Стабилизатор напряжения на 18 вольт своими руками: Мощный линейный стабилизатор напряжения

Мощный линейный стабилизатор напряжения


Для питания различных электронных устройств и схем, сделанных своими руками нужен такой источник питания, напряжение на выходе которого можно регулировать в широких пределах. С его помощью можно наблюдать, как ведёт себя схема при том или ином напряжении питания. При этом он должен иметь возможность выдавать большой ток, чтобы питать мощную нагрузку, и минимальные пульсации на выходе. На роль такого источника питания отлично подойдёт линейный стабилизатор напряжения – микросхема LM338, она обеспечивает ток до 5 А, имеет защиту от перегрева и короткого замыкания на выходе. Схема её включения достаточно проста, она представлена ниже.

Схема


Микросхема LM338 имеет три вывода – вход (in), выход (out) и регулирующий (adj). На вход подаём постоянное напряжение определённой величины, а с выхода снимаем стабилизированное напряжение, величина которого задаётся переменным резистором Р2. Напряжение на выходе регулируется от 1,25 вольт до величины входного, с вычетом 1,5 вольт. Проще говоря, если на входе, например, 24 вольта, то на выходе напряжение будет меняться в пределах от 1,25 до 22,5 вольт. Подавать на вход более 30 вольт не следует, микросхема может уйти в защиту. Чем больше ёмкость конденсаторов на входе, тем лучше, ведь они сглаживают пульсации. Ёмкость конденсаторов на выходе микросхемы должна быть небольшой, иначе они будут долго сохранять заряд и напряжение на выходе будет регулироваться неверно. При этом каждый электролитический конденсатор должен быть зашунтирован плёночным или керамическим с малой ёмкостью (на схеме это С2 и С4). При использовании схемы с большими токами микросхему обязательно нужно установить на радиатор, ведь она будет рассеивать на себе всё падение напряжения. Если токи небольшие – до 100 мА, радиатор не потребуется.

moschnyj-linejnyj-stabilizator-naprjazhenija.zip [22.03 Kb] (cкачиваний: 1260)


Сборка стабилизатора

Вся схема собирается на небольшой печатной плате размерами 35 х 20 мм, изготовить которую можно методом ЛУТ. Печатная плата полностью готова к печати, отзеркаливать её не нужно. Ниже представлены несколько фотографий процесса.



Дорожки желательно залудить, это уменьшит их сопротивление и защитит от окисления. Когда печатная плата готова – начинаем запаивать детали. Микросхема запаиваться прямо на плату, спинкой в сторону края. Такое расположение позволяет закрепить на радиаторе всю плату с микросхемой. Переменный резистор выводится от платы на двух проводках. Можно использовать любой переменный резистор с линейной характеристикой. При этом средний его вывод соединяется с любым из крайних, полученные два контакта идут на плату, как видно на фото. Для подключения проводов входа и выхода удобнее всего использовать клеммник. После сборки необходимо проверить правильность монтажа.


Запуск и испытания

Когда плата собрана, можно переходить к испытаниям. Подключаем на выход маломощную нагрузку, например, светодиод с резистором и вольтметр для контроля напряжения. Подаём напряжение на вход и следим за показаниями вольтметра, напряжение должно меняться при вращении ручки от минимума до максимума. Светодиод при этом будет менять яркость. Если напряжение регулируется, значит схема собрана правильно, можно ставить микросхему на радиатор и тестировать с более мощной нагрузкой. Такой регулируемый стабилизатор идеально подойдёт для использовании в качестве лабораторного блока питания. Особое внимание стоит уделить выбору микросхемы, ведь её очень часто подделывают. Поддельные микросхемы стоят дёшево, но легко сгорают при токе уже 1 – 1,5 Ампера. Оригинальные стоят дороже, но зато честно обеспечивают заявленный ток до 5 Ампер. Удачной сборки.


Смотрите видео

На видео наглядно показана работа стабилизатора. При вращении переменного резистора напряжение плавно меняется от минимума к максимуму и наоборот, светодиод при этом меняет яркость.

Все своими руками Мощный стабилизатор напряжения своими руками

Стабилизатор напряжения на ток 10А

     Здравствуйте уважаемые читатели. Давно хотел опробовать схему мощного, регулируемого стабилизатора напряжения, схема которого представлена в книге «Микросхемы для линейных источников питания и их применение» издательство Додэка 1998г. Схема изображена на рисунке 1.

     На рисунке2 изображена схема, которую собрал я. В ней отсутствуют диод, резистор 2 и конденсатор 2. Резистор R2 необходим для замыкания токов утечки мощных транзисторов. Об установке дополнительных элементов можно подробно ознакомиться в вышеупомянутой книге. Вот небольшая выдержка из данной книги.

Данные испытуемого стабилизатора

Напряжение на входе………………………. 22В
Напряжение на выходе……………………. 14,15В
Ток ……………………………………………………… 0… 5А
Провал напряжения на выходе………. 0,05В

Напряжение пульсаций не мерил, так как запитывал стабилизатор от БП постоянного тока.
И так на вход подал 22В, резистором R5 установил напряжение на выходе 14В – точнее было 14,15. При увеличении тока нагрузки до 5А напряжение на выходе уменьшилось до 14,1В, что соответствует провалу напряжения в 50млВ, что довольно не плохо.

     При падении напряжения на самом стабилизаторе 10В и токе через мощные транзисторы 5А т.е. мощности, выделяемой на них в виде тепла в 50Вт, радиатор данных размеров нагревается до температуры 80 (на фото 1 правда 75 – потом температура поднялась) градусов.

     Для кремния это, «как с добрым утром». Но после прогонки стабилизатора при этой температуре в течении примерно часа, скоропостижно умер один из КТ829А (пробой к-э, но при снижении температуры все свойства транзистора восстанавливались, для меня это совсем не единичный случай в моей практике, именно поэтому я всегда испытываю свои поделки при повышенной и пониженной температуре, если предполагается, что они будут работать с возможным изменением климатики), пришлось заменить. Транзисторы у меня все б\у, выпаяны из старых телевизоров. Резисторы, стоящие в эмиттерах мощных транзисторов, больше нужны для контроля коллекторных токов данных транзисторов, чем для их выравнивания. У меня разброс этих токов от транзистора к транзистору изменялся в разы, что потребовало подбора транзисторов.

Например ток одного транзистора был 1,64А, а другого – 0,63А. Так, что эти яко бы уравнивающие резисторы в эмиттерных цепях можно после подборки транзисторов спокойно убрать. Стабилизатор собран навесным способом прямо на радиаторе (см. фото 2). При монтаже стабилизатора надо соблюдать некоторые условия.


1. Провод идущий от резистора R5 на землю, необходимо припаять непосредственно к выходной клемме блока.
2. Конденсаторы С1 и С2 устанавливаются в непосредственной близости с микросхемой стабилизатора.
3. Резистор R4 лучше всего припаивать непосредственно на соответствующие выводы микросхемы.
4. С1 и С2 лучше танталовые.

     После сборки стабилизатора обязательно проверьте осциллографом выходное напряжение стабилизатора – возможно самовозбуждение оного. Если возникнет возбуд, то возможен сильный разогрев С1 и С2 вплоть до взрыва. При первом включении всегда быстренько пальчиками пощупайте электролиты на предмет повышения их температуры. Стабилизатор нормально работает при входном напряжении 34В, при этом выходное напряжение должно быть не более 24В (зависит от номинала резистора R5 и высчитывается с помощью формулы).



Ток может достигать 10А при условии использования двух вентиляторов для принудительного обдува. В общем я уже подумываю на базе этого стабилизатора сделать себе лабораторный БП, дополнив его системами защиты и индикации, ну и естественно вольтметром и амперметром. Успехов всем. До свидания К.В.Ю.

Просмотров:48 233


Метки: стабилизатор напряжения

7805 Распиновка регулятора напряжения, схема, техническое описание и применение

— Реклама —

Источники напряжения в цепи могут иметь флуктуации, приводящие к необеспечению фиксированного выходного напряжения. ИС регулятора напряжения поддерживает выходное напряжение на постоянном уровне. Регулятор напряжения 7805, член серии фиксированных линейных регуляторов напряжения 78xx, используемых для поддержания таких колебаний, представляет собой популярную интегральную схему (ИС) регулятора напряжения.

Xx в 78xx указывает на выходное напряжение, которое он обеспечивает. 7805 IC обеспечивает регулируемый источник питания +5 В с возможностью добавления радиатора.

7805 Характеристики ИС регулятора напряжения
  • Минимальное входное напряжение 7 В
  • Максимальное входное напряжение 35 В
  • Номинальный ток I c = 1A
  • Максимальное выходное напряжение В Макс.=5,2 В
  • Минимальное выходное напряжение В Мин=4,8 В

Схема контактов регулятора напряжения LM7805 Схема контактов микросхемы 7805
Номер контакта
Штифт Функция Описание
1 ВВОД Входное напряжение (7–35 В) На этом выводе микросхемы в норме подается положительное нестабилизированное напряжение.
2 ЗАЗЕМЛЕНИЕ Земля (0 В) В этом выводе, где дается заземление. Этот вывод является нейтральным как для входа, так и для выхода.
3 ВЫХОДРегулируемый выход; 5В (4,8В-5,2В) Выход регулируемого напряжения 5В выведен на этот вывод регулятора IC.

 

– Реклама –

Как вы могли заметить, существует значительная разница между входным напряжением и выходным напряжением регулятора напряжения. Эта разница между входным и выходным напряжением выделяется в виде тепла. Чем больше разница между входным и выходным напряжением, тем больше выделяется тепла.

Если у регулятора нет радиатора для рассеивания этого тепла, он может выйти из строя и выйти из строя. Следовательно, рекомендуется ограничить напряжение максимум на 2-3 вольта выше выходного напряжения.

Итак, теперь у нас есть 2 варианта. Либо спроектируйте свою схему так, чтобы входное напряжение, поступающее на регулятор, было ограничено на 2-3 вольта выше выходного регулируемого напряжения, либо поместите соответствующий радиатор, который может эффективно рассеивать тепло.

7805 Проблема нагрева микросхемы

7805 регулятор напряжения не очень эффективен и имеет проблемы с падением напряжения. Много энергии теряется в виде тепла. Если вы собираетесь использовать радиатор, лучше правильно рассчитайте размер радиатора. Приведенная ниже формула должна помочь в определении соответствующего размера радиатора для таких приложений.

 Выработанное тепло = (входное напряжение – 5) x выходной ток 

Если у нас есть система с входным напряжением 15 вольт и требуемым выходным током 0,5 ампер,

Тогда имеем: (15 – 5) x 0,5 = 10×0,5 = 5 Вт;

Энергия мощностью 5 Вт теряется в виде тепла, поэтому для рассеивания этого тепла требуется соответствующий радиатор. С другой стороны, фактически используемая энергия составляет: (5 x 0,5 А) = 2,5 Вт.

Таким образом, в два раза больше энергии, чем фактически используется, тратится впустую. С другой стороны, если на вход подается 9 В при той же нагрузке: (9-5) x 0,5 = 2 Вт

2 Вт энергии будут потрачены впустую в виде тепла.

Что нам тогда делать?

Помните… чем выше входное напряжение, тем менее эффективным будет ваш IC7805.

Расчетное эффективное входное напряжение составляет около 7,5 В.

Почему мы используем конденсаторы с 7805?

Если стабилизатор напряжения расположен на расстоянии более 25 см (10 дюймов) от источника питания, конденсаторы необходимы для фильтрации остаточного шума переменного тока. Регуляторы напряжения эффективно работают при подаче чистого сигнала постоянного тока. Шунтирующие конденсаторы помогают уменьшить пульсации переменного тока.

По сути, они отсекают шум переменного тока от сигнала напряжения и пропускают в регулятор только постоянное напряжение. Два конденсатора не являются обязательными и могут быть опущены, если вас не беспокоит линейный шум.

Однако для зарядки мобильного телефона или проверки логики вам потребуется хорошая чистая линия постоянного тока. Конденсаторы будут полезны в этом случае, поскольку они хороши для максимального регулирования напряжения. Номиналы конденсаторов также можно немного изменить.

Вы можете проверить, почему в некоторых схемах зарядного устройства используются фильтрующие конденсаторы?

Давайте посмотрим, что заставляет IC работать.

7805 Схема ИС регулятора напряжения 7805 Схема ИС

Сердцем ИС 7805 является транзистор (Q16), который управляет током между входом и выходом и, таким образом, управляет выходным напряжением. Эталон ширины запрещенной зоны (желтый) поддерживает стабильное напряжение. Он принимает масштабированное выходное напряжение в качестве входного (Q1 и Q6) и выдает сигнал ошибки (на Q7) для индикации того, слишком высокое или низкое напряжение.

Основная задача ширины запрещенной зоны — обеспечить стабильное и точное опорное значение даже при изменении температуры чипа.

Сигнал ошибки от эталона ширины запрещенной зоны усиливается усилителем ошибки (оранжевый). Этот усиленный сигнал управляет выходным транзистором через Q15. Это замыкает петлю отрицательной обратной связи, управляющую выходным напряжением.

Цепь запуска (зеленая) подает начальный ток на цепь запрещенной зоны, поэтому она не застревает в выключенном состоянии. Схема фиолетового цвета обеспечивает защиту от перегрева (Q13), чрезмерного входного напряжения (Q19) и чрезмерный выходной ток (Q14).

Эти цепи уменьшают выходной ток или отключают регулятор, защищая его от повреждения в случае неисправности. Делитель напряжения (синий) уменьшает напряжение на выходном контакте для использования эталоном ширины запрещенной зоны.

Масштабирование выходного сигнала

Масштабированный выходной сигнал 7805 обеспечивает входное напряжение (Vin) для опорной ширины запрещенной зоны, а ширина запрещенной зоны обеспечивает сигнал ошибки в качестве выходного сигнала. Схема запрещенной зоны 7805 устраняет петлю обратной связи, существующую внутри традиционного эталона ширины запрещенной зоны. Вместо этого вся микросхема становится петлей обратной связи.

Если выходное напряжение правильное (5В), то делитель напряжения обеспечивает 3,75В на Vin. Любое изменение выходного напряжения распространяется через Q6 и R7, в результате чего напряжение на базе Q7 соответственно возрастает или падает.

Это изменение усиливается Q7 и Q8, генерируя вывод ошибки. Выход ошибки, в свою очередь, уменьшает или увеличивает ток через выходной транзистор. Контур отрицательной обратной связи регулирует выходное напряжение до тех пор, пока оно не станет правильным.

Применение регулятора напряжения IC 7805

7805 Микросхема используется в самых разных схемах. Основные из них:

  • Регулятор с фиксированным выходом
  • Регулятор положительного напряжения в конфигурации отрицательного напряжения
  • Регулируемый выходной регулятор
  • Регулятор тока
  • Регулируемый регулятор напряжения постоянного тока
  • Регулируемое двойное питание
  • Выходная схема защиты от неправильной полярности
  • Цепь проекции обратного смещения

7805 Регулятор напряжения также находит применение в цепях зданий для измерителей индуктивности, зарядных устройств для телефонов, портативных проигрывателей компакт-дисков, удлинителей инфракрасного дистанционного управления и цепей питания ИБП. Кроме того, мы разработали схему секундомера с использованием IC7805.

На слайд-шоу ниже также показаны некоторые моменты, связанные с регуляторами напряжения.

Авторы и права: niiraz

Полную техническую информацию об ИС регулятора напряжения 7805 можно найти в техническом описании ИС 7805.

RJM Audio — Стабилизатор напряжения X-Reg

Малошумящий, широкополосный стабилизатор напряжения для аудиосхем.


Введение

Потратьте любое количество времени, пытаясь оптимизировать схемы операционных усилителей, чтобы они звучали наилучшим образом, и рано или поздно вы обнаружите, что вам нужно обновить регуляторы напряжения. От серии LM78xx до регулируемого LM317 и, возможно, LT1086, а оттуда и до DIY. Самодельный аудиоподход к регуляторам, определенный схемами Зульцера, Боберли и Юнга, хорошо изложен в этом обзоре Tangent. Больше (намного больше) о стабилизаторах напряжения для аудио на сайте Уолта Юнга, здесь. Основное преимущество этих схем по сравнению с типичным интегральным блоком, таким как LM7812, заключается в том, что составные части регулятора разделены и оптимизированы по отдельности. Например, в качестве усилителя ошибки выбирается быстродействующий малошумящий операционный усилитель, а также используется высокоэффективный отфильтрованный источник опорного напряжения. Однако фундаментальная топология остается практически неизменной.

Модель X-Reg отличается тем, что с самого начала спроектирована на базе источника с разделенным напряжением, имеющего как положительную, так и отрицательную шины. Неинвертирующий усилитель ошибки с одним источником питания, общий почти для всех конструкций стабилизаторов, заменен инвертирующим каскадом усиления, работающим от раздельных источников питания. Инвертирующая топология означает, что опорное напряжение имеет полярность, противоположную выходному напряжению: положительный выход принимает опорное напряжение, генерируемое отрицательным входным напряжением, и наоборот. Именно от этой перекрестной связи, которая образует «X» на трассе печатной платы, X-reg берет свое название. Схема имеет смысл только тогда, когда, конечно, необходимы как положительные, так и отрицательные регулируемые напряжения. Он также ограничен относительно низким выходным напряжением, на практике примерно до ± 12 В. Он предназначен для использования с низковольтными и слаботочными аудиосхемами, такими как полупроводниковые фонокорректоры, предусилители и усилители для наушников.


Как это работает

Суть традиционного последовательного регулятора напряжения показана на следующей диаграмме. Он состоит из усилителя, проходного транзистора и пары резисторов, питаемых тремя напряжениями, сильноточным необработанным входным напряжением, которое будет регулироваться, В++ , слаботочным, отфильтрованным напряжением для самой схемы регулятора, V’++ и стабильное опорное напряжение с очень низким уровнем шума +Vref . (В интегральных регуляторах как сильноточные, так и слаботочные цепи питаются от В++ , а задание генерируется внутри.) Усилитель ошибки реагирует на поддержание выходного напряжения В+ , постоянного кратного задания. Отрицательный стабилизатор, который обычно требуется в дополнение к положительному стабилизатору для аудиосхем на операционных усилителях, имеет ту же базовую топологию, но требует трех дополнительных напряжений питания; V– , V’– и отрицательная ссылка -Vref .

Конструкция X-Reg возникла из осознания того, что как положительная, так и отрицательная схемы регулятора выиграют от разделения этих шести напряжений между ними, а не от использования только трех с той же полярностью, что и на выходе. Положительная сторона регулятора X-Reg использует V++ , V’++ , V’– и отрицательная ссылка, -Vref .

В отрицательной половине X-Reg, которая использует V– , V’++ , V’– и +Vref , проходной транзистор NPN заменяется на PNP эквивалент.

Первое, что следует отметить, это то, что операционные усилители работают от раздельного питания. Это обеспечивает реальную выгоду отказа от виртуальной земли. Поскольку операционный усилитель теперь может обрабатывать как положительные, так и отрицательные входы и выходы, мы можем дополнительно перенастроить операционный усилитель как инвертирующий каскад и оставить неинвертирующий вывод заземленным. Инвертирующая топология является «исходным» состоянием операционного усилителя и предлагает несколько преимуществ, из которых, пожалуй, самым важным является стабильность. Для инвертирующего каскада требуется опорное напряжение противоположной полярности, чем на выходе, это опорное напряжение «заимствуется» из другой половины схемы.

Это относится к инновациям в топологии. Последний элемент X-Reg, требующий объяснения, — опорное напряжение. Вместо использования стабилитрона или эталона запрещенной зоны, которые шумят по сравнению с пассивными компонентами, используется простой делитель напряжения в сочетании с усиленной фильтрацией. По сути, это большой RC-фильтр, фактически реализованный как многоступенчатая сеть RCRC, подключенная к V’++ или V’– . Большая часть шума питания ослабляется ниже уровня собственных шумов операционного усилителя, но для достижения такого уровня фильтрации опорное напряжение в конечном итоге оказывается довольно небольшим, всего несколько сотен милливольт. Следовательно, коэффициент усиления инвертирующего каскада должен быть установлен достаточно высоким, чтобы компенсировать естественный разворот отклика на частоте около 300 кГц, что делает регулятор относительно стабильным. Дополнительным преимуществом делителя напряжения в качестве эталона является автоматический плавный пуск регулятора в течение нескольких секунд, что устраняет глухие удары при включении и ограничивает пусковые токи через проходные транзисторы.

Конечно, эталонное напряжение не является абсолютным значением, а определяется как часть входного напряжения В’++ или В’– . Если сетевое напряжение колеблется во временной шкале дольше, чем постоянная времени фильтра (как обычно, 10 секунд или около того), выходное напряжение будет постепенно изменяться пропорционально. В этом отношении он ведет себя как нерегулируемый блок питания, и поэтому X-Reg точнее называть стабилизатором напряжения или линейным более плавным, чем стабилизатор напряжения. Обычно я до сих пор называю его регулятором, потому что X-Reg заменяет регуляторы напряжения и выполняет их функцию, обеспечивая малошумящие шины напряжения с низким выходным импедансом.


Печатные платы

Схема X-Reg обычно является неотъемлемой частью схемы, которую она питает, и обычно размещается на той же печатной плате. Значения компонентов выбираются в соответствии с конкретным приложением. Первым применением X-Reg был проект Phonoclone 3, где он был объединен с фонокорректором Phonoclone MC для достижения хорошего эффекта. Пожалуйста, загрузите последнюю версию файлов схемы и компоновки Phonoclone 3 со страницы продуктов RJM Audio, если вы заинтересованы.

Для общего применения ниже представлена ​​автономная схема, которая будет выдавать примерно ±9–12 В по шине от входов ±18 В постоянного тока. Он предназначен для работы в паре с трансформатором со вторичными обмотками на 12 В переменного тока. (Например, источники питания VSPS или Phonoclone.) Выходное напряжение можно установить, изменив значение R2, R2A и/или R3, R3A. Для облегчения выбора резистора предоставляется рабочий лист Excel. Если требуется выходной ток более 150 мА, проходные транзисторы следует охлаждать.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *