Система прибора вольтметра: Система измерительного механизма вольтметра – Морской флот

Содержание

Вольтметры. Виды и работа. Устройство и маркировка. Особенности

Вольтметры являются измерительными приборами, которые предназначены для измерения электродвижущей силы в электрической цепи на некотором ее участке, то есть, для измерения разности электрических потенциалов, которое называется напряжением. Единицей измерения этого параметра является Вольт. Такой измерительный прибор должен подключаться параллельно измеряемому участку или нагрузке. Если вольтметр подключить к выводам батарейки или блока питания, то прибор покажет не напряжение, а электродвижущую силу, так как при подключении в цепь с нагрузкой напряжение меняется.

Классификация

Вольтметры в идеале должны иметь большое внутреннее сопротивление, для обеспечения точных показаний, и не воздействовать на измеряемую цепь. Поэтому в высокоточных приборах стремятся к наибольшему внутреннему сопротивлению.

По принципу действия:
  • Электромеханические.
  • Электронные.
По назначению:
  • Для постоянного тока.
  • Для переменного тока.
  • Импульсные.
  • Фазочувствительные.
  • Селективные.
  • Универсальные.
По способу исполнения:
  • Переносные.
  • Стационарные.
  • Щитовые.
Устройство и работа

Основные виды вольтметров.

Электромеханические

Процесс измерения основан на прямой линейной зависимости движения механического вида от напряжения. Стрелка прибора находится на рамке с обмоткой, расположенной на вращающейся оси внутри постоянного магнита.

При возникновении в рамке напряжения, вокруг нее появляется электромагнитное поле. В результате рамка со стрелкой поворачивается в магнитном поле на определенный угол, величина которого зависит от измеряемой величины. Чувствительностью прибора называется коэффициент пропорциональности между значением угла поворота рамки и напряжением. Чтобы не было колебаний вращающейся рамки со стрелкой, используют магнитно-индукционный демпфер.

Он выполнен в виде алюминиевой пластины, закрепленной на оси, и движется совместно со стрелкой в магнитном поле. Вихревые токи при этом препятствуют колебаниям рамки, поэтому возникающие колебания стрелки затухают. Воздушные демпферы вольтметров состоят из цилиндров с поршнями, которые связаны механическим путем со стрелкой. При возникающих колебаниях стрелки поршень сглаживает их путем затормаживания в цилиндре. Чтобы точность измерений была высокой, прибор не должен зависеть от силы тяжести, стрелка должна отклоняться только от действия катушки в поле магнита, а не от силы тяжести. Поэтому подвижные элементы оснащают специальными грузиками, играющими роль противовесов.

Для уменьшения трения металлические наконечники изготавливают из прочной стали, затем полируют их. Подпятники выполняют из твердых камней. Зазор между подпятником и полированным наконечником регулируется винтом. Направление поворота стрелки зависит от полярности тока, протекающего через катушку. Поэтому для правильных измерений необходимо соблюдать полярность.

Электронные вольтметры

Приборы с электронной начинкой делятся в свою очередь на аналоговые и цифровые. Они отличаются тем, что в аналоговых приборах имеется стрелка и шкала, а в цифровых приборах значение напряжения выводится на цифровой экран. Аналоговые приборы работают по принципу преобразования переменного входного напряжения в постоянное. Затем оно усиливается и поступает на детектор, сигнал от которого отклоняет стрелку. Чем выше напряжение входа, тем больше отклонится стрелка.

Цифровые

Такие приборы работают с большей точностью, в отличие от аналоговых моделей. Принцип их работы заключается в изменении аналогового входного сигнала в цифровой вид. При этом кодированный цифровой сигнал приходит на устройство, преобразующее двоичный код в цифры, отображаемые на экране. Точность измерений цифровых вольтметров зависит от дискретности аналого-цифрового устройства, преобразующего сигнал.

Вольтметры в сети переменного тока

Работа таких устройств заключается в преобразовании переменного значения напряжения в постоянное. После этого сигнал усиливается и поступает на измерительный механизм магнитоэлектрического действия.

Импульсный вольтметр

Такой прибор способен измерить короткие импульсы напряжений в сети. Разберем устройство и работу импульсного вольтметра на примере устройства для поиска неисправностей в электрической сети автомобиля. Он служит для поиска импульсных помех.

Около 5% неисправностей автомобиля возникают из-за неисправностей электрической проводки в виде помех и исчезающего контакта. У старого автомобиля таких неисправностей больше. Простыми вольтметрами и тестерами такие неисправности невозможно, так как они не реагируют на одиночные импульсы, приводящие к сбою и выходу из строя оборудования.

Бортовой компьютер автомобиля при неисправностях выдает сигнал. При проверке выясняется, что это коды – ошибки. Ремонтники меняют свечи, сам компьютер, выполняют другие работы. Но по-прежнему выдается «ошибка двигателя», а кодов неисправностей нет, так как импульсы, вызванные неисправностями, не улавливаются.

Для решения этих проблем существует прибор, измеряющий импульсные сигналы напряжения. Он срабатывает при появлении одиночного импульса. На корпусе устройства имеется переключатель чувствительности.

Порядок работы:
  • Большие «крокодилы» подключить на аккумуляторные клеммы.
  • Провод с небольшим «крокодилом» подключить на положительную клемму батареи.
  • Чувствительность установить на «0».
  • Двигатель запустить.
  • При нормальном аккумуляторе при запуске двигателя красный индикатор на приборе не должен светиться. В противном случае необходимо искать неисправность на клеммах батареи или в ее внутреннем состоянии.
  • При запущенном двигателе чувствительность установить на «1», покачать кузов машины, легко постучать по аккумулятору деревянной палкой. Если импульсный вольтметр не сработал, то в аккумуляторе нет проблем.
  • Подобным образом проверяют электропроводку, лампочки, электронные узлы и потребители энергии.

На этом примере становится понятно, для чего нужны и как работают импульсные вольтметры.

Фазочувствительные

Такие приборы называют векторметрами. Они предназначены для замеров квадратурных составляющих напряжений первой гармоники. Они оснащаются двумя индикаторами для показаний мнимой и действительной составляющей комплексного напряжения.

Фазочувствительный вольтметр определяет общее напряжение в комплексе. При этом начальная фаза опорного напряжения принимается за ноль. Такие типы приборов нашли применение в лабораторных исследованиях фазоамплитудных характеристик четырехполюсных усилителей и т.п.

Селективные

Вольтметры, способные избирательно выделить гармонические составляющие сложного сигнала и среднеквадратичную величину напряжения, называют селективными. По конструктивным особенностям и принципу работы такие приборы подобны устройству супергетеродинного радиоприемника, без регулятора усиления.

Универсальные

Название прибора говорит само за себя. С помощью такого вольтметра можно измерить ЭДС в любых цепях и при любых условиях. Чаще всего они имеют в комплекте набор различных шунтов в виде гасящих резисторов.

Универсальные измерители напряжения обладают множеством функций и возможностей, имеют незначительный расход энергии, и могут определить напряжение, как в аналоговом, так и в цифровом виде. Они применяются в различных сферах производства, науки, техники, лабораторных исследованиях.

Переносные вольтметры

Такие приборы являются автономными, так как не требуют для своей работы внешнего питания. Они имеют небольшие габаритные размеры и заключены в удобный эргономичный корпус. Одним из видов переносных вольтметров можно назвать мультиметр, или тестер. Он также имеет компактные размеры, однако его точность работы достаточно высокая, и позволяет получить точные результаты при выполнении ответственных заданий.

Стационарные вольтметры

Приборы стационарного типа обычно размещают в большом металлическом корпусе с большой шкалой измерений. Их можно устанавливать и подключать в различных положениях, для этого на корпусе имеются соответствующие крепления. Стоят такие приборы значительно дороже переносных моделей. Однако высокая точность работы позволяет применять их в различных сферах: лабораториях, крупных производственных объектах, научных центрах и т.д.

Щитовые

Внешний вид щитовых вольтметров аналогичен переносным приборам, с отличием в том, что устанавливаются они в специальные шкафы для контрольных приборов.

Маркировка вольтметров
Для определения типа прибора можно посмотреть его обозначение маркировки. Если первая буква в названии:
  • «Д» — это вольтметр электродинамического действия.
  • «М» — прибор магнитоэлектрический.
  • «Т» — термоэлектрический.
  • «С» — электростатический.
  • «Ц» — приборы выпрямители.
  • «Э» — электромагнитные.
  • «Щ», «Ф» — электронные.

Радиоизмерительные вольтметры маркируются по-другому. Вначале стоит буква «В», а далее цифра обозначает тип. Затем идут символы модели прибора.

Похожие темы:

описание устройства прибора, принцип работы, физические характеристики, обозначение на рисунке

Существует большое количество разных измерительных приборов. Одним из часто используемых устройств как в быту, так и в профессиональной сфере деятельности, является вольтметр. Предназначен он для измерения значения напряжения в любой точке электрической сети. Промышленность изготавливает несколько типов таких измерителей, отличающихся друг от друга принципом работы. При этом каждый из них имеет как достоинства, так и недостатки.

История изобретения

Итальянский учёный Алессандро Вольт, проведя ряд экспериментов с электричеством, приходит к выводу, что получить электрический ток можно используя соединение металлов с жидкостью. Поместив медные пластины, покрытые цинком, в кислоту, он в 1800 году создаёт первый электрохимический источник энергии, названный позже «вольтов столб».

Он также устанавливает, что при соединении двух разных металлов возникает сила, которая затрачивается на работу по перемещению электрического заряда из одной точки в другую. При этом перемещённый заряд изменяет свой потенциал (величину энергии), которым он обладает. Разность между начальным потенциалом и конечным получает название «напряжение».

Для измерения количества электричества Вольт использует металлический стержень, вставленный в каучуковую пробку и помещённый в бутылку. На нижний конец, находящийся в бутылке, он надевает соломинки, а на другой — шар. Учёный наблюдает, что при контакте шара с наэлектризованным веществом соломинки отталкиваются. Это позволяет ему судить о степени заряженности материала.

Существование напряжения Вольт доказал проведя следующий опыт. На электроскоп (прибор регистрирующий заряд) был надет медный и цинковый диск. Между ними проложен тонкий слой диэлектрика. На короткое время физик замыкал металлы между собой проволокой. Лепестки на электроскопе немного раздвигались. Далее диски раздвигались на большее расстояние, при этом лепестки регистратора расходились ещё больше.

Фактически это был первый эксперимент, позволяющий измерить, хотя и в грубой форме, напряжение. В 1830 году английский учёный Майкл Фарадей открывает явление электромагнитной индукции, на котором впоследствии создаётся ряд электроизмерительных приборов.

В 1881 году французский физик Арсен Д’Арсонваль создаёт устройство, состоящее из катушки и стрелки, помещённых в постоянное магнитное поле. На катушку подавался электрический ток, в результате чего стрелка отклонялась от начального положения. В этом же году был проведён Международный электротехнический конгресс, на котором были приняты обозначения электрических величин. Прибор, предназначенный для измерения разности потенциалов, был назван вольтметром, а напряжение стало измеряться в вольтах.

Суть прибора

Вольтметр — это устройство, относящееся к классу электроизмерительных приборов, предназначенное для измерения электродвижущей силы (ЭДС) на участке электрической линии. Другими словами, вольтметр показывает разность потенциалов (напряжение) между двумя точками электрической цепи. Подключается он всегда параллельно к источнику тока или нагрузке.

При измерении устройство не должно никоим образом воздействовать на параметры электрической цепи, поэтому идеальным считается прибор, имеющий бесконечно большое внутреннее сопротивление. От этого параметра в первую очередь и зависит точность замеров. В зависимости от формы измеряемого сигнала, вольтметры разделяются на устройства, измеряющие постоянный или переменный ток.

Кроме того, по принципу измерения вольтметры бывают:

  • Диодно-компенсационные. Принцип их действия основан на сравнении измеряемого сигнала с эталонным, выдаваемым регулируемым источником. Основным элементом конструкции является вакуумный диод. Они используются только для измерения гармоничного (переменного) сигнала, но в широком диапазоне частот. Точность замеров довольно высокая.
  • Импульсные. Измеряют значение амплитуды сигнала периодических и одиночных импульсов с большой скважностью. Структурная схема устройства состоит из преобразователя уровня импульса, усилителя и отсчётного устройства.
  • Фазочувствительные. Характерным признаком такого устройства является наличие двух индикаторов, служащих для регистрации действительной и мнимой составляющих комплексного сигнала. Их используют для исследований амплитудно-фазовых характеристик.
  • Селективные. По своей схемотехнике похожи на супергетеродинные радиоприёмники. Способны выделять гармоники сигнала и измерять их среднеквадратичную величину амплитуды.
  • Универсальные. Многофункциональные приборы, умеющие измерять любой тип сигнала.

Все приведенные приборы применяются в лабораториях и на производствах для наладки работы той или иной техники. В быту же и радиолюбительстве чаще используются вольтметры, умеющие измерять среднеквадратичное напряжение переменного и постоянного тока. Поэтому все типы устройств, принято разделять на два вида: аналоговые и цифровые.

Обозначение и характеристики

Согласно единой системе конструкторской документации, на принципиальных и электрических схемах вольтметр принято обозначать в виде окружности, в середину которой вписывается латинская буква V. На рисунках и чертежах прибор подписывается русской буквой «В» или английской аббревиатурой PV.

Кроме того, первая цифра, стоящая в названии прибора после буквы «В», выпускаемого в странах бывшего СССР, обозначает тип устройства. Например, «B2» — постоянного тока, «B3» — переменного, «B4» — импульсного, «B7» — универсального.

Для оценки возможностей прибора принято использовать следующие технические характеристики:

  • Внутренний импеданс источника. Характеризуется сопротивлением, измеренным на выходе прибора. Чем больше это значение, тем прибор считается более качественным.
  • Диапазон измерений. Это область, ограниченная наименьшим и наибольшим значением, которое может измерить прибор. Большинство тестеров являются универсальными, измеряющими напряжение в диапазоне от десятков милливольт до киловольта. Однако в исследовательских центрах используются приборы, позволяющие определять мили или даже микровольты.
  • Точность показаний. Этим параметром обозначается погрешность между реальными значениями напряжения и измеренными. В зависимости от значений измеряемой амплитуды сигнала, эта погрешность изменяется, поэтому характеризуется она классом точности. Например, для прибора, работающего в диапазоне измерения от 0 до 60 вольт, класс точности, равный единице, будет обозначать, что погрешность прибора не может превышать 0,6 В, но на малых значениях такой допуск недопустим. Поэтому диапазон измерений и разбивается на небольшие участки.
  • Диапазон частот. Определяется чувствительностью электронных компонентов регистрировать сигнал той или иной частоты.
  • Рабочая температура окружающей среды. Обозначает условия, при которых погрешность измерения будет соответствовать заявленному классу точности.

Виды вольтметров

Кроме технических параметров, определяющих назначение прибора, в описаниях вольтметра часто указываются его физические размеры. Связано это с тем, что все устройства по виду конструкции разделяют на три типа:

  1. Переносные.
  2. Стационарные.
  3. Панельные (щитовые).

Первые обычно относятся к полупрофессиональным и любительским измерительным устройствам. Выглядят они в виде прямоугольных коробочек, сделанных из жёсткого пластика или карболита. Все они работают от мобильных источников питания, аккумуляторов или батареек. Для удобства определения амплитудного значения сигнала в наборе с вольтметрами идёт съёмная пара щупов.

Вторые запитываются от сети переменного напряжения, через встроенный в них блок питания. Чаще всего это узкоспециализированные тестеры, обладающие высокой точностью измерений. Используют их в профессиональной сфере деятельности для контроля напряжения в важных точках электрической цепи.

Третий же тип предназначен для использования в специально оборудованных шкафах для постоянного контроля величины напряжения. Обычно применяются в комплексе с защитными приборами. Такого вида вольтметром измеряют переменное однофазное или трёхфазное напряжение.

Аналоговое устройство

Отличительной чертой аналогового устройства является присутствие стрелочного индикатора. В основе принципа работы вольтметра такого типа лежит использование измерительной головки. Конструктивно она выполняется в виде алюминиевого контура, помещённого в магнитное поле. Стрелка прибора и оси приклеивается к рамке, на которую намотана проволока.

Через пружины или растяжки, удерживающие стрелку в начальном положении, на конструкцию подаётся ток. В зависимости от величины его силы, магнитное поле воздействует на рамку с разной интенсивностью. В итоге возникает крутящий момент, выводящий стрелку из нулевого состояния.

Для устойчивого положения стрелки используются демпферы. Под указателем располагается шкала, отградуированная по эталонным приборам. Поэтому каждое положение стрелки соответствует своему значению напряжения. Как только измерения заканчиваются, ток перестаёт поступать на измерительную головку и указатель под действием растяжек возвращается на своё первоначальное положение.

Структурную схему аналогового прибора можно подставить в виде последовательной цепочки, состоящей из входного устройства, усилителя тока, детектора, измерительной головки.

Технические возможности вольтметра во многом определяются чувствительностью головки. К достоинствам аналогового прибора относят инерционность и невосприимчивость к помехам. Он идеально подходит для отображения динамики сигнала. Такой измеритель мгновенно показывает изменение вольтажа. Например, при вычислении напряжения с пульсациями, тестер, интегрируя их, показывает среднее значение. Расширить диапазон измерения можно применив добавочные сопротивления или шунты. Но при своих достоинствах стрелочные вольтметры характеризуются большой погрешностью и сложность в интерпретации результатов измерения.

Цифровой прибор

Принцип действия цифрового вольтметра переменного тока, как и постоянного, основан на использовании аналогово-цифрового преобразователя (АЦП). Измеряемый сигнал поступает на вход микросхемы, преобразовывающей его в набор импульсов, передающихся дальше в блок обработки для формирования кода. Трансформированный сигнал направляется на цифровое отсчётное устройство, а с него уже и на дисплей.

Точность замеров электронного вольтметра зависит от качества преобразования сигнала в цифровой код. Попадая на компаратор, сигнал разбивается на группы единиц и направляется в ячейки памяти, сохраняющих информацию. Если код подать напрямую, то на экране показания будут неустойчивыми. Дисплеем управляет свой контроллер, обеспечивающий вывод данных из памяти и засвечивающий сегменты дисплея.

К достоинствам цифрового вольтметра относят высокое внутреннее сопротивление, что делает его измерения очень точными. А также он оснащён электронным усилителем, позволяющим проводить замеры даже слабых сигналов. Результат измерений отображается на табло сразу в виде числа, поэтому нет необходимости высчитывать значение по шкалам.

Электронный измеритель нечувствителен к магнитным полям и одинаково измеряет при любой полярности приложенного напряжения.

Порядок измерения

Чтобы провести измерения, вольтметр подключается с помощью измерительных щупов параллельно двум точкам, между которыми нужно измерить разность потенциалов. Принцип определения амплитуды будет одинаков для любого типа устройства. Порядок измерения напряжения можно представить в виде следующих действий:

  1. Включить устройство.
  2. Подключить штекера измерительных проводов в соответствующие гнёзда на панели прибора.
  3. Установить нужный диапазон измерения.
  4. Прижать измерительные щупы к исследуемому объекту.
  5. Прочитать показания с экрана прибора.

Таким образом, при помощи вольтметра можно достаточно быстро измерить величину амплитуды между двумя точками электрической линии с любым типом сигнала. Прибор имеет высокое собственное сопротивление, поэтому пользоваться им довольно безопасно.

Стрелочный вольтметр. Параметры и особенности.

Параметры и особенности стрелочных вольтметров

И хоть мы уже давно привыкли к цифровым вольтметрам, в природе всё ещё встречаются и стрелочные.

В некоторых случаях их применение может быть более удобным и практичным, чем использование современных цифровых.

Если в ваши руки попал стрелочный вольтметр, то желательно узнать его основные характеристики. Их легко определить по шкале и надписях на ней. В мои руки попал встраиваемый вольтметр М42300.

Внизу, под шкалой, как правило, есть несколько значков и указана модель прибора. Так, значок в виде подковы (или изогнутого магнита) означает, что это прибор магнитоэлектрической системы с подвижной рамкой.

На следующем снимке можно разглядеть такую подковку.

Горизонтальная чёрточка указывает на то, что данный измерительный прибор рассчитан на работу с постоянным током (напряжением).

Тут же стоит уточнить, почему речь идёт о постоянном токе. Не секрет, что стрелочными бывают не только вольтметры, но и огромное количество других измерительных приборов, например, тот же аналоговый амперметр или омметр.

Действие любого стрелочного прибора основано на отклонении катушки в поле магнита при прохождении постоянного тока по этой самой катушке. Чтобы отобразить с помощью стрелки показания на шкале прибора, ток должен быть постоянным.

Если он будет переменным, то стрелка будет отклоняться вправо-влево с частотой переменного тока, который протекает через обмотку катушки. Чтобы измерить величину переменного тока или напряжения в измерительный прибор встраивают выпрямитель.

Именно поэтому, под шкалой прибора указывается тип тока, с которым он способен работать: постоянным или переменным.

Далее на шкале прибора можно обнаружить целое или дробное число, вроде 1,5; 1,0 и подобное. Это класс точности прибора, выраженный в процентах %. Понятно, чем меньше число, тем лучше – показания будут точнее.

Также можно увидеть такой знак – две пересекающиеся черты под прямым углом. Этот знак указывает на то, что рабочее положение прибора вертикальное.

При горизонтальном положении показания могут быть менее точные. Иными словами прибор может “врать”. Стрелочный вольтметр с таким значком лучше устанавливать в прибор вертикально и исключить существенный наклон.

А вот такой знак говорит о том, что рабочее положение прибора – горизонтальное.

Ещё один интересный знак – пятиконечная звезда с цифрой внутри.

Данный знак предупреждает о том, что между корпусом прибора и его магнитоэлектрической системой напряжение не должно превышать 2кВ (2000 вольт). На это стоит обращать внимание при эксплуатации вольтметра в высоковольтных установках. Если вы планируете использовать его в блоке питания на 12 – 50 вольт, то беспокоиться не стоит.

Как считывать показания со шкалы стрелочного вольтметра?

Для тех, кто впервые видит шкалу прибора, возникает вполне резонный вопрос: “А как же считывать показания?” На первый взгляд ничего непонятно .

На самом деле всё просто. Чтобы определить минимальное деление шкалы нужно определить ближайшее число (цифру) на шкале. Как видим на шкале нашего М42300 – это 2.

Далее считаем количество промежутков между чёрточками до первого числа или цифры – в нашем случае до 2. Их оказывается 10. Далее делим 2 на 10, получаем 0,2. То есть, расстояние от одной маленькой чёрточки до соседней, равно – 0,2 вольта.

Вот мы и нашли минимальное деление шкалы. Таким образом, если стрелка прибора отклонится на 2 маленьких деления, то это будет означать, что напряжение равно 0,4V (2 * 0,2V = 0,4V).

Практический пример.

В наличии уже знакомый нам встраиваемый вольтметр модели М42300. Прибор предназначен для измерения постоянного напряжения до 10 вольт. Шаг измерения – 0,2 вольта.

Прикручиваем к клеммам вольтметра два провода (соблюдаем полярность!), и подключаем севшую батарейку на 1,5 вольта или любую попавшуюся.

Вот такие показания я увидел на шкале прибора. Как видим, напряжение батарейки равно 1 вольту (5 делений * 0,2V = 1V). Пока фотографировал, стрелка вольтметра упорно двигалась к началу шкалы – батарейка отдавала последние “соки”.

Кроме этого мне стало интересно, какой ток потребляет сам стрелочный вольтметр. Поэтому вместо батарейки я подключил блок питания и выставил на выходе 10 вольт – чтобы стрелка прибора отклонилась на всю шкалу. Далее я подключил в разрыв цепи цифровой мультиметр и измерил ток.

Оказалось, ток, потребляемый стрелочным вольтметром, составил всего 1 миллиампер (1 мА). Его достаточно, чтобы стрелка отклонилась на всю шкалу. Это очень мало. Поясню свой намёк.

Получается, что стрелочный вольтметр экономичнее цифрового. Посудите сами, любой цифровой измерительный прибор имеет дисплей (ЖК или светодиодный), контроллер, а также буферные элементы для управления дисплеем. И это только часть его схемы. Всё это потребляет ток, садит батарею или аккумулятор. И если в случае вольтметра с жидкокристаллическим дисплеем потребляемый ток невелик, то при наличии активного светодиодного индикатора, потребляемый ток будет уже существенный.

Вот и получается, что для портативных приборов с автономным питанием иногда разумнее использовать классический стрелочный вольтметр.

При подключении вольтметра к цепи следует помнить о нескольких простых правилах.

  • Во-первых, вольтметр (любой, хоть цифровой, хоть стрелочный) необходимо подключать параллельно той цепи или элементу, напряжение на котором планируется измерять или контролировать.

  • Во-вторых, следует учитывать рабочий диапазон измерений. Узнать его легко – достаточно взглянуть на шкалу и определить последнее число на шкале. Это и будет граничное напряжение для измерения данным вольтметром. Естественно, есть и универсальные вольтметры, с выбором предела измерения, но сейчас речь идёт о встраиваемом стрелочном вольтметре с одним пределом измерения.

    Если подключить вольтметр, например, со шкалой измерения до 100 вольт, в цепь, где напряжение превышает эти 100 вольт, то стрелка прибора будет уходить за пределы шкалы, “зашкаливать”. Такое положение дел рано или поздно приведёт к порче магнитоэлектрической системы.

  • В-третьих, при подключении стоит соблюдать полярность, если вольтметр рассчитан на измерение постоянного напряжения. Как правило, на клеммах (или хотя бы у одной) указывается полярность – плюс “+” или минус “-” . При подключении вольтметров, рассчитанных на измерение переменного напряжения, полярность подключения не имеет значения.

Надеюсь, теперь вам будет проще определить основные характеристики стрелочного вольтметра, а самое главное, применить его в своих самоделках, например, встроив его в блок питания с регулируемым выходным напряжением . А если сделать светодиодную подсветку его шкалы, то он будет выглядеть вообще шикарно! Согласитесь, такой стрелочный вольтметр будет смотреться стильно и эффектно.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Вольтметр. Виды и устройство. Работа и применение. Особенности

Вольтметр – измерительный прибор для считывания уровня электрического напряжения. Он подключается параллельно нагрузке или непосредственно к источнику напряжения (U). Единица измерения напряжения — Вольт (V). Прибор имеет большое сопротивление. Чем оно больше, тем он лучше и точнее. Это снижает воздействие на измеряемую цепь, и дает возможность считать данные о напряжении с минимальной погрешностью.

Разновидности по предназначению
По предназначению приборы могут быть:
  • Постоянного напряжения.
  • Переменного напряжения.
  • Импульсной чувствительности.
  • Фазовые.
  • Селективного поиска частот.
  • Универсальные.
Постоянного напряжения

Вольтметр постоянного напряжения имеет маркировку В2. Он применяется в сетях с постоянным током. Обычно такие приборы используют как тестер для различного оборудования, а также автомобильной проводки.

Переменного напряжения

Приборы переменного напряжения имеют маркировку В3. Он используется в сетях соответствующего тока. Прибор преобразовывает переменные параметры в постоянные, на выходе проводится усиление сигнала, который поступает на измерительный механизм. Фактически внутри, устройство для переменных сетей, соответствует прибору постоянного тока, но перед этим имеет специальную систему для преобразования параметров электричества.

Импульсной чувствительности

Импульсочувствительные модели маркируются обозначением В4. Они предназначены для снятия показаний коротких импульсных напряжений. Часто такие вольтметры применяют для поиска импульсных помех. Иными словами, с помощью данного прибора можно выявить, на каком участке электрической цепи присутствует слабый контакт. Благодаря этому свойству импульсные блоки применяют при тестировании электропроводки автомобилей, микросхем и т.д.

Фазовые

Фазовые аппараты маркируются как В5. Приборы предназначены для снятия измерений квадратурных составляющих первой гармоники. Принцип действия таких измерителей заключается в том, что они оснащаются двумя чувствительными зонами. Прибор снимает два показания. Первоначальная фаза устройством воспринимается как ноль. Такие приборы практически не востребованы, поскольку в быту являются ненужными.

Селективного поиска частот

Измерительные приборы селективного поиска частот имеют на корпусе обозначение В6. Они одни из самых габаритных. Вольтметры этого типа могут выделять гармонические составляющие сложных сигналов. Фактически их конструкция имеет много общего с радиоприемниками, которые ловят частоты сигналов.

Универсальные

Универсальные измерители являются многофункциональным устройством, которое позволяет снимать показатель напряжение в любых электрических сетях. На корпусе таких приборов стоит маркировка В7. Зачастую в комплекте с такими устройствами идут наборы шунтов для проведения безопасного подключения.

Разновидности по внешним параметрам
По внешним параметрам измерители разделяют на три категории:
  • Переносные.
  • Стационарные.
  • Щитовые.

Переносные вольтметры являются полностью автономными. Они отличаются небольшими размерами, весом и удобным корпусом для транспортировки. Мультиметр или тестер считаются одной из разновидностей переносных вольтметров. Зачастую такие приборы оснащаются двумя электродами для снятия показаний электрической цепи без необходимости закрепления прищепками или крокодилами.

Стационарные вольтметры являются более тяжелыми. Они обычно устанавливаются в сложное электрическое оборудование. Такие приборы более чувствительные, поэтому отличаются повышенными габаритами. Их устанавливают на производственных объектах, где постоянно требуется контролировать состояние электросети, которая поддерживает работу холодильных установок, нагревательных элементов, систем кондиционирования и пр. Особенно они важны, если идет питание от генератора.

Щитовые вольтметры имеют много общего со стационарными, поскольку их нельзя переносить. Они зачастую имеют более компактный корпус, чем стационарные, но все-таки крупнее переносных вольтметров. Обычно их устанавливают в щитовые шкафы.

Принцип действия

По принципу действия вольтметры, как и любые другие приборы, предназначенные для изменения параметров электрической цепи, бывают электронными и механическими. Способы, по которым они проводят измерения, отличаются. Сложно сказать какой принцип лучше.

Электромеханические

Электромеханические вольтметры имеют стрелку, которая закреплена на рамке с обмоткой. Рамка насаживается на ось с постоянным магнитом. При подаче напряжения создается электромагнитное поле. В результате его взаимодействия с полем постоянного магнита, рамка начинает отклоняться вместе со стрелкой, которая указывает на шкалу.

Такие приборы могут иметь различную чувствительность, которая выражается коэффициентом пропорциональности между цифровым отображением угла на шкале и реальным напряжением. Для того чтобы предотвратить колебания стрелки на шкале, и снять точные показания применяется индукционный демпфер. Обычно его делают из алюминиевой пластины, которая также крепится на оси и передвигается вместе со стрелкой. Создаваемые электромагнитные завихрения контактируют с пластиной, подобно парусу и ветру. Это притормаживает колебания стрелки. Также бывает воздушный демпфер, который состоит из механизма из поршня и цилиндра. При колебаниях стрелки они придерживают ее, не допуская сильных скачков. Проводится обычное затормаживание поршнем, зафиксированным в цилиндре.

Также внутри электромеханических вольтметров имеется система противовесов в виде грузиков устанавливаемых на стрелку. Они не допускают ее отклонение под влиянием силы тяжести. Благодаря этому устройство дает точные показатели вне зависимости от угла наклона при проведении измерения. Подвижные части механизма вольтметра делают из твердой стали, которая не поддается истиранию. Все стержни полируются для снижения трения.

При подключении таких приборов необходимо соблюдать полярность, поскольку при неправильном соединении стрелка будет пытаться повернуться в противоположную сторону, что не позволяет специальный стопор в корпусе.

Электронные

Электронные вольтметры могут быть аналоговыми или полностью электронными. Аналоговые приборы внешне напоминают обычные механические. Они также оснащаются стрелкой, которая указывает на шкалу. Внутри них имеется компактная система преобразования входного напряжение в постоянное. Благодаря этому колебания стрелки исключаются. Специальный детектор в зависимости от уровня напряжения отклоняет стрелку под определенным углом, который и соответствует измеренному напряжению цепи.

Цифровые вольтметры имеют микросхему (контроллер). На внешней панели имеется дисплей, на котором отображается напряжение в цифровом виде. Такие приборы отличаются большой точностью, компактностью, легкостью и надежностью. Точность вольтметра в первую очередь зависит от преобразователя, переводящего параметры напряжения в кодированный цифровой сигнал, который отображается на дисплее.

Как подключать вольтметр и правила пользования

В электрических схемах вольтметр отображается латинской буквой «V». Для получения точных данных прибор должен быть подключен параллельно участку цепи, на которой необходимо провести измерение напряжения. При подсоединении важно соблюсти полярность. Для непосредственной фиксации проводов прибора к проводнику он оснащается специальными зажимами или точечными электродами.

В тех случаях, если необходимо замерить напряжение источника питания, прибор подключается непосредственно к его клеммам. При этом необходимо учитывать, что для высоковольтного напряжения нельзя применять слабые вольтметры, не рассчитанные для таких параметров.

Все устройства разделяются по диапазону измерения. Существуют вольтметры, которые могут фиксировать как милливольты, так и киловольты. Бывают также модели для работы с микросхемами, так называемые микровольтметры. Они чувствительны к миллионной части вольта. Следует всегда смотреть на диапазон частоты измерения, перед тем как использовать вольтметр для снятия параметров напряжения в отдельно взятом участке электрической цепи. Применив микровольтметр вместо киловольтметра можно вызвать короткое замыкание.

Особенно важно обратить внимание, что если прибор рассчитан для постоянного тока, то его нельзя подключать к переменному, и наоборот. Если применяется универсальный вольтметр, то перед его подключением необходимо выбрать режим измерения. В случае, когда он применяется для измерения постоянного напряжение, то на панели вольтметра необходимо установить значение, например + 60В. После этого нужно уменьшать вольтаж до тех пор, пока прибор не начнет считывание. Это проводится потому, что сети постоянного тока могут иметь различные напряжения. К примеру, в военной технике – 24В, автомобилях – 12В, а в некоторых мотоциклов – 6В. В том случае, когда нужно работать с сетью переменного тока, то устанавливается показатель 220В.

Технические характеристики

Вне зависимости от того, по какому принципу работает вольтметр, его назначению и способу исполнения, все приборы имеют общие критерии оценки эффективности. На них следует обратить внимание, перед тем как начинать использовать, или покупать устройство. В первую очередь это касается точности измерения. Этот показатель характеризует соответствие тех данных, которые фиксирует прибор, с реальными параметрами напряжения.

При наличии максимального внутреннего сопротивления вольтметр любого типа будет оказывать минимальное влияние на электрическую цепь, с которой снимаются показатели. Чем выше этот показатель, тем устройство точнее.

Похожие темы:

Виды и обозначения вольтметров

28.05.2014

Виды и обозначения вольтметров

Вольтметр — измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии.

Идеальный вольтметр должен обладать бесконечным внутренним сопротивлением. В реальном вольтметре, чем выше внутреннее сопротивление, тем меньше влияния прибор будет оказывать на измеряемый объект и, следовательно, тем выше будет точность и разнообразнее области применения.

Классификация

  • По принципу действия вольтметры разделяются на:
    • электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические;
    • электронные — аналоговые и цифровые
  • По назначению:
    • постоянного тока;
    • переменного тока;
    • импульсные;
    • фазочувствительные;
    • селективные;
    • универсальные
  • По конструкции и способу применения:
    • щитовые;
    • переносные;
    • стационарные

Аналоговые электромеханические вольтметры

  • Магнитоэлектрические, электромагнитные, электродинамические и электростатические вольтметры представляют собой измерительные механизмысоответствующих типов с показывающими устройствами. Для увеличения предела измерений используются добавочные сопротивления. Технические характеристики аналогового вольтметра во многом определяются чувствительностью магнитоэлектрического измерительного прибора. Чем меньше его ток полного отклонения, тем более высокоомные добавочные резисторы можно применить. А значит, входное сопротивление вольтметра будет более высоким. Тем не менее, даже при использовании микроамперметра с током полного отклонения 50 мкА (типичные значения 50..200 мкА), входное сопротивление вольтметра составляет всего 20 кОм/В (20 кОм на пределе измерения 1 В, 200 кОм на пределе 10 В). Это приводит к большим погрешностям измерения в высокоомных цепях (результаты получаются заниженными), например при измерении напряжений на выводах транзисторов и микросхем, и маломощных источников высокого напряжения.
  • Выпрямительный вольтметр представляет собой сочетание измерительного прибора, чувствительного к постоянному току (обычно магнитоэлектрического), и выпрямительного устройства.
  • Термоэлектрический вольтметр — прибор, использующий ЭДС одной или более термопар, нагреваемых током входного сигнала.

Аналоговые электронные вольтметры общего назначения

Аналоговые электронные вольтметры содержат, помимо магнитоэлектрического измерительного прибора и добавочных сопротивлений, измерительный усилитель (постоянного или переменного тока), который позволяет иметь более низкие пределы измерения (до десятков — единиц милливольт и ниже), существенно повысить входное сопротивление прибора, получить линейную шкалу на малых пределах измерения переменного напряжения.

Цифровые электронные вольтметры общего назначения

Принцип работы вольтметров дискретного действия состоит в преобразова­нии измеряемого постоянного или медленно меняющегося напряжения в электрический код с помощью аналого-цифрового преобразователя, который отображается на табло в цифровой форме.

Диодно-компенсационные вольтметры переменного тока

Принцип действия диодно-компенсационных вольтметров состоит в сравнении с помощью вакуумного диода пикового значения измеряемого напряжения с эталонным напряжением постоянного тока с внутреннего регулируемого источника вольтметра. Преимущество такого метода состоит в очень широком рабочем диапазоне частот (от единиц герц до сотен мегагерц), с весьма хорошей точностью измерения, недостатком является высокая критичность к отклонению формы сигнала от синусоиды.

В настоящее время разработаны новые типы вольтметров, такие как В7-83 (пробник 20 мм) и ВК3-78 (пробник 12 мм), с характеристиками аналогичными диодно-компенсационным. Последние в скором времени могут быть допущены к примирению в качестве рабочих эталонов. Из иностранных аналогов можно выделить вольтметры серии URV фирмы Rohde&Schwarz с пробниками диаметром 9 мм.

Импульсные вольтметры

Импульсные вольтметры предназначены для измерения амплитуд периодических импульсных сигналов с большой скважностью и амплитуд одиночных импульсов.

Фазочувствительные вольтметры

Фазочувствительные вольтметры (векторметры) служат для измерения квадратурных составляющих комплексных напряжений первой гармоники. Их снабжают двумя индикаторами для отсчета действительной и мнимой составляющих комплексного напряжения. Таким образом, фазочувствительный вольтметр дает возможность определить комплексное напряжение, а также его составляющие, принимая за нуль начальную фазу некоторого опорного напряжения. Фазочувствительные вольтметры очень удобны для исследования амплитудно-фазовых характеристик четырехполюсников, например усилителей.

Селективные вольтметры

Селективный вольтметр способен выделять отдельные гармонические составляющие сигнала сложной формы и определять среднеквадратичное значение их напряжения. По устройству и принципу действия этот вольтметр аналогичен супергетеродинному радиоприёмнику без системы АРУ, в качестве низкочастотных цепей которого используется электронный вольтметр постоянного тока. В комплекте с измерительными антеннами селективный вольтметр можно применять как измерительный приёмник.

Наименования и обозначения

Видовые наименования

  • Нановольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мкВ)
  • Микровольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мВ)
  • Милливольтметр — вольтметр для измерения малых напряжений (единицы — сотни милливольт)
  • Киловольтметр — вольтметр для измерения больших напряжений (более 1 кВ)
  • Векторметр — фазочувствительный вольтметр

Обозначения

  • Электроизмерительные вольтметры обозначаются в зависимости от их принципа действия
    • Дxx — электродинамические вольтметры
    • Мxx — магнитоэлектрические вольтметры
    • Сxx — электростатические вольтметры
    • Тxx — термоэлектрические вольтметры
    • Фxx, Щxx — электронные вольтметры
    • Цxx — вольтметры выпрямительного типа
    • Эxx — электромагнитные вольтметры
  • Радиоизмерительные вольтметры обозначаются в зависимости от их функционального назначения по ГОСТ 15094
    • В2-xx — вольтметры постоянного тока
    • В3-xx — вольтметры переменного тока
    • В4-xx — вольтметры импульсного тока
    • В5-xx — вольтметры фазочувствительные
    • В6-xx — вольтметры селективные
    • В7-xx — вольтметры универсальные

Основные нормируемые характеристики

  • Диапазон измерения напряжений
  • Допустимая погрешность или класс точности
  • Диапазон рабочих частот

федеральный поставщик электрики, сантехники, кабеля, светотехники, систем безопасности и СКС, крепежа, систем обогрева и вентиляции.

В ассортименте компании ЭТМ имеется большой выбор цифровых и аналоговых вольтметров различных производителей: ABB, IEK, Schneider Electric, Legrand, Электроприбор, Меандр.
Вольтметр (от сл. вольт и греч. metron – мера) — измерительный прибор непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии. Чем выше внутреннее сопротивление в вольтметре, тем прибор оказывает меньше влияния на измеряемый объект и тем выше точность и разнообразнее области применения.


По принципу действия вольтметры разделяются на:
  • электромеханические — магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические;
  • электронные — аналоговые и цифровые.

Электромагнитные вольтметры наиболее простые в изготовлении, дешевые и надежные в эксплуатации. Они применяются прежде всего как стационарные на распределительных щитах электростанций и промышленных предприятий и более редко в качестве лабораторных приборов. Недостатки электромагнитных вольтметров – относительно большое собственное потребление энергии (3—7 Вт) и большая индуктивность обмотки, приводящая к существенной зависимости показаний вольтметра от частоты.
Наиболее чувствительны и точны магнитоэлектрические вольтметры, но пригодные только для измерений в цепях постоянного тока. В комплекте с термоэлектрическими, полупроводниковыми или электронно-ламповыми преобразователями переменного тока в постоянный они применяются для измерения напряжения в цепях переменного тока. Такие вольтметры называются термоэлектрическими, выпрямительными и электронными, применяются главным образом в лабораторной практике. Выпрямительные вольтметры используют для измерений в диапазоне звуковых частот, а термоэлектрические и электронные – на высоких частотах. Недостаток этих приборов – существенное влияние на правильность их показаний формы кривой измеряемого напряжения.

Электронные вольтметры имеют сложные схемы с применением недостаточно стабильных элементов (электронных ламп, малогабаритных электрических сопротивлений и конденсаторов), что приводит к снижению их надёжности и точности. Однако они незаменимы при измерениях в маломощных радиотехнических цепях, так как имеют большое входное сопротивление и работают в широком диапазоне частот (от 50 Гц до 100 мГц) с погрешностями, не превышающими 3% от верхнего предела измерения. Изготавливаются также электронные вольтметры для измерения амплитуды импульсов напряжения длительностью от десятых долей мк/сек при скважности до 2500. Аналоговые вольтметры и цифровые вольтметры представлены в каталоге ЭТМ.

По своему назначению вольтметры бывают постоянного тока, переменного тока, импульсные, фазочувствительные, селективные и универсальные. По конструкции вольтметры делятся на щитовые, переносные и стационарные.

По своему наименованию вольтметры бывают нескольких видов:

  • Нановольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мкВ)
  • Микровольтметр — вольтметр с возможностью измерения очень малых напряжений (менее 1мВ)
  • Милливольтметр — вольтметр для измерения малых напряжений (единицы — сотни милливольт)
  • Киловольтметр — вольтметр для измерения больших напряжений (более 1 кВ)
  • Векторметр — фазочувствительный вольтметр


Вольтметр цена
Цена вольтметра зависит от нужных параметров прибора, производителя, объема заказа и места доставки. Существует гибкая система скидок.
Вернуться к списку новостей

Вольтметр – электростатическая система – Большая Энциклопедия Нефти и Газа, статья, страница 1

Вольтметр – электростатическая система

Cтраница 1

Вольтметры электростатической системы применяются для измерений потенциалов статического электричества на проводящих телах. При этом достаточно обеспечить контакт объекта с изолированным полюсом измерительного прибора.  [1]

Вольтметр электростатической системы представляет собой конденсатор переменной емкости с поворачивающейся на оси пластиной и имеющий спиральную пружину для создания противодействующего момента, уравновешивающего вращающий момент, создаваемый измеряемым напряжением. Этот прибор принципиально не может иметь равномерную шкалу.  [2]

В вольтметрах электростатической системы вращающий момент создается электростатическими силами взаимодействия заряженных проводников.  [3]

Может ли вольтметр электростатической системы применяться для измерения переменного напряжения.  [4]

Входная емкость вольтметров электростатической системы оказывается большой-порядка десятков пикофарад, что связано с необходимостью создания значительной силы притяжения между электродами.  [5]

К недостаткам вольтметров электростатической системы относится их большая входная емкость, меняющаяся с изменением величины измеряемого напряжения, влияние внешних электростатических полей на погрешность измерения, чувствительность к сотрясениям и возможность пробоя из-за попадания между пластинами пыли и влаги.  [6]

Частотная характеристика лучше у вольтметров электростатической системы, в которых сила притяжения пластин определяется приложенным к ним напряжением и в принципе не зависит от частоты. Однако из-за паразитной индуктивности подводящих проводов напряжение, приложенное к пластинам вольтметра, отличается от подведенного к входным зажимам вольтметра. Современные электростатические вольтметры работают на частотах до 20 Мгц.  [7]

Это имеет место для вольтметров электростатической системы.  [8]

При постоянном напряжении в режиме установившегося отклонения вольтметр электростатической системы не потребляет тока.  [9]

Для измерений высоких напряжений при производстве испытаний повышенным напряжением применяются вольтметры электростатической системы.  [10]

При измерениях в высокоомных цепях сигналов с частотами до нескольких мегагерц пригодны вольтметры электростатической системы.  [11]

В высоковольтных цепях постоянного тока напряжение можно измерять: 1) вольтметрами магнитоэлектрической системы, которые изготавливаются на номинальные напряжения до 6 кв; 2) вольтметрами электростатической системы, которые изготавливаются на номинальные напряжения до 100 кв; 3) применяя измерительные трансформаторы напряжения постоянного тока.  [12]

Ценным свойством электростатических вольтметров является отсутствие собственного потребления мощности при измерении напряжения в цепях постоянного тока и очень малое потребление мощности при измерении переменного напряжения. Вольтметры электростатической системы могут строиться на высокие напряжения без применения трансформаторов напряжения. Лабораторные вольтметры предназначаются главным образом для измерения в цепях высокой частоты.  [13]

Для уменьшения погрешности измерения вольтметр должен обладать возможно большим внутренним сопротивлением. Наиболее точные результаты будут получены при использовании вольтметра электростатической системы.  [15]

Страницы:      1    2

Вольтметры – Вселенная приборостроения

Вольтметр 1901 GE

Вольтметр – ключевой прибор в нашем мире электротехники. Они используются во всем: от рентгеновских аппаратов до радиопередач, компьютеров, энергоснабжения и измерения атмосферы до телескопа Хаббл. Вольтметры могут использовать магнитные поля, электростатические поля и явления плазмы для измерения напряжения. На этой странице мы говорим о PMMC или вольтметрах типа гальванометров с подвижной катушкой, которые были первыми вольтметрами и доминировали в отрасли более 100 лет, пока их не заменили широкое использование цифровых мультиметров (DMM).

Чтобы ознакомиться с наукой и разработкой вольтметра, мы рекомендуем вам посмотреть наше короткое видео ниже. Если вы уже видели это видео в начале Блока 1, вы можете двигаться дальше.

Справа вы увидите простую схему вольтметра, считывающего постоянное напряжение цепи, состоящей из батареи и лампочки. Расположение вольтметра в цепи отличается от амперметра. Вольтметр работает, измеряя разность потенциалов между двумя точками.С другой стороны, амперметр устанавливается последовательно со схемой. Размещение вольтметра в цепи постоянного тока. Вольтметр измеряет ток (обозначен буквой «А» для амперметра), но имеет параллельный резистор.

Вольтметр построен по уравнению:

напряжение = ток x сопротивление

Вольтметры действительно измеряли ток через резистор. Более чувствительные амперметры привели к вольтметру. Первым был разработан амперметр, потому что с его помощью было легче измерять более высокий ток.В вольтметре нам нужно иметь возможность измерять небольшой образец тока.

Возможность измерения милли- и микроампер на проводах вольтметра:

Щелкните изображение, чтобы увеличить. Это ранний мультиметр: он может измерять напряжение или ток.

Эдвард Уэстон произвел революцию в области измерительных приборов, когда он разработал первые портативные электрические счетчики и надежный PMMC (прибор с подвижной катушкой на постоянных магнитах).

Для точных вольтметров требуются стабильные постоянные магниты и устойчивые материалы резисторов.Сплав Westin Manganin позволил получить стабильные резисторы для использования в вольтметрах и амперметрах. Манганин состоит из 86% меди, 2% никеля и 12% марганца.

С научной точки зрения Уэстон обнаружил, что металлы могут иметь отрицательный температурный коэффициент сопротивления.

До 1870-х годов счетчики были хрупкими лабораторными приборами, не совсем пригодными для тестирования систем. До 1870-х годов большинство электрических установок было для телеграфа, где не было необходимости в регулярных измерениях.Зеркальные гальванометры использовались для настройки телеграфов. Westinghouse руководил многими инновациями в конструкции вольтметров вместе с пионером в области переменного тока Оливером Шалленбергером в команде. Филип Ланге и Шалленбергер взяли гальванометры того времени и добавили необходимые резисторы, которые преобразовали их из амперметра в вольтметр. Они перепроектировали счетчики для работы с 2-фазной системой Tesla, а позже и с 3-фазной системой Добровольского, которая стала сегодня стандартом.

Стандартные вольтметры и амперметры на протяжении большей части электрического возраста приводятся в действие магнитом и используют прочную конструкцию «жестяная банка» с постоянным магнитом.

Промышленный стандарт вольтметра на протяжении многих десятилетий был разработан в 1886 году химиком и инженером Эдвардом Вестоном в Нью-Джерси. Инновация Уэстона включала стабильный постоянный магнит и разработку им особого материала манганин. См. Нашу страницу об амперметрах, чтобы узнать больше о конструкции, поскольку амперметры и вольтметры были очень близки.

Вольтметр General Electric 1901 года

Дополнительная литература:

PMMC

Эдвард Уэстон

Вольтметры и амперметры постоянного тока | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Объясните, почему вольтметр нужно подключать параллельно цепи.
  • Нарисуйте схему, показывающую правильно подключенный амперметр в цепь.
  • Опишите, как гальванометр можно использовать как вольтметр или амперметр.
  • Найдите сопротивление, которое необходимо подключить последовательно с гальванометром, чтобы его можно было использовать в качестве вольтметра с заданными показаниями.
  • Объясните, почему измерение напряжения или тока в цепи никогда не может быть точным.

Вольтметры измеряют напряжение, а амперметры измеряют ток.Некоторые из приборов в автомобильных приборных панелях, цифровых камерах, сотовых телефонах и тюнерах-усилителях являются вольтметрами или амперметрами. (См. Рис. 1.) Внутренняя конструкция простейшего из этих счетчиков и то, как они подключены к системе, которую они контролируют, позволяют лучше понять применение последовательного и параллельного подключения.

Рис. 1. Указатели уровня топлива и температуры (крайний правый и крайний левый, соответственно) в этом Volkswagen 1996 года представляют собой вольтметры, которые регистрируют выходное напряжение «передающих» устройств, которое, как мы надеемся, пропорционально количеству бензина в баке и двигателе. температура.(Источник: Кристиан Гирсинг)

Вольтметры подключаются параллельно к любому измеряемому напряжению устройства. Параллельное соединение используется потому, что объекты, находящиеся параллельно, испытывают одинаковую разность потенциалов. (См. Рис. 2, где вольтметр обозначен символом V.) Амперметры подключаются последовательно к любому измеряемому току устройства. Последовательное соединение используется потому, что последовательно соединенные объекты имеют одинаковый ток, проходящий через них. (См. Рисунок 3, где амперметр обозначен символом A.)

Рис. 2. (a) Для измерения разности потенциалов в этой последовательной цепи вольтметр (V) помещают параллельно источнику напряжения или одному из резисторов. Обратите внимание, что напряжение на клеммах измеряется между точками a и b. Невозможно подключить вольтметр напрямую к ЭДС без учета его внутреннего сопротивления, r . (b) Используемый цифровой вольтметр. (Источник: Messtechniker, Wikimedia Commons)

Рис. 3. Амперметр (A) включен последовательно для измерения тока.Весь ток в этой цепи протекает через счетчик. Амперметр будет иметь такие же показания, если он расположен между точками d и e или между точками f и a, как и в показанном положении. (Обратите внимание, что заглавная буква E обозначает ЭДС, а r обозначает внутреннее сопротивление источника разности потенциалов.)

Аналоговые приборы: гальванометры

Аналоговые счетчики имеют стрелку, которая поворачивается, чтобы указывать на числа на шкале, в отличие от цифровых счетчиков , которые имеют числовые показания, подобные портативному калькулятору.Сердцем большинства аналоговых счетчиков является устройство, называемое гальванометром , обозначенное буквой G. Ток, протекающий через гальванометр, I G , вызывает пропорциональное отклонение стрелки. (Это отклонение происходит из-за силы магнитного поля на провод с током.)

Двумя важнейшими характеристиками данного гальванометра являются его сопротивление и чувствительность по току. Чувствительность по току – это ток, который дает полное отклонение стрелки гальванометра, максимальный ток, который может измерить прибор.Например, гальванометр с чувствительностью по току 50 мкА имеет максимальное отклонение стрелки при протекании через него 50 мкА, считывает половину шкалы при протекании через него 25 мкА и т. Д. Если такой гальванометр имеет сопротивление 25 Ом, то только напряжение В = IR = (50 мкА) (25 Ом) = 1,25 мВ дает показания полной шкалы. Подключив резисторы к этому гальванометру различными способами, вы можете использовать его как вольтметр или амперметр, который может измерять широкий диапазон напряжений или токов.

Гальванометр как вольтметр

На рисунке 4 показано, как гальванометр можно использовать в качестве вольтметра, подключив его последовательно с большим сопротивлением, R . Значение сопротивления R определяется максимальным измеряемым напряжением. Предположим, вам нужно 10 В для полного отклонения вольтметра, содержащего гальванометр с сопротивлением 25 Ом и чувствительностью 50 мкА. Тогда приложенное к измерителю напряжение 10 В должно давать ток 50 мкА. Общее сопротивление должно быть

.

[латекс] {R} _ {\ text {tot}} = R + r = \ frac {V} {I} = \ frac {10 \ text {V}} {50 \ text {} \ mu \ text { A}} = 200 \ text {k} \ Omega \\ [/ latex] или

[латекс] R = {R} _ {\ text {tot}} – r = 200 \ text {k} \ Omega-25 \ text {} \ Omega \ приблизительно 200 \ text {k} \ Omega \\ [/ латекс].

( R настолько велико, что сопротивление гальванометра, r , почти ничтожно.) Обратите внимание, что 5 В, приложенное к этому вольтметру, вызывает отклонение на половину шкалы, создавая ток 25 мкА через измеритель, и поэтому Показание вольтметра пропорционально желаемому напряжению. Этот вольтметр не будет полезен для напряжений менее примерно половины вольта, потому что отклонение измерителя будет небольшим и его трудно будет точно прочитать. Для других диапазонов напряжения другие сопротивления устанавливаются последовательно с гальванометром.У многих метров есть выбор шкалы. Этот выбор включает последовательное включение соответствующего сопротивления с гальванометром.

Рисунок 4. Большое сопротивление R , включенное последовательно с гальванометром G, дает вольтметр, отклонение которого на всю шкалу зависит от выбора R . Чем больше измеряемое напряжение, тем больше должно быть R . (Обратите внимание, что r представляет внутреннее сопротивление гальванометра.)

Тот же гальванометр можно превратить в амперметр, разместив его параллельно небольшому сопротивлению R , часто называемому шунтирующим сопротивлением , как показано на рисунке 5.Поскольку сопротивление шунта невелико, большая часть тока проходит через него, что позволяет амперметру измерять токи, намного превышающие токи, вызывающие полное отклонение гальванометра. Предположим, например, что необходим амперметр, который дает полное отклонение на 1,0 А и содержит тот же гальванометр на 25 Ом с чувствительностью 50 мкА. Поскольку R и R включены параллельно, напряжение на них одинаковое. Эти капли IR имеют вид IR = I G r , так что [latex] IR = \ frac {{I} _ {\ text {G}}} {I} = \ frac {R} {r }\\[/латекс].{-3} \ text {} \ Omega \\ [/ latex].

Рис. 5. Небольшой шунтирующий резистор R , помещенный параллельно гальванометру G, дает амперметр, полное отклонение которого зависит от выбора R . Чем больше измеряемый ток, тем меньше должно быть R. Большая часть тока ( I ), протекающего через счетчик, шунтируется через R для защиты гальванометра. (Обратите внимание, что r представляет собой внутреннее сопротивление гальванометра.) Амперметры также могут иметь несколько шкал для большей гибкости в применении. Различные масштабы достигаются путем переключения различных шунтирующих сопротивлений параллельно гальванометру – чем больше максимальный измеряемый ток, тем меньше должно быть шунтирующее сопротивление.

Проведение измерений изменяет схему

Когда вы используете вольтметр или амперметр, вы подключаете другой резистор к существующей цепи и, таким образом, изменяете схему. В идеале вольтметры и амперметры не оказывают заметного влияния на схему, но полезно изучить обстоятельства, при которых они влияют или не влияют.Сначала рассмотрим вольтметр, который всегда ставят параллельно измеряемому устройству. Через вольтметр протекает очень небольшой ток, если его сопротивление на несколько порядков больше, чем сопротивление устройства, и поэтому на цепь это не оказывает заметного влияния. (См. Рисунок 6 (a).) (Большое сопротивление, параллельное малому сопротивлению, имеет общее сопротивление, по существу равное малому.) Однако, если сопротивление вольтметра сопоставимо с сопротивлением измеряемого устройства, тогда сопротивление вольтметра сравнимо с сопротивлением измеряемого устройства. два соединенных параллельно имеют меньшее сопротивление, что заметно влияет на схему.(См. Рисунок 6 (b).) Напряжение на устройстве не такое, как при отключении вольтметра от цепи.

Рис. 6. (a) Вольтметр, имеющий сопротивление намного больше, чем устройство (RVoltmeter >> R), с которым он подключен параллельно, создает параллельное сопротивление, по существу такое же, как и устройство, и не оказывает заметного влияния на измеряемую цепь. (b) Здесь вольтметр имеет такое же сопротивление, что и устройство (RVoltmeter≅R), так что параллельное сопротивление составляет половину от того, которое есть, когда вольтметр не подключен.Это пример значительного изменения схемы, которого следует избегать.

Амперметр подключается последовательно к ветви измеряемой цепи, так что его сопротивление добавляет к этой ветви. Обычно сопротивление амперметра очень мало по сравнению с сопротивлениями устройств в цепи, поэтому дополнительное сопротивление незначительно. (См. Рисунок 7 (a).) Однако, если задействованы очень малые сопротивления нагрузки или если сопротивление амперметра не такое низкое, как должно быть, то общее последовательное сопротивление значительно больше, а ток в ветви измеряется уменьшается.(См. Рисунок 7 (b).) На практике могут возникнуть проблемы, если амперметр подключен неправильно. Если его подключить параллельно с резистором для измерения тока в нем, вы можете повредить счетчик; низкое сопротивление амперметра позволит большей части тока в цепи проходить через гальванометр, и этот ток будет больше, поскольку эффективное сопротивление меньше.

Рис. 7. (a) Амперметр обычно имеет такое маленькое сопротивление, что общее последовательное сопротивление в измеряемой ветви существенно не увеличивается.Схема практически не изменилась по сравнению с отсутствием амперметра. (b) Здесь сопротивление амперметра такое же, как и сопротивление ветви, так что общее сопротивление удваивается, а ток вдвое меньше, чем без амперметра. Этого существенного изменения схемы следует избегать.

Одним из решений проблемы вольтметров и амперметров, мешающих измеряемым цепям, является использование гальванометров с большей чувствительностью. Это позволяет создавать вольтметры с большим сопротивлением и амперметры с меньшим сопротивлением, чем при использовании менее чувствительных гальванометров.Существуют практические пределы чувствительности гальванометра, но можно получить аналоговые измерители, которые делают измерения с точностью до нескольких процентов. Обратите внимание, что неточность возникает из-за изменения схемы, а не из-за неисправности измерителя.

Подключения: границы знаний

Выполнение измерения изменяет измеряемую систему таким образом, что приводит к погрешности измерения. Для макроскопических систем, таких как схемы, обсуждаемые в этом модуле, изменение обычно можно сделать пренебрежимо малым, но полностью исключить его нельзя.Для субмикроскопических систем, таких как атомы, ядра и более мелкие частицы, измерение изменяет систему таким образом, что невозможно сделать сколь угодно малым. Это фактически ограничивает знания о системе – даже ограничивает то, что природа может знать о самой себе. Мы увидим глубокие последствия этого, когда принцип неопределенности Гейзенберга будет обсуждаться в модулях по квантовой механике.

Существует еще один метод измерения, основанный на полном отсутствии тока и, следовательно, без изменения схемы.Они называются нулевыми измерениями и являются темой нулевых измерений. Цифровые счетчики, использующие твердотельную электронику и нулевые измерения, могут достигать точности одной части из 10 6 .

Проверьте свое понимание

Цифровые счетчики способны обнаруживать меньшие токи, чем аналоговые счетчики, использующие гальванометры. Как это объясняет их способность измерять напряжение и ток более точно, чем аналоговые измерители?

Решение

Поскольку цифровые счетчики требуют меньшего тока, чем аналоговые счетчики, они изменяют схему меньше, чем аналоговые счетчики.Их сопротивление в качестве вольтметра может быть намного больше, чем у аналогового измерителя, а их сопротивление в качестве амперметра может быть намного меньше, чем у аналогового измерителя. Обратитесь к рисункам 2 и 3 и их обсуждению в тексте.

Исследования PhET: комплект для конструирования цепей (только для постоянного тока), виртуальная лаборатория

Стимулируйте нейрон и следите за тем, что происходит. Сделайте паузу, перемотайте назад и двигайтесь вперед во времени, чтобы наблюдать за перемещением ионов через мембрану нейрона.

Щелкните, чтобы загрузить симуляцию.Запускать на Java.

Сводка раздела

  • Вольтметры измеряют напряжение, а амперметры измеряют ток.
  • Вольтметр помещается параллельно источнику напряжения для получения полного напряжения и должен иметь большое сопротивление, чтобы ограничить его влияние на цепь.
  • Амперметр подключается последовательно, чтобы получить полный ток, протекающий через ответвление, и должен иметь небольшое сопротивление, чтобы ограничить его влияние на цепь.
  • Оба могут быть основаны на комбинации резистора и гальванометра, устройства, которое дает аналоговые показания тока.
  • Стандартные вольтметры и амперметры изменяют измеряемую цепь и, таким образом, имеют ограниченную точность.

Концептуальные вопросы

1. Почему не следует подключать амперметр непосредственно к источнику напряжения, как показано на рисунке 9? (Обратите внимание, что скрипт E на рисунке означает ЭДС.)

Рисунок 9.

2. Предположим, вы используете мультиметр (предназначенный для измерения диапазона напряжений, токов и сопротивлений) для измерения тока в цепи, и вы случайно оставляете его в режиме вольтметра.Как измеритель повлияет на схему? Что бы произошло, если бы вы измеряли напряжение, но случайно перевели измеритель в режим амперметра?

3. Укажите точки, к которым вы можете подключить вольтметр для измерения следующих разностей потенциалов на Рисунке 10: (a) разность потенциалов источника напряжения; (b) разность потенциалов на R 1 ; (c) по R 2 ; (d) по R 3 ; (e) по R 2 и R 3 .Обратите внимание, что на каждую часть может быть несколько ответов.

Рисунок 10.

4. Чтобы измерить токи на Рисунке 10, вы замените провод между двумя точками на амперметр. Укажите точки, между которыми вы разместите амперметр, чтобы измерить следующее: (a) общий ток; (б) ток, протекающий через R 1 ; (c) через R 2 ; (d) через R 3 . Обратите внимание, что на каждую часть может быть несколько ответов.

Задачи и упражнения

1. Какова чувствительность гальванометра (то есть какой ток дает полное отклонение) внутри вольтметра с сопротивлением 1,00 МОм на шкале 30,0 В?

2. Какова чувствительность гальванометра (то есть, какой ток дает полное отклонение) внутри вольтметра с сопротивлением 25,0 кОм на шкале 100 В?

3. Найдите сопротивление, которое необходимо включить последовательно с гальванометром на 25,0 Ом, имеющим 50.Чувствительность 0 мкА (такая же, как у обсуждаемой в тексте), позволяющая использовать его в качестве вольтметра с показаниями полной шкалы 0,100 В.

4. Найдите сопротивление, которое должно быть подключено последовательно с гальванометром 25,0 Ом с чувствительностью 50,0 мкА (такой же, как тот, который обсуждается в тексте), чтобы его можно было использовать в качестве вольтметра с полным напряжением 3000 В. -масштабное чтение. Включите принципиальную схему в свое решение.

5. Найдите сопротивление, которое нужно поставить параллельно 25.Гальванометр с сопротивлением 0 Ом, имеющий чувствительность 50,0 мкА (такую ​​же, как тот, который обсуждается в тексте), что позволяет использовать его в качестве амперметра с показаниями полной шкалы 10,0 А. Включите принципиальную схему в свое решение.

6. Найдите сопротивление, которое должно быть подключено параллельно гальванометру 25,0 Ом с чувствительностью 50,0 мкА (такой же, как тот, который обсуждается в тексте), чтобы его можно было использовать в качестве амперметра с полным током 300 мА. -масштабное чтение.

7. Найдите сопротивление, которое необходимо поставить последовательно с 10.Гальванометр с сопротивлением 0 Ом, имеющий чувствительность 100 мкА, что позволяет использовать его в качестве вольтметра с: (а) показаниями полной шкалы 300 В и (b) показаниями полной шкалы 0,300 В.

8. Найдите сопротивление, которое должно быть подключено параллельно гальванометру 10,0 Ом, имеющему чувствительность 100 мкА, чтобы его можно было использовать в качестве амперметра с: (a) показанием полной шкалы 20,0-A и (b ) показание полной шкалы 100 мА.

9. Предположим, вы измеряете напряжение на клеммах щелочного элемента 1,585 В с внутренним сопротивлением 0.100 Ом, поместив на его клеммы вольтметр 1,00 кОм. (См. Рис. 11.) (а) Какой ток течет? (b) Найдите напряжение на клеммах. (c) Чтобы увидеть, насколько близко измеренное напряжение на клеммах к ЭДС, рассчитайте их отношение.

Рисунок 11.

10. Предположим, вы измеряете напряжение на клеммах литиевого элемента на 3.200 В, имеющего внутреннее сопротивление 5,00 Ом, поместив вольтметр на 1,00 кОм на его клеммы. а) Какой ток течет? (b) Найдите напряжение на клеммах. (c) Чтобы увидеть, насколько близко измеренное напряжение на клеммах к ЭДС, рассчитайте их отношение.

11. Определенный амперметр имеет сопротивление 5,00 × 10 −5 Ом по шкале 3,00 А и содержит гальванометр 10,0 Ом. Какая чувствительность у гальванометра?

12. Вольтметр на 1,00 МОм включается в цепь параллельно резистору 75,0 кОм. (а) Нарисуйте принципиальную схему подключения. б) Каково сопротивление комбинации? (c) Если напряжение на комбинации остается таким же, как на резисторе 75,0 кОм, каков процент увеличения тока? (d) Если ток через комбинацию остается таким же, как через 75.Только резистор 0 кОм, каков процент снижения напряжения? (e) Являются ли изменения, обнаруженные в частях (c) и (d), значительными? Обсуждать.

13. Амперметр 0,0200 Ом включается последовательно с резистором 10,00 Ом в цепь. (а) Нарисуйте принципиальную схему подключения. (b) Рассчитайте сопротивление комбинации. (c) Если напряжение в комбинации остается таким же, как и только через резистор 10,00 Ом, каков процент уменьшения тока? (d) Если ток остается таким же, как и через 10.Только резистор 00 Ом, каков процент увеличения напряжения? (e) Являются ли изменения, обнаруженные в частях (c) и (d), значительными? Обсуждать.

14. Необоснованные результаты Предположим, у вас есть гальванометр с сопротивлением 40,0 Ом и чувствительностью 25,0 мкА. (a) Какое сопротивление вы бы включили последовательно, чтобы его можно было использовать в качестве вольтметра с полным отклонением на 0,500 мВ? б) Что неразумного в этом результате? (c) Какие допущения ответственны?

15. Необоснованные результаты (a) Какое сопротивление вы бы поставили параллельно с 40.Гальванометр 0 Ом с чувствительностью 25,0 мкА, позволяющий использовать его в качестве амперметра с полным отклонением 10,0 мкА? б) Что неразумного в этом результате? (c) Какие допущения ответственны?

Глоссарий

вольтметр:
прибор для измерения напряжения
амперметр:
прибор для измерения силы тока
аналоговый счетчик:
Измерительный прибор, дающий показания в виде движения стрелки над отмеченным датчиком
цифровой счетчик:
Измерительный прибор, дающий показания в цифровом виде
гальванометр:
аналоговое измерительное устройство, обозначенное буквой G, которое измеряет ток, используя отклонение стрелки, вызванное силой магнитного поля, действующей на провод с током
чувствительность по току:
максимальный ток, который может прочитать гальванометр
полное отклонение:
максимальное отклонение стрелки гальванометра, также известное как чувствительность по току; гальванометр с полным отклонением 50 мкА имеет максимальное отклонение стрелки при протекании через него 50 мкА
шунтирующее сопротивление:
– небольшое сопротивление R , установленное параллельно гальванометру G для получения амперметра; чем больше измеряемый ток, тем меньше должно быть R ; большая часть тока, протекающего через счетчик, шунтируется через R для защиты гальванометра

Избранные решения проблем и упражнения

1.30 мкА

3. 1.98 кОм

5. 1,25 × 10 −4 Ом

7. (а) 3,00 МОм (б) 2,99 кОм

9. (a) 1,58 мА (b) 1,5848 В (необходимо четыре цифры, чтобы увидеть разницу) (c) 0,99990 (необходимо пять цифр, чтобы увидеть разницу от единицы)

11. 15,0 мкА

12.

Рисунок 12.

(а)

(б) 10,02 Ом

(c) 0,9980, или 2,0 × 10 –1 % уменьшения

(d) 1,002, или 2,0 × 10 –1 % прирост

(e) Не имеет значения.

15. (a) −66,7 Ω (b) У вас не может быть отрицательного сопротивления. (c) Неразумно, что I G больше, чем I (см. рисунок 5). Вы не можете добиться полного отклонения, используя ток, меньший, чем чувствительность гальванометра.

Принцип работы

, чувствительность к напряжению, типы и применение

Вольтметр

с момента своего изобретения всегда был основой измерений силовых цепей. Чтобы убедиться, что ваша схема была спроектирована и собрана правильно, вам понадобятся измерительные приборы на основе измерителя напряжения для ее проверки.В этом посте будет обсуждаться, что такое вольтметр, принцип его работы, уравнение напряжения, чувствительность к напряжению, различные типы вольтметров и их применение.

Что такое вольтметр

Вольтметр – это измерительный прибор, который измеряет напряжение между двумя узлами в электрической цепи. В аналоговых вольтметрах стрелка перемещается по шкале пропорционально напряжению в цепи. Цифровые вольтметры имеют цифровую индикацию напряжения с помощью аналого-цифрового преобразователя.

Постоянно установленные вольтметры используются для контроля генераторов или другого стационарного оборудования. Портативные приборы оснащены мультиметром для измерения силы тока и сопротивления. Это стандартные испытательные приборы, используемые в электротехнике и электронике.

Рис. 1 – Вольтметр

Принцип работы вольтметра

Его работа основана на принципе закона Ома. Закон Ома гласит: «Напряжение на сопротивлении прямо пропорционально току, проходящему через него».Любой базовый измеритель имеет разность потенциалов на своих выводах, когда через него протекает ток полной шкалы. Символ, представляющий вольтметр, представляет собой круг с заключенной в него буквой V.

Рис. 2 – Принципиальная схема для представления напряжения

Вольтметр всегда подключается параллельно к компоненту в цепи, для которой напряжение быть измеренным. На вольтметре постоянного тока есть знаки полярности. Поэтому необходимо подключить плюсовую (+) клемму вольтметра к верхней точке потенциала, а минус (-) клемму – к нижней точке потенциала, чтобы получить отклонение измерителя.

В вольтметре переменного тока нет знаков полярности и его можно подключить в любом случае. Однако и в этом случае вольтметр по-прежнему подключается параллельно к компоненту, для которого измеряется напряжение. Вольтметр с высоким диапазоном напряжения создается путем последовательного соединения сопротивления с измерительным механизмом, который имеет полную шкалу напряжения, как показано на рисунке ниже.

Рис. 3 – Допустимое напряжение полной шкалы

Уравнение напряжения

Последовательное сопротивление называется множителем.Его значение определяется из уравнения напряжения.

Где,

  • В = Напряжение,
  • I м = Ток полной шкалы,
  • R se = Сопротивление в серии и
  • В м = Напряжение полной шкалы

Чувствительность к напряжению

Чувствительность по напряжению – величина, обратная току, необходимому для полного отклонения.

Чем меньше ток измерителя, тем больше будет чувствительность по напряжению.Фактическое сопротивление вольтметра равно чувствительности, умноженной на полное напряжение. Сопротивление вольтметра всегда будет постоянным, даже если показание напряжения может быть не полным.

Типы вольтметров

Рис. 4 – Типы вольтметров

1. Аналоговый вольтметр

Включает в себя показывающие вольтметры отклоняющего типа. Аналоговый вольтметр можно разделить на три категории. Это:

  • Moving Coil Instruments
  • Moving Iron Instruments
  • Электростатический вольтметр

Рис.5 – Функциональный вид аналогового вольтметра

1.1. Инструменты с подвижной катушкой

Типы приборов с подвижной катушкой Аналоговые вольтметры доступны в двух типах. Это:

  • Инструменты с подвижной катушкой с постоянным магнитом
  • Приборы с подвижной катушкой с динамо-измерителем
1.1.1. Приборы с подвижной катушкой с постоянным магнитом

Приборы с подвижной обмоткой с постоянным магнитом реагируют только на постоянный ток.Эти инструменты имеют постоянный магнит для создания магнитного поля. Катушка намотана на кусок мягкого железа и вращается вокруг собственной вертикальной оси. Когда ток протекает через катушку, в соответствии с уравнением силы Лоренца создается отклоняющий момент.

Рис. 6 – Вольтметр с подвижной катушкой

1.1.2. Инструменты с подвижной катушкой динамо-метра

Инструменты с подвижной катушкой динамо-метра состоят из двух катушек. Одна катушка неподвижна, а другая вращается вокруг нее.Взаимодействие двух полей создает отклоняющий момент.

1.2. Moving Iron Instruments

Moving Iron Instruments используются в цепях переменного тока и подразделяются на инструменты простого подвижного железа, типа динамо-измерителя и индукционного типа. Он состоит из мягкого железа, содержащего подвижные и неподвижные катушки.

Рис. 7 – Вольтметр подвижного железа

Взаимодействие потоков, создаваемых этими элементами, создает отклоняющий момент.Диапазоны расширяются за счет включения резисторов последовательно с катушкой.

1.3. Электростатический вольтметр

Он работает по принципу электростатики, при котором отталкивание между двумя пластинами заряда отклоняется стрелкой, прикрепленной к пружине.

Эти приборы используются для измерения постоянного и переменного тока высокого напряжения. Это высокочувствительные приборы, способные измерять как минимальные зарядные напряжения, так и напряжение в широком диапазоне – почти 200 кВ.

Рис. 8 – Электростатические вольтметры

2. VTVM и FET VM

Эти типы инструментов могут обрабатывать как напряжения переменного / постоянного тока, так и измерения сопротивления. В этих устройствах между входом и измерителем используется электронный усилитель.

Рис. 9 – Вольтметр с вакуумной трубкой

Если в этом устройстве используется вакуумная трубка в усилителе, то оно называется вакуумным ламповым вольтметром (VTVM).VTVM используются при измерениях переменного тока большой мощности.

Полевой транзистор (FET) – это транзистор, который использует электрическое поле для управления электрическим поведением устройства. Их также называют униполярными транзисторами. Вольтметр на основе полевого транзистора использует это свойство полевых транзисторов при измерении напряжения.

3. Цифровой вольтметр (DVM)

Цифровой вольтметр отображает напряжение с помощью светодиодов или ЖК-дисплеев для отображения результата. Инструмент должен содержать аналого-цифровой преобразователь.Устройство содержит запрограммированный микроконтроллер, АЦП и ЖК-дисплей, чтобы обеспечить точное цифровое отображение аналоговых значений от 0 до 15 вольт постоянного тока.

Рис. 10 – Цифровой вольтметр и мультиметр

Они используются из-за таких свойств, как точность, долговечность и уменьшение ошибок параллакса.

  Подробнее о цифровом вольтметре, его принципе и принципах работы.  

Применение вольтметра

Вольтметр может применяться:

  • Это очень полезно для определения напряжения устройства накопления заряда, например, для проверки напряжения батареи.Например, новый элемент AAA будет иметь около 1,6 В, а умирающий – 1,1 В. Свинцово-кислотный автомобильный аккумулятор на 12 В будет показывать 12,5 В при полной зарядке или 14 В при зарядке от генератора в автомобиле. Если он показывает 10 В, с генератором что-то не так.
  • Его можно использовать только для определения наличия питания в цепи или ее отсутствии, например, в сетевой розетке.
  • Проверка включения или выключения питания устройств.
  • Мы можем рассчитать ток, измерив напряжение на известном сопротивлении.Это полезно, когда у вас нет амперметра.
  • Они используются для создания устройства проверки непрерывности с серийной батареей.
  • Они используются для создания омметра с использованием делителя напряжения с неизвестным резистором.
  • Они используются для создания амперметра путем измерения напряжения на шунтирующем резисторе.
  Также читают: 
  Что такое цифровой вольтметр - как он работает, типы, применение, преимущества 
  Коэффициент мощности - треугольник мощности, типы, коррекция коэффициента мощности, применения, преимущества 
  Тиристор - рабочий, VI-характеристики, типы, применение, преимущества и недостатки  

Мадхури относится к категории B.E (информатика) и имеет опыт работы в IBM в качестве инженера-программиста. Она является автором, редактором и партнером Electricalfundablog.com.

Что такое вольтметр? – Определение с сайта WhatIs.com

От

Вольтметр, также известный как измеритель напряжения, – это прибор, используемый для измерения разности потенциалов или напряжения между двумя точками в электрической или электронной цепи. Некоторые вольтметры предназначены для использования в цепях постоянного тока (DC); другие предназначены для цепей переменного тока (AC).Специализированные вольтметры могут измерять радиочастотное (RF) напряжение.

Базовый аналоговый вольтметр состоит из последовательно включенного чувствительного гальванометра (измерителя тока) с высоким сопротивлением. Внутреннее сопротивление вольтметра должно быть высоким. В противном случае он будет потреблять значительный ток и тем самым нарушить работу тестируемой цепи. Чувствительность гальванометра и значение последовательного сопротивления определяют диапазон напряжений, который может отображать измеритель.

Цифровой вольтметр показывает напряжение цифрами.Некоторые из этих измерителей могут определять значения напряжения с точностью до нескольких значащих цифр. Практические лабораторные вольтметры имеют максимальные диапазоны от 1000 до 3000 вольт (В). Большинство серийно выпускаемых вольтметров имеют несколько шкал, увеличивающихся в степени 10; например, 0–1 В, 0–10 В, 0–100 В и 0–1000 В.

Осциллограф может использоваться для измерения низких напряжений; вертикальное смещение соответствует мгновенному напряжению. Осциллографы также отлично подходят для измерения пиковых и размахов напряжения в приложениях переменного тока и ВЧ.Вольтметрам для измерения высоких разностей потенциалов требуются прочные зонды, проводка и изоляторы.

В компьютерной практике стандартные лабораторные вольтметры подходят, поскольку встречающиеся напряжения умеренные, обычно от 1 В до 15 В. Мониторы с электронно-лучевой трубкой (ЭЛТ) работают при нескольких сотнях вольт. Типичный лабораторный вольтметр может показывать эти напряжения, но ЭЛТ-блоки должны обслуживаться только квалифицированными специалистами, поскольку напряжения достаточно высоки, чтобы быть смертельными.

Последний раз обновлялся в сентябре 2005 г.

Руководство по выбору аналоговых вольтметров

: типы, характеристики, применение

Аналоговые вольтметры измеряют напряжение или падение напряжения в цепи.Они отображают показания с помощью иглы, а не цифрового дисплея. Вольтметры могут быть автономными устройствами или частью мультиметра.

Аналоговые вольтметры используют самые разные средства для измерения напряжения, среди которых наиболее распространены гальванометры с подвижной катушкой Д’Арсонваля. В этих устройствах используется катушка из тонкой проволоки, подвешенная в магнитном поле. Катушка вращается и перемещает указатель или другой индикатор пропорционально приложенному уровню тока.

Гальванометры с подвижной катушкой обычно используются для измерения тока в амперметрах, но при наличии подходящего сопротивления могут также измерять напряжение постоянного тока в вольтметрах.Они желательны из-за их превосходной чувствительности, но не подходят для измерения переменного тока, потому что они чувствительны только к среднему протеканию тока. Вольтметры с подвижной катушкой могут точно измерять напряжение переменного тока, если они оснащены выпрямителем и трансформатором.

Гальванометр Д’Арсонваля описанного выше типа.

Во втором типе вольтметра используется подвеска с натянутой лентой, в которой также используется подвижная катушка. Измерители с тугим ремешком исключают механизм поворота и драгоценного камня, используемые измерителями d’Arsonval, и заменяют его крутым платиновым ремешком.Эта установка снижает трение, которое является причиной проблем с износом и повторяемостью в приборах с подвижной катушкой.

Показания аналогового вольтметра подвержены ошибкам, вызванным измерением на неровной поверхности (на которой сила тяжести тянет стрелку вниз) или вблизи магнитного поля. По этим причинам пользователи должны тщательно исследовать среду, в которой находится измеритель, перед калибровкой и измерением.

Сравнение с цифровыми вольтметрами

Современные измерения напряжения чаще всего выполняются с помощью цифровых вольтметров из-за их превосходной точности.Аналоговые счетчики имеют ряд преимуществ перед цифровыми типами:

  • Аналоговое движение стрелки дает лучшее представление о порядке величины и тенденциях, чем цифровое считывание.

  • Аналоговые счетчики не требуют источника питания помимо источника испытательного тока.

Аналоговые вольтметры также имеют ряд недостатков:

Несколько шкал может вызвать путаницу. (Более подробно весы обсуждаются ниже.)

Аналоговые счетчики не имеют технологии автоматической полярности . Неправильно подключенные измерительные провода могут привести к отклонению иглы и повреждению устройства.

Ошибка параллакса , возникающая из-за неправильного считывания показаний аналоговых измерительных устройств. Аналоговые счетчики предназначены для считывания с глазком, перпендикулярным стрелке и шкале счетчика. Когда шкала рассматривается под неправильным углом, точность измерителя снижается на несколько градусов.Некоторые измерители имеют зеркало внутри дисплея, так что пользователь может легко определить правильный угол обзора, проверив отражение иглы. Правильный угол достигается, когда отражение иглы не видно глазу пользователя.

Ошибка параллакса на аналоговом измерителе. Отражение иглы, видимое в зеркале под шкалой, указывает на неправильный угол обзора.

Приложения

Цифровые вольтметры

обычно вытеснили аналоговые, но последние по-прежнему находят широкое применение в таких нишевых приложениях, как:

  • Индикаторы батареи, особенно в морских или военно-морских судах

  • Измерение импульсов или колебаний, при котором движение индикатора более важно, чем точное значение напряжения

Масштаб и диапазон

Считывание показаний вольтметра, предназначенного для измерения только одного диапазона напряжения, простое и понятное, но многие измерители конфигурируются для измерения нескольких диапазонов и, следовательно, используют более сложные шкалы.Многие аналоговые мультиметры могут измерять как переменное, так и постоянное напряжение и могут измерять десятки диапазонов напряжения.

При просмотре приведенной выше шкалы пользователь может сделать вывод, что измеритель может измерять три различных диапазона напряжения: 0-10 В, 0-50 В и 0-250 В. Как правило, измеритель с указанным выше дисплеем может измерять другие диапазоны, которые кратны трем основным диапазонам, например 0-0,5 В, 0-2,5 В и 0-1000 В.

Видео ниже предоставляет полезный обзор калибровки и считывания аналогового мультиметра (раздел, посвященный считыванию напряжения, начинается примерно в 3:45).

Видео кредит: LATTC

Селекторный переключатель мультиметра, показанный ниже, является хорошим примером; обратите внимание, что все значения напряжения постоянного тока слева кратны 25, 50 и 100.

Изображение предоставлено: Область электроники

Следовательно, пользователь должен знать, как использовать правильную шкалу отображения для выбранного диапазона и определять процентное значение показания от полной шкалы, чтобы найти измеренное значение.Например, показание стрелки 2 на шкале 0–10 В интерпретируется как 200 В, если измеритель настроен на измерение 0–1000 В.

При измерении неизвестного напряжения калибровка измерителя на самый высокий диапазон предотвращает его «заедание» при полном отклонении (стрелка быстро перемещается в верхний предел диапазона) и снижает риск повреждения измерителя. При измерении известного напряжения установите измеритель на наименьший диапазон, который может выдержать напряжение. Например, батарею на 9 В следует тестировать при напряжении 0–10 В, а розетку на 120 В следует измерять при напряжении 0–250 В.

Стандарты

Опубликованные стандарты, относящиеся к вольтметрам, обычно касаются использования устройства для электрических испытаний. Примеры стандартов включают:

IEC 60051-2 – Особые требования к аналоговым амперметрам и вольтметрам и их принадлежностям

ASTM A1013 – Метод испытания высокочастотных потерь в сердечнике магнитомягких компонентов сердечника с использованием метода вольтметр-амперметр-ваттметр

Список литературы

Радиоэлектроника – Использование аналогового мультиметра

Изображение предоставлено:

Weschler Instruments | Бесплатный словарь | University of Cinncinnatti – Клермон | Запчасти для радиолюбителей | Площадь электроники


Что такое цифровой вольтметр – как он работает, типы, применение, преимущества

Цифровой вольтметр отображает показания напряжения цепи в числовом виде.Первоначально аналоговые вольтметры использовались для снятия показаний напряжения, когда стрелка или индикатор перемещается по шкале пропорционально напряжению в цепи, а позже были введены цифровые вольтметры, которые дают числовое отображение напряжения с точностью. В этой статье мы обсудим, что такое цифровой вольтметр, как он работает, включая пошаговые инструкции, его типы, применение, преимущества и недостатки.

Что такое цифровой вольтметр

Цифровой вольтметр, сокращенно DVM, – это прибор, используемый для измерения разности электрических потенциалов между двумя точками в цепи.Напряжение может быть переменным (AC) или постоянным (DC) током. Он измеряет входное напряжение после преобразования аналогового напряжения в цифровое и отображает его в числовом формате с помощью преобразователя. Использование цифрового вольтметра увеличило скорость и точность регистрации показаний. Типичный DVM показан ниже.

Рис. 1 – Цифровой вольтметр и мультиметр

Как работает цифровой вольтметр

Принцип работы цифрового вольтметра можно разделить на пять функциональных разделов.Это:

  • Генератор импульсов
  • Управление напряжением и стробирование
  • Подсчет тактовых импульсов
  • Аналого-цифровое преобразование
  • Секция фиксации и отображения

Генератор импульсов

В электронике он называется «тактовым сигналом». который генерирует импульсы, обычно достигаемые с помощью микросхемы таймера 555.

Управление напряжением и стробирование

Этот раздел управления и стробирования основан на интегральной схеме, называемой компаратором.Эта ИС сравнивает два напряжения и сигналы, для которых из двух напряжений больше. Одно из напряжений – это входное напряжение ( В в ), а другое – напряжение на конденсаторе.

Напряжение контролируется на конденсаторе, и сигналы генерируются, когда напряжение становится равным измеряемому напряжению ( В в ) и зарядка начинается с нуля вольт. Компаратор не потребляет значительного тока, иначе он будет мешать зарядке постоянным током.Для достижения почти нулевого входного тока в качестве компаратора используется операционный усилитель.

Операционный усилитель – это микросхема с двумя входами, помеченными + и -, называемыми неинвертирующим и инвертирующим входами. Напряжения в этих точках называются соответственно V + и V-. У него только один выход. Как и любой другой чип, он требует подключения питания и заземления. Если напряжение на входе + операционного усилителя больше (более положительно), чем напряжение на входе – (V +> V-), то на выходе высокий уровень i.е. около V cc иначе выход будет низким, около V ee .

Подсчет тактовых импульсов

Подсчитывается количество тактовых импульсов, которые возникают между сигналами запуска и остановки зарядки. Он также определяется как мера прошедшего времени. Пока конденсатор заряжается, генерируемые импульсы подсчитываются с помощью ИС, которая представляет собой «микросхему подсчета деления на десять». Логические импульсы, генерируемые таймером IC, подаются как вход, и импульсы от 0 (0000 двоичный) до 9 (1001 двоичный) подсчитываются многократно, выдавая двоичные биты, соответствующие количеству подсчитанных импульсов.Как только счет превысит значение «9», выходной двоичный бит снова переключается на 0000, и тот же процесс продолжается.

Вольтметр будет работать, подсчитывая импульсы с момента начала зарядки конденсатора и момента, когда компаратор обнаруживает, что напряжение на конденсаторе превышает V в и, следовательно, изменяет свое выходное состояние. Для этого в схеме используется простой логический элемент И-НЕ. Последовательность выходных импульсов подключена к одному входу И-НЕ, а второй вход подключен к блоку управления.

Цепь зарядки конденсатора тока, которую можно включать и выключать, а также автоматически сбрасывать до нуля вольт с помощью сигналов запуска и остановки зарядки, является важным аспектом цифрового вольтметра. Конденсатор должен пройти цикл зарядки и разрядки.

АЦП (аналого-цифровой преобразователь)

Аналого-цифровой преобразователь или АЦП (аналого-цифровой преобразователь) преобразует аналоговый образец напряжения и возвращает двоичное число, которое описывает образец.

Секция фиксации и отображения

Количество подсчитанных импульсов отображается в числовом формате с помощью семисегментного светодиодного дисплея.Защелка используется для статического отображения окончательного результата одного цикла зарядки конденсатора, даже когда выполняется следующий цикл. Защелка имеет четыре входа и четыре выхода. Он передает логические состояния от входов к выходам.

Рис. 2 – Базовая блок-схема цифрового вольтметра

Типы цифрового вольтметра

Цифровой вольтметр

можно разделить на четыре типа. Это:

  • Цифровой вольтметр линейного типа
  • Интегрирующий цифровой вольтметр
  • Цифровой вольтметр непрерывного баланса
  • Цифровой вольтметр последовательного приближения

Применения цифрового вольтметра

  • Цифровой вольтметр используется для определения фактического напряжения различных компонентов.
  • Цифровой вольтметр широко используется для проверки наличия питания в цепи, например в сетевой розетке.
  • Зная напряжение в цепи, можно рассчитать ток.

Преимущества цифрового вольтметра

  • Цифровой дисплей выхода исключает ошибки чтения человеком.
  • Показания точные и быстрые по сравнению с аналоговыми измерителями.
  • Цифровой вольтметр более стабильный и надежный.
  • Меньше по размеру и экономичнее.
  • Цифровой вольтметр может измерять как переменное, так и постоянное напряжение.
  • Последние модели DVM построены с микроконтроллерами, которые хранят показания для дальнейшей обработки.
  • DVM не содержит ошибок параллакса.
  • DVM имеют автоматический выбор диапазона.
  • DVM имеют высокое входное сопротивление.

Недостатки цифрового вольтметра

  • Цифровые вольтметры подвержены выходу из строя при чрезмерном повышении напряжения.
  • Отображение зависит от внешнего источника питания или аккумулятора.
  • Цифровой вольтметр при измерении напряжения может нагреться.Это может привести к неверным показаниям.
  • Когда в цепи возникают колебания, цифровой вольтметр не может считывать показания и отображает ошибку.
  • Скорость работы ограничена из-за схемы оцифровки в цифровых вольтметрах.
  • Очень сложно обнаружить скачки переходного напряжения.
  • У аналого-цифрового преобразователя есть ограничение на длину слова, которое вызывает шум квантования, приводящий к ошибкам в измеренных значениях.
  Также читают: 
  Что такое клещи (клещевые щипцы) - типы, принцип работы и порядок эксплуатации 
  Что такое технология Li-Fi - как она работает, применение и преимущества 
  Что такое суперконденсатор (ультраконденсатор) - характеристики, работа, типы и применение 
  Диод - история, режимы работы, характеристики VI, типы и применение  

Laxmi – это B.E (Электроника и связь) и имеет опыт работы в RelQ Software в качестве инженера-испытателя и HP в качестве руководителя службы технической поддержки. Она является автором, редактором и партнером Electricalfundablog.

Вольтметр – обзор | Темы ScienceDirect

Высокие технологии

Специальные высокотехнологичные приложения для слепых могут включать в себя устройства для чтения долларовых купюр и говорящие калькуляторы, видеомагнитофоны, вольтметры, термометры, уровни, компасы и осциллографы (вставки 11-7 и 11-8) .Эти устройства предоставляют голосовые сообщения с информацией, которую пользователи в противном случае прочитали бы на визуальном дисплее. Например, компас может предоставить пользователю обратную связь оцифрованной речи на английском, испанском, немецком или французском языках. Возможна комбинация нескольких устройств в одном устройстве. Например, голосовые дневники включают говорящий калькулятор, часы, календарь встреч, список телефонов и выход тонального набора в одном небольшом портативном устройстве.

Человек с ограниченными возможностями может стать более независимым в обществе с помощью систем звуковых вывесок.Эти системы предоставляют пользователю различные функции, от звуковых сигналов до словесных описаний или инструкций через карманный приемник. Одним из распространенных примеров является использование звуковых сигналов на светофоре, которые уведомляют слепого пешехода о том, что переход улицы безопасен. Более сложные системы можно устанавливать в частных офисах, общественных зданиях, торговых центрах или парках. При использовании инфракрасных или чувствительных к движению функций слепой человек получит устное сообщение с указанием местоположения здания, офисного помещения, фонтана или лифта.

В настоящее время население может получать информацию об окружающей среде с помощью системы, которая дает словесные указания с помощью устройства слежения за спутником глобального позиционирования (GPS). Однако слепой человек не может получить доступ к этим системам самостоятельно, потому что производители разработали их для зрячих водителей, чтобы они получали указания от поворота к повороту. Однако производители модифицировали устройства GPS для слепых пользователей. Адаптированная система GPS обеспечивает направление для слепых пользователей, чтобы добраться до определенного места с помощью программного обеспечения для ориентации, программы чтения с графического экрана и синтезатора речи.

Станции PBS предоставляют услуги описательного видео (DVS) для различных телевизионных программ. Они дают повествовательные описания ключевых визуальных элементов программы без изменения звуковых звуков или диалогов. Сюда входят описания визуальных элементов, таких как действия, субтитры, изменения сцены, графика и язык тела. Эта услуга также доступна для некоторых фильмов на домашнем видео. Для приема DVS зритель должен иметь стереотелевизор или стереомагнитофон со вторым каналом аудиопрограммы (SAP).

Слепые люди могут читать печатные материалы с помощью оптического считывателя символов (OCR).OCR включают в себя ручные устройства или планшетные сканеры, которые преобразуют напечатанное слово в компьютерный файл, синтезируют речь и / или распечатку шрифта Брайля. Также доступны автономные OCR, и люди, не владеющие компьютером, могут предпочесть их.

Люди с ослабленным зрением могут использовать портативные блокноты для записи заметок, текстового процесса и хранения встреч. Их клавиатуры могут состоять из стандартных QWERTY-досок пишущей машинки (см. Рисунок 11-2) или конфигураций Брайля (см. Рисунок 11-3) с использованием шести или восьми клавиш и пробела.Клавиши представляют собой точки Брайля. Клавиатуры Брайля также доступны в эргономичном дизайне, разработанном для комфорта. Центральная клавиша на всех клавиатурах служит пробелом. Дополнительные функции для этих устройств могут включать телефонные справочники, часы, научные калькуляторы, будильники, напоминания голосового календаря и термометры. Режимы вывода для этих устройств состоят из синтеза речи и / или обновляемых ячеек Брайля (выпуклые символы Брайля, отображающие информацию, которую вводит пользователь).Некоторые системы также поддерживают два языка. Таким образом, пользователи могут либо прослушивать введенную информацию, либо читать информацию с помощью тактильных ощущений, используя обновляемые ячейки Брайля.

Слепой человек может использовать модифицированные компьютеры с различными системами ввода и вывода. Системы ввода включают стандартные компьютерные клавиатуры, клавиатуры Брайля, азбуку Морзе с синтезом речи или слуховые сигналы (например, гудки, тоны или эхо клавиш). Пользователь может передавать на компьютер буквы, цифры и знаки препинания азбукой Морзе, что требует адаптации программного и / или аппаратного обеспечения с помощью переключателей.С помощью одного переключателя компьютер различает точки и тире по продолжительности нажатия переключателя пользователем. В коде Морзе с двумя переключателями один переключатель предназначен для точек, а другой – для тире. Пользователь также может использовать третий переключатель в качестве переключателя входа. Слепые люди могут использовать эту систему со слуховой обратной связью, которая повторяет введенную букву или команду. Этот подход могут выбрать слепые и люди с ограниченными физическими возможностями.

Системы вывода могут включать программы чтения с экрана, обновляемые дисплеи Брайля, распечатки шрифта Брайля и шрифты Брайля с традиционной орфографической печатью.Программа чтения с экрана – это программное приложение, которое преобразует компьютерную информацию в искусственную речь, которая произносится через синтезатор речи. Сочетание программы чтения с экрана и синтезатора речи дает человеку с нарушением зрения доступ к стандартным компьютерным программам. Текст может отображаться на экранах компьютера двумя способами: в текстовом или графическом режиме. Доступны программы чтения с экрана, которые читают текстовый и графический режимы. Специально разработанные программы чтения с экрана для Windows могут читать программы Windows, использующие графическую среду.Существуют разные версии для чтения с экрана для Macintosh, DOS и Windows (разные версии). Синтезаторы речи различаются по качеству речи и способу взаимодействия с компьютером. Они могут быть как аппаратными (человек вставляет их в слот внутри компьютера или использует один из последовательных портов компьютера), так и программными.

Обновляемые дисплеи Брайля используют выдвижные булавки для формирования символов Брайля, которые позволяют пользователям читать информацию на экране компьютера с помощью тактильной обратной связи Брайля.Дисплеи Брайля могут состоять из 80 ячеек (полная строка компьютерного текста), 40 ячеек (одна половина строки) или 20 ячеек (одна четвертая строка). Эти устройства особенно полезны для глухих и слепых, но обладающих хорошими тактильными навыками.

Для людей с нарушениями слуха и слепых специалист может интегрировать обновляемые дисплеи Брайля с устройствами телефонной связи (TDD). Используя пальцы, человек читает выпуклые символы Брайля на дисплее Брайля.Это та же информация, которая отображается на визуальном дисплее TDD. Слабослышащие и слепые люди также могут использовать это устройство для общения. Слабослышащий человек читает на визуальном дисплее информацию, поскольку слепой вводит информацию с помощью клавиатуры Брайля, а слепой человек читает информацию, которую глухой вводит с помощью стандартной клавиатуры, на обновляемом дисплее Брайля.

Высокотехнологичные приложения для слабовидящих включают портативные и настольные системы видеонаблюдения для увеличения печатных материалов.Они доступны в черно-белом и / или цветном исполнении. Преимущество камер видеонаблюдения перед линзами с низкой технологией – увеличенное увеличение, улучшенная контрастность и обратная полярность. Дополнительной функцией одной системы видеонаблюдения является дополнительная клавиатура, которая отображает на мониторе время, дату и калькулятор, а также адрес и телефонный органайзер. Альтернативой технологии видеонаблюдения является портативное устройство, которое подключается к любому телевизору для создания увеличенных изображений. Некоторые производители включают в систему компьютер, чтобы обеспечить разделение экрана на компьютерный текст и материалы, просматриваемые системой видеонаблюдения.Это устройство позволяет пользователю поддерживать зрительный контакт с одним экраном, а не переключаться между двумя.

Специалисты могут модифицировать доступ к компьютеру для людей с ослабленным зрением, используя различные системы ввода и вывода. Некоторые люди с нарушением зрения также используют многие ранее описанные системы, которые используют слепые (например, слуховые сигналы: гудки, щебетание или синтезированное голосовое эхо клавиш). Другие системы ввода могут включать измененную контрастность клавиатуры (например, белые буквы на черном фоне или наоборот) или большие клавиатуры (с большими буквами).

Системы вывода включают программы чтения с экрана с синтезаторами речи и программы увеличения текста. Программы увеличения текста увеличивают изображение на экране компьютера в операционных системах DOS, Windows или Macintosh. Эти системы также могут обеспечивать обратный контраст (например, белые буквы на темном фоне). Компьютер Macintosh и Windows предлагают специальные возможности увеличения текста в операционной системе. Дополнительные приспособления на компьютере включают увеличенный размер шрифта и большие цветные мониторы с плоским экраном.Мониторы с плоским экраном уменьшают искажения, которые могут возникнуть при использовании выпуклых экранов. Изменяя цвет на экране компьютера (например, черные буквы на желтом фоне), слабовидящий пользователь может легче просматривать отпечаток. Пользователь также может улучшить управление мышью, увеличив размер указателя мыши или добавив хвостик к мыши с помощью специального программного обеспечения или параметров доступности, которые предлагают некоторые операционные системы.

Все высокотехнологичные устройства имеют решающее значение для того, чтобы слепые или слабовидящие люди могли работать независимо.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *