбуждения подключают к источнику питания (батарее) через ключ, а к щеткам якоря подключают чувствительный милливольтметр. При подаче в обмотку возбуждения тока толчком, стрелка милливольтметра отклоняется в ту или иную сторону. При положении щеток строго по нейтрали стрелка прибора отклоняться не будет.
Диагностика и ремонт якоря стартера в критериях гаража Стартер представляет собой узел, без которого не обходится ни одно тс, так как этот элемент является одним из главных в системе зажигания. Как понятно, нескончаемых деталей не бывает и временами стартерный узел имеет свойство выходить из строя. Как проверить и отремонтировать батарейку в ключе…
Точность обычных приборов невелика – в лучшем случае 0,5%. Поэтому щетки устанавливают в положение, соответствующее минимальному показанию прибора, и считают, что это нейтраль. Трудность установки щеток на нейтраль заключается в том, что положение нейтрали зависит от положения пластин коллектора.
Очень часто бывает, что нейтраль, найденная для одного положения якоря, сдвигается при его проворачивании. Поэтому определяют положение нейтрали для двух различных положений вала. Если положение нейтрали оказывается различным для различных положений якоря, то следует выставить щетки в среднем положении между двумя отметками. Точность установки щеток на нейтраль зависит от степени прилегания поверхности щетки к коллектору. Поэтому для получения более точного результата при определении нейтрали двигателя предварительно притирают щетки к коллектору.
Полярность щеток определяется одним из следующих способов.
1. К двум точкам коллектора (рис. 7), отстоящим от разноименных щеток на одинаковом расстоянии, присоединяют вольтметр. При подаче возбуждения стрелка вольтметра отклонится в ту или иную сторону. Если стрелка отклонится вправо, то «плюс» находится в точке 1, а «минус» – в точке 2. Ближайшая против направления вращения щетка будет иметь полярность присоединенного зажима прибора.
2. Через обмотку возбуждения пропускают постоянный ток определенной полярности, к якорю подключают вольтметр и приводят якорь во вращение толчком от руки или с помощью механизма. Стрелка вольтметра при этом отклонится. Направление отклонения стрелки укажет полярность щеток.
Измерение сопротивления обмоток двигателя постоянного тока является весьма важным элементам проверки двигателей постоянного тока, так как по результатам измерения судят о состоянии контактных соединений обмоток (паек, болтовых, сварных соединений). Измерение сопротивления обмоток двигателя производят одним из следующих методов: амперметра-вольтметра, одинарного или двойного моста и микроомметром. Необходимо помнить о некоторых особенностях измерений сопротивления обмоток двигателей постоянного тока.
1. Сопротивление последовательной обмотки возбуждения, уравнительной обмотки, обмотки добавочных полюсов невелико (тысячные доли ома), поэтому измерения производят микроомметром или двойным мостом.
2. Сопротивление обмотки якоря измеряют по методу амперметра-вольтметра с использованием специального двухконтактного щупа с пружинами в изоляционной рукоятке (рис. 8). Измерение проводят следующим образом: к пластинам коллектора неподвижного якоря со снятыми щетками поочередно подводят постоянный ток от хорошо заряженной батареи напряжением 4-6 В. Между пластинами, к которым подводится ток, измеряют падение напряжения с помощью милливольтметра. Искомая величина сопротивления одной ветви якоря
Рис. 6. Схема проверки правильности установки щеток на нейтраль
Измерение сопротивления изоляции обмоток относительно корпуса машины и между обмотками производится в целях проверки состояния изоляции и пригодности машины к проведению последующих испытаний. Рекомендуется производить измерение:
в практически холодном состоянии испытуемой машины – до начала ее испытания по соответствующей программе;
независимо от температуры обмоток – до и после испытаний изоляции обмоток на электрическую прочность относительно корпуса машины и между обмотками переменным напряжением.
Измерение сопротивления изоляции обмоток следует проводить: при номинальном напряжении обмотки до 500 В включительно – мегаомметром на 500 В; при номинальном напряжении обмотки свыше 500 В – мегаомметром не менее чем на 1000 В. При измерении сопротивления изоляции обмоток с номинальным напряжением свыше 6000 В, имеющих значительную емкость по отношению к корпусу, рекомендуется применять мегаомметр на 2500 В с моторным приводом или со статической схемой выпрямления переменного напряжения.
Измерение сопротивления изоляции относительно корпуса машины и между обмотками следует производить поочередно для каждой цепи, имеющей отдельные выводы, при электрическом соединении всех прочих цепей с корпусом машины.
Измерение сопротивления изоляции обмоток трехфазного тока, наглухо сопряженных в звезду или треугольник, производится для всей обмотки по отношению к корпусу.
Изолированные обмотки и защитные конденсаторы, а также иные устройства, постоянно соединенные с корпусом машины, на время измерения сопротивления их изоляции должны быть отсоединены от корпуса машины.
Измерение сопротивления изоляции обмоток, имеющих непосредственное водяное охлаждение, должно производиться мегаомметром, имеющим внутреннее экранирование; при этом зажим мегаомметра, соединенный с экраном, следует присоединять к водосборным коллекторам, которые при этом не должны иметь металлической связи с внешней системой питания обмоток дистиллятом.
По окончании измерения сопротивления изоляции каждой цепи следует разрядить ее электрическим соединением с заземленным корпусом машины. Для обмоток на номинальное напряжение 3000 В и выше продолжительность соединения с корпусом должна быть:
для машин мощностью до 1000 кВт (кВ·А) – не менее 15 с;
для машин мощностью более 1000 кВт (кВ·А) – не менее 1 мин.
При пользовании мегаомметром на 2500 В продолжительность соединения с корпусом должна быть не менее 3 мин независимо от мощности машины.
Измерение сопротивления изоляции заложенных термопреобразователей сопротивления следует проводить мегаомметром напряжением 500 В.
Измерение сопротивления изоляции изолированных подшипников и масляных уплотнений вала относительно корпуса следует проводить при температуре окружающей среды мегаомметром напряжением не менее 1000 В.
Таблица 2.
Таблица 3.
Таблица 4.
Сопротивление изоляции R из является основным показателем состояния изоляции статора и ротора электродвигателя.
Одновременно с измерением сопротивления изоляции обмотки статора определяют коэффициент абсорбции. Измерение сопротивления изоляции ротора проводится у синхронных электродвигателей и электродвигателей с фазным ротором на напряжение 3кВ и выше или мощностью более 1МВт. Сопротивление изоляции ротора должно быть не ниже 0,2МОм .
Коэффициент абсорбции в эксплуатации обязательно определять только для электродвигателей напряжением выше 3кВ или мощностью боле 1МВт.
Подготовить средства измерений:
Проверить уровень заряда батареи или аккумулятора для мегаомметра типа MIC-2500.
Установить значение испытательного напряжения.
В случае использования стрелочного прибора типа ЭСО202 установить его горизонтально.
Для ЭС0202 установить требуемый предел измерений, шкалу прибора и значение испытательного напряжения мегомметра.
Проверить работоспособность мегомметра. Для этого необходимо замкнуть между собой измерительные щупы и начать вращать рукоятку генератора со скоростью 120¸140 оборотов в минуту. Стрелка прибора должна показывать «0». Разомкнуть измерительные щупы и начать вращать рукоятку генератора со скоростью 120¸140 оборотов в минуту. Стрелка прибора должна показывать «10 4 МОм».
Перед проведением измерения необходимо открыть вводное устройство электродвигателя (борно), протереть изоляторы от пыли и загрязнения и подключить мегаомметр согласно схемы, приведённой на рисунке.
Рисунок. Измерение сопротивления изоляции обмоток электродвигателя.
На рисунке А показана схема подключения мегаомметра к испытуемому электродвигателю, у которого обмотки соединены в звезду или треугольник внутри корпуса и произвести рассоединение в борно невозможно. В этом случае мегаомметр подключается к любому зажиму статора электродвигателя и сопротивление изоляции измеряется у всей обмотки сразу относительно корпуса.
На рисунке Б измерение сопротивление изоляции производится у электродвигателя по каждой из частей обмотки отдельно, при этом другие части обмотки (которые в данный момент не обрабатываются) закорачиваются и соединяются на землю.
При измерении сопротивления изоляции отсчёт показаний мегаомметра производят каждые
15 секунд и результатом считается сопротивление, отсчитанное через 60 секунд после начала измерения, а отношение показаний R 60 /R 15 считается коэффициентом абсорбции.
Для электродвигателей с номинальным напряжением 0,4кВ (электродвигатели до 1000В) одноминутное измерение изоляции мегаомметром на 2500В приравнивается к высоковольтному испытанию.
У синхронных электродвигателей при измерении сопротивления изоляции обмоток статора (обмотки статора) необходимо закоротить и заземлить обмотку ротора. Это необходимо сделать для исключения возможности повреждения изоляции ротора.
Сегодня статья – ответ на вопрос читателей.
Будут вопросы будут и новые статьи.
В идеале чтобы была произведена проверка обмоток электродвигателя, необходимо иметь специальные приборы, предназначенные для этого, которые стоят немалых денег. Наверняка не у каждого в доме они есть. Поэтому проще для таких целей научиться пользоваться тестером, имеющим другое название . Такой прибор имеется практически у каждого уважающего себя хозяина дома.
Электродвигатели изготавливают в различных вариантах и модификациях, их неисправности также бывают самыми разными. Конечно, не любую неисправность можно диагностировать простым мультиметром, но наиболее часто проверка обмоток электродвигателя таким простым прибором вполне возможна.
Любой вид ремонта всегда начинают с осмотра устройства: наличие влаги, не сломаны ли детали, наличие запаха гари от изоляции и другие явные признаки неисправностей. Чаще всего сгоревшую обмотку видно. Тогда не нужны никакие проверки и измерения. Такое оборудование сразу отправляется на ремонт. Но бывают случаи, когда отсутствуют внешние признаки поломки, и требуется тщательная проверка обмоток электродвигателя.
Виды обмотокЕсли не вникать в подробности, то обмотку двигателя можно представить в виде куска проводника, который намотан определенным образом в корпусе мотора, и вроде бы в ней ничего не должно ломаться.
Однако, дело обстоит гораздо сложнее, так как обмотка электродвигателя выполнена со своими особенностями:
- Материал провода обмотки должен быть однородным по всей длине.
- Форма и площадь поперечного сечения провода должны иметь определенную точность.
- На проволоку, предназначенную для обмотки, в обязательном порядке в промышленных условиях наносится слой изоляции в виде лака, который должен обладать определенными свойствами: прочностью, эластичностью, хорошими диэлектрическими свойствами и т.д.
- Провод обмотки должен обеспечивать прочный контакт при соединении.
Если имеется какое-либо нарушение этих требований, то электрический ток будет проходить уже в совершенно других условиях, а электрический мотор ухудшит свои эксплуатационные качества, то есть, снизится мощность, обороты, а может и вообще не работать.
Проверка обмоток электродвигателя 3-фазного мотора . Прежде всего, отключить ее от цепи. Основная часть существующих электродвигателей имеет обмотки, соединенные по схемам, соответствующим .
Концы этих обмоток подключают обычно на колодки с клеммами, которые имеют соответствующие маркировки: «К» — конец, «Н» — начало. Бывают варианты соединений внутреннего исполнения, узлы находятся внутри корпуса мотора, а на выводах применяется другая маркировка (цифрами).
На статоре 3-фазного электродвигателя применяются обмотки, имеющие равные характеристики и свойства, одинаковые сопротивления. При замере мультиметром сопротивлений обмоток может оказаться, что у них разные значения. Это уже дает возможность предположить о неисправности, имеющейся в электродвигателе.
Возможные неисправностиВизуально не всегда можно определить состояние обмоток, так как доступ к ним ограничен особенностями конструкции двигателя. Практически проверить обмотку электродвигателя можно по электрическим характеристикам, так как все поломки мотора в основном выявляются:
- Обрывом, когда провод разорван, либо отгорел, ток по нему проходить не будет.
- Коротким замыканием, возникшим из-за повреждения изоляции между витками входа и выхода.
- Замыкание между витками, при этом изоляция повреждается между соседними витками. Вследствие этого поврежденные витки самоисключаются из работы. Электрический ток идет по обмотке, в которой не задействованы поврежденные витки, которые не работают.
- Пробиванием изоляции между корпусом статора и обмоткой.
Это самый простой вид проверки. Неисправность диагностируется простым измерением значения сопротивления провода. Если мультиметр показывает очень большое сопротивление, то это означает, что имеется обрыв провода с образованием воздушного пространства.
Проверка обмоток электродвигателя на короткое замыканиеПри коротком замыкании в моторе отключится его питание установленной защитой от замыкания. Это происходит за очень короткое время. Однако даже за такой незначительный промежуток времени может возникнуть видимый дефект в обмотке в виде нагара и оплавления металла.
Если измерять приборами сопротивление обмотки, то получается малое его значение, которое приближается к нулю, так как из измерения исключается кусок обмотки из-за замыкания.
Проверка обмоток электродвигателя на межвитковое замыканиеЭто самая трудная задача по определению и выявлению неисправности. Чтобы проверить обмотку электродвигателя, пользуются несколькими способами измерений и диагностик.
Проверка обмоток электродвигателя способом омметраЭтот прибор действует от постоянного тока, измеряет активное сопротивление. Во время работы обмотка образует кроме активного сопротивления, значительную индуктивную величину сопротивления.
Если будет замкнут один виток, то активное сопротивление практически не изменится, и определить омметром его сложно. Конечно, можно произвести точную калибровку прибора, скрупулезно замерять все обмотки на сопротивление, сравнивать их. Однако, даже в таком случае очень трудно выявить замыкание витков.
Результаты гораздо точнее выдает мостовой метод, с помощью которого измеряется активное сопротивление. Этим методом пользуются в условиях лаборатории, поэтому обычные электромонтеры им не пользуются.
Измерение тока в каждой фазеСоотношение токов по фазам изменится, если произойдет замыкание между витками, статор будет нагреваться. Если двигатель полностью исправен, то на всех фазах ток потребления одинаков. Поэтому измерив эти токи под нагрузкой, можно с уверенностью сказать о реальном техническом состоянии электродвигателя.
Проверка обмоток электродвигателя переменным токомНе всегда можно измерить общее сопротивление обмотки, и при этом учесть индуктивное сопротивление. У неисправного двигателя проверить обмотку можно переменным током. Для этого применяют амперметр, вольтметр и понижающий трансформатор. Для ограничения тока в схему вставляют резистор, либо реостат.
Чтобы проверить обмотку электродвигателя, применяется низкое напряжение, проверяется значение тока, которое не должно быть выше значений по номиналу. Измеренное падение напряжения на обмотке делится на ток, в итоге получается полное сопротивление. Его значение сравнивают с другими обмотками.
Такая же схема дает возможность определить вольтамперные свойства обмоток. Для этого необходимо сделать измерения на различных значениях тока, затем записать их в таблицу, либо начертить график. Во время сравнения с другими обмотками не должно быть больших отклонений. В противном случае имеется межвитковое замыкание.
Проверка обмоток электродвигателя шарикомЭтот метод основывается на образовании электромагнитного поля с вращающимся эффектом, если обмотки исправны. На них подключается симметричное напряжение с тремя фазами, низкого значения. Для таких проверок используют три понижающих трансформатора с одинаковыми данными. Их подключают отдельно на каждую фазу.
Чтобы ограничить нагрузки, опыт проводят за короткий промежуток времени.
Подают напряжение на обмотки статора, и сразу вводят маленький стальной шарик в магнитное поле. При исправных обмотках шарик крутится синхронно внутри магнитопровода.
Если имеется замыкание между витками в какой-либо обмотке, то шарик сразу остановится там, где есть замыкание. При проведении проверки нельзя допускать превышения тока выше номинального значения, так как шарик может вылететь из статора с большой скоростью, что является опасно для человека.
Определение полярности обмоток электрическим методомУ обмоток статора имеется маркировка выводов, которой иногда может не быть по разным причинам. Это создает сложности при проведении сборки.
Чтобы определить маркировку, применяют некоторые способы:
- и амперметром.
- и вольтметром.
Статор выступает в роли магнитопровода с обмотками, действующими по принципу трансформатора.
Определение маркировки выводов обмотки амперметром и батарейкойНа наружной поверхности статора имеется шесть проводов от трех обмоток, концы которых не промаркированы, и подлежат определению по их принадлежности.
Применяя омметр, находят выводы для каждой обмотки, и отмечают цифрами. Далее, делают маркировку одной из обмоток конца и начала, произвольно. К одной из оставшихся двух обмоток присоединяют стрелочный амперметр, чтобы стрелка находилась на середине шкалы, для определения направления тока.
Минусовой вывод батарейки соединяют с концом выбранной обмотки, а выводом плюса кратковременно касаются ее начала.
Импульс в первой обмотке трансформируется во вторую цепь, которая замкнута амперметром, при этом повторяет исходную форму. Если полярность обмоток совпала с правильным расположением, то стрелка прибора в начале импульса пойдет вправо, а при размыкании цепи стрелка отойдет влево.
Если показания прибора совсем другие, то полярность выводов обмотки меняют местами и маркируют. Остальные обмотки проверяются подобным образом.
Определение полярности вольтметром и понижающим трансформаторомПервый этап аналогичен предыдущему способу: определяют принадлежность выводов обмоткам.
Две другие обмотки соединяют двумя выводами в одной точке случайным образом, оставшуюся пару соединяют с вольтметром и включают питание. Напряжение выхода трансформируется в другие обмотки с таким же значением, так как у них одинаковое количество витков.
Посредством последовательной схемы подключения 2-й и 3-й обмоток вектора напряжения суммируются, а результат покажет вольтметр. Далее маркируют остальные концы обмоток и проводят контрольные измерения.
Межвитковое замыкание. Как проверить различные замыкание витков
Электродвигатели часто выходят из строя, и основной причиной для этого является межвитковое замыкание. Оно составляет около 40% всех поломок моторов. От чего возникает замыкание между витками? Для этого есть несколько причин.
Основная причина – излишняя нагрузка на электродвигатель, которая выше установленной нормы. Статорные обмотки нагреваются, разрушают изоляцию, происходит замыкание между витками обмоток. Неправильно эксплуатируя электрическую машину, работник создает чрезмерную нагрузку на электродвигатель.
Нормальную нагрузку можно узнать из паспорта на оборудование, либо на табличке мотора. Лишняя нагрузка может возникнуть из-за поломки механической части электромотора. Подшипники качения могут послужить этой причиной. Они могут заклинить от износа или отсутствия смазки, в результате этого возникнет замыкание витков катушки якоря.
Замыкание витков возникает и в процессе ремонта или изготовления двигателя, в результате брака, если двигатель изготавливали или ремонтировали в неприспособленной мастерской. Хранить и эксплуатировать электромотор необходимо по определенным правилам, иначе внутрь мотора может проникнуть влага, обмотки отсыреют, как следствие возникнет витковое замыкание.
С витковым замыканием электродвигатель работает неполноценно и недолго. Если вовремя не выявить межвитковое замыкание, то скоро придется покупать новый электродвигатель или полностью новую электрическую машину, например, электродрель.
При замыкании витков обмотки двигателя повышается ток возбуждения, обмотка перегревается, разрушает изоляцию, происходит замыкание других витков обмотки. Вследствие повышения тока может послужить причиной выхода из строя регулятора напряжения. Витковое замыкание выясняется сравнением обмоточного сопротивления с нормой по техусловиям. Если оно снизилось, обмотка подлежит перемотке, замене.
Как найти межвитковое замыкание
Замыкание витков легко определить, для этого есть несколько методов. Во время работы электродвигателя обратите внимание на неравномерный нагрев статора. Если одна его часть нагрелась больше, чем корпус двигателя, то необходимо остановить работу и провести точную диагностику мотора.
Существуют приборы для диагностики замыкания витков, можно проверить токовыми клещами. Нужно измерить нагрузку каждой фазы по очереди. При разнице нагрузок на фазах надо задуматься о наличии межвиткового замыкания. Можно перепутать витковое замыкание с перекосом фаз сети питания. Чтобы избежать неправильной диагностики, надо измерить приходящее напряжение питания.
Обмотки проверяют мультиметром путем прозвонки. Каждую обмотку проверяем прибором отдельно, сравниваем результаты. Если замкнуты оказались всего 2-3 витка, то разница будет незаметна, замыкание не выявится. С помощью мегомметра можно прозвонить электромотор, выявив наличие замыкания на корпус. Один контакт прибора соединяем с корпусом мотора, второй к выводам каждой обмотки.
Если нет уверенности в исправности двигателя, то необходимо произвести разборку мотора. При разборе нужно осмотреть обмотки ротора, статора, наверняка будет видно место замыкания.
Наиболее точным методом проверки замыкания между витками обмоток является проверка понижающим трансформатором на трех фазах с шариком подшипника. Подключаем на статор электромотора в разобранном виде три фазы от трансформатора с пониженным напряжением. Кидаем шарик подшипника внутрь статора. Шарик бегает по кругу – это нормально, а если он примагнитился к одному месту, то в этом месте замыкание.
Можно вместо шарика применить пластинку от сердечника трансформатора. Ее также проводим внутри статора. В месте замыкания витков, она будет дребезжать, а где замыкания нет, она просто притянется к железу. При таких проверках нельзя забывать про заземление корпуса двигателя, трансформатор должен быть низковольтным. Опыты с пластинкой и шариком при 380 вольт запрещаются, это опасно для жизни.
Самодельный прибор для определения виткового замыкания
Сделаем дроссель своими руками для проверки межвиткового замыкания в обмотке двигателя. Нам понадобится П-образное трансформаторное железо. Его можно взять, например, от старого вибрационного насоса «Ручеек», «Малыш». Разбираем его нижнюю часть, хорошо нагреваем ее. Там имеются катушки, залитые эпоксидной смолой.
Эпоксидку разогреваем и выбиваем катушки с сердечником. С помощью наждака или болгарки срезаем губки сердечника.
Намотаны эти катушки как раз на П-образном трансформаторном железе.
Не нужно соблюдать углы. Нужно сделать место, в которое легко ляжет маленький и большой якорь.
При обработке необходимо учесть, что железо слоеное. Нельзя обрабатывать его так, чтобы камень его задирал. Нужно обрабатывать в таком направлении, чтобы слои лежали друг к другу, чтобы не было задиров. После обработки снимите все фаски и заусенцы, так как придется работать с эмалированным проводом, нежелательно его поцарапать.
Теперь нам надо сделать две катушки для этого сердечника, которые разместим с обеих сторон. Замеряем толщину и ширину сердечника в самых широких местах, по заклепкам. Берем плотный картон, размечаем его по размерам сердечника. Учитываем размер паза в сердечнике между катушками. Проводим неострым краем ножниц по местам сгиба, чтобы удобнее было сгибать картон. Вырезаем заготовку для каркаса катушек. Сгибаем по линиям сгиба. Получается каркас катушки.
Теперь делаем четыре крышки для каждой стороны катушек. Получаем два картонных каркаса для катушек.
Рассчитываем количество витков катушек по формуле для трансформаторов.
13200 делим на сечение сердечника в см2. Сечение нашего сердечника:
3,6 см х 2,1 см = 7,56 см2.
13200 : 7,56 = 1746 витков на две катушки. Это число не обязательное, отклонение 10% в обе стороны никакой роли не сыграет. Округляем в большую сторону, 1800 : 2 = 900 витков нужно намотать на каждую катушку. У нас есть провод 0,16 мм, он вполне подойдет для наших катушек. Наматывать можно как угодно. По 900 витков можно намотать и вручную. Если ошибетесь на 20-30 витков, то ничего страшного не будет. Лучше намотать больше. Перед намоткой шилом делаем отверстия по краям каркаса для вывода провода катушек.
На конец провода надеваем термоусадочный кембрик. Конец провода вставляем в отверстие, загибаем, и начинаем намотку катушки.
Заполнение получилось малым, поэтому можно мотать и проводом толще. На второй конец припаиваем проводок с кембриком и вставляем в отверстие. Не заматываем катушку, пока не провели испытание.
Обе катушки намотаны. Надеваем их на сердечник таким образом, чтобы провода шли вниз и были с одной стороны. Катушки абсолютно одинаково намотаны, направление витков в одну сторону, концы выведены одинаково. Теперь необходимо один конец с одной катушки и один с другой соединить, а на оставшиеся два конца подать напряжение 220 вольт. Главное не запутаться и соединить правильные провода. Чтобы понять порядок соединения, нужно мысленно разогнуть наш П-образный сердечник в одну линию, чтобы витки в катушках располагались в одном направлении, переходили от одной катушки во вторую. Соединяем два начала катушек. На два конца подаем напряжение.
Сравним дроссель фабричный и самодельный.
Проверяем заводской дроссель металлической пластинкой на вибрацию места витковых замыканий якоря двигателя и отмечаем их маркером. Теперь то же самое делаем на нашем самодельном дросселе. Результаты получились идентичные. Наш новый дроссель работает нормально.
Снимаем наши катушки с сердечника, обмотки фиксируем изолентой. Пайку также изолируем лентой. Одеваем готовые катушки на сердечник, припаиваем к концам проводов питание 220 В. Дроссель готов к эксплуатации.
Межвитковое замыкание якоря
Для проверки якоря воспользуемся специальным прибором, который представляет трансформатор с вырезанным сердечником. Когда мы кладем якорь в этот зазор, его обмотка начинает работать как вторичная обмотка трансформатора. При этом, если на якоре имеется межвитковое замыкание, от местного перенасыщения железом металлическая пластинка, которая будет находиться сверху якоря, будет вибрировать, либо примагничиваться к корпусу якоря.
Включаем прибор. Для наглядности мы специально замкнули две ламели на коллекторе, чтобы показать каким образом производится диагностика. Помещаем пластинку на якорь и сразу видим результат. Наша пластинка примагнитилась и начала вибрировать. Поворачиваем якорь, витки смещаются, и пластинка перестает вибрировать.
Теперь удалим замыкание ламелей для проверки. Повторяем проверку и видим, что обмотка якоря исправна, пластинка не вибрирует ни в каких местах.
Способ №2 проверки якоря на витковое замыкание
Этот способ подходит для тех, кто не занимается профессиональным ремонтом электроинструмента. Для точной диагностики межвиткового замыкания требуется скоба с катушкой.
Мультиметром можно выяснить лишь обрыв катушки якоря. Лучше для этой цели применять аналоговый тестер. Между каждыми двумя ламелями замеряем сопротивление.
Сопротивление должно быть везде одинаковое. Бывают случаи, когда обмотки не сгорели, коллектор нормальный. Тогда замыкание витков определяют только с помощью прибора со скобой от трансформатора. Теперь устанавливаем мультиметр на 200 кОм, один щуп замыкаем на массу, а другим касаемся каждой ламели коллектора, при условии, что нет обрыва катушек.
Если якорь не прозванивается на массу, то он исправный, либо может быть межвитковое замыкание.
Межвитковое замыкание трансформатора
У трансформаторов есть распространенная неисправность – замыкание витков между собой. Мультиметром не всегда можно выявить этот дефект. Необходимо внимательно осмотреть трансформатор. Провод обмоток имеет лаковую изоляцию, при ее пробое между витками обмотки есть сопротивление, которое не равно нулю. Оно и приводит к разогреву обмотки.
При осмотре трансформатора на нем не должно быть гари, обуглившейся бумаги, вздутия заливки, почернений. Если известен тип и марка трансформатора, можно узнать, какое должно быть сопротивление обмоток. Мультиметр переключают в режим сопротивления. Сравнивают измеренное сопротивление со справочными данными. Если отличие составляет больше 50%, то обмотки неисправны. Если данные сопротивления не удалось найти в справочнике, то наверняка известно количество витков, тип и сечение провода, можно вычислить сопротивление по формулам.
Чтобы проверить трансформатор блока питания с выходом низкого напряжения, подключаем к первичной обмотке напряжение 220 В. Если появился дым, запах, то сразу отключаем, обмотка неисправна. Если таких признаков нет, то измеряем напряжение тестером на вторичной обмотке. При заниженном на 20% напряжении есть риск выхода из строя вторичной обмотки.
Если есть второй исправный трансформатор, то путем сравнения сопротивлений выясняют исправность обмоток. Чтобы проверить более подробно, применяют осциллограф и генератор.
Межвитковое замыкание статора
Часто на неисправном двигателе имеется межвитковое замыкание. Сначала проверяют обмотку статора на сопротивление. Это ненадежный метод, так как мультиметр не всегда может точно показать результат замера. Это зависит и от технологии перемотки двигателя, от старости железа.
Клещами тоже можно измерить сопротивление и ток. Иногда проверяют по звуку работающего мотора, при условии, что подшипники исправны, смазаны, редуктор привода исправен. Еще проверяют межвитковое замыкание осциллографом, но они имеют большую стоимость, не у каждого имеется этот прибор.
Внешне осматривают двигатель. Не должно быть следов масла, подтеков, запаха. Измеренный по фазам ток, должен быть одинаковый. Хорошим тестером проверяют обмотки на сопротивление. При разнице в замерах более 10% есть вероятность замыкания витков обмоток.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
ПохожееКак прозвонить якорь электродвигателя мультиметром — Ваша техника
Якорь болгарки больше всех узлов подвергается температурным, механическим и электромагнитным нагрузкам. Поэтому он является частой причиной отказа работы инструмента, и как следствие, часто нуждается в ремонте. Как проверить якорь на работоспособность и починить элемент своими руками — в нашей статье.
Устройство якоря болгарки
Якорь двигателя болгарки представляет собой токопроводящую обмотку и магнитопровод, в который запрессован вал вращения. Он имеет на одном конце ведущую шестерню, на другом коллектор с ламелями. Магнитопровод состоит из пазов и мягких пластин, покрытых лаком для изоляции друг от друга.
В пазы по специальной схеме уложены по два проводника якорной обмотки. Каждый проводник составляет половинку витка, концы которого попарно соединяются на ламелях. Начало первого витка и конец последнего находятся в одном пазу, поэтому они замкнуты на одну ламель.
Как проверить якорь болгарки на исправность
Виды неисправностей якоря:
- Обрыв токопроводников.
Межвитковое замыкание.
- Пробой изоляции на массу — это замыкание обмотки на металлический корпус ротора. Происходит из-за разрушения изоляции.
- Распайка коллекторных выводов.
- Неравномерный износ коллектора.
Если якорь неисправен, происходит перегрев двигателя, оплавляется изоляция обмотки, витки коротко замыкаются. Отпаиваются контакты, соединяющие обмотку якоря с пластинами коллектора. Прекращается подача тока и двигатель перестаёт работать.
Виды диагностики якоря:
- визуально;
- мультиметром;
- лампочкой;
- специальными приборами.
Стандартная диагностика
Прежде чем взять прибор для диагностики, осмотрите якорь. На нём могут быть повреждения. Если проводка оплавилась, подгоревший изоляционный лак оставит чёрные следы или специфический запах. Можно увидеть погнутые и смятые витки либо токопроводящие частицы, например, остатки припоя. Эти частицы являются причиной короткого замыкания между витками. Ламели имеют загнутые края, называемые петушками, для соединения с обмоткой.
Из-за нарушения этих контактов ламели выгорают.
Другие повреждения коллектора: приподнятые, изношенные или пригоревшие пластины. Между ламелями может скапливаться графит от щёток, что тоже указывает на короткое замыкание.
Как проверить с помощью мультиметра
- Поставьте сопротивление 200 Ом. Соедините щупы прибора с двумя соседними ламелями. Если сопротивление одинаковое между всеми соседними пластинами, значит, обмотка исправна. Если сопротивление менее 1 Ом и очень близко к нулю, есть короткое замыкание между витками. Если сопротивление выше среднего в два и более раз, значит, есть обрыв витков обмотки. Иногда при обрыве сопротивление настолько велико, что прибор зашкаливает. На аналоговом мультиметре стрелка уйдёт до конца вправо. А на цифровом ничего не покажет.
- Определение пробоя на массу делается в случае отсутствия обрыва обмотки. Поставьте на шкале прибора максимальное сопротивление. В зависимости от тестера оно может быть от 2 МОм до 200 МОм. Один щуп соедините с валом, а другой с каждой пластиной по очереди. При отсутствии неисправностей сопротивление должно быть нулевое. То же проделайте с ротором. Один щуп соедините с железным корпусом ротора, а другой перемещайте по ламелям.
Видео: как проходит проверка
Если у вас нет тестера, воспользуйтесь лампочкой с напряжением 12 вольт мощностью до 40 Вт.
Как проверить ротор болгарки с помощью лампочки
- Возьмите два провода и соедините их с лампой.
- На минусовом проводе сделайте разрыв.
- Подайте на провода напряжение. Концы разрыва приложите к пластинам коллектора и прокрутите его. Если лампочка горит, не меняя яркости, значит, короткого замыкания нет.
- Проведите тест замыкания на железо. Соединяйте один провод с ламелями, а другой с железом ротора. Потом с валом. Если лампочка будет гореть, значит, есть пробой на массу. Обмотка замыкает на корпус ротора или вал.
Эта процедура аналогична диагностике мультиметром.
Проверка индикатором короткозамкнутых витков (ИКЗ)
Попадаются якоря, у которых не видно проводов, подсоединённых к коллектору из-за заливки непрозрачным компаундом или из-за бандажа. Поэтому трудно определить коммутацию на коллекторе относительно пазов. Поможет в этом индикатор короткозамкнутых витков.
Этот прибор имеет небольшие размеры и прост в эксплуатации.
Сначала проверьте якорь на отсутствие обрывов. Иначе, индикатор не сможет определить короткое замыкание. Для этого тестером измерьте сопротивление между двумя соседними ламелями. Если сопротивление превышает среднее хотя бы в два раза, значит, есть обрыв. При отсутствии обрыва переходите к следующему этапу.
Регулятор сопротивления позволяет выбрать чувствительность прибора. У него имеются две лампочки: красная и зелёная. Настройте регулятор так, чтобы красная лампочка начала гореть. На корпусе индикатора есть два датчика в виде белых точек, расположенных на расстоянии 3 сантиметра друг от друга. Приложите индикатор датчиками к обмотке. Медленно крутите якорь. Если загорится красная лампочка, значит, есть короткое замыкание.
Видео: ИКЗ в работе
Диагностика прибором проверки якорей (дросселем)
Прибором проверки якорей определяют наличие межвиткового замыкания обмотки. Дроссель представляет собой трансформатор, у которого есть только первичная обмотка и вырезан магнитный зазор в сердечнике.
Когда мы кладём ротор в этот зазор, его обмотка начинает работать как вторичная обмотка трансформатора. Включите прибор и положите на якорь металлическую пластину, например, металлическую линейку или ножовочное полотно. Если имеется межвитковое замыкание, от местного перенасыщения железа пластина будет вибрировать либо намагничиваться к корпусу якоря. Поворачивайте якорь вокруг оси, перемещая пластину так, чтобы она лежала на разных витках. Если замыкания нет, то пластина будет свободно перемещаться по ротору.
Видео: Как сделать дроссель своими руками и проверить якорь
Как отремонтировать якорь в домашних условиях
Из-за якоря происходит треть поломок шуруповёрта. При каждодневном интенсивном режиме работы неисправности могут возникнуть уже в первые полгода, например, при несвоевременной замене щёток. При щадящем использовании шуруповёрт продержится год и более.
Якорь можно спасти, если не нарушена балансировка. Если во время работы прибора слышен прерывистый гул и идёт сильная вибрация, то это нарушение балансировки. Такой якорь подлежит замене. А отремонтировать можно обмотку и коллектор. Небольшие короткие замыкания устраняются. Если повреждена значительная часть обмотки, её можно перемотать. Изношенные и сильно повреждённые ламели проточить, нарастить или впаять. К тому же не стоит браться за ремонт якоря, если вы неуверены в своих возможностях. Лучше его заменить или отнести в мастерскую.
Проточка коллектора
Со временем на коллекторе образуется выработка от щёток. Чтобы от неё избавиться, необходимо:
- Проточить коллектор, используя резцы для продольного обтачивания, то есть проходные резцы.
- Ещё нам необходим обратный конус для центрирования по подшипнику. Сделайте в нём отверстие до 8 мм.
- Так как медь тягучая, отрегулируйте станок на количество оборотов от 600 до 1500 в минуту.
- Первичная подача по половине деления. Когда резец слегка коснётся изделия, произведите продольную проточку всего коллектора. По образовавшемуся блестящему рисунку вы увидите состояние ламелей, все неровности поверхностей.
- Если коллектор ровный, то проточка будет равномерной.
- Если есть ямки, то продолжайте проточку, пока поверхность не выровняется.
- Для последнего прохода нужно подать резец на одну четвёртую от деления.
- Для полировки возьмите наждачную бумагу с тысячной зернистостью и включите станок так, чтобы якорь вращался в ту сторону, в которую вращается во время работы.
Не забудьте очистить ротор от стружки, чтобы не произошло замыкания.
Видео по теме
Как перемотать якорь
Перед тем как разобрать якорь, запишите или зарисуйте направление обмотки. Оно может быть влево или вправо. Чтобы его определить правильно, посмотрите на торец якоря со стороны коллектора. Наденьте перчатки, возьмите острые кусачки или ножовку по металлу. Удалите лобовые части обмотки. Коллектор нужно почистить, а снимать необязательно. Аккуратно, не повреждая пазовые изоляторы, выбейте стержни оставшихся частей обмотки с помощью молотка и металлического зубила.
Видео: Снимаем обмотку
Надфилем, не повреждая плёнки изолятора, удалите остатки пропитки. Посчитайте проводники в пазу. Высчитайте число витков в секции и измерьте диаметр провода. Нарисуйте схему. Нарежьте из картона гильзы для изоляции и вставьте их в пазы.
Видео: Намотка влево и вправо
После намотки сварите выводы секций с петушками коллектора. Теперь проверьте обмотку тестером и индикатором короткого замыкания. Приступайте к пропитке.
Инструкция по пропитке (с учётом регулятора числа оборотов)
- Убедившись в отсутствии проблем, отправьте якорь в электродуховку на прогрев для лучшего протекания эпоксидной смолы.
- После прогрева поставьте якорь на стол под наклоном для лучшего растекания по проводам. Капните смолой на лобовую часть и медленно крутите якорь. Капайте до появления клея на противоположной лобовой части.
- Расположите якорь горизонтально и капайте на обе лобовые части. Крутите якорь до потери текучести.
- Оставьте в вертикальном положении до полной полимеризации.
В конце процесса слегка проточите коллектор. Балансируйте якорь при помощи динамической балансировки и болгарки. Теперь проточите окончательно на подшипнике. Необходимо прочистить пазы между ламелями и отполируйте коллектор. Сделайте окончательную проверку на обрывы и замыкания.
Особенность обмотки для болгарок с регулируемым числом оборотов в том, что ротор намотан с запасом мощности. Плотность тока влияет на число оборотов. Сечение провода завышено, а количество витков занижено.
Ремонт: Устранение пробоя изоляции
Если пробой изоляции был небольшой и вы его нашли, необходимо очистить это место от нагара и проверить сопротивление. Если его значение нормальное, заизолируйте провода асбестом. Сверху капните быстросохнущим клеем типа «Супермомент». Он просочится через асбест и хорошо заизолирует провод.
Если вы так и не нашли место пробоя изоляции, то попробуйте аккуратно пропитать обмотку пропиточным электроизоляционным лаком. Пробитая и непробитая изоляция пропитается этим лаком и станет прочнее. Высушите якорь в газовой духовке при температуре около 150 градусов. Если и это не поможет, попробуйте перемотать обмотку или поменять якорь.
Пайка пластин коллектора
Ламели установлены на пластмассовую основу. Они могут быть стёрты до самой основы. Остаются только края, до которых щётки не достают.
Такой коллектор можно восстановить методом пайки.
- Из медной трубы или пластины нарежьте необходимое количество ламелей по размерам.
- После того как зачистили якорь от остатков меди, припаивайте обычным оловом с паяльной кислотой.
- Когда все ламели припаяны, сделайте шлифовку и полировку. Если нет токарного станка, воспользуйтесь дрелью или шуруповёртом. Вставьте вал якоря в патрон. Сначала отшлифуйте напильником. Потом отполируйте нулевой наждачной бумагой. Не забудьте прочистить пазы между ламелями и измерить сопротивление.
- Бывают не до конца повреждённые ламели. Чтобы их восстановить, необходимо провести более тщательную подготовку. Слегка проточите коллектор для очистки пластин.
- Место под пластиной нужно расширить бормашиной осторожно, чтобы не снять большой слой изолятора.
- Найдите два куска медного провода такого размера, чтобы они плотно улеглись в образовавшийся паз. Очищенные провода уложите в паз и облудите.
- Сделайте заготовку ламели из меди. Она должна плотно входить в паз и быть выше существующих ламелей, чтобы легче паять.
- Облудите заготовку так, чтобы было много припоя. Она плотнее будет сидеть в пазу. Уложите заготовку в паз и приложите к ней паяльник. Держите его, пока припой не расплавится.
- Лишнее сточите напильником, отшлифуйте и отполируйте.
Если коллектор был изношен полностью, то после пайки его хватит не более, чем на месяц активного использования. А не до конца повреждённые пластины после такого ремонта выдерживают несколько замен щёток и не выпаиваются.
Гальваническое наращивание пластин коллектора
Восстановленная медь очень твёрдая. Срок службы коллектора как у нового. Гальваническим наращиванием можно восстановить как полностью стёртый коллектор, так и частично повреждённые пластины.
Качество восстановления будет одинаковым.
- Хорошо зачистьте всю поверхность коллектора, включая изолятор между ламелями.
- Намотайте оголённый медный провод диаметром около 0,2 миллиметра.
- Обмотайте скотчем вал якоря, а коллектор с торца намажьте пластилином, чтобы медь не разрасталась там, где не надо. И чтобы на железо не попал электролит.
- Для ванночки отрежьте пол пластиковой бутылки. На вал намотайте изоленту так, чтобы она плотно держалась в горлышке бутылки. Вставьте якорь в бутылку.
- Возьмите кусок медной шины. Её размер в два раза больше наращиваемой поверхности. Сверните её спиралью и поместите в бутылку.
- Подключите источник питания минусом к восстанавливаемой поверхности, а плюсом к шинке. Полтора ампера тока на один квадратный дециметр раствора. Если коллектор отделён от вала, обмотайте его проволокой и подвесьте в банке на какой-нибудь перекладине, чтобы электролит касался только изношенной части ламелей. Подключите последовательно лампочки разной мощности, чтобы регулировать силу тока и предотвращать короткое замыкание на сосуде. Через 24 часа получается восстановленный коллектор.
- Коллектор необходимо проточить и разделить пластины бормашиной или ножовочным полотном. В конце протестируйте коллектор на отсутствие замыканий между пластинами.
Составные части электролита:
- Медный купорос — 200 г.
- Серная кислота 1,84 — 40 г.
- Спирт — 5 г. Его можно заменить тройным количеством водки.
- Кипячёная вода — 800 мл.
Как поменять старый редуктор на новый
Болгарки отличаются размерами, мощностью, производителями, но принцип компоновки комплектующих одинаковый. Новый якорь двигателя болгарки подбирается строго в соответствии с моделью вашего инструмента.
- После откручивания всех крепёжных болтов кожуха, корпуса и редуктора вынимаем редуктор с якорем из корпуса. Обычно редуктор и якорь жёстко крепятся друг к другу. Чтобы их разъединить необходимо разобрать редуктор.
- Открутите болты крепления.
- Вал ротора прикручен к корпусу редуктора гайкой. Открутите её. Снимите шестерню.
- Далее, идёт подшипник. Чтобы его снять, иногда достаточно постучать деревянным бруском по корпусу редуктора. Но чаще всего прикипевший подшипник не снимается без некоторых хитростей. Между крыльчаткой и подшипником стоит пластина, которая прикручена двумя болтами к редуктору. Чтобы до них добраться, отломите кусок пластмассовой крыльчатки или разогретым гвоздём прожгите два симметричных отверстия. Второе отверстие необходимо для балансировки, если вы не собираетесь менять крыльчатку.
- Открутите оба болта, постучите деревянным бруском по корпусу редуктора, и якорь отсоединится от него. При этом подшипник останется на валу. Снимите съёмником все подшипники с вала.
Видео: как снять и в чём могут быть трудности
Новый подшипник посадите в корпус редуктора со стороны ротора. Прикрутите пластину, из-за которой была сломана крыльчатка. Внутрь корпуса вставьте шестерню и наживите гайку так, чтобы она вошла в пазы шестерни. На новый якорь наденьте крыльчатку, вставьте якорь в корпус редуктора. Закрутите гайку.
Источник: legkovmeste.ru
Проверка якоря и статора в домашних условиях
Поиск неисправности следует начать с зрительного осмотра болгарки:
- Провести общий осмотр инструмента.
- Проконтролировать целостность сетевого шнура, наличие напряжения в розетке.
- С помощью индикатора напряжения убедиться, что ток поступает на коллектор мотора и кнопку запуска.
Если с питанием всё в порядке, однако болгарка не работает, придётся вскрыть корпус, чтоб получить доступ к мотору. Обычно, разборка не представляет сложностей. Увы нужно придерживаться обычных правил, которые позволят избежать проблем в свое время оборотной сборки:
- Непременно отключить устройство от сети перед разборкой.
- Снять со шпинделя рабочий диск и защитный кожух.
- Произвести вскрытие корпуса в отлично освещённом месте, на незапятанной поверхности стола.
- Уяснить размещение всех деталей и узлов перед разборкой. Рекомендуется зарисовать либо сфотографировать устройство устройства.
- Саморезы и винты крепления ложить в отдельном месте, чтоб не потерялись.
Осматривать мотор идеальнее всего под броским освещением, чтоб что остается сделать нашему клиенту маленькие детали были отлично различимы. Якорь должен свободно крутиться вокруг собственной оси, верно работающие подшипники не обязаны быть во время работы издавать звук. На якоре не надо сделать следов оплавившейся проводки, обмотки контура должны являться целыми, без разрывов. Можно понюхать ротор. При межвитковом замыкании изоляционный лак подгорает и издаёт устойчивый специфичный запах. Однако для таковой диагностики нужен определённый опыт.
Если зрительный осмотр не отдал очевидных результатов, продолжить обследование рекомендуется с помощью мультиметра. Выставив переключатель переключения режимов в положение омметра (спектр 200 Ом), нужно 2-мя щупами «прозвонить» две примыкающие ламели якоря. Если сопротивление на всех витках однообразное, это означает, что обмотки исправны. Напротив на каких-либо парах тестер указывает другое сопротивление либо обрыв цепи — в этой катушке неисправность.
Разрыв проводки иногда происходит меж обмоткой и сердечником. Следует пристально исследовать места соединения катушек с ламелями коллектора в низу якоря, зрительно проверить пайку контактов.
Если нет тестера, выйти из положения конечно при помощи обычный лампочки на 12 вольт. Мощность вам понравятся хоть какой, нормально 30–40 Вт. Напряжение от аккума 12 вольт нужно подать на вилку болгарки, вставив в разрыв 1-го провода лампочку. При исправном якоре, если крутить шпиндель рукою, лампочка должна пылать, не изменяя яркости. Если накал изменяется — это верный признак межвиткового недлинного замыкания.
Напротив лампочка не пылает, то это говорит о последующем:
- Может быть зависание щёток в нерабочем положении. Сработалась подпорная пружина.
- Произошёл разрыв питающего контура.
- Вышло замыкание как еще его называют разрыв в обмотке статора.
Есть и другие методы диагностики, но они требуют более сложного оборудования, которое дома обычно не используют. Опытнейший мастер обусловит поломку с высочайшей степенью точности, используя «пробойник» по другому простой трансформатор с разрезанным тороидальным сердечником и одной первичной обмоткой.
Если повреждение якоря установлено с гарантированной точностью, деталь нужно извлечь из электродвигателя. Разборку мотора нужно создавать с особенной аккуратностью, за ранее сняв щётки и отсоединив клеммы питания. Вынимается ротор вкупе с опорными подшипниками и крыльчаткой остывания мотора, они составляют с его помощью единое целое.
Если в якоре повреждена основная доля проводки и в итоге перегрева нарушена балансировка, его лучше сменять полностью. О нарушении балансировки гласит завышенная вибрация и неравномерный рокот во время работы механизма.
Как определить витковое замыкание якоря быстро.
Если балансировка якоря не нарушена, а неувязка исключительно в испорченных обмотках, то таковой якорь есть вариант вернуть без помощи других, перемотав катушки. Перемотка ротора дома просит огромного терпения и аккуратности.
Мастер обязан иметь способности при работе с паяльничком и устройствами для диагностики электронных цепей. Если вы неуверены в собственных силах, лучше отнести движок при ремонте в мастерскую как еще его называют без помощи других сменять весь якорь.
Для самостоятельной перемотки якоря пригодится:
- провод для новейшей обмотки. Употребляется медная жила с поперечником, точно подходящим старенькому проводнику;
- диэлектрическая бумага для изоляции обмотки от сердечника;
- лак для заливки катушек;
- паяльничек с оловянно-свинцовым припоем и канифолью.
Перед перемоткой принципиально сосчитать количество витков провода в обмотке и намотать на катушки такое же количество нового проводника.
Процесс перемотки состоит из последующих шагов:
- Демонтаж старенькых обмоток. Их нужно аккуратненько удалить, не повредив железного корпуса якоря. Если на корпусе обнаружились какие-либо заусенцы либо повреждения, их нужно загладить ратфилем по другому зашлифовать наждаком. При, для рабочей чистки корпуса от шлаков, мастера предпочитают обжигать его горелкой.
- Подготовка коллектора для подключения нового провода. Снимать коллектор ненужно. Следует оглядеть ламели и замерить мегомметром либо мультиметром сопротивление контактов относительно к корпусу. Оно будет менее 0,25 МОм.
- Удаление старенькой проводки на коллекторе. Кропотливо убрать остатки проводов, прорезать пазы в части контактов. Дальше в пазы будут вставлены окончания проводов катушек.
- Установка гильз для якоря. Гильзы делаются из диэлектрического материала шириной 0,3 мм, к примеру, электротехнического картона. Порезать определённое количество гильз и воткнуть в пазы очищенного якоря.
- Перемотка катушек. Конец нового проводника приприпаивается к окончанию ламели и наматывается поочередными радиальными движениями, против часовой стрелки. Такая укладка именуется «укладкой вправо». Намотка Повторить для всех катушек. Около коллектора стянуть провода толстой нитью из х/б ткани (капрон использовать запрещено, потому что он плавится при нагреве).
- Проверка свойства намотки. В конце укладки всех обмоток, проверить мультиметром отсутствие межвитковых замыканий и вероятных обрывов.
- Финальная обработка. Готовую катушку обработать лаком по другому эпоксидкой для скрепления обмотки. В промышленных критериях пропитку сушат в особых печах. Дома это сделают в духовке. При необходимости — использовать для пропитки быстросохнущие лаки, нанося покрытие в несколько слоёв.
Как показывает практика, что если решено сменять якорь болгарки, то поменять его предпочтительнее вкупе с опорными подшипниками и крыльчаткой остывания мотора.
- Новый якорь УШМ. Должен соответствовать вашей модели. Взаимозамена с иными глазами моделями — недопустима.
- Отвёртки, гаечные ключи.
- Мягенькая щётка и ветошь для протирки механизма.
Смена якоря начинается с разборки болгарки. Производятся последующие шаги:
- Отвёрткой выкручиваются щёточные узлы с 2-ух сторон. Извлекаются щётки.
Чтоб установить к месту новый якорь болгарки следует взять новейшую деталь, после этого собрать инструмент в оборотном порядке. Последователь действий последующая:
- На вал якоря устанавливается диск фиксации.
- Способом напрессовки устанавливается подшипник.
- Насаживается малая шестерня и фиксируется стопорным кольцом.
- Якорь заводится в корпус редуктора, совмещаются стыковочные отверстия.
- Закручиваются болты крепления редуктора.
- Якорь с редуктором вставляется в корпус болгарки и фиксируется.
- Щётки осаждаются на место, запираются крышками.
После выполнения обозначенных действий болгарка готова к работе. Смена якоря произведена.
Старая суфийская мудрость говорит: «Умён тот человек, который способен выйти достойно из сложной ситуации. Но мудр тот, кто в такую ситуацию не попадает.» Соблюдая правила эксплуатации радиоэлектронных товаров, не допуская перегрева мотора, реально избежать поломок и проблем при работе болгарки. Содержание и хранение инструмента в чистоте и сухости предупредит его механизмы от загрязнения и окисления токонесущих частей. Своевременное техническое сервис инструмента гарантированно освободит от противных сюрпризов в свое время работы.
Источник: ctln.ru
Что следует знать о двигателе перед его проверкой: 2 важных момента
В рамках излагаемой темы достаточно представлять упрощенный принцип работы и особенности конструкции любого двигателя.
Принцип работы: какие электротехнические процессы необходимо хорошо представлять при ремонте
Любой движок состоит из стационарно закрепленного корпуса — статора и вращающегося в нем ротора, который еще называют якорь.
Его круговое движение создается за счет воздействия на него вращающегося магнитного поля статора, формируемого протеканием электрических токов по статорным обмоткам.
Когда обмотки исправны, то по ним текут номинальные расчетные токи, создающие магнитные потоки оптимальной величины.
Если сопротивление прводов или их изоляция нарушена, то создаются токи утечек, коротких замыканий и другие повреждения, влияющие на работу электродвигателя.
Между статором и ротором выполнен минимально возможный зазор. Его могут нарушить:
- разбитые подшипники;
- попавшие внутрь механические частицы;
- неправильная сборка и другие причины.
Когда происходит задевание вращающихся частей о неподвижный корпус, то создается их разрушение и дополнительные механические нагрузки. Все это требует тщательного осмотра, анализа состояния внутренних частей до начала электрических проверок.
Довольно часто не квалифицированный разбор является дополнительной причиной поломок. Пользуйтесь специальным инструментом и съемниками, исключающими повреждения граней валов.
После разборки сразу во время осмотра проверяют люфты, свободный ход подшипников, их чистоту и смазку, правильность посадочных мест.
Кроме этого у коллекторного электродвигателя могут быть сильно изношены пластины или щетки.
Все это необходимо проверять до подачи рабочего напряжения.
Особенности конструкций, влияющие на технологию поиска дефектов
Обычно производитель электрические характеристики указывает на табличке, прикрепленной на корпусе. Этим сведениям стоит верить.
Однако часто во время ремонта или перемотки конструкция статора изменяется, а табличка остается прежняя. Этот вариант следует тоже учитывать.
Для бытовой сети 220 вольт могут использоваться двигатели:
- коллекторные с щеточным механизмом;
- асинхронные однофазные;
- синхронные и асинхронные трехфазные.
В схемах 380 вольт работают трехфазные синхронные и асинхронные электродвигатели.
Все они отличаются по конструкции, но, в силу работы по общим законам электротехники, позволяют использовать одинаковые методики проверок, заключающиеся в замерах электрических характеристик косвенными и прямыми методами.
Как проверить обмотку электродвигателя на статоре: общие рекомендации
Трехфазный статор имеет три встроенные обмотки. Из него выходит шесть проводов. В отдельных конструкциях можно встретить 3 или 4 вывода, когда соединение треугольник или звезда собрано внутри корпуса. Но так делается редко.
Определить принадлежность выведенных концов обмоткам позволяет прозвонка их мультиметром в режиме омметра. Надо просто один щуп поставить на произвольный вывод, а другим — поочередно замерять активное сопротивление на всех остальных.
Пара проводов, на которой будет обнаружено сопротивление в Омах, будет относиться к одной обмотке. Их следует визуально отделить и пометить, например, цифрой 1. Аналогично поступают с другими проводами.
Здесь надо хорошо представлять, что по закону Ома ток в обмотке создается под действием приложенного напряжения, которому противодействует полное сопротивление, а не активное, замеряемое нами.
Учитываем, что обмотки наматываются из одного провода с одинаковым числом витков, создающих равное индуктивное сопротивление. Если провод в процессе работы будет закорочен или оборван, то его активная составляющая, как и полная величина, нарушится.
Межвитковое замыкание тоже сказывается на величине активной составляющей.
Однофазный асинхронный двигатель: особенности статорных обмоток
Такие модели создаются с двумя обмотками: рабочей и пусковой, как, например, у стиральной машины. Активное сопротивление у рабочей цепочки в подавляющем большинстве случаев всегда меньше.
Поэтому когда из статора выведено всего три конца, то это означает, что между всеми ими надо измерять сопротивление. Результаты трех замеров покажут:
- меньшая величина — рабочую обмотку;
- средняя — пусковую;
- большая — последовательное соединение первых двух.
Как найти начало и конец каждой обмотки
Метод позволяет всего лишь выявить общее направление навивки каждого провода. Но для практической работы электродвигателя этого более чем достаточно.
Статор рассматривается как обычный трансформатор, что в принципе и есть на самом деле: в нем протекают те же процессы.
Для работы потребуется небольшой источник постоянного напряжения (обычная батарейка) и чувствительный вольтметр. Лучше стрелочный. Он более наглядно отображает информацию. На цифровом мультиметре сложно отслеживать смену знака быстро меняющегося импульса.
К одной обмотке подключают вольтметр, а на другую кратковременно подают напряжение от батарейки и сразу его снимают. Оценивают отклонение стрелки.
Если при подаче «плюса» в первую обмотку во второй трансформировался электромагнитный импульс, отклонивший стрелку вправо, а при его отключении наблюдается движение ее влево, то делается вывод, что провода имеют одинаковое направление, когда «+» прибора и источника совпадают.
В противном случае надо переключить вольтметр или батарейку — то есть поменять концы одной из обмоток. Следующая третья цепочка проверяется аналогично.
А далее я просто взял свой рабочий асинхронный движок с мультиметром и показываю на нем фотографиями методику его оценки.
Личный опыт: проверка статорных обмоток асинхронного электродвигателя
Для статьи я использовал свой новый карманный мультиметр Mestek MT102. Заодно продолжаю выявлять недостатки его конструкции, которые уже показал в статье раньше.
Электрические проверки выполнялись на трехфазном двигателе, подключенном в однофазную сеть через конденсаторы по схеме звезды.
Общая оценка состояния изоляции обмоток
Поскольку на клеммных выводах все обмотки уже собраны вместе, то замеры начал с проверки сопротивления их изоляции относительно корпуса. Один щуп стоит на клеммнике сборки нуля, а второй — на гнезде винта крепления крышки. Мой Mestek показал отсутствие утечек.
Другого результата я и не ожидал. Этот способ замера состояния изоляции очень неточный и большинство повреждений он выявить просто не сможет: питания батареек 3 вольта явно недостаточно.
Но все же лучше делать хоть так, чем полностью пренебрегать такой проверкой.
Для полноценного анализа диэлектрического слоя проводников необходимо использовать высокое напряжение, которое вырабатывают мегаомметры. Его величина обычно начинается от 500 вольт и выше. У домашнего мастера таких приборов нет.
Можно обойтись косвенным методом, используя бытовую сеть. Для этого на клеммы обмотки и корпуса подают напряжение 220 вольт через контрольную лампу накаливания мощностью порядка 75 ватт (токоограничивающее сопротивление, исключающее подачу потенциала фазы на замыкание) и последовательно включенный амперметр.
Ожидаемый ток утечки через нормальную изоляцию не превысит микроамперы или их доли, но рассчитывать надо на аварийный режим и начинать замеры на пределах ампер. Измерив ток и напряжение, вычисляют сопротивление изоляции.
Используя этот способ, учитывайте, что:
- на корпус движка подается полноценная фаза: он должен располагаться на диэлектрическом основании, не иметь контактов с другими предметами;
- даже временно собираемая схема требует надежной изоляции всех концов и проводов, прочного крепления всех зажимов;
- колба лампы может разбиться: ее надо держать в защитном чехле.
Замер активного сопротивления обмоток
Здесь требуется разобрать схему подключения проводов и снять все перемычки. Перевожу мультиметр в режим омметра и определяю активное сопротивление каждой обмотки.
Прибор показал 80, 92 и 88 Ом. В принципе большой разницы нет, а отклонения на несколько Ом я объясняю тем, что крокодил не обеспечивает качественный электрический контакт. Создается разное переходное сопротивление.
Это один из недостатков этого мультиметра. Щуп плохо входит в паз крокодила, да к тому же тонкий металл зажима раздвигается. Мне сразу пришлось его поджимать пассатижами.
Замер сопротивления изоляции между обмотками
Показываю этот принцип потому, что его надо выполнять между каждыми обмотками. Однако вместо омметра нужен мегаомметр или проверяйте, в крайнем случае, бытовым напряжением по описанной мной выше методике.
Мультиметр же может ввести в заблуждение: покажет хорошую изоляцию там, где будут созданы скрытые дефекты.
Как проверить якорь электродвигателя: 4 типа разных конструкций
Роторные обмотки создают магнитное поле, на которое воздействует поле статора. Они тоже должны быть исправны. Иначе энергия вращающегося магнитного поля будет расходоваться впустую.
Обмотки якоря имеют разные конструкции у двигателей с фазным ротором, асинхронным и коллекторным. Это стоит учитывать.
Синхронные модели с фазным ротором
На якоре создаются выводы проводов в виде металлических колец, расположенных с одной стороны вала около подшипника качения.
Провода схемы уже собраны до этих колец, что наносит небольшие особенности на их проверку мультиметром. Отключать их не стоит, однако методика, описанная выше для статора, в принципе подходит и для этой конструкции.
Такой ротор тоже можно условно представить как работающий трансформатор. Требуется только сравнить индивидуальные сопротивления их цепочек и качество изоляции между ними, а также корпусом.
Якорь асинхронного электродвигателя
В большинстве случаев ситуация здесь намного проще, хотя могут быть и проблемы. Дело в том, что такой ротор выполнен формой «беличье колесо» и его сложно повредить: довольно надежная конструкция.
Короткозамкнутые обмотки выполнены из толстых стержней алюминия (редко меди) и прочно запрессованы в таких же втулках. Все это рассчитано на протекание токов коротких замыканий.
Однако на практике происходят различные повреждения даже в надежных устройствах, а их как-то требуется отыскивать и устранять.
Цифровой мультиметр для выявления неисправностей в обмотке «беличье колесо» не потребуется. Здесь нужно иное оборудование, подающее напряжение на короткое замыкание этого якоря и контролирующее магнитное поле вокруг него.
Однако внутренние поломки таких конструкций обычно сопровождаются трещинами на корпусе, а их можно заметить при внимательном внутреннем осмотре.
Кому интересна такая проверка электрическими методами, смотрите видеоролик владельца Viktor Yungblyudt. Он подробно показывает, как определить обрыв стержней подобного ротора, что позволяет в дальнейшем восстановить работоспособность всей конструкции.
Коллекторные электродвигатели: 3 метода анализа обмотки
Принципиальная электрическая схема коллекторного двигателя в упрощенной форме может быть представлена обмотками ротора и статора, подключенными через щеточный механизм.
Схема собранного электродвигателя с коллекторным механизмом и щетками показана на следующей картинке.
Обмотка ротора состоит из частей, последовательно подключенных между собой определенным числом витков на коллекторных пластинах. Они все одной конструкции и поэтому имеют равное активное сопротивление.
Это позволяет проверять их исправность мультиметром в режиме омметра тремя разными методиками.
Самый простой метод измерения
Принцип №1 определения сопротивления между коллекторными пластинами я показываю на фото ниже.
Здесь я допустил одно упрощение, которое в реальной проверке нельзя совершать: поленился извлекать щетки из щеткодежателя, а они создают дополнительные цепочки, способные исказить информацию. Всегда вынимайте их для точного измерения.
Щупы ставятся на соседние ламели. Такое измерение требует точности и усидчивости. На коллекторе необходимо нанести метку краской или фломастером. От нее придется двигаться по кругу, совершая последовательные замеры между всеми очередными пластинами.
Постоянно контролируйте показания прибора. Они все должны быть одинаковыми. Однако сопротивление таких участков маленькое и если омметр недостаточно точно на него реагирует, то можно его очувствить увеличением длины измеряемой цепочки.
Способ №2: диаметральный замер
При этом втором методе потребуется еще большая внимательность и сосредоточенность. Щупы омметра необходимо располагать не на соседние ближайшие пластины, а на диаметрально противоположные.
Другими словами, щупы мультиметра должны попадать на те пластины, которые при работе электродвигателя подключаются щетками. А для этого их потребуется как-то помечать, дабы не запутаться.
Однако даже в этом случае могут встретиться сложности, связанные с точностью замера. Тогда придется использовать третий способ.
Способ №3: косвенный метод сравнения величин маленьких сопротивлений
Для измерения нам потребуется собрать схему, в которую входит:
- аккумулятор на 12 вольт;
- мощное сопротивление порядка 20 Ом;
- мультиметр с концами и соединительные провода.
Следует представлять, что точность измерения увеличивает стабильность созданного источника тока за счет:
- высокой емкости аккумулятора, обеспечивающей одинаковый уровень напряжения во время работы;
- повышенная мощность резистора, исключающая его нагрев и отклонение параметров при токах до одного ампера;
- короткие и толстые соединительные провода.
Один соединительный провод подключают напрямую к клемме аккумулятора и ламели коллектора, а во второй врезают токоограничивающий резистор, исключающий большие токи. Параллельно контактным пластинам садится вольтметр.
Щупами последовательно перебираются очередные пары ламелей на коллекторе и снимаются отсчеты вольтметром.
Поскольку аккумулятором и резистором на короткое время каждого замера мы выдаем одинаковое напряжение, то показания вольтметра будут зависеть только от величины сопротивления цепочки, подключенной к его выводам.
Поэтому при равных показаниях можно делать вывод об отсутствии дефектов в электрической схеме.
При желании можно измерить миллиамперметром величину тока через ламели и по закону Ома, воспользовавшись онлайн калькулятором, посчитать величину активного сопротивления.
Мой цифровой Mestek MT102, несмотря на выявленные в нем недостатки, нормально справляется с этой задачей.
Двигатели постоянного тока
Конструкция их ротора напоминает устройство якоря коллекторного двигателя, а статорные обмотки создаются для работы со схемой включения при параллельном, последовательном или смешанном возбуждении.
Раскрытые выше методики проверок статора и якоря позволяют проверять двигатель постоянного тока, как асинхронный и коллекторный.
Заключительный этап: особенности проверок двигателей под нагрузкой
Нельзя делать заключение об исправности электродвигателя, полагаясь только на показания мультиметра. Необходимо проверить рабочие характеристики под нагрузкой привода, когда ему необходимо совершать номинальную работу, расходуя приложенную мощность.
Например, владелец очень короткого видео ЧАО Дунайсудоремонт считает, что замерив ток в обмотках, он убедился в готовности отремонтированного движка к дальнейшей эксплуатации.
Однако такое заключение можно дать только после выполнения длительной работы и оценки не только величин токов, но и замера температур статора и ротора, анализа систем теплоотвода.
Не выявленные дефекты неправильной сборки или повреждения отдельных элементов могут повторно вызвать дополнительный ремонт с большими трудозатратами. Если же у вас еще остались вопросы по теме, как проверить электродвигатель мультиметром, то задавайте их в комментариях. Обязательно обсудим.
Источник: ElectrikBlog.ru
Система обучения поиску и устранению неисправностей электродвигателя
Система обучения поиску и устранению неисправностей двигателя (85-MT2E), используемая вместе с системой обучения основным электрическим машинам (85-MT2), охватывает тестирование и устранение неисправностей двигателей переменного и постоянного тока с помощью мультиметра и мегомметра. Навыки и знания, охватываемые этой системой обучения, окажутся неоценимыми для техников по техническому обслуживанию промышленных предприятий или любого, кто работает в области, где используются двигатели переменного и / или постоянного тока. Эта система охватывает такие основные темы, как отказы двигателей переменного и постоянного тока, распространенные методы диагностики этих отказов с помощью мультиметра и мегомметра, а также устранение неисправностей этих отказов.
85-MT2E включает в себя соединительную коробку двигателя для отработки практических навыков, таких как устранение неисправностей в двигателе постоянного тока и однофазных и трехфазных двигателях переменного тока, оценка состояния коммутатора электродвигателя постоянного тока и щетки, а также использование мультиметра для проверки конденсатор запуска / работы двигателя переменного тока. Учебные системы Amatrol содержат компоненты реального промышленного уровня, обеспечивающие надежность, которые выдерживают частое использование и позволяют учащимся приобрести практические навыки. Для этой обучающей системы требуется 85-MT2, цифровой мультиметр и мегомметр.
Практические навыки поиска и устранения неисправностей двигателя в реальных приложениях
85-MT2E имеет соединительную коробку двигателя, которая при использовании вместе с 85-MT2, мультиметром и мегомметром, позволяет учащимся практиковать практические навыки поиска и устранения неисправностей двигателя. Эта обучающая система охватывает широкий спектр областей, в которых могут возникать отказы в двигателях переменного тока (отказ подшипников, пусковые обмотки, центробежный переключатель, термовыключатель) и двигателях постоянного тока (муфты, щетки, якорь, обмотка возбуждения и источник питания).Этот набор тем позволяет учащимся обрести уверенность и компетентность при отработке соответствующих практических навыков и увидеть, как они применяются в реальных ситуациях.
Исчерпывающие знания о том, как тестировать, диагностировать и устранять неисправности двигателей переменного и постоянного тока
Учебная программа 85-MT2E начинается с объяснения распространенных типов отказов двигателей переменного и постоянного тока, а также их причин и построений, позволяя учащимся изучить, как тестировать, диагностировать и устранять неисправности. Конкретные цели включают перечисление общих отказов обмоток статора трехфазного двигателя переменного тока, понимание общих методов, используемых для диагностики отказов двигателя постоянного тока, и использование мегомметра для проверки якоря электродвигателя постоянного тока.Включенная учебная программа представляет собой интерактивные мультимедийные материалы, которые можно использовать для обучения в классе или для самостоятельного обучения. Этот мультимедийный материал содержит потрясающую трехмерную графику и видео, озвучку текста, а также интерактивные викторины и упражнения.
Получить цитату Система обучения поиску и устранению неисправностей электродвигателяAmatrol |
Система обучения поиску и устранению неисправностей двигателя (85-MT2E), используемая вместе с системой обучения основным электрическим машинам (85-MT2), охватывает тестирование и устранение неисправностей двигателей переменного и постоянного тока с помощью мультиметра и мегомметра.Навыки и знания, охватываемые этой системой обучения, окажутся неоценимыми для техников по техническому обслуживанию промышленных предприятий или любого, кто работает в области, где используются двигатели переменного и / или постоянного тока. Эта система охватывает такие основные темы, как отказы двигателей переменного и постоянного тока, распространенные методы диагностики этих отказов с помощью мультиметра и мегомметра, а также устранение неисправностей этих отказов.
85-MT2E включает в себя соединительную коробку двигателя для отработки практических навыков, таких как устранение неисправностей в двигателе постоянного тока и однофазных и трехфазных двигателях переменного тока, оценка состояния коммутатора электродвигателя постоянного тока и щетки, а также использование мультиметра для проверки конденсатор запуска / работы двигателя переменного тока.Учебные системы Amatrol содержат компоненты реального промышленного уровня, обеспечивающие надежность, которые выдерживают частое использование и позволяют учащимся приобрести практические навыки. Для этой обучающей системы требуется 85-MT2, цифровой мультиметр и мегомметр.
* Используется вместе с Системой обучения основам электрических машин (85-MT2).
Практические навыки поиска и устранения неисправностей двигателя в реальных приложениях
85-MT2E имеет соединительную коробку двигателя, которая при использовании вместе с 85-MT2, мультиметром и мегомметром, позволяет учащимся практиковать практические навыки поиска и устранения неисправностей двигателя.Эта обучающая система охватывает широкий спектр областей, в которых могут возникать отказы в двигателях переменного тока (отказ подшипников, пусковые обмотки, центробежный переключатель, термовыключатель) и двигателях постоянного тока (муфты, щетки, якорь, обмотка возбуждения и источник питания). Этот набор тем позволяет учащимся обрести уверенность и компетентность при отработке соответствующих практических навыков и увидеть, как они применяются в реальных ситуациях.
Исчерпывающие знания о том, как тестировать, диагностировать и устранять неисправности двигателей переменного и постоянного тока
Учебная программа 85-MT2E начинается с объяснения распространенных типов отказов двигателей переменного и постоянного тока, а также их причин и построений, позволяя учащимся изучить, как тестировать, диагностировать и устранять неисправности.Конкретные цели включают перечисление общих отказов обмоток статора трехфазного двигателя переменного тока, понимание общих методов, используемых для диагностики отказов двигателя постоянного тока, и использование мегомметра для проверки якоря электродвигателя постоянного тока. Включенная учебная программа представляет собой интерактивные мультимедийные материалы, которые можно использовать для обучения в классе или для самостоятельного обучения. Этот мультимедийный материал содержит потрясающую трехмерную графику и видео, озвучку текста, а также интерактивные викторины и упражнения.
Дополнительное обучение электродвигателю
85-MT2E – это всего лишь одна из опций для тренировки электродвигателей от Amatrol.Другие варианты, которые можно добавить к 85-MT2, включают генераторы постоянного тока (85-MT2B), генераторы переменного тока / синхронные двигатели (85-MT2C) и двигатель с фазным ротором (85-MT2D). 85-MT2B оснащен резистивными и индуктивными модулями нагрузки для обучения работе, установке и выбору генераторов постоянного тока для различных приложений. 85-MT2C включает в себя емкостную нагрузку, комбинированный синхронный двигатель / генератор переменного тока и блок синхронизирующих огней / переключателя, чтобы охватить такие темы, как выходное напряжение и частота генератора переменного тока, три метода синхронизации в темноте и реверс синхронного двигателя.85-MT2D включает в себя контроллер с фазным ротором и двигатель для охвата таких тем, как контроллеры скорости, реверсирование двигателя, а также анализ и измерение производительности.
Справочное руководство для учащихся
Образец Справочного руководства для учащихся по поиску и устранению неисправностей двигателя также включен в систему для вашей оценки. Справочное руководство для студентов, созданное на основе учебной программы системы, объединяет техническое содержание всей серии, содержащееся в целях обучения, в одну книгу с прекрасным переплетом.Справочные руководства для студентов дополняют этот курс, предоставляя краткий недорогой справочный инструмент, который учащиеся сочтут неоценимым после завершения обучения, что делает его идеальным выносом из курса.
Учебные темы
- Поиск и устранение неисправностей двигателя переменного тока
- Отказ электродвигателя переменного тока
- Испытания трехфазных двигателей переменного тока
- Использование мультиметра
- Использование мегомметра
- Поиск и устранение неисправностей двигателя постоянного тока
- Механическая диагностика электродвигателя постоянного тока
- Испытание якоря двигателя постоянного тока
- Тестирование обмоток возбуждения двигателя постоянного тока
Основные характеристики
- Охватывает тестирование и устранение неисправностей двигателей переменного и постоянного тока с помощью мультиметра и мегомметра.
- Охватывает основные темы, такие как отказы двигателей переменного и постоянного тока, общие методы диагностики этих отказов с помощью мультиметра и мегомметра, а также поиск и устранение неисправностей этих отказов.
- Включает соединительную коробку двигателя для отработки практических навыков, таких как устранение неисправностей в двигателе постоянного тока и однофазных и трехфазных двигателях переменного тока, оценка состояния коммутатора электродвигателя постоянного тока и щетки, а также использование мультиметра для проверки запуска двигателя переменного тока / рабочий конденсатор
Дополнительные требования
- Система обучения основам работы с электрическими машинами (85-MT2)
- Цифровой мультиметр
Дополнительная информация
Как выполнить мегомметр двигателя
Что ж, технически говоря, если мы придираемся к придиркам, вы не можете использовать «меггер» для мотора.Megger – зарегистрированная торговая марка, а не глагол, но мы это понимаем – старые привычки умирают с трудом. Кроме того, нам приятно, что вы так много раздумываете над нашим именем, что мы не можем жаловаться.
Но на самом деле вы спрашиваете – как провести испытание сопротивления изоляции двигателя? И это вопрос, с которым мы определенно можем вам помочь, независимо от того, говорите ли вы мегагер, мегагер или мегомотор. Каждому свое, правда? К тому же это блог, а не лекционный зал.
Итак, давайте начнем с того, почему.
Зачем вам нужен мотор Megger? Или еще лучше…
Почему вы должны проводить испытания сопротивления изоляции вашего двигателя?
Если вы работаете с совершенно новыми блестящими двигателями на своем предприятии, ваша электрическая изоляция должна быть в идеальном состоянии. Однако, несмотря на значительные производственные усовершенствования двигателей за последние годы, изоляция по-прежнему подвержена классическому износу, а также другим вредным воздействиям, таким как механические повреждения, вибрация, чрезмерное тепло или холод, грязь, масло, коррозионные пары, влажность от технологических процессов и т. Д. просто естественная влажность, которая может вызвать нарушение изоляции.
Со временем эти негодяи образуют крошечные отверстия и трещины, позволяя влаге или инородным частицам просачиваться на поверхность изоляции, уступая место пути с низким сопротивлением для тока утечки. И как только это начнется, пути назад уже не будет. Обычно падение сопротивления происходит постепенно, и именно здесь на помощь приходят электрические испытания!
Периодическая проверка изоляции двигателя является ключевым моментом. Кстати, хорошая изоляция имеет высокое сопротивление, тогда как плохая изоляция имеет относительно низкое сопротивление.Фактические значения могут отличаться в зависимости от температуры или влажности, поэтому убедитесь, что вы ведете хороший учет.
С помощью плана профилактического обслуживания вы можете запланировать восстановление или ремонт до полного отказа в обслуживании. Если вам нравится экономить деньги и предотвращать простои, то этот вариант для вас!
Кроме того, отказ от проверки изоляции двигателя может привести к опасным условиям при подаче напряжения или полностью перегореть двигатель.
Теперь о главном событии.
Как можно проверить изоляцию двигателя?
Перво-наперво вам понадобится тестер изоляции, мегомметр или универсальный тестер вращающейся машины (если вы устали таскать с собой несколько измерительных приборов), которые позволят вам выполнить измерения. в омах или мегомах. Имейте в виду, что этот тест является неразрушающим, поэтому вам не нужно беспокоиться о дальнейшем повреждении изоляции вашего двигателя. Ваш прибор просто подаст напряжение и измерит результирующий ток по поверхности изоляции, что даст вам значение сопротивления.(Благодаря закону Ома.)
Кроме того, очень важно помнить, что ни при каких обстоятельствах никогда не следует подключать тестер изоляции Megger (или любой ИК-тестер в этом отношении) к находящемуся под напряжением оборудованию. Теперь, когда это рассмотрено, давайте поговорим о подключении теста.
Для двигателей переменного тока и пускового оборудования ознакомьтесь с приведенной ниже схемой из A Stitch in Time – нашего полного руководства по испытанию сопротивления изоляции. Обратите внимание, что пусковое оборудование, соединительные линии и двигатель параллельны, а переключатель стартера установлен в положение «включено».Всегда лучше отсоединять и компоненты и тестировать их все по отдельности, чтобы вы могли точно знать, где есть слабые места.
Для генераторов и двигателей постоянного тока необходимо поднять щетки, как показано на рисунке ниже. Вы также можете проверить такелаж и катушки возбуждения отдельно от самого якоря.
Итак, вы выполнили свой тест, что теперь? Давай поговорим о твоих результатах.
Как вы интерпретируете показания сопротивления?
Что ж, для двигателей мы всегда рекомендуем вам взять копию руководства IEEE «Рекомендуемые методы тестирования сопротивления изоляции вращающегося оборудования», поскольку это наиболее полный ресурс для решения проблемы интерпретации измерений сопротивления изоляции для двигателей.
Но самая большая рекомендация, которую мы можем вам дать, следующая…
Ключевым моментом является периодическое тестирование.
Несмотря на то, что существуют руководства и правила для минимальных значений сопротивления изоляции, лучшим индикатором проблем в раю является постоянная тенденция к снижению ИК-измерений. А этого можно достичь только в том случае, если вы периодически проводите тестирование и, конечно же, ведете хороший учет.
Если вы уже взяли копию Stitch in Time, нашего полного руководства по тестированию электрической изоляции, то у вас все готово – пока что.Просто держитесь крепче, потому что у нас скоро в блоге появятся еще несколько уловок для мегагруса. В частности, если вы искали пошаговую процедуру для проведения различных испытаний изоляции, вы не захотите ее пропустить.
Тестирование якоря двигателя постоянного тока
Для якоря двигателя постоянного тока существует простой метод определения состояния якоря.Метод испытания на падение: подайте напряжение постоянного тока на сегменты коммутатора для одной области шага полюсов от источника питания или батареи.Подключите положительный конец источника питания постоянного тока к одному концу и отрицательный конец к противоположному концу.
Например, если общее количество сегментов коммутатора, скажем, 40 в проверяемой арматуре, а общее количество полюсов равно 4, то площадь шага одного полюса будет составлять 10 сегментов.
Теперь измерьте милливольтметром, скажем, в диапазоне от 0 до 10 милливольт, падение напряжения в центральной точке, то есть между 5-м и 6-м сегментом. снова поверните якорь по часовой стрелке или против часовой стрелки и измерьте следующий набор сегментов.
Полные измерения для всех 40 пар сегментов. одновременно записывая показания.
Если есть какой-либо дефект в обмотке, который закорочен или разомкнут, это отобразится в показаниях.
Если показания милливольтметра одинаковы для всех 40 пар сегментов, то якорь в порядке. Если есть короткое замыкание между обмоткой или обмоткой между одной конкретной парой сегментов, показания будут меньше в милливольтах. Если что-то незакрепленное или открытое, показания будут выше нормальных.Таким образом, можно определить состояние якоря постоянного тока на короткое замыкание, обрыв или обрыв обмотки.
При испытании якоря постоянного тока необходимо выполнить ряд испытаний. Первый. Проверка изоляции заземления или более известная как проверка грабителей, обычно проводимая при 500 В постоянного тока. Если показание заземления выше 1 МОм, якорь готов к следующему испытанию, которое является испытанием полоски на полоску. Есть 2 единицы оборудования для наилучшего проведения этого теста. Один из них в сочетании с тестом грабителя скажет вам, удовлетворительно ли возвращена арматура в эксплуатацию.Первая полоса испытания проводится с помощью цифрового низкоомного омметра «DLRO». Измеритель будет пропускать около 8-10 ампер через соседние последовательные полоски и измерять сопротивление цепи в миллиомах. Если отклонение превышает 5%, то якорь закорачивается от поворота к повороту. Следующий тестер, который называется тестером с высокочастотной полосой. Тестер имеет 4 точки, и когда вы перемещаете его вокруг якоря, на пары последовательных обмоток подается высокочастотное напряжение, и измеритель покажет отклонение при коротком замыкании.Если он проходит одно из этих двух испытаний «бар на стержень» и испытания изоляции заземления, его можно вернуть в эксплуатацию.
|
Арматура – Все производители – eTesters.com
Отображение недавних результатов 1 – 15 из 63 найденных продуктов.
Тестер якоря
DS-e / d Series – Shanghai Aoboor Electric Co., ООО
Применимо для точного испытания арматуры, изготовленной методом намотки одной вилки, двойной вилки или большого и малого стержня; и испытание якоря, сделанного пьезорезистором, угольным коммутатором, уравнителем, двойной изоляцией и другим специальным процессом.
Испытания якоря
Электронные системы штата Висконсин, Инк.
Системы испытания якоряESW оснащены новейшими функциями, которые может предложить рынок.Экранный дисплей упрощает чтение, отслеживание и запись информации о вашей арматуре. Программное обеспечение для сбора данных ESW совместимо практически с любым типом системы, которая позволяет пользователю хранить информацию на любой программной платформе. Наши тестеры хранят ваши данные, так что вам больше не придется беспокоиться о потере важной информации. Мы будем работать с вами, чтобы удовлетворить ваши индивидуальные потребности в тестировании. Пожалуйста, посмотрите видео и слайд-шоу ниже, чтобы увидеть некоторые из наших тестеров арматуры.
Тестер якоря
АВТОМАТИЧЕСКОЕ ИСПЫТАТЕЛЬНОЕ ОБОРУДОВАНИЕ FISHER TESTERS
• Интерфейс с сенсорным экраном • Windows® 10 Pro • Наименьшее количество плат в отрасли • Высокая надежность благодаря проверенной конструкции • Интерфейс USB – отсутствие плат ввода-вывода в компьютере • Программное обеспечение дистанционного управления для заводской диагностики / обновлений • Полная совместимость с сетью • Встроенные статистические данные Отчетность • Данные испытаний могут храниться в различных форматах • Двухлетняя гарантия на электронику
СИСТЕМЫ ИСПЫТАНИЯ АРМАТУРЫ
Automation Technology, Inc.
ATS-3800 компанииAutomation Technology является лидером в своем классе, когда речь идет о системах тестирования арматуры. ATS-3800 имеет стандартные функции, как и все тестовые системы ATI серии 3800; на него распространяется двухлетняя ограниченная гарантия ATI. ATS-3800 предлагает наиболее полное тестирование арматуры.
40-канальный мультиплексор якоря
L4421A – Keysight Technologies
L4421A – это универсальный и высокопроизводительный 40-канальный мультиплексор якоря для сканирования общего назначения.Низкие характеристики теплового смещения и встроенный эталон термопары на клеммной колодке делают его идеальным для измерения температуры при использовании с внешним мультиметром.
Тестер якоря двигателя
DS720 – Shanghai Aoboor Electric Co., Ltd.
Применимо к испытаниям электрических свойств якоря двигателя с любым количеством шин коммутации, например, автомобильные двигатели, стартеры мотоциклов, двигатели электроинструментов, тяговые двигатели, двигатели пылесосов, двигатели оборудования для фитнеса.
Цифровой измеритель перенапряжения якоря
1кВ – Jabbals
Цифровой измеритель перенапряжения якоря с испытанием между стержнями – это экономичное решение для проверки качества якоря постоянного тока малого и среднего диапазона. Тест «стержень-стержень» предназначен для проверки низкого импеданса последовательных обмоток якоря и катушек возбуждения тяговых двигателей постоянного тока.Измеритель перенапряжения имеет встроенный промышленный ПК с 8-дюймовым сенсорным дисплеем и программное обеспечение для хранения, вызова и печати отчетов об испытаниях.
Испытательная система катушки якоря
ЭКГ КОКУСАЙ Ко., Лтд.
Система управления с коммерческим персональным компьютером (OA / FA) Автоматическое хранение данных на жестком диске Вывод данных через USB, Ether Net, принтер и т. Д.Разработка программного обеспечения (управление устройствами, управление данными и т. Д.) Разработка и производство экзаменационных приспособлений и инструментов
40-канальный мультиплексор якоря для 34980A
34921A – Keysight Technologies
Модуль 34921A компании Keysight для многофункционального переключателя / измерительного блока 34980A является наиболее универсальным мультиплексором для сканирования общего назначения. Он имеет низкие характеристики теплового смещения и встроенный эталон термопары на клеммной колодке, что делает его идеальным для измерения температуры непосредственно на внутреннем цифровом мультиметре.Плотная, многофункциональная коммутация со скоростью сканирования 100 каналов в секунду предназначена для широкого спектра приложений сбора данных.
70-канальный мультиплексор якоря для 34980A
34922A – Keysight Technologies
Модуль Keysight 34922A для многофункционального коммутатора / измерительного блока 34980A обеспечивает коммутацию мультиплексора высокой плотности при компактных размерах. Он сочетает в себе плотную, многофункциональную коммутацию со скоростью сканирования 100 каналов в секунду для решения широкого спектра приложений сбора данных.
Цифровой измеритель перенапряжения якоря 3 кВ
D-3KAT – Jabbals
Цифровой измеритель перенапряжения якоря с испытанием между стержнями – это экономичное решение для проверки качества малых и больших тяговых двигателей постоянного тока, идеально подходящих для железных дорог. Тест «стержень-стержень» предназначен для проверки низкого импеданса последовательных обмоток якоря и катушек возбуждения тяговых двигателей постоянного тока. Измеритель перенапряжения имеет встроенный промышленный ПК с 8-дюймовым сенсорным дисплеем и программное обеспечение для хранения, вызова и печати отчетов об испытаниях.
Как проверить обмотку двигателя переменного тока мультиметром?
Обмотка двигателя переменного тока Сопротивление Тест
Проверьте сопротивление обмотки двигателя или показания в омах с помощью мультиметра или омметра для клеммы фаза-фаза (U к V, V к W, W к U). Показания в омах для каждой обмотки должны быть одинаковыми (или почти одинаковыми). Помните, что три фазы имеют одинаковые обмотки или около того !Щелкните, чтобы увидеть полный ответ
Также как проверить обмотки двигателя мультиметром?
Как проверить двигатель шпинделя на обрыв или короткое замыкание обмоток
- Установите мультиметр на Ом.
- Тесты от Т1 до Т2, от Т2 до Т3 и от Т1 до Т3.
- Если двигатель шпинделя не прошел тест, вы можете убедиться, что проблема не в разъеме, на котором может быть охлаждающая жидкость, которая мешает вашим результатам.
- Проверьте свои вкладыши.
Точно так же должны ли обмотки двигателя иметь обрыв? Обмотки (все три в трехфазном двигателе ) должны иметь низкое сопротивление , но не ноль. Чем меньше двигатель , тем выше будет это показание, но он не должен открывать .Обычно он будет достаточно низким (менее 30 Ом) для срабатывания звукового индикатора целостности цепи .
Так как проверить мотор мультиметром?
С мультиметром , установленным на низкое сопротивление (обычно 200), проверьте между каждым выводом обмотки и металлическим кожухом двигателя . Если есть какие-либо показания на любом из них, значит, двигатель неисправен, не используйте его. Вы можете обнаружить, что когда он работает без заземления, корпус становится под напряжением до напряжения питания.
Как проверить двигатель переменного тока?
Испытание на прямое короткое замыкание в силовых обмотках двигателя в индукционных (без щеток) двигателях .