Схема регулятора оборотов дрели на симисторе: схема. Кнопка включения, плавный пуск и регулятор оборотов

симисторный и тиристорный, системы индикации и схемы

Практически в любом радиоэлектронном устройстве в большинстве случаев присутствует регулировка по мощности. За примерами далеко ходить не надо: это электроплиты, кипятильники, паяльные станции, различные регуляторы вращения двигателей в устройствах.

  • Регулятор мощности на симисторе
  • Напряжение на тиристоре
    • Простая схема
    • С генератором на основе логики
    • На основе транзистора КТ117

Способов, по которым можно собрать регулятор напряжения своими руками 220 В, в Сети полно. В большинстве случаев это схемы на симисторах или тиристорах. Тиристор, в отличие от симистора, более распространённый радиоэлемент, и схемы на его основе встречаются гораздо чаще. Разберём разные варианты исполнения, основанные на обоих полупроводниковых элементах.

Регулятор мощности на симисторе

Симистор, по большому счету, – это частный случай тиристора, пропускающий ток в обе стороны, при условии, что он выше тока удержания.

Один из его недостатков – это плохая работа на высоких частотах. Поэтому его часто используют в низкочастотных сетях. Для построения регулятора мощности на основе обычной сети 220 В, 50 Гц он вполне подходит.

Регулятор напряжения на симисторе используется в обычных бытовых приборах, где нужна регулировка. Схема регулятора мощности на симисторе выглядит следующим образом.

  • Пр. 1 – предохранитель (выбирается в зависимости от требуемой мощности).
  • R3 – токоограничительный резистор – служит для того чтобы при нулевом сопротивлении потенциометра остальные элементы не выгорели.
  • R2 – потенциометр, подстроечный резистор, которым и осуществляется регулировка.
  • C1 – основной конденсатор, заряд которого до определённого уровня отпирает динистор, вместе с R2 и R3 образует RC-цепь
  • VD3 – динистор, открытие которого управляет симистором.
  • VD4 – симистор – главный элемент, производящий коммутацию и, соответственно, регулировку.

Основная работа возложена на динистор и симистор. Сетевое напряжение подаётся на RC-цепочку, в которой установлен потенциометр, им в итоге и регулируется мощность. Производя регулировку сопротивления, мы меняем время зарядки конденсатора и тем самым порог включения динистора, который, в свою очередь, включает симистор. Демпферная RC-цепь, подключённая параллельно симистору, служит для сглаживания помех на выходе, а также при реактивной нагрузке (двигатель или индуктивность) предохраняет симистор от скачков высокого обратного напряжения.

Симистор включается, когда ток, проходящий через динистор, превышает ток удержания (справочный параметр). Отключается, соответственно, когда ток становится меньше тока удержания. Проводимость в обе стороны позволяет настроить более плавную регулировку, чем это возможно, например, на одном тиристоре, при этом используется минимум элементов.

Осциллограмма регулировки мощности представлена ниже. Из неё видно, что после включения симистора оставшаяся полуволна поступает на нагрузку и при достижении 0, когда ток удержания уменьшается до такой степени, что симистор отключается. Во втором «отрицательном» полупериоде происходит тот же процесс, т. к. симистор обладает проводимостью в обе стороны.

Напряжение на тиристоре

Для начала разберёмся, чем отличается тиристор от симистора. Тиристор содержит в себе 3 p-n перехода, а симистор – 5 p-n переходов. Не углубляясь в детали, если говорить простым языком, симистор обладает проводимостью в обоих направлениях, а тиристор – только в одном. Графические обозначения элементов показаны на рисунке. Из графики это хорошо видно.

Принцип работы абсолютно такой же. На чём и построена регулировка по мощности в любой схеме. Рассмотрим несколько схем регулятора на тиристорах. Первая простейшая схема, которая в основе повторяет схему на симисторе, описанную выше. Вторая и третья – с применением логики, схемы, которые более качественно гасят помехи, создаваемые в сети переключением тиристоров.

Простая схема

Простая схема фазового регулирования на тиристоре представлена ниже.

Единственное её отличие от схемы на симисторе – это то, что регулировка происходит только положительной полуволны сетевого напряжения. Времязадающая RC-цепь путём регулирования величины сопротивления потенциометра регулирует величину отпирания, тем самым задавая выходную мощность, поступающую на нагрузку. На осциллограмме это выглядит следующим образом.

Из осциллограммы видно, что регулировка мощности идёт путём ограничения напряжения поступающего на нагрузку. Образно говоря, регулировка заключается в ограничении поступления сетевого напряжения на выход. Регулируя время заряда конденсатора путём изменения переменного сопротивления (потенциометра). Чем выше сопротивление, тем дольше происходит заряд конденсатора и тем меньше мощности будет передано на нагрузку. Физика процесса подробно описана в предыдущей схеме. В этом случае она ничем особым не отличается.

С генератором на основе логики

Второй вариант более сложный. В связи с тем, что процессы коммутации на тиристорах вызывают большие помехи в сети, это плохо влияет на элементы, установленные на нагрузке. Особенно если на нагрузке находится сложный прибор с тонкими настройками и большим количеством микросхем.

Такая реализация тиристорного регулятора мощности своими руками подойдёт для активных нагрузок, например, паяльник или любые устройства нагрева. На входе стоит выпрямительный мост, поэтому обе волны сетевого напряжения будут положительными. Обратите внимание, что при такой схеме для питания микросхем понадобиться дополнительный источник постоянного напряжения +9 В. Осциллограмма из-за наличия выпрямительного моста будет выглядеть следующим образом.

Обе полуволны теперь будут положительными из-за влияния выпрямительного моста. Если для реактивных нагрузок (двигатели и другие индуктивные нагрузки) наличие разно полярных сигналов предпочтительно, то для активных – положительное значение мощности крайне важно. Отключение тиристора происходит также при приближении полуволны к нулю ток удержания подаёт до определённого значения и тиристор запирается.

На основе транзистора КТ117

Наличие дополнительного источника постоянного напряжение может вызвать затруднения, если его нет, и вовсе придётся городить дополнительную схему. Если дополнительного источника у вас нет, то можно воспользоваться следующей схемой, в ней генератор сигналов на управляющий вывод тиристора собран на обычном транзисторе. Есть схемы на основе генераторов, построенных на комплементарных парах, но они более сложные, и здесь мы их рассматривать не будем.

В данной схеме генератор построен на двухбазовом транзисторе КТ117, который при таком применении будет генерировать управляющие импульсы с периодичностью, задаваемой подстроечным резистором R6. На схеме ещё реализована система индикации на базе светодиода HL1.

  • VD1-VD4 – диодный мост, выпрямляющий обе полуволны и позволяющий выполнять более плавную регулировку мощности.
  • EL1 – лампа накаливания – представлена вроде нагрузки, но может быть любой другой прибор.
  • FU1 – предохранитель, в этом случае стоит на 10 А.
  • R3, R4 – токоограничительные резисторы – нужны, чтобы не сжечь схему управления.
  • VD5, VD6 – стабилитроны – выполняют роль стабилизации напряжения определённого уровня на эмиттере транзистора.
  • VT1 – транзистор КТ117 – установлен должен быть именно с таким расположение базы №1 и базы №2, иначе схема будет не работоспособна.
  • R6 – подстроечный резистор, определяющий момент, когда поступает импульс на управляющий вывод тиристора.
  • VS1 – тиристор – элемент, обеспечивающий коммутацию.
  • С2 – времязадающий конденсатор, определяющий период появления управляющего сигнала.

Остальные элементы играют незначительную роль и в основном служат для токоограничения и сглаживания импульсов. HL1 обеспечивает индикацию и сигнализирует только о том, что прибор подключён к сети и находится под напряжением.

Радиоконструктор 009, симисторный регулятор мощности 1 КВт,

Радиоконструктор 009 Симисторный регулятор мощности 1 КВт.  Симисторный регулятор мощности (до 1 киловатт).  В состав входит печатная плата, симистор, радиатор охлаждения симистора, регулятор (переменный резистор) необходимый набор радиодеталей, монтажный провод, схема и описание. Позволяет изменять потребляемую мощность нагревательными приборами (паяльник, обогреватель, эл. плита), регулировать обороты дрели, перфоратора, регулировать напряжение на выходе !!!трансформатора.
 

  Начинающим                                                 Регулятор мощности на симисторе.                                                       (009)

              

           В радиолюбительской практике часто случается, что паяльник на 40 Ватт сильно нагревается, а на 25 Ватт не хватает мощности или необходимо уменьшить мощность нагревательного прибора, изменить яркость свечения лампы накаливания, снизить обороты коллекторного двигателя, электрической дрели, подключить к сети напряжением 220 вольт нагрузку, рассчитанную на напряжение 110 вольт, уменьшить напряжение на вторичной обмотке трансформатора.

Тогда на помощь придёт симисторный регулятор мощности. Принцип его работы основан на изменении времени открытого состояния (фазово-импульсном управлении) симистора (симистор – это двунаправленный тиристор или «триак»). Это можно увидеть и понять, сравнив графики рис.1 полного периода сетевого напряжения на входе (верхний график) симистора и на выходе (нижний график). В определённый момент происходит отсечка симистором каждой полуволны сетевого напряжения и в результате в нагрузку поступает только часть мощности. Принципиальная схема регулятора мощности с фазово-импульсным управлением показана на рис. 2. Он собран по классической схеме на симметричном динисторе DB3 на 32V (VD3) и симисторе ТС106-10-4 (отечественного производства 10 ампер 400 вольт) или импортных аналогах ВТ136-600, ВТ134-600 (4А, 600В), ВТ137-600 (8А, 600В), ВТ138-600 (12А, 600В), ВТ139-600, ВТА16-600 (16А, 600В) (VD4). При каждой полуволне сетевого напряжения конденсатор С1 заряжается током, протекающим через резисторы R2, R3.
Когда напряжение на нем достигает 32 В, динистор открывается и конденсатор С1 быстро разряжается через резистор R4, динистор VD3 и управляющий электрод симистора. Таким образом, происходит управление симистором: когда напряжение на условном аноде симистора (верхний по схеме вывод) положительное, управляющий импульс тоже положительный, а при отрицательном напряжении – отрицательной полярности. Значение мощности в нагрузке, зависит от того, как долго симистор будет включен в течение каждого полупериода сетевого напряжения. Момент включения симистора определяется пороговым напряжением динистора и постоянной времени (R2 + R3), C1. Чем больше сопротивление переменного резистора R2, тем длительнее промежуток времени, в течение которого симистор находится в закрытом состоянии, тем меньше мощность в нагрузке. Схема обеспечивает практически полный диапазон регулирования выходной мощности – от 0 до 99 %. При подключении переменного резистора R2, необходимо учесть то, что увеличение выходной мощности происходит с уменьшением сопротивления переменного резистора.
    Цепь, образованная диодами VD1, VD2 и резистором R1, обеспечивает плавность регулировки при минимальной выходной мощности. Без нее характеристика управления регулятором имеет гистерезис. Например, яркость лампы накаливания, используемой в качестве нагрузки, при увеличении выходной мощности изменяется скачком от нуля до 3…5% от максимальной яркости.          Суть этого явления заключается в следующем: при большом сопротивлении резистора R2, когда напряжение на конденсаторе С1 не превышает 30 В, динистор не открывается в течение всего полупериода сетевого напряжения и выходная мощность равна нулю. При этом к моменту перехода сетевого напряжения через “ноль” напряжение на конденсаторе имеет нулевое значение и в следующем полупериоде значительную часть времени конденсатор разряжается. Если сопротивление резистора R2 уменьшать, то после того, как напряжение на конденсаторе начнет превышать порог срабатывания динистора, конденсатор будет разряжен в конце полупериода и в следующем полупериоде сразу же начнет заряжаться, поэтому в новом полупериоде динистор откроется раньше.
Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и тем самым устраняет эффект скачкообразного начального увеличения мощности в нагрузке. Резистор R4 ограничивает максимальный ток через динистор примерно до 0,1 А и замедляет процесс разрядки конденсатора С1. Тем самым обеспечивается относительно большая длительность импульса, достаточная для надежного запуска симистора VD4 даже при значительной индуктивной составляющей нагрузки. При указанных на схеме номиналах резистора R4 и конденсатора С1 длительность импульса управления равна 130 мкс. Значительную часть этого времени через управляющий электрод симистора протекает ток, достаточный для открывания симистора.

                Симметричный динистор 32V (VD3) обеспечивает одинаковость угла открывания симистора в обеих полуволнах сетевого напряжения. Следовательно, описываемый регулятор не будет выпрямлять сетевое напряжение, поэтому во многих случаях может быть применен даже для управления нагрузкой, подключенной к нему через трансформатор.  Падение напряжения на симисторе VS1 равно примерно 2 В, поэтому при нагрузке мощностью более 100 Вт симистор необходимо установить на соответствующий теплоотвод (радиатор). Максимальная мощность нагрузки не должна превышать возможности симистора (4 А = 800 Вт, 8 А = 1600 Вт, 10 А = 2 КВт, 12 А = 2,4 КВт, 16 А = 3,2 КВт, 40 А = 8 КВт).

          При включении схемы в сеть 220 вольт необходимо строго соблюдать правила техники безопасности! Все элементы схемы находятся под смертельно опасным напряжением! Категорически запрещается касаться любыми частями тела элементов схемы. При установке радиатора симистора, необходимо между симистором и радиатором установить изолирующую теплопроводящую прокладку, а на крепящий винт (саморез) одеть фторопластовую изолирующую втулку и плотно прижать симистор к радиатору. Не смотря на то, что вал переменного резистора гальванически не связан с его выводами, обязательно на вал необходимо установить пластиковую изолирующую ручку, так как при поломке подвижного контакта резистора не исключается возможность электрического контакта вала с выводами резистора.

         Настоящая схема имеет недостаток – при работе симистора в режиме отсечки, на его выходах появляются помехи. Если эти помехи оказывают влияние на другую аппаратуру, необходимо установить в схему помехоподавляющую цепочку R2, C6 (в комплект набора входят, но изначально в схему не устанавливаются). Если этой цепочки будет недостаточно, необходимо включать схему в сеть через сетевой фильтр (рис. 5). Этот фильтр можно взять из неисправного блока питания компьютера, использовав дроссель, состоящий из двух одновременно (бифилярно) намотанных обмоток на ферритовом кольце и параллельно подключенного конденсатора с рабочим напряжением не менее 400 вольт. На рис. 3 показаны три возможных вида маркировки выводов симистора (все они аналогичны). На отечественном ТС106-10 выбито наверху справа и слева от крепёжного отверстия, «старая маркировка»: К – катод, А – анод, У.Э.- управляющий электрод, новая: А1 – первый анод, А2 – второй анод, У – управляющий электрод.



 

Комплектация выбирается перед тем как положить набор в корзину.

ПАКЕТ: Содержание набора 009

1. Симистор ВТ137 (8А),
2. Печатная плата,    
3. Диоды 1N4007 (2 шт.),
4. Динистор DB3,
5. Резисторы:
   R1 – 100   кОм (Кч/Ч/Ж),
   R2 – 100 кОм (переменный),
   R3 – 1 кОм (Кч/Ч/Кр),
   R4 –  270 Ом (Кр/Ф/Кч),
   R5 –  1,5 кОм Кч/Зел/Кр),
   R6 –  100 Ом (Кч/Ч/Кч).
6. Конденсаторы:
   С1 – 0,47 мкФ (не менее 250 В),
   С2 – 0,068мкФ  (Uраб. не менее 400 В),

7. Пластиковая ручка для переменного резистора,    

8. Монтажный провод,
9. Схема и описание.
 

.    

КОРОБКА: Содержание набора 009  

1. Симистор ВТ138 (12А),

2. Печатная плата,                                                    

3. Диоды 1N4007 (2 шт.),

4. Динистор DB3,

5. Резисторы:

    R1 – 100   кОм (Кч/Ч/Ж),

    R2 – 100 кОм (переменный),

    R3 – 1 кОм (Кч/Ч/Кр),

    R4 –  270 Ом (Кр/Ф/Кч),

    R5 –  1,5 кОм Кч/Зел/Кр),

    R6 –  100 Ом (Кч/Ч/Кч).

6. Конденсаторы:

    С1 – 0,47 мкФ (не менее 250 В),

    С2 – 0,068мкФ  (Uраб. не менее 400 В),

7. Пластиковая ручка для переменного резистора,

8. Радиатор для симистора,

9. Изолирующая прокладка и втулка,

10. Винт М3 (гайка М3 отдельно или в радиаторе),             
11. Монтажный провод,

12. Схема и описание.

ВЫПУСК 009.

Регулятор мощности симисторный 220 В,  2 КВт.


1.  Симистор ВТ138-600,

2.  Печатная плата,

3.  Диод 1N4007 (2 шт.),

4.  Динистор DB3,

5.  Набор постоянных резисторов,

6.  Переменный резистор с ручкой,

7.  Конденсаторы,

8.  Радиатор для симистора,

9.  Винт, гайка М3,

10. Теплопроводящая изолирующая прокладка,

11. Фторопластовая изолирующая втулка,

12. Монтажный провод,

13. Схема и описание,

14. Контейнер с деталями схемы.

 

Управление скоростью двигателя переменного тока с помощью ZCD-IC555-DIAC-TRIAC

 

Здесь представлены различные методы управления скоростью двигателя переменного тока. Одним из самых популярных из них является применение обрезанной формы волны переменного тока, что означает изменение фазового угла применяемой формы волны переменного тока. Этот метод используется во многих различных устройствах, таких как

Угол открытия тиристора, такого как TRIAC, который подает питание на двигатель, задерживается для снижения скорости двигателя или срабатывает раньше для увеличения скорости двигателя. При изменении угла зажигания часть сигнала переменного тока, подаваемого на двигатель, более или менее прерывается. Таким образом, среднее напряжение переменного тока, приложенное к двигателю, изменяется, что меняет скорость двигателя.


Существуют различные методы управления скоростью двигателя переменного тока. Одним из самых популярных из них является применение обрезанной формы волны переменного тока, что означает изменение фазового угла применяемой формы волны переменного тока. Этот метод используется во многих различных устройствах, таких как

1.        В бытовом регуляторе вентилятора для изменения скорости вращения вентилятора

2.       В электродрели для вращения вала с различной скоростью

3.       В современных электрических ручных блендерах

4. Для изменения скорости воздуходувок или вентиляторов, используемых в промышленности для различных целей

Угол открытия тиристора, такого как TRIAC, который подает питание на двигатель, задерживается для снижения скорости двигателя или срабатывает раньше для увеличения скорости двигателя. При изменении угла зажигания часть сигнала переменного тока, подаваемого на двигатель, более или менее прерывается. Таким образом, среднее напряжение переменного тока, приложенное к двигателю, изменяется, что меняет скорость двигателя.

Здесь данная схема использует тот же принцип для изменения скорости двигателя переменного тока. Он использует IC555 для генерации импульса переменной ширины, который изменяет угол открытия TRIAC через DIAC. Сначала он берет нулевую опорную форму волны переменного тока из схемы детектора пересечения нуля (ZCD) и отсекает входной сигнал переменного тока, подаваемый на двигатель, путем увеличения/уменьшения фазового угла TRIAC с использованием выходного импульса с переменной шириной импульса IC555.

Давайте сначала разберемся с блок-схемой цепи. Затем следует описание схемы и подробное описание ее работы и работы. понять функции различных блоков, чтобы понять, как работает схема

Мостовой выпрямитель – он генерирует выпрямленный выходной сигнал от подаваемого на вход переменного тока

ZCD – генерирует кратковременные положительные и отрицательные импульсы, когда кривая переменного тока пересекает нулевую отметку. Он используется в качестве эталона для прерывания формы сигнала переменного тока, подаваемого на двигатель.

Моностабильный мультивибратор – он генерирует импульсы, ширина которых может изменяться (ШИМ) с помощью потенциометра, и он изменяет угол возбуждения симистора через DIAC

Управление фазовым углом DIAC-TRIAC схема – применяет прерываемую форму волны переменного тока к двигателю и изменяет скорость двигателя переменного тока

Таким образом, схема изменяет скорость двигателя переменного тока, изменяя угол открытия симистора путем применения ШИМ, генерируемого с помощью IC555, подключенного в моностабильном режиме. Поскольку ширина выходного импульса IC555 изменяется с помощью потенциометра, изменяется угол открытия симистора и изменяется скорость двигателя.

Описание схемы:

12, 500 мА). Его вторичная обмотка подключена к входным клеммам переменного тока мостового выпрямителя BR1

·         Выпрямленный выход подается на базу транзистора Q1 через делитель напряжения, образованный резисторами R2 (1K) и R2 (1K)

·         Коллекторный выход Q1 подается на базу транзистора Q2 через R1 (470 Ом). Q1 и Q2 оба подключены в конфигурации переключателя, как показано

(см. вкладку схемы для полной схемы управления скоростью двигателя переменного тока)

·         Выход Q2 подается на триггерный вход первой микросхемы NE555 U1. Настроен на моностабильный режим. Временные компоненты RV1 (потенциометр 10K) и C1 (1 мкФ) определяют ширину выходного импульса

·         Выход U3 подается на катодный вход (вывод № 2) внутреннего светодиода оптопары MOC3021

·         Анодный вход (вывод № 1) внутреннего светодиода MOC3021 подключается к Vcc через регистр ограничения тока R11 (220 Ом).

·         Между контактами 6 и 4 на MOC3021 имеется DIAC. Контакт № 6 подключен к клемме MT2 TRIAC BT136 через резистор 470 Ом, а контакт №. 4 подключен к затвору симистора.

·         Двигатель переменного тока подключается между клеммой MT1 симистора и нейтральным проводом линии переменного тока, как показано на рисунке. Фазный провод линии переменного тока подключается к клемме МТ2 симистора 9.0003

Работа схемы:

Давайте разберем работу схемы блок за блоком с помощью сигналов в разных точках A, B, C, D, E и F, указанных на схеме.

Мостовой выпрямитель – состоит из трансформатора и диодного моста. Трансформатор понижает 230 В переменного тока до 12 В переменного тока. Сигнал 1 st на рисунке показывает этот сигнал в точке «А». Эта волна переменного тока подается на диодный мост, который просто генерирует двухполупериодный выпрямленный выходной сигнал. Он отображается как 2 9Форма волны 0096 и на рисунке в точке «В».

Детектор пересечения нуля (ZCD) – эта секция состоит всего из двух транзисторов Q1 и Q2, соединенных по схеме переключателя. Выпрямленный выход мостового выпрямителя подается на базовый вход Q1.

Рис. 2: Временная диаграмма, показывающая обнаружение пересечения нуля положительный импульс в точке «С». Это показано как 3 rd осциллограмма на рисунке. Когда эти положительные импульсы подаются на Q2, который снова подключен в конфигурации переключателя, он будет генерировать отрицательный импульс в точке «D» той же ширины, что и положительный импульс. Это показано как 4 th форма волны

 

Моностабильный мультивибратор – Когда он получает импульс –Ve от секции ZCD на его триггерном входе, он будет генерировать положительный выходной импульс, ширина которого варьируется. Период времени этого импульса определяется номиналом потенциометра RV1 и конденсатора C1. Значения RV1 и C1 выбираются таким образом, чтобы схема генерировала импульс длительностью от 0 до 10 мс при изменении потенциометра.

Управление фазовым углом DIAC-TRIAC: – выход IC555 подается на микросхему оптопары MOC3021. Поскольку анод внутреннего светодиода подключен к Vcc, когда низкий уровень выходного сигнала IC555 подается на катод, ток проходит через светодиод и вызывает срабатывание внутреннего DIAC. Таким образом, пока на выходе IC555 нет высокого уровня, DIAC не проводит и не запускает TRIAC. По истечении периода времени на выходе IC555 – выход снова становится низким – DIAC проводит – он запускает TRIAC. Поскольку ширина выходного сигнала IC555 варьируется, симистор срабатывает раньше или позже. Это лучше объясняется с помощью сигналов, представленных на следующем рисунке 9.0003

Рис. 3: Временная диаграмма, показывающая управление фазовым углом

Рассмотрим два случая.

 

Случай 1:

  • В этом первом случае ширина импульса составляет 7 мс, поэтому светодиод не горит в течение 7 мс и включается на 3 мс в состоянии покоя
  • Таким образом, DIAC также будет проводить только 3 мс и активирует TRIAC на 3 мс
  • Часть сигнала переменного тока, подаваемого на двигатель переменного тока, показана как форма сигнала 3 rd . Двигатель меньше, потому что применяется меньшее переменное напряжение

Случай 2:

  • В этом случае ширина импульса уменьшена с 7 мс до 2 мс
  • Светодиод не горит в течение 2 мс и горит в течение остальных 8 мс
  • DIAC проводит в течение 8 мс, и TRIAC также проводит в течение 8 мс

Форма волны 5 th показывает часть формы волны переменного тока, применяемую к двигателю переменного тока. Скорость двигателя будет увеличиваться, так как подается большее напряжение

Таким образом, когда угол включения (фазовый угол) TRIAC изменяется волной PWM, скорость двигателя изменяется.

Рис. 4. Прототип контроллера скорости двигателя переменного тока на основе микросхем 555 IC и ZVC DIAC-TRIAC
 




Симисторная схема управления скоростью для асинхронных двигателей




. Бесколлекторная электрическая машина всегда оценивалась положительно за своей элементарной простотой, сопутствующей простотой изготовления и исключительным надежность и относительная свобода от радиочастотного и электромагнитного вмешательство. Некоторые из этих машин имеют скользящие контакты, но они в виде контактных колец, а не коллекторов. Более того, часто верно что токи, обрабатываемые контактными кольцами, намного ниже, чем обязательно связаны с коммутаторами. Так, в автомобильном генераторе токосъемные кольца используются для передачи тока возбуждения на ротор. Этот ток небольшой доля зарядных токов, которые должны выдерживать эти генераторы переменного тока. На С другой стороны, старый генератор постоянного тока коллекторного типа, использовавшийся в автомобилях, имел пропускать большие зарядные токи через его коммутатор. Как и следовало ожидать, проблема обслуживания была далеко не тривиальной.

Недостатком неколлекторных двигателей, однако, была их неспособность легко изменять свою скорость в широком диапазоне. В настоящее время; с твердотельным электронике этот недостаток уже не нужен. Новый элемент управления методы дают неколлекторным двигателям старого образца гибкость производительности их первоначальные дизайнеры никогда не мечтали о возможности.

Следующие цепи управления интересны тем, что они преодолевают ограничения производительности, которые долгое время считались присущими машинам переменного тока, особенно асинхронные двигатели. Кроме того, вы можете почувствовать острую конкуренцию вокруг выбора типа двигателя. Благодаря новым методам управления, уже недостаточно обращаться к моторному тексту или даже к моторным спецификациям. Теперь вы можете в значительной степени «настраивать» характеристики машины с помощью электронных средств. Следовательно, на решения должны больше влиять другие факторы, такие как стоимость, надежность, электрические и шумовые характеристики и т. д.

Симисторная схема управления скоростью для асинхронных двигателей

Симисторная схема управления скоростью для асинхронных двигателей, показанная на РИС. 1 похоже на то, что показано здесь, который предназначен для использования с универсальными двигателями. Схема на фиг. 1, однако, включает в себя схему с одинарной постоянной времени для задержки фаза триггера затвора. Этот более простой подход допустим, потому что асинхронные двигатели, как правило, не могут быть замедлены настолько, чтобы попасть в проблемная область гистерезиса, для которой схема затвора с двойной постоянной времени назначается как лечебное средство. Эта схема управления скоростью лучше всего работает для асинхронный двигатель постоянного тока с разделенным конденсатором. Затененный столб асинхронный двигатель также поддается этому методу управления. С любым тип асинхронного двигателя, этот метод управления скоростью наиболее эффективен когда нагрузкой является вентилятор или воздуходувка. (Небольшое изменение скорости вызывает относительно большое изменение скорости воздуха.) Еще один благоприятный аспект такими нагрузками являются их низкие требования к пусковому моменту.


РИС. 1 Скорость симистора — схема управления асинхронными двигателями. По РКА. (А. Принципиальная схема с перечисленными компонентами для двух разных напряжений сети. Б. М)

Асинхронные двигатели с пуском от сопротивления и пуском от конденсатора могут управляться симистором при определенных условиях. Как правило, необходимо ограничить диапазон регулирования скорости; скорость не должна снижаться до точки, где центробежный выключатель повторно подключает пусковую обмотку или пусковой конденсатор. Учитывая все обстоятельства, будет получен наибольший диапазон регулирования скорости. с постоянным двигателем с раздельными конденсаторами. Этот тип асинхронного двигателя не обременен центробежным выключателем. Кроме того, он хорошо работает в области повышенного скольжения. Возможен диапазон регулирования скорости от трех до одного с вентиляторной нагрузкой.

Эта схема значительно превосходит схему с одним тиристором и фазовым управлением. тиристорная схема для использования с асинхронными двигателями. SCR хорошо работает с универсальные двигатели, но постоянная составляющая, развиваемая однополупериодным выпрямлением вредно для работы асинхронных двигателей.

«демпферная сеть» RC, подключенная к симистору, как правило, не появляются в цепи при резистивной нагрузке, что имеет место при лампы или обогреватели. Поскольку двигательная нагрузка является индуктивной, отключение симистора происходят при нулевом токе, но напряжение на симисторе не будет равно нулю в то время. Таким образом, на симисторе возникает скачок напряжения, который может привести к повторному запуску, несмотря на отсутствие сигнала стробирования. Это может случиться даже если способность симистора блокировать напряжение превышает пиковое значение переменного тока напряжения с комфортным запасом. Виновником не обязательно является величина этого скачка напряжения или «скачка», а скорее скорости его изменения.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

×