Станок 1к62 характеристики: 1К62 Станок токарно-винторезный универсальный. Паспорт, руководство, схемы, описание, характеристики

Содержание

Станок токарно винторезный 1к62 – обзор и характеристики

Советское станкостроение активно начало развиваться в 50-е года 20 века. Именно тогда инженерами московского завода «Красный пролетарий» была представлена знаменитая модель 1к62, за которой работало не одно поколение советских мастеров. На тот момент универсальность и надежность агрегата стали основными факторами успеха конструкции. И этот триумф наблюдается по сегодняшний день. В наши дни во многих цехах и частных мастерских можно встретить подобную технику, которая, спустя десятки лет активной эксплуатации, продолжает чинно выполнять возложенные на нее функции.

Из названия станка токарного 1к62 можно понять, что это за оборудование и какое ее целевое назначение. Индекс 1 определяет группу, к которой принадлежит техника – токарные станки. Буква «К» указывает на поколение агрегата. Цифра 6 информирует нас о том, что техника относится к подгруппе токарно-винторезных станков, а конечная двойка говорит о том, что высота центров над станиной составляет 22 сантиметра.

Данный станок отличается универсальностью, так как призван выполнять огромный спектр задач. Главная его функция – нарезание различных видов резьбы. Также оборудование способно создавать архимедовы спирали различного шага.

Станок 1к62 может применяться для работы с закаленными заготовками, поскольку шпиндель агрегата монтирован на особые подшипники, делающие всю конструкцию максимально жесткой. В данной модели предусмотрена возможность ударной обработки заготовок различной степени твердости. При этом никак не страдает точность обработки детали.

Одно из преимуществ, которыми обладает станок токарно-винторезный 1к62, – немалая мощность основного силового агрегата. Отменная прочность и повышенная жесткость основных элементов делает конструкцию невероятно выносливой и производительной. Виброустойчивость, а также большой выбор скоростных режимов и вариантов подач позволяют осуществлять первоклассное резание минералокерамическими и изготовленными из твердых сплавов инструментами. Существенный плюс станка – возможность работы с короткими деталями значительного диаметра.

Оборудование без труда справляется с пологими конусами. Это стало возможным, благодаря конструктивной особенности задней балки агрегата. Она может смещаться в поперечном направлении, что делает технику особенно ценным помощником квалифицированного мастера.

Конструкцией предусмотрено наличие замка, который при необходимости соединяет суппорт с задней балкой. Такая опция полезна в тех случаях, когда приходится производить сверление при механическом движении балки от суппорта.

Станок токарный 1к62 может агрегироваться с подвижными и неподвижными люнетами, диаметр которых составляет от 20 до 80 и от 20 до 130 миллиметров соответственно. Модель комплектуется сменными зубчатыми колесами, передающими движение коробке передач. Также конструкцией предусмотрено наличие упора, монтируемого на станине. Он позволяет осуществлять продольное смещение каретки. Упор ограничивает интенсивность движения суппорта 250-ю миллиметрами в минуту.

Чтобы разобраться во всех преимуществах рассматриваемого нами агрегата, необходимо подробнее изучить его технические параметры. Ниже будут представлены основные характеристики модели 1к62.

Предельный диаметр заготовки у данного станка составляет (при фиксации над станиной) 400 миллиметров, а диаметр прутка – 45 миллиметров. В агрегате предусмотрено двадцать три встроенные скорости вращения шпинделя в пределах от 12.5 до 2000 оборотов в минуту.



В станке токарно-винторезном 1к62 предусмотрен 10-киловаттный двигатель. С помощью коробки передач мастер может выбирать оптимальный режим поперечной и продольной передачи суппорта. Переключение осуществляется путем манипуляций со встроенными рукоятями. Кроме того, в агрегате предусмотрена возможность интенсивного движения суппорта, что стало возможным благодаря дополнительному киловаттному двигателю.

Описывая, какие свойственны токарному станку 1к62 технические характеристики, следует упомянуть то, что агрегат имеет тепловые реле, призванные защищать его от продолжительных перегрузок. Кроме того, оборудование укомплектовано предохранителями, препятствующими появлению замыкания.

В соответствии с ГОСТ 8-82 устройство относится к классу точности Н. Допустимая масса заготовки составляет 500 кг в патроне и 1500 кг в центрах. Техника укомплектована четырьмя электрическими двигателям: основным силовым агрегатом главного привода, двигателем быстрых перемещений, электродвигателем гидростанции и насоса охлаждения. Модель имеет серьезные габариты, которые составляют 2812х1166х1324 миллиметров при массе станка 2140 кг.

Очевидно, что токарный станок 1к62 технические характеристики демонстрирует на самом высоком уровне. Он способен справиться с большинством задач, возникающих перед токарем, что делает его незаменимым помощником и на крупном производстве, и в небольших цехах.

Подводя итоги

Токарный станок 1к62 – это достойный инструмент советского образца, который, несмотря на свое моральное устаревание, остается серьезным конкурентом многим аналогам, таким как Samat 400S (Россия), CA6140A (Китай) и CU402 (Болгария). Его главные преимущества заключаются в надежности, высокой производительности и дешевизне обслуживания. Однако современные технологические достижения мастерам, работающим за станком, спроектированным в середине 20 века, конечно же, остаются недоступными.

Серия 1к62 – это недорогая альтернатива многим станкам, однако стоит учитывать, что функционал этой модели скромнее возможностей более современных аналогов.

Токарно-винторезный станок 1К62: технические характеристики, схемы


Функциональные особенности станка


Внешний вид станка

Спецификой этого оборудования является возможность обработки деталей из закаленной стали. Этому способствует конструкция шпинделя, который установлен на специальных подшипниках, описанных в паспорте.

Для выполнения высокоточной обработки твердых сплавов станок имеет большую мощность главного привода. В совокупности с механической прочностью и жесткостью звеньев кинематической передачи это влияет на низкую вибрацию во время работы. Дополнительно нужно учитывать, что станок 1К62 является лобовым. Это означает, что на нем можно обрабатывать относительно кроткие заготовки с большим сечением.

Помимо этих особенностей следует знать такие характеристики станка 1К62, указанные в схеме и паспорте:

  • конструкция задней балки. Она может смещаться в поперечном направлении. Это дает возможность обрабатывать пологие конусы;
  • сменные зубчатые колеса. Они соединяют переднюю балку и коробку передач;
  • наличие специального ступора. Это ограничивает продольное перемещение каретки до значения 250 мм/мин;
  • мощный главный асинхронный электродвигатель 10 кВт;
  • реле. Необходимо для защиты от тепловых перегрузок двигателя, возникающих во время обработки заготовок из твердых сортов стали.

Для детального ознакомления с этими качествами рекомендуется изучить паспортные данные оборудования и содержание инструкции по эксплуатации. Там же указаны основные характеристики.

Благодаря своей универсальной конструкции и эксплуатационным параметрам токарный станок 1к62 до сих пор остается популярным для комплектации мелкосерийных и штучных производств, мастерских.

Кинематическая схема


Кинематическая схема

Работа станка обеспечивается вращением шпинделя, которое происходит за счет клиноременной передачи. Она имеет несколько шкивов для изменения крутящего момента. Приводом служит электродвигатель.

Главное движение осуществляется через муфту, которая соединена со шпинделем системой зубчатых колес. Для прямого вращения происходит смещение муфты влево, в результате чего происходит включение определенных участков цепи зубчатых колес. В паспорте и схеме подробно описаны механизмы переключения.

Движение подачи осуществляется методом задействования четырех кинематических цепей, описанных в инструкции:

  • винторезная. Для увеличения точности нарезки могут быть добавлены дополнительные муфты малых диаметров;
  • поперечная. Для подачи используются схемы, включающие в себя три зубчатых колеса и червячную пару;
  • продольная. Специфика работы полностью соответствует поперечной;
  • ускоренные перемещения суппорта. Осуществляется за счет работы отдельного электродвигателя. Передача вращательного движения выполняется через клиноременную передачу.

Всего при переключении получают шесть вариантов сопряжения зубчатых колес. Если же делать это через перебор – количество возрастает до 24. Фактически же значений меньше, так как некоторые пары имеют одинаковое передаточное отношение.

В паспортной документации дается описание переключения каждой пары с указанием параметров конкретного зубчатого колеса на схеме станка 1К62. Эти данные можно использовать для первичного анализа характеристики оборудования.

Токарно-винторезный станок 1К62

1К62

Назначение токарно-винторезного станка 1К62 — наружное и внутреннее точение, нарезание правой и левой метрической, дюймовой, модульной и питчевой резьб, одно-и многозаходных резьб с нормальным и увеличенным шагом, торцовой резьбы и т. д.

Технические характеристики станка 1К62

  • Наибольший диаметр детали, устанавливаемой над станиной, 400 мм
  • Расстояние между центрами в мм 710, 1000 и 1400
  • Диаметр отверстия шпинделя в мм 47
  • Число значений частот вращения шпинделя 23
  • Частота вращения шпинделя в об/мин 12,5-2000
  • Число подач 42

Подачи на 1 оборот в мм:

  • Продольные 0,07 — 4,16
  • Поперечные 0,035 — 2,0

Шаг нарезаемой резьбы:

  • Метрической в мм 1-192
  • дюймовой (число ниток на 1″) 2 — 24
  • модульной в мм (0,5-48)Pi

Мощность электродвигателя 10кВт

На рисунке 1 показан токарно-винторезный станок 1К62. Станина 1, установленная на передней 2 и задней 3 тумбах, несет на себе все основные узлы станка. Слева на станине размещена передняя бабка 4. В ней имеется коробка скоростей со шпинделем, на переднем конце которого закреплен патрон 5. Справа установлена задняя бабка 6. Ее можно перемещать вдоль направляющих станины и закреплять в зависимости от длины детали на требуемом расстоянии от передней бабки. Режущий инструмент (резцы) закрепляют в разцедержателе суппорта 7.

Рисунок 1 — Токарно-винторезный станок 1К62

Продольная и поперечная подачи суппорта осуществляются с помощью механизмов, расположенных в фартуке 8 и получающих вращение от ходового вала 9 или ходового винта 10. Первый используют при точении, второй — при нарезании резьбы. Величину подачи суппорта устанавливают настройкой коробки подач 11. В нижней части станины имеется корыто 12, куда собирается стружка и стекает охлаждающая жидкость. Кинематическая схема станка 1К62 представлена на рисунке

Рисунок 2 — Кинематическая схема токарно-винторезного станка 1К62

Главное движение

Главным движением в станке 1К62 является вращение шпинделя, которое он получает от электордвигателя 1 через клиноременную передачу со шкивами 2-3 и коробку скоростей. На приемном валу II установлена двусторонняя многодисковая фрикционная муфта 97. Для получения прямого вращения шпинделя муфту 97 смещают влево и привод вращения осуществляется по следующей цепи зубчатых колес: 4-5 или 6-7, 8-9 или 10-11, или 12-13, вал IV, колеса 14-15, шпиндель V, или через перебор, состоящий из группы передач с двухвенцовыми блоками 16 — 17 и 18 — 19 и зубчатых колес 20 и 21. Последняя пара входит в зацепление при перемещении вправо блока 15 — 21 на шпинделе. Переключая блоки колес, можно получить шесть вариантов зацепления зубчатых колес при передаче вращения с вала IV непосредственно на шпиндель и 24 варианта — при передаче вращения через перебор. В действительности количество значений ча¬стот вращений шпинделя: меньше (23), так как передаточные отношения некоторых вариантов численно совпадают. Реверсирование шпинделя выполняют перемещением муфты 97 вправо. Тогда вращение с вала II на вал III передается через зубчатые колеса 22 — 23, 24 — 12 и далее по предыдущей цепи. Количество вариантов зацепления 15, фактических значений частот вращения 12, так как передаточные отношения некоторых вариантов тоже численно совпадают.

Движение подачи

Механизм подачи включает в себя четыре кинематические цепи: винторезную, продольной и поперечной подачи, цепь ускоренных перемещений суппорта. Вращение валу VIII передается от шпинделя V через зубчатые колеса 25 — 26, а при нарезании резьбы с увеличенным шагом — от вала VI через звено увеличения шага и далее через зубчатые колеса 27 — 28. В этом случае звено увеличения шага может дать четыре варианта передач:

  1. шпиндель V, колеса 21 — 20, 29 — 19, 17 — 27 — 28, вал VIII
  2. шпиндель V, колеса 21 — 20, 29 — 19, 16 — 30, 27 — 28, вал VIII
  3. шпиндель V, колеса 21 — 20, 31 — 18, 17 — 27 — 28, вал VIII
  4. шпиндель V, колеса 21 — 20, 31 — 18, 16 — 30, 27 — 28, вал VIII.

С вала VIII токарно-винторезного станка 1К62 движение передается по цепи колес 32 — 33 или 34 — 35, или через реверсивный механизм с колесами 36 — 37 — 38, сменные колеса 39 — 40 или 41 — 42 и промежуточное колесо 43 на вал X. Отсюда движение можно передать по двум вариантам зацепления зубчатых колес. 1. Вращение передается через зубчатые колеса 44 — 45 — 46 на вал XI, затем через колеса 47 — 48 и накидное колесо 49 зубчатому конусу механизма Нортона (колеса 50 — 56) и далее по цепи зубчатых передач 57 — 58, 59 — 60, 61 — 62 или 63 — 64 через колеса 65 — 66 или 64 — 67 — валу XV. Затем вращение может быть передано либо ходовому винту 68, либо ходовому валу XVI. В первом случае — через муфту 101, во втором — через пару 69 — 70 и муфту обгона 106. 2. С вала X через муфту 98, т. е. при сцеплении зубчатых колес наружного и внутреннего зацепления 44 — 71 вращение передается конусу Нортона, который становится ведущим звеном, и затем через колеса 49 — 48 — 47 валу XI и далее, через муфту 100 — валу XIII, а от последнего далее по цепи первого варианта.

Продольная и поперечная подачи суппорта

Для передачи вращения механизма фартука служит ходовой вал XVI. По нему вдоль шпоночного паза скользит зубчатое колесо 72, передающее вращение от вала XVI через пару зубчатых колес 73 — 74 и червячную пару 75 — 76 валу XVII. Для получения продольной подачи суппорта и его реверсирования включают одну из кулачковых муфт — 102 или 103. Тогда вращение от вала XVII передается зубчатыми колесами 77 — 78 — 79 или 80 — 81 валу XVIII и далее парой 82 — 83 — реечному колесу 84. Так как рейка 85 неподвижно связана со станиной станка, реечное колесо 84, вращаясь, одновременно катится по рейке и тянет за собой фартук с суппортом. Поперечная подача и ее реверсирование осуществляются включением муфт 104 или 105. В этом случае через передачи 77 — 78 — 86 или 80 — 87

Рисунок 3 — Коробка скоростей станка 1К62

вращение передается валу XIX и далее через зубчатые колеса 88-89-90 на винт 91, который сообщает движение поперечному суппорту.

Цепь ускоренного перемещения суппорта

Для осуществления ускоренного (установочного) перемещения суппорта ходовому валу XVI сообщается быстрое вращение от электродвигателя 92 через клиноременную передачу 93-94. Механизм подачи суппорта через коробку подач при этом можно не выключать, так как в цепи привода ходового вала установлена муфта обгона 106. С помощью винтовых пар 95 и 96 можно вручную перемещать резцовые салазки и пиноль задней бабки. Рассмотрим отдельно некоторые узлы токарно-винторезного станка 1К62.

Передняя бабка

Вращение от главного электродвигателя передается ведомому шкиву, сидящему на валу I. Этот вал несет реверсивную фрикционную муфту, от которой движение на вал II передается или через блок z = 56- z = 51, или через колесо z = 50 и промежуточный блок z = 24 — z = 36, сидящий на консольной оси. С вала II на вал III вращение передается через тройной блок z = 47 — z = 55 — z = 38. В левом положении блока z = 43 — z = = 52, сидящего на шпинделе, движение с вала III передается на шпиндель непосредственно через колеса z = 65 — z = 43, а в правом положении этого блока — через перебор, установленный на валах IV и V. Все валы вращаются на опорах качения, которые смазываются как разбрызгиванием, так как коробка скоростей залита маслом, так и принудительно — с помощью насоса. Движение подачи от шпинделя VI передается валу VII трензеля и далее на механизм подач.

Задняя бабка

Задняя бабка 1К62 имеет плиту 12 и может перемещаться по направляющим станины. В отверстии корпуса 3 задней бабки имеется выдвижная пиноль 6, которая перемещается с помощью маховика 10 и винтовой пары 7-8. Рукояткой 5 фиксируют определенный вылет пиноли, а вместе с ней

Рисунок 4 — Задняя бабка станка 1К62

и заднего центра 4. Корпус 3 бабки с помощью винтовой пары 1 может сме¬щаться в поперечном направлении относительно плиты 12. Болтом 14 и башмаком 2 задняя бабка может закрепляться на станине станка 1К62. Это также можно сделать с помощью рукоятки 9, эксцентрика 11 и башмака 13. В конусное гнездо пиноли можно установить не только задний центр, но и режущий инструмент для обработки отверстий (сверло, зенкер и др).

Коробка подач

Коробка подач закреплена на станине ниже передней бабки, имеет несколько валов, на которых установлены: ступенчатый блок механизма Нортона 3, блоки зубчатых колес 6 и 13 и переключаемые муфты 1, 2, 4, 5, 7, 5, 14, 15. В правом положении муфты 7 получает вращение ходовой винт 9, а в левом ее положении (как показано на рисунке) через муфту обгона 11-12 вращается ходовой вал 10.

Рисунок 5 — Коробка подач станка 1К62

Суппорт

Суппорт состоит из следующих основных частей: нижних салазок 1 для продольного перемещения суппорта токарно-винторезного станка 1К62 по направляющим 2 станины, поперечной каретки 3 и резцовых салазок 4. Поперечная каретка перемещается в направляющих нижних салазок с помощью винта 5 и безлюфтовой гайки 6. При ручной подаче винт вращается с помощью рукоятки 7, а при автоматической

от зубчатого колеса 8.

Рисунок 6 — Суппорт станка 1К62

В круговых направляющих поперечной каретки 3 установлена поворотная плита 9, в направляющих которой перемещаются резцовые салазки 4 с четырехпозиционным резцедержателем 10. Такая конструкция позволяет устанавливать и зажимать болтами поворотную плиту с резцовыми салазками под любым углом к оси шпинделя. При повороте рукоятки против часовой стрелки резцедержатель 10 приподнимается пружиной 12 — одно из нижних отверстий его сходит с фиксатора. После фиксации резцедержателя в новом положении его зажимают, повернув рукоятку в обратном направлении.

Механизм фартука

Механизм фартука расположен в корпусе, привернутом к каретке суппорта. От ходового вала через ряд передач вращается червячное колесо 3. Вращение с вала 1 передается зубчатыми колесами валов II и III. На этих валах установлены муфты 2, 11, 4 и 10 с торцовыми зубьями, которыми включается перемещение суппорта в одном из четырех направлений. Продольное движение суппорта осуществляется реечным колесом 1, а поперечное — винтом, вращающимся от зубчатого колеса 5. Рукоятка 8 служит для управления маточной гайкой 7 ходового винта 6. Валом с кулачками 9 блокируется ходовой винт и ходовой вал токарно-винторезного станка 1К62, чтобы нельзя было включить подачу суппорта от них одновременно.

Рисунок 7 — Механизм фартука станка 1К62

Похожие материалы

Характеристики передней и задней бабки


Коробка передач передней бабки

Для обработки детали необходимо закрепить ее между шпинделем и задней бабкой. Изменение частоты вращения происходит за счет коробки передач, которая входит в конструкцию передней бабки. Передача движения выполняется на ведомый вал.

С основными преимуществами конструкции коробки передач передней бабки можно ознакомиться в паспортных характеристиках. Они заключаются в установке подшипников качения на валах. Для повышения производительности и точности на узлы подается смазывающая жидкость. Дополнительно указаны фото оборудования для лучшего понимания расположения компонентов.

Технические параметры шпинделя, которыми обладает токарно-винторезный станок 1К62:

  • диаметр отверстия – 4,7 см;
  • допустимое сечение прутка – 4,5 см;
  • частоты вращения – от 19 до 2420 об/мин (обратное). Для прямого это значение варьируется от 12,5 до 2000 об/мин.
  • количество ступеней частот для различных режимов вращения: прямое – 24; обратное – 12.

Также следует учитывать параметры внутреннего конуса, описанные в схеме. Его размеры соответствуют Морзе 6. Конфигурация внутреннего шпинделя по ГОСТ 12593-72 равно 6К.

Для перемещения задней бабки в конструкции предусмотрена плита, которая движется по станине. Согласно технической документации изменение положения происходит за счет маховика и винтовой пары. Выдвижная пиноль имеет фиксатор для установки режущего инструмента, с помощью которого можно формировать отверстия.

Технические характеристики и паспорт станка 1К62

Все технические характеристики токарно-винторезного станка 1К62 представлены ниже в формате таблиц:


Характеристики 1К62 — часть 1


Характеристики 1К62 — часть 2


Характеристики 1К62 — часть 3

Скачать бесплатно паспорт токарно-винторезного станка 1К62: Паспорт станка 1К62

Скачать руководство по ремонту и обслуживанию 1К62: Ремонт станка 1К62

Параметры суппорта


Чертеж суппорта станка

Согласно технической документации суппорт предназначен для смещения режущего инструмента относительно плоскости детали. Он состоит из нескольких ключевых узлов, каждый из которых нужен для выполнения конкретной функции.

Основным компонентом суппорта являются резцовые салазки. Они крепятся на поперечной каретке, которая фиксируется на салазках. Смещение происходит за счет механических компонентов. При этом учитывается максимальная длина хода каретки, которая для данной модели может составлять 64, 93 и 133 см.

Кроме этого, необходимо учитывать следующие паспортные характеристики:

  • поперечный ход – до 25 см;
  • ход верхней части – до 13 см;
  • количество передач. Продольных и поперечных по 49;
  • максимальное значение рабочих подач мм/об. Продольных – от 0,07 до 4,16. Поперечных – от 0,035 до 2,08;
  • скорость быстрого смещения, м/мин. Поперечные -1,7; продольные – 3,4;

Конструкция станка позволяет формировать на поверхности детали различные типы резьбы – метрические, дюймовые, притчевые и модульные.

Фартук имеет жесткое крепление к каретке. Для передачи вращательного момента в его конструкции предусмотрен ходовой вал, соединенный с несколькими ступенями передач. С их помощью происходит вращение червячного колеса.

Максимальный диаметр детали ограничивается размером 40 см (над станиной). Над суппортом можно крепить заготовки, сечение которых не превышает 22 см.

VR для инженеров — виртуальное цифровое образование

Добро пожаловать в VR Digitum

Добро пожаловать в наш новый воображаемый акселератор цифрового образования в виртуальной реальности

Эта образовательная акселераторная инициатива направлена ​​на то, чтобы предоставить нашим клиентам и молодому поколению в Иордании, Персидском заливе и на Ближнем Востоке самые проверенные новые решения в онлайновом и цифровом образовании благодаря цифровым виртуальным технологиям и искусственной промышленной революции 4.0.

Узнать больше

Виртуальный учебный план для инженерных программ

Эта платформа предназначена для предоставления инновационного решения для электронного обучения и виртуального моделирования физических процессов и практических инженерных лабораторий, используемых в машиностроении, гражданском строительстве, производстве и гидравлике.

Причины использования виртуальных лабораторий:  Существующие лабораторные столы и мастерские недостаточно оснащены современными приборами, установками и аппаратами.  Большинство лабораторных стендов и учебных мастерских введены в эксплуатацию после выхода на пенсию; они не отвечают современным требованиям и устарели. Все это может сделать результаты тестирования недействительными и создать потенциальную опасность для обучаемых.  Лабораторное оборудование и столы требуют ежегодного обновления, что приводит к дополнительным финансовым затратам.  Известно, что такие области, как конструкционное материаловедение или физическая химия, помимо оборудования требуют и расходных материалов – сырья, химических реагентов и т.п. Их стоимость достаточно высока; затраты на аппаратное и программное обеспечение, несомненно, также велики, но универсальность компьютерной техники и ее широкое распространение могут компенсировать этот недостаток.  Современные компьютерные технологии позволяют наблюдать малоразличимые в реальной практике процессы без применения дополнительной техники, например, из-за малых размеров наблюдаемых частиц.
 Возможность моделирования процессов, принципиально невозможных в лабораторных условиях.  Возможность осмысления и наблюдения экспериментальных тонкостей в другом временном масштабе, что важно для процессов, протекающих за доли секунды или, наоборот, длящихся несколько лет.  Безопасность – важный фактор виртуальной лаборатории, особенно если работа ведется под высоким давлением или с химическими веществами.  Иногда бывает сложно провести повторный анализ или проверку из-за скорости отклика некоторых лабораторных установок и времени, отведенного на эксперимент.  Приобретение достаточных навыков и опыта работы в конкретных областях требует повторных учебных операций, что не всегда возможно из-за частых отказов оборудования и дополнительных затрат на оперативное обеспечение.

Узнать больше

Виртуальные инженерные лаборатории:


Основные характеристики

 Современный дизайн: Графическое наполнение программы соответствует современному уровню качества в области компьютерной графики и визуализации  Простота и минимализм: Ненавязчивый интерфейс программных продуктов и интуитивно понятное управление виртуальным лабораторным пространством  Высокая интерактивность: высокая интерактивность в сочетании с наглядной демонстрацией физических экспериментов значительно повышает эффективность учебного процесса.

 Реалистичные эксперименты: проведение имитационных экспериментов максимально приближено к реальности. Программное обеспечение имитирует процесс работы с реальным оборудованием и повторяет всю последовательность действий лаборанта  Соответствие образовательным стандартам: Виртуальные лаборатории соответствуют современным образовательным стандартам и являются эффективным дополнением реальной лабораторной базы учебных заведений Задачи, решаемые с помощью виртуальных лабораторий:  Пробуждение интереса учащихся к обучению и обеспечение доступности оборудования для содействия учебной активности и самостоятельности учащихся.  Привлечение внимания учащихся средствами мультимедиа с учетом их психологических возрастных особенностей с целью улучшения восприятия учебного материала.  Контролировать усвоение целевого материала каждым учащимся.  Содействие процессу подготовки к экзаменам и зачетам.  Оказание помощи учителям и отвлечение их от рутинной работы.  Использование внеклассного времени для изучения инструкций к домашнему заданию.
 Внедрение дистанционных форм обучения, особенно это полезно для учебных заведений со слабой лабораторной базой. Область применения виртуальных лабораторий:  Компьютерное моделирование физических процессов.  Демонстрационная поддержка учебников и рабочих тетрадей.  Лабораторные занятия студентов в компьютерных классах.  Дистанционное обучение.  Системы повышения квалификации кадров.

Узнать больше

1. Виртуальная лаборатория: Безопасность жизнедеятельности и охрана труда

Программно-лабораторный комплекс для моделирования лабораторных работ по основным разделам курса ОБЖ и ОХТ для технических специальностей. Программный комплекс включает в себя 6 симуляционных лабораторий: Цели:

1. Исследование микроклиматических условий в рабочей зоне производственных помещений.

2. Исследование освещенности рабочих мест при искусственном освещении.

3. Исследование эффективности системы вентиляции.

4. Исследование процесса статической электризации при пневмотранспортировании сыпучих материалов.

5. Изучение электробезопасности электроустановок напряжением до 1000 В.

6. Изучение температур вспышки и воспламенения горючих жидкостей.

Запросить цену

2. Виртуальная лаборатория: CNC Simulator. Токарный станок

Программный тренажер токарного станка с числовым программным управлением (ЧПУ) – учебно-методическая разработка, предназначенная для базового ознакомления начинающих машиностроителей с принципами программирования операций токарной обработки деталей с использованием стандартного GM-кода (Fanuc System A). Основой трехмерной имитационной модели является токарный станок с классической компоновкой узлов, оснащенный системой ЧПУ, восьмипозиционной револьверной головкой, трехкулачковым патроном, задней бабкой, системой подачи СОЖ и другими механизмами.

Обработка материала производится по двум осям в горизонтальной плоскости. Область применения программного продукта: учебный процесс с использованием компьютерных технологий: лабораторные занятия студентов в компьютерных классах, дистанционное обучение, демонстрационное сопровождение лекционного материала по группе направлений подготовки и специальностей. Функционал тренажера: подготовка текстов управляющих программ токарных операций в формате стандартного GM-кода, проверка управляющих программ на наличие синтаксических и технологических ошибок, воспроизведение на экране компьютера (или другого вычислительного устройства) трехмерных графических моделей основных узлов токарного станка и металлорежущих инструментов для имитации процесса токарной обработки металла, трехмерной визуализации процесса формообразования деталей при точении по составленным управляющим программам, визуализации траекторий движения инструмента, реализации интерактивного взаимодействия пользователя с имитационная модель технологического оборудования.

Запросить цену

3. Виртуальная лаборатория: Технология резки металлов

Программно-лабораторный комплекс для моделирования лабораторных работ по основным разделам курса технологии резки металлов для студентов технических специальностей. Программный комплекс включает в себя 5 симуляционных лабораторий:

1. Определение сил резания при включении токарного станка модели 1К62.

2. Определение температуры резания при включении станка модели 1К62.

3. Определение износа и стойкости резцов при включении токарного станка модели 1к62.

4. Исследование геометрии рабочей части токарных резцов.

5. Симулятор станка с ЧПУ (Система управления 2Р22).

Запросить цену

4. Виртуальная лаборатория: 1К62 Симулятор токарного станка

3D симулятор классического токарно-винторезного станка мод. 1К62. Приложение имитирует выполнение обычных токарных операций в интерактивном режиме. Возможности имитационной модели включают операции наружного и торцевого точения, сверления и растачивания отверстий, точения канавок, нарезания наружной и внутренней резьбы. В полной версии приложения для работы доступно более 70 режущих инструментов. Область применения программного продукта: учебный процесс с использованием компьютерных технологий: лабораторные занятия студентов в компьютерных классах, дистанционное обучение, демонстрационное сопровождение лекционного материала по группе направлений подготовки и специальностей. Мультиплатформенность позволяет использовать программное обеспечение на различных вычислительных устройствах, включая интерактивные доски, смартфоны, планшетные и стационарные компьютеры, что, в свою очередь, повышает гибкость и мобильность учебного процесса, соответствующую современному уровню информатизации образования.

Запросить цену

5.

Виртуальная лаборатория: Физико-механика для инженеров

Программно-лабораторный комплекс для моделирования лабораторных работ по основным разделам курса механики для технических специальностей. Лабораторное оборудование выполнено в соответствии с его реальными аналогами. Каждая лабораторная работа включает краткие методические указания и справочные данные, необходимые для обработки экспериментальных данных. Лабораторный комплекс включает 32 лабораторные работы:
1. Равноускоренное движение.
2. Движение с равноускорением.
3. Законы столкновений.
4. Свободное падение.
5. Наклонный запуск.
6. Прецессия и нутация гироскопа.
7. Вращательное движение с равноускорением. 8. Момент инерции горизонтального стержня.
9. Момент инерции различных испытуемых тел. 10. Колесо Максвелла.
11. Закон Гука.
12. Рычаги первого и второго рода.
13. Параллелограмм сил.
14. Наклонная плоскость.
15. Статическое и динамическое трение.
16. Гибка плоских балок.
17. Кручение на цилиндрических стержнях.
18. Вискозиметр с падающей сферой.
19. Поверхностное натяжение.
20. Принцип Архимеда.
21. Гармонические колебания струнного маятника. 22. Эллиптические колебания струнного маятника. 23. Маятник переменной G
24. Реверсивный маятник Катера.
25. Простые гармонические колебания.
26. Крутильный маятник Поля.
27. Принудительные гармонические вращательные колебания.
28. Связанные колебания.
29. Механические волны.
30. Скорость звука в воздухе.
31. Измерение стоячих звуковых волн в трубке Кундта.
32. Распространение звука в стержнях.

Запросить цену

6. Виртуальная лаборатория: Физика термодинамики

Программно-лабораторный комплекс для моделирования лабораторных работ по основным разделам курса термодинамики для технических специальностей. Лабораторное оборудование выполнено в соответствии с его реальными аналогами. Каждая лабораторная работа включает краткие методические указания и справочные данные, необходимые для обработки экспериментальных данных. Лабораторный комплекс включает 13 лабораторных работ:
1. Увеличение внутренней энергии за счет механической работы: внутренняя энергия.

2. Внутренняя энергия и электрическая работа: Внутренняя энергия.

3. Закон Бойля: как законы.

4. Закон Амонтона: Газовые законы.

5. Показатель адиабаты воздуха: газовые законы.

6. Реальные газы и критическая точка: газовые законы.

7. Куб Лесли: T Теплопередача.

8. Теплопроводность: теплопередача.

9. Тепловое расширение твердых тел: тепловое расширение.

10. Водная аномалия: тепловое расширение.

11. Двигатель Стирлинга D: термодинамические циклы.

12. Двигатель Стирлинга G: термодинамические циклы.

13. Тепловые насосы: термодинамические циклы.

Запросить цену

7. Виртуальная лаборатория: Теоретическая гидромеханика

Программно-лабораторный комплекс для моделирования лабораторных работ по основным разделам курса Теоретическая гидравлика для технических специальностей. Программный комплекс включает 13 симуляционные лаборатории:

1. Измерение гидростатического давления, экспериментальное подтверждение основного гидростатического уравнения и закона Паскаля.
2. Исследование относительного покоя жидкости при вращательном движении.
3. Экспериментальное определение членов уравнения Д. Бернулли при установившемся неравномерном движении жидкости.
4. Построение схемы Д. Бернулли напорного трубопровода переменного сечения по семимерным сечениям трубопровода.
5. Исследование гидравлического сопротивления напорного трубопровода.
6. Экспериментальная иллюстрация ламинарного и турбулентного течения жидкости.
7. Исследование течения жидкости через малые отверстия в тонкой стенке и сопла при постоянном давлении в атмосферу.
8. Экспериментальное исследование прямого гидроудара в напорной трубе.
9. Исследование фильтрации в песчаном грунте на приборе Дарси.
10. Параметрические испытания центробежного насоса.
11. Кавитационные испытания центробежного насоса.
12. Исследование характеристик центробежных вентиляторов.
13. Экспериментальное определение скорости в поперечном сечении круглой трубы.

Запросить цену

8. Виртуальная лаборатория: Гидравлика открытого русла

Программно-лабораторный комплекс для моделирования лабораторных работ по основным разделам курса «Гидравлика открытого русла» для технических специальностей. Программный комплекс включает в себя 8 симуляционных лабораторий:

1. Определение коэффициента шероховатости открытого призматического канала.

2. Оценка энергетического состояния потока и расчет кривых свободной поверхности.

3. Определение коэффициента расхода прямоугольного водосброса с тонкой стенкой.

4. Исследование течения воды через плотину с широким порогом.

5. Определение коэффициентов расхода водосброса практического профиля.

6. Исследование истечения воды из нижней части напорного порта (из-под щита).

7. Исследование гидравлического прыжка.

8. Исследование кривых свободной поверхности жидкости в коротком гидравлическом канале.

Запросить цену

9. Виртуальная лаборатория: Наружные сети водоснабжения

Программно-лабораторный комплекс для моделирования лабораторных работ по основным разделам курса «Гидравлика водоснабжения» для технических специальностей. В программный комплекс входят 4 симуляционные лаборатории:

1. Исследование замкнутых сетей водоснабжения.

2. Исследование тупиковых водопроводных сетей.

3. Исследование объединенных сетей водоснабжения.

4. Редактор моделей водопроводных сетей.

Запросить цену

10. Виртуальная лаборатория: Испытания строительных материалов

Программно-лабораторный комплекс для моделирования лабораторных работ по основным разделам курса строительного материаловедения для технических специальностей. Программный комплекс включает в себя 7 симуляционных лабораторий:

1. Определение истинной плотности материала.
2. Определение объемной плотности материала.
3. Определение нормальной плотности цементного теста.
4. Определение времени схватывания цементного теста.
5. Определение прочности бетона на изгиб.
6. Определение прочности тяжелого бетона неразрушающим методом.
7. Определение прочности бетона на сжатие.

Запросить цену

11. Виртуальная лаборатория: Самоуплотняющийся бетон

Программно-лабораторный комплекс для моделирования лабораторных работ по основным разделам курса технологии самоуплотняющихся бетонов для технических специальностей. В состав программного комплекса входят симуляционные лаборатории:

1. Испытание самоуплотняющейся бетонной смеси для укладки конусом Абрамса (Испытание на подвижность).

2. Испытание самоуплотняющейся бетонной смеси в V-образной воронке (V-funnel Test).

3. Испытание самоуплотняющейся бетонной смеси в L-образной коробке (L-box Test).

4. Испытание самоуплотняющейся бетонной смеси в J-кольце (J-ring Test).

5. Испытание образцов самоуплотняющихся бетонов на прочность при сжатии (испытание на прочность при сжатии).

Запросить цену

12.

Виртуальная лаборатория: Сопротивление материалов

Программно-лабораторный комплекс для моделирования лабораторных работ по основным разделам курса сопротивления материалов для технических специальностей. Лабораторное оборудование выполнено в соответствии с его реальными аналогами. Каждая лабораторная работа включает краткие методические указания и справочные данные, необходимые для обработки экспериментальных данных.
1. Испытание материала на растяжение: растяжение.
2. Испытание материалов на сжатие T: Сжатие.
3. Испытание материала на кручение: кручение.
4. Определение упругих констант изотропных материалов: упругие константы.
5. Прямой изгиб стержня: изгиб.
6. Косой изгиб стержня: Изгиб.
7. Исследование напряжений и перемещений в плоской раме: теория напряжений.
8. Исследование напряжений в плоском стержне большой кривизны: теория напряжений.
9. Напряженное состояние при совместном изгибе и кручении стержня: теория напряжений.
10. Экспериментальная проверка теоремы взаимности: перемещения в упругих системах.
11. Определение критической нагрузки для гибкого сжатого стержня: теория устойчивости. 12. Определение ударной вязкости материала: динамическое напряжение.

Запросить цену

Галерея

Наши последние и лучшие фотографии

Мы любим фотографировать и показывать их миру.

Фаваз Бухт Маймадер | Нравится

Фаваз Бухт Маймадер | Нравится | GrabCAD

Узнайте о платформе GrabCAD

Познакомьтесь с GrabCAD как открытой программной платформой для аддитивного производства

Посетите нашу новую домашнюю страницу

Ленд Ровер 2022

Land Rover — роскошный внедорожник. Его форма и вся конфигурация привлекают нас.

10 165 2

Микоян МиГ-31

МиГ-31 имеет все шансы стать одним из самых долговечных истребителей в мире, учитывая тот факт, что российские военные заявили, что предвидят. ..

10 54 1

Интерьер гостиной

𝘛𝘳𝘪𝘦𝘥 𝘥𝘰 𝘪𝘯𝘵𝘦𝘳𝘪𝘰𝘳 𝘥𝘦𝘴𝘪𝘨𝘯 𝘪𝘯 𝘴𝘰𝘭𝘪𝘥𝘸𝘰𝘳𝘬𝘴 𝘧𝘰𝘳 𝘵𝘩𝘦 𝘷𝘦𝘳𝘺 𝘧𝘪𝘳𝘴𝘵 𝘵𝘪𝘮𝘦 & amp; 𝘳𝘦𝘯𝘥𝘦𝘳𝘦𝘥 𝘪𝘯 𝘣𝘺 𝘶𝘴𝘪𝘯𝘨 𝘴𝘰𝘮𝘦 𝘯𝘦𝘸 𝘭𝘦𝘢𝘳𝘯𝘦𝘥 𝘧𝘦𝘢𝘵𝘶𝘳𝘦𝘴.𝘛𝘳𝘪𝘦𝘥 𝘵𝘰 𝘬𝘦𝘦𝘱 𝘪𝘵 𝘴𝘪𝘮 …

10 66 2

Машина для литья под давлением

Машина для литья под давлением, также известная как пресс для литья под давлением, представляет собой машину для производства пластмассовых изделий методом литья под…

37 726 4

TOBi Racing F1 2022

Здравствуйте, это моя идея F1 2022. Вы также можете скачать файлы .stl или .obj с UV-картами! Таким образом, вы можете легко создать свою собственную ливрею. Модель имеет до…

247 2376 23

Боинг А380 Аэробус

Airbus A380 — большой широкофюзеляжный авиалайнер, разработанный и произведенный компанией Airbus. Это самый большой пассажирский авиалайнер в мире.

14 101 2

Многоосный автобус Volvo

Этот автобус является многоосной моделью Volvo. Я внес в него некоторые изменения. Для любой 3d модели не стесняйтесь обращаться ко мне.

105 1119 4

Золотой снитч Гарри Поттера

Золотой снитч, часто называемый просто снитч, был третьим и самым маленьким мячом, используемым в квиддиче. Это была сфера золотистого цвета размером с грецкий орех с…

3 29 0

Станок фрезерный модель 6М13П / модель 6Р13

Станок фрезерный модель 6М13П / модель 6Р13 Файлы в форматах Solidworks (origin) и step Масштаб 1:1

350 2035 6

Токарный станок 1K62

Станок токарный 1К62 Файлы в формате Solidworks (origin) и stl Масштаб 1:1 Защитные ограждения

339 2086 11

Аэробус А380

С точными размерами …Airbus A380 в версиях Luftansha и emirates PFW DİZAYN SERİSİ Самый большой в мире пассажирский самолет… с тремя…

37 66 12

ВНЕДОРОЖНИК АВТОМОБИЛЬ

PFX внедорожник АВТОМОБИЛЬ

71 53 14

КИА Спортейдж Гибрид 2022

Это модель KIA Sportage Hybrid 2022 года для 3D-печати. Я пытался поймать характеристики, на самом деле это тоже было непросто 😂

232 3283 30

Ардуино Уно

Arduino Uno разработан в SolidWorks 2018 и визуализирован в KeyShot 9 Pro

79 2337 7

“ГОЛИАТ”

научно-фантастический боевой танк “ГОЛИАТ” спасибо https://grabcad.com/ivo.jardim-1 за его дистанционный боевой модуль

168 884 20

Шлем Железного Человека

Человек в шлеме IronMan в твердом корпусе WOKRS

7 147 2

Ягуар Марк 2

Маленький английский спортивный седан, выпускавшийся с 1959 по 1967 год. Одна из самых красивых машин в мире. Моделирование в SolidWorks 2020 Содержание: Как…

194 1402 18

Рингил

Вот, меч эльфийского короля Финголфина. Клинок, однажды пронзивший ногу Моргота. Может когда-нибудь у меня будет целая коллекция мечей…

12 132 0

Винтогибочный станок Helix

Металлоформовочные станки для изготовления шнековых питателей и конвейеров, шнековых скребков – шнековых прессов, винтовых инструментов, буровых шнековых клетей.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *