Схема сварочного инвертора
До недавних пор все сварочные работы выполнялись при помощи мощных понижающих трансформаторов. Во многих случаях эти устройства были неудобными, в основном из-за сложностей с их перемещением и высокой энергоемкости. Ситуация коренным образом изменилась, когда появилась схема сварочного инвертора, созданная на основе современных технологий. Получились небольшие легкие устройства с широким набором функций. Вся их работа осуществляется благодаря наличию в конструкции импульсного преобразователя, способного производить высокочастотные токи. Именно они обеспечивают быстрое зажигание сварочной дуги, поддерживают ее стабильное состояние в течение всего периода работы.
Содержание
Отличительные черты инверторов
Любое инверторное устройство по своей сути является блоком питания, внутри которого происходят физические процессы преобразования электроэнергии.
В сварочных инверторных устройствах они протекают по следующей схеме:
- На начальном этапе выполняется преобразование входного переменного напряжения (220 В, 50 Гц) в постоянный ток.
- На втором этапе осуществляется обратное превращение тока с постоянной синусоидой в переменный ток с высокой частотой.
- Затем созданное напряжение понижается, осуществляется окончательное выпрямление тока с сохранением требуемых высокочастотных показателей. Этот порядок нужно знать, если требуется собрать сварочный инвертор своими руками.
Именно такой порядок действий дал возможность для снижения размеров и веса инверторных устройств. Старая сварочная аппаратура функционировала совсем по другому принципу. Здесь снижение напряжения на первичной обмотке, приводило к росту силы тока во вторичной трансформаторной обмотке. Полученная таким образом сила тока огромного значения, позволила применить дуговой способ сваривания. Поэтому, на вторичной обмотке пришлось снизить количество витков, но увеличить одновременно размеры сечения проводника. Подобная схема делала конструкцию очень громоздкой и тяжелой.
Электрическая схема сварочного инвертора дала реальный шанс повысить частотные показатели рабочего тока до 60, а в некоторых моделях и до 80 кГц без увеличения массы и размеров. В схеме были использованы полевые транзисторы, взаимодействующие между собой на таких же высоких частотах. Они соединяются с трансформаторной катушкой и передают на нее ток с заданной частотой. Поскольку самой катушке не требуется повышать частоту, за счет этого она сохраняет свои миниатюрные размеры. Выходные данные получаются, как и у обычной сварки, но габариты и масса инверторного устройства существенно отличаются в сторону уменьшения.
Взаимодействие основных узлов и деталей инвертора
На входе устройства обязательно нужен постоянный сигнал. Он получается с помощью сетевого выпрямителя, превращающего напряжение 220 вольт в постоянный ток. Основой конструкции этого модуля служит стандартный диодный мост и конденсаторы, сглаживающие пульсации после выпрямления.
Под действием высоких токов даже простейший диодный мост сильно нагревается и требует постоянного охлаждения в процессе работы. Во многих моделях установлен специальный радиатор и термический предохранитель, выполняющий отключение при нагреве моста до 90 градусов.
При подключении сварки к сети происходит сильное увеличение зарядного тока конденсаторов. Возникает реальная опасность пробоя компонентов диодного моста. Защититься от этого помогает схема плавного пуска, снижающая уровень тока при включении. После выхода аппарата в нужный режим, эта схема отключается с помощью реле коммутации.
Пройдя через выпрямительный модуль, напряжение, увеличенное до 310 В, попадает на участок импульсного преобразователя с ключами – транзисторами. Данные компоненты превращают подводимое напряжение в импульсные сигналы прямоугольной формы, частотой 60-80 кГц. Ключевым транзистора во время работы также требуются радиаторы охлаждения.
Наиболее важные функции в схеме инвертора принадлежат понижающему трансформатору. Он отличается компактными размерами и незначительным весом. Кроме того, в нем дополнительно предусмотрена выходная обмотка, обеспечивающая питание схемы управления. В приемную обмотку поступают прямоугольные импульсы на 310 В и частотой 60-80 кГц. Одновременно с этим, напряжение во вторичной обмотке за счет малого количества витков понижается до 60-70 вольт, а выходной ток увеличивается до 110-130 А и окончательно выпрямляется.
С этой целью сигнал от трансформатора поступает к выходному выпрямителю. Именно здесь появляется постоянный ток, под действием которого возникает сварочная дуга. В схеме используются сдвоенные диоды, имеющие высокое быстродействие и определяющие максимальное потребление тока всего инвертора. Данные элементы также охлаждаются с помощью радиаторов.
Принципиальная схема сварочного инвертора
Одной из основных функций инверторных сварочных установок является возможность увеличения частоты тока с 50 Гц стандартного значения, до 60-80 кГц, требуемых для работы. Все регулировки на выходе устройства производятся уже с высокочастотными токами, с использованием компактных малогабаритных трансформаторов. Частота увеличивается на том участке инверторной схемы, где предусмотрено расположение контура на основе мощных силовых транзисторов. На эти транзисторы возможна подача исключительно постоянного тока, поэтому на входе и выполняется выпрямление переменного напряжения.
Принципиальная схема сварочного инвертора условно разделяется на две составляющие. Это зона силового участка и цепь со схемой управления. Основным компонентом силового участка выступает диодный мост, где выполняется превращение переменного тока в постоянный. Такое преобразование приводит к возникновению импульсов, требующих сглаживания.
Сглаживание или фильтрация этих импульсов производится электролитическими конденсаторами, установленными за диодным мостом. Следует помнить, что напряжение, выходящее из моста, приблизительно на 40% превышает его величину на входе. Из-за этого диоды выпрямителя подвергаются сильному нагреву, и их работоспособность может заметно снизиться. Защита от перегрева элементов выпрямителя осуществляется радиаторами, включенными в конструкцию. Непосредственно на диодном мосту установлен термический предохранитель, отключающий питание при нагреве свыше 80-90 градусов.
Работа преобразователя приводит к созданию высокочастотных помех, попадающих через вход в электрическую сеть. Во избежание подобных ситуаций, перед выпрямителем производится установка фильтра, обеспечивающего электромагнитную совместимость. Такой фильтр включает в себя дроссель и конденсаторы.
Сама электросхема инвертора, выполняющего преобразование постоянного тока в переменный со значительно увеличившейся частотой, включает в себя транзисторы, собранные по схеме так называемого косого моста. Они переключаются между собой с высокой частотой и формируют переменный ток с такой же частотой, в пределах десятков или даже сотен килогерц. Результатом таких преобразований является переменный ток высокой частоты с прямоугольной амплитудой.
На выходе инвертора требуется получить постоянный ток с показателями, достаточными для выполнения сварочных работ. Эта функция выполняется понижающим трансформатором, расположенным сразу же за транзисторной схемой. Окончательное получение постоянного тока на выходе производится выпрямителем высокой мощности, собранным на основе диодного моста.
Защитные компоненты и схема управления
В процессе работы сварочный инвертор постоянно подвергается потенциальной опасности из-за возможных сбоев в сети и самой системе. Исключить негативные факторы помогают защитные элементы, установленные на различных участках схемы.
Предотвратить перегрев и сгорание транзисторов во время преобразований токов возможно при помощи специальных демпфирующих цепей. Другие блоки и узлы, присутствующие в электрической схеме и работающие под большими нагрузками, защищены элементами принудительного охлаждения. К каждому из них подключены термодатчики, отключающие питание при температурах нагрева, превышающих критическую отметку. Внутри инверторной аппаратуры система охлаждения, состоящая из вентиляторов и радиаторов, занимает достаточно много места.
Каждая схема инвертора оборудуется ШИМ-контроллером, обеспечивающим управление всей электрической схемой. От него поступают сигналы к разделительному трансформатору, силовым диодам и транзисторам. Для эффективного управления всей системой самому контроллеру также требуется подача установленных электрических сигналов. Такие сигналы вырабатываются операционным усилителем, к которому на вход подается выходной ток, преобразованный в инверторе. Если его значение расходится с заданными показателями, усилитель выполняет формирование управляющего сигнала и далее передает его на контроллер. Такая схема позволяет своевременно отключить аппарат при возникновении критических ситуаций в электрической схеме.
Как устранить неисправности инвертора
В некоторых случаях нарушения правил эксплуатации могут привести к выходу из строя даже самых надежных компонентов схемы сварочного инвертора. Основными причинами являются сбои в системах охлаждения, эксплуатация устройств в условиях повышенной влажности или запыленности. Большое количество пыли, осевшей на радиаторе, создает препятствие движению воздуха и своевременному отводу тепла. Поэтому производители рекомендуют периодически чистить аппаратуру.
Поиск возможных неисправностей нужно начинать от простого к сложному, поскольку современные схемы оборудованы многоступенчатой защитой от коротких замыканий и перегревов. Следует внимательно изучить инструкцию, где подробно указаны особенности эксплуатации конкретного устройства.
Среди основных причин возможных неисправностей можно выделить следующие:
- Напряжение в сети слишком высокое или низкое. Инвертор сохраняет свою работоспособность в пределах 170-250 вольт.
- Использование сетевого провода слишком большой длины или с небольшим сечением. Минимальное сечение должно быть не ниже 2,5 мм2, а длина питающего кабеля – не более 30 м.
- Длина стандартного сварочного кабеля не превышает 3 м, а сечение – 35-50 мм2. Нарушение этих параметров приводит к сбоям в работе.
- Некачественные контактные соединения силового и питающего кабеля.
В случае обнаружения неисправности, рекомендуется не ремонтировать сварочный инвертор самостоятельно, особенно если схема слишком сложная. Лучше всего – пригласить специалиста для проведения окончательной диагностики на соответствующем оборудовании.
Плюсы и минусы сварочных инверторов
Основными преимуществами инверторных устройств являются следующие:
- Использование современных технологий позволило снизить массу аппаратов до 5-12 кг, в зависимости от модели. Обычные сварочные агрегаты весят в среднем от 18 до 35 кг.
- Высокий КПД инверторов – до 90%. Такой показатель достигается за счет снижения затрат на нагрев деталей и компонентов.
- Низкое энергопотребление, примерно с 2 раза меньше, чем у обычных сварочных трансформаторов.
- Универсальность и широкий диапазон регулировок позволяют работать с разными металлами, использовать разные технологии сварки.
- Множество полезных дополнительных опций: плавный пуск, антизалипание, форсаж и другие.
- Напряжение, подаваемое на дугу, отличается высокой стабильностью. С этой целью автоматика обеспечивает взаимодействие всех компонентов схемы, создавая наиболее оптимальные условия для работы.
- Даже простой инвертор может работать с любыми типами электродов.
- Возможность программирования и настройки некоторых моделей на определенный тип сварочных работ.
В качестве минусов отметим недостатки, не оказывающие влияния на качество работ:
- Высокая стоимость инверторов, примерно на 20-50% превышающая цену обычной аппаратуры.
- Транзисторы обладают повышенной уязвимостью, а их стоимость иногда составляет 60% от цены всего устройства.
- Невозможность производить сварку инверторами в сложных условиях эксплуатации.
Схема популярных моделей сварочных инверторов Ресанта, их характеристики и особенности
Работа каждого электроприбора зависит от многих составляющих. Они работают стабильно – и он. Аппарат для сварки наглядное тому подтверждение.
В том же инверторе за стабильность процесса отвечает целое семейство компонентов. И у каждого свое назначение. Определить, какое, вам помогут электрические схемы. Это графическое изображение начинки любого электроприбора.
По отношению к сварочным аппаратам схема называется принципиальной. На ней указано место каждого компонента, и какой последовательности они соединены. Схема – помощник при ремонте инвертора дома или на даче. нужна также при разборке/сборке.
В электрической схеме к каждому инверторному сварочному аппарату, есть сведения, какой компонент, как и с кем связан. Каждый поименован. Схема как проводник приведет, куда нужно. При поломке – укажет, какая деталь нуждается в замене.
А сейчас охарактеризуем типы самых ходовых сварных инверторов. Из названия аппаратов ряда САИ понятно, какой силой тока обладает каждая модель.
Содержание статьиПоказать
- Сделано в поднебесной
- САИ 160
- САИ 190
- САИ 220
- САИ 250ПРОФ
- Резюме
Сделано в поднебесной
youtube.com/embed/cndIwvqGKuc?feature=oembed” frameborder=”0″ allow=”accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture” allowfullscreen=””>Произведены инверторы САИ 160; САИ 190; САИ 220; САИ 250ПРОФ популярной торговой марки РЕСАНТА в Китае.
Пользуются популярностью в сварной среде.
САИ 160
Относится к категории бюджетных. Букварь для новичка в сварке. Однако позволит сварить, допустим, тепличку на огороде. Если ваши запросы по части свариваемых конфигураций тоже непритязательны – это то, что надо!
Что можно сделать, имея под рукой сварочный ток в 160 Ампер Наложить заплату на емкость типа бочки или ликвидировать течь в садовом водопроводе.
Заняться сооружением забора на своем участке. Сварить простые, но с изюминкой ворота. Для стандартного «набора» дачного сварщика – достаточно.
Начать работу просто. Розетка + 220 вольт. Принцип действия одинаков для всех моделей САИ. Мощность небольшая, потому много трат за электроэнергию не предвидится. Для электрода достаточен диаметр от 2-х до 3-х мм.
Бюджетный вариант также имеет функции «антизалипание» и «горячий старт». Начинающим умельцам он существенно упростит работу. Комплект САИ160 схож с прочими инверторами.
Речь идет о сварочных кабелях, держаке и массе. Отдельной покупкой станет маска. В этом случае есть свое преимущество. В торговой сети сами подберете себе нужный размер, учтете специфику сварки, которая вам предстоит.
В комплекте может быть лишь скромная маска-щиток, век у которой может оказаться неприятно коротким. Производитель о вышеупомянутых нюансах думать не будет. Покупая САИ 160, позаботьтесь и о кабелях. От комплектных суперкачества вряд ли стоит ожидать. Ниже схема аппарата.
САИ 190
Еще один представитель класса бюджетных аппаратов от Ресанта. САИ 190 с максимальной силой тока 190Ампер. В инструкции от производителя сказано, что аппарат работает и с 5 мм электродом.
Но правильней, как показывает практика, говорить, что с диаметром 3 мм – отлично, с 4 мм – сносно еще, а с 5 мм – «со скрипом». Словом, варить металл приличной толщины – это из области мечты. рассчитывать на сварку толстого металла.
Объясняется просто. Производитель, как обычно, слегка преувеличивает обозначенную мощность. Потому ее и не хватает на 5 мм электроды. Комплектация аппарата примерно такая или чуть больше, чем у предыдущей. Весит он, примерно пять кг.
Довольно компактный. Можно взять легко на дачу и доставить электричкой. С наступлением зимы, опасаясь кражи, забрать домой . Хотя САИ 190 варит при минусе так же хорошо, как и плюс 40. Погода не станет препятствием в его работе.
В комплекте найдется место зажиму на массу, сварочным кабелям и электродержателю. Но лучше купить другие, качеством выше.
Респект производителю за гарантию, которая дается на два года. В РФ сервис по ремонту аппаратов от Ресанта развит. Необходимость самому ремонтировать, отпадает.
САИ 190, как и все инверторные сварочные аппараты РЕСАНТА этого класса, легок в подключении. Требует также 220 вольт. Бывает, что напряжение ниже.
Тогда предпочтительней САИ 190ПН. Эта модификация работает хорошо и при пониженном напряжении и когда оно нестабильно. Примечателен аппарат своим «внутренним миром», который базируется на компактных IGBT транзисторах.
Несмотря на миниатюрность отличаются хорошей производительностью. Этим объясняется сочетание малых габаритов и полного спектра возможностей САИ 190.
Единственным минусом можно назвать чувствительность транзисторов IGBT. Они плохо переносят пыль и влагу. Соответственно надо хранить. Нарушение условий грозит поломкой, которая может дорого стоить.
За счет тех преимуществ , что дают транзисторы современного поколения, аппарату доступен ряд дополнительных возможностей , которые делают процесс сварки проще.
Быстрей включается в работу дуга, предотвращается залипание электрода, что облегчает начинающим сварщикам работу и освоение азов профессии. Ниже схема аппарата.
САИ 220
youtube.com/embed/pRr61WAO-4I?feature=oembed” frameborder=”0″ allow=”accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture” allowfullscreen=””>Заметно выделяется среди соседей по линейке. Пользуется повышенным спросом. Хотя по цене многих обогнал. Есть еще более дорогие, например САИ 250ПРОФ , но о нем расскажем после.
САИ 220 используется для сварных работ с применением покрытых электродов. Но предназначен только для работ в быту. Не очень сложный ремонт на участке , в гаражном боксе или в доме – это его профиль. На САИ 220 можно набивать руку в сварке.
Мощность инвертора – до 220 Ампер сварочного тока. Для неопытного сварщика или ученика вполне хватит. Бытовые сварочных инверторы типа САИ 220 характеризуются простотой в подключении. Воткнул вилку в розетку с 220 вольт и – вперед!
С генераторами, стабилизаторами напряжения и другими подобными агрегатами можно распрощаться навсегда. К плюсам также отнесем малый вес, который упрощает перевозку. Автобус, электричка – все подходит для этих целей.
Функциональный пакет типичен для группы подобных агрегатов. Среди них антизалипание и форсаж дуги. Эти возможности делают работу проще. Правда, специалисты сварки советуют их отключить, чтобы самому научиться, как поджигать дугу и настраивать режим.
У Ресанта САИ 220 есть предупреждающий перегрев механизм , который включается, когда процесс сварки затянулся. Встроенная система охлаждения, если агрегат исправен, сработает при чрезмерной перегрузке.
В комплект также входят сварочные комплектующие. Как будто ничего не надо докупать. Правда, при том качестве , какое у них , не помешает приобрести запасной вариант.
Выбирая сварочные кабели, держак и зажим, ориентируйтесь на торговый знак и цену. Можете проигнорировать совет. Тогда не исключено, что идти в магазин придется в самый неподходящий час. А он в тот момент окажется закрытым. Ниже вы можете посмотреть схемы инвертора.
САИ 250ПРОФ
В аннотации от производителя он называется профессиональным. Да, мощность тока достигает 250 Ампер. Однако ее хватает для сварки в быту, а вот для профсварки явно маловато. Или еще одно преувеличение.
Упоминается, что можно использовать 6мм электроды. Но на практике выясняется, чтобы варить толстый металл, требуется более мощный ток.
Правда, это не умаляет достоинств агрегата в целом. Он пользуется авторитетом среди домашних умельцев. И выступает в роли азбуки для новичков в сварном деле. Для начала работы требуется обычная розетка в 220 вольт, какими оборудованы наши дома.
Профессиональному инвертору такой недостаточно. Здесь нужны 380В. В остальном САИ 250ПРОФ соответствует моделям своей линейки. Компактен, прост в использовании и при транспортировке. Ниже схема аппарата.
Резюме
Электроприборы – неотъемлемая часть нашей жизни. Трудно представить современную повседневность без микроволновки, холодильника, утюга или стиралки.
За их работу отвечают различные электронные устройства. Как и у инвертора. Правда, электросхемы у них отличаются друг от друга как земля и небо.
Поэтому нельзя подходить к ремонту или того еще больше – к изготовлению инвертора собственноручно, используя «неродную» для него схему. Варианты для каждого сварочного аппарата входят в комплект.
Также схемы всегда можно посмотреть в интернете. Достаточно вбить в поисковик название модели. Работы вам без дефектов!
MOSFET%20схема%20сварка%20инвертор спецификация и примечания по применению
MOSFET%20схема%20сварка%20инвертор Листы данных Context Search
Каталог Лист данных | MFG и тип | ПДФ | Теги документов |
---|---|---|---|
д 434 мосфет
Резюме: T0220AB MOSFET 345 T0-220AB MOSFET MOSFET N BUK854-500IS 200B 100a MOSFET MOSFET 606
|
OCR-сканирование |
БУК100-50ДЛ БУК100-50ГЛ БУК100-50ГС БУК101-50ДЛ БУК101-50ГЛ БУК101-50ГС БУК102-50ДЛ БУК102-50ГЛ БУК102-50ГС БУК104-50Л д 434 мосфет T0220AB мосфет 345 Т0-220АБ мосфет МОП-транзистор N БУК854-500ИС 200Б 100а мосфет МОП-транзистор 606 | |
2006 – ан799
Аннотация: MOSFET 500V 15A MOSFET 55 nf 06 an799 микрочип tc1426 TC4431 приложение 348 MOSFET MOSFET 6A “MOSFET” 400V TC4425
|
Оригинал |
АН799 500В14АН ан799 МОП-транзистор 500В 15А мосфет 55 нф 06 микросхема ан799 тк1426 Приложение TC4431 348 мосфет МОП-транзистор 6А “МОП-транзистор” 400В TC4425 | |
БУК417-500Б
Реферат: TOPFETs FETs T0-220AB mosfet BUK454-600 BUK617-500BE BUK551-100A PHILIPS MOSFET igbt Руководство по выбору полупроводников Philips Руководство Igbts
|
OCR-сканирование |
T0220AB ОТ186 ОТ186 БУК856-400ИЗ БУК417-500Б полевые транзисторы Т0-220АБ мосфет БУК454-600 БУК617-500БЭ БУК551-100А PHILIPS МОП-транзистор igbt Руководство по выбору полупроводников Philips Руководство по IGBT | |
Т0-220АБ
Реферат: PHILIPS MOSFET igbt mosfet переключатель BUK866 4001z
|
OCR-сканирование |
БУК100-50ДЛ БУК100-50ГЛ БУК100-50ГС БУК101-50ДЛ БУК101-50ГЛ БУК101-50ГС БУК102-50ДЛ БУК102-50ГЛ БУК102-50ГС БУК104-50Л Т0-220АБ PHILIPS МОП-транзистор igbt МОП-переключатель БУК866 4001з | |
МОП-транзистор
Реферат: AN9506 ISL6572 переключатель zvs драйвер SEM600 Lloyd H. Dixon ISL6752 ISL6753 индуктор переключающий MOSFET каталог MOSFET
|
Оригинал |
ИСЛ6752ИСЛ6753 АН1262 ISL6752 ISL6753 АН1002 АН1246 ИСЛ6752ИСЛ6753ЗВС АН1002АН1246 МОП-транзистор AN9506 ISL6572 переключить драйвер zvs СЭМ600 Ллойд Х. Диксон ISL6752 ISL6753 индуктор переключающий мосфет каталог мосфетов | |
ссф7509
Резюме: MC33035 K1 mosfet SIL-PAD400 mosfet 400a 1335W MOSFet MOSFET B TO220 RthJA 400A mosfet
|
Оригинал |
SSF7509 15 кГц MC33035 SSF7509 MC33035 МОП-транзистор K1 SIL-PAD400 мосфет 400а 1335 Вт MOSFet МОП-транзистор B ТО220 РтЯ МОП-транзистор 400А | |
схема контактов MOSFET
Реферат: LM3641 MOSFET 2KV mosfet+on+09нг
|
Оригинал |
LM3641 схема выводов MOSFET LM3641 МОП-транзистор 2 кВ мосфет+на+09нг | |
Мощный МОП-транзистор 200 кГц
Резюме: транзистор c 558 mosfet 4b npn транзистор dc 558 транзистор dc 558 npn 12v 10A dc драйвер управления двигателем mosfet mosfet драйвер с npn транзистором ic 558 mosfet 300v 10a импульсный трансформатор привод pwm ic
|
Оригинал |
Ан-558 AN010063-01-JP 112нс 200нс Мощный мосфет 200 кГц транзистор с 558 мосфет 4b npn-транзистор постоянного тока 558 транзистор постоянного тока 558 npn МОП-транзистор управления двигателем постоянного тока 12 В 10 А драйвер мосфета с транзистором npn ик 558 мосфет 300в 10а привод импульсного трансформатора pwm ic | |
2007 – LM25116
Реферат: Si7850DP TSSOP-20-EP amp mosfet принципиальная схема IC MOSFET QG 6 PIN mosfet
|
Оригинал |
ЛМ25116 50 кГц ЦСОП-20ЭП дс300075 DS300156-01-JP ЛМ25116 Si7850DP ЦСОП-20-ЭП схема усилителя мосфета IC МОП-транзистор QG 6 PIN мосфет | |
1970 – МОП-транзистор-48В
Аннотация: схема powr607 emmc 4700uF mosfet-n EIA96 ISPPAC-POWR607 eMMC DC-DC 5V-3,3V ISPPAC-POWR1014
|
Оригинал |
ГС-12В MOSFET8сек32сек 12VNMOSFET 12В12В страница-126- 32сек2сек ispPAC-POWR1220AT8 AldecActive-HDLHDL9-10 МОП-транзистор-48В мощность607 схема эммк 4700 мкФ мосфет-н ОВОС96 ИСППАК-POWR607 eMMC DC-DC 5В-3,3В ИСППАК-POWR1014 | |
837 мосфет
Реферат: 912 MOSFET T0-220AB PHILIPS MOSFET igbt BUK108-50DL 50SP 200b MOSFET MOSFET 1053 MOSFET справочник
|
OCR-сканирование |
БУК100-50ДЛ БУК100-50ГЛ БУК100-50ГС БУК101-50ДЛ БУК101-50ГЛ БУК101-50ГС БУК102-50ДЛ БУК102-50ГЛ БУК102-50ГС БУК104-50Л 837 МОП-транзистор 912 МОП-транзистор Т0-220АБ PHILIPS МОП-транзистор igbt БУК108-50ДЛ 50СП 200b мосфет МОП-транзистор 1053 руководство по МОП-транзисторам | |
2007 – IC MOSFET QG 6 PIN
Резюме: MOSFET amp ic ZF 24060 14 В 10 А MOSFET 100 ампер MOSFET 200 кГц мощность MOSFET MOSFET 12 В 4A BAT54 IC MOSFET QG LM78L05
|
Оригинал |
LM2747 дс201509 50 кГц 250 кГц 50кГц1МГц 250 кГц 1 МГц ЦСОП-14 IC МОП-транзистор QG 6 PIN MOSFET усилитель IC ЗФ 24060 мосфет 14В 10А МОП-транзистор на 100 ампер Мощный мосфет 200 кГц мосфет 12В 4А БАТ54 IC МОП-транзистор QG LM78L05 | |
1995 – 10063
Реферат: SIEMENS MOSFET 14 MOSFET 10063 AN-558 IRF330 IRF450 SIEMENS MOSFET TI MOSFET RRD-B30M115 10063
|
Оригинал |
ТЛ/Г/10063 Ан-558 ТЛ/Г/10063 РРД-Б30М115/Печать ЦСП-9-111С2 10063 Сименс МОП-транзистор 14 мосфет 10063 Ан-558 IRF330 IRF450 сименс мосфет TI МОП-транзистор РРД-Б30М115 10063 | |
2001 – IRHNJ597230SCS
Аннотация: международный выпрямитель SMD 30CLJQ100SCS IRHNJ597034SCS IRHG6110SCS IRHNJ57234SESCS IRFE130SCX 35CLQ045SCS IRHNJ597130SCS IRHNJ7430SESCS
|
Оригинал |
4047А ИРХНДЖ597130 ИРХНДЖ593130 О-254АА 22JGQ045SCV 22GQ100SCV 25GQ045SCS ИРХНДЖ597230СКС международный выпрямитель SMD 30CLJQ100SCS ИРХНДЖ597034СКС ИРХГ6110СКС ИРХНДЖ57234СЕСКС IRFE130SCX 35CLQ045SCS ИРХНДЖ597130СКС IRHNJ7430SESCS | |
2007 – МОП-транзистор 14В 10А
Аннотация: IC MOSFET QG 6-контактный MOSFET AMP IC MOSFET 12V 4A 300 Amp MOSFET RCS 72 BAT54 FDS6898A LM2747 LM78L05
|
Оригинал |
LM2747 дс201509 50 кГц 250 кГц 50кГц1МГц 250 кГц 1 МГц ЦСОП-14 мосфет 14В 10А IC МОП-транзистор QG 6 PIN MOSFET усилитель IC мосфет 12В 4А МОП-транзистор на 300 ампер ркс 72 БАТ54 ФДС6898А LM2747 LM78L05 | |
2001 – ИРХНА57064СКС
Резюме: IRHNJ597230SCS IRHNJ9130SCS IRHG6110SCS IRHY7434 IRHE57130SCS 8CLJQ045SCV IRHNJ57034SCS irfy9230 35CLQ045SCS
|
Оригинал |
94046Б ИРХНДЖ597230 ИРХНДЖ593230 О-254АА 22JGQ045SCV 22GQ100SCV 25GQ045SCS ИРХНА57064СКС ИРХНДЖ597230СКС IRHNJ9130SCS ИРХГ6110СКС ИРХИ7434 IRHE57130SCS 8CLJQ045SCV ИРХНДЖ57034СКС irfy9230 35CLQ045SCS | |
2005 – 5 мм
Резюме: LDR 5 мм 300 кГц драйвер MOSFET IC ldr 10k LM2655MTC-ADJ 593D 594D LM2653 LM2655 MTC16
|
Оригинал |
LM2655 ЦСОП-16 300 кГц DS101284-04-JP LM2655 nat2000 5 мм лдр ЛДР 5мм Микросхема драйвера МОП-транзистора 300 кГц лдр 10к LM2655MTC-ADJ 593D 594Д LM2653 МТС16 | |
Силовой МОП-транзистор
Реферат: МОП-переключатель Диод Шоттки 40В 2А Диод Шоттки 30В MOSFET
|
Оригинал | Si4642DY SiE726DF 1-1500 мкФ 47-680 мкФ Мощный МОП-транзистор МОП-переключатель Диод Шоттки 40В 2А диод шоттки 30v МОП-транзистор | |
2010 – Схема усилителя MOSFET
Реферат: IC MOSFET QG IC MOSFET CFT top 256 en схема LM25116 модулятор RDS Si7850DP MOSFET 2KV
|
Оригинал |
ЛМ25116 50 кГц ЦСОП-20ЭП DS300156-03-JP МХА20А схема усилителя мосфета IC МОП-транзистор QG IC МОП-транзистор CFT топ 256 ru схема ЛМ25116 модулятор РДС Si7850DP МОП-транзистор 2 кВ | |
2005 – СЛУП169
Реферат: slup206 peter markowski Руководство по проектированию и применению SLUP206 для высокоскоростных MOSFET IC SEM 2005 СПИСОК ДРАЙВЕРОВ МОП-транзисторов Драйвер IGBT-транзистора Bill Andreycak SLUA341 Синхронный выпрямитель MOSFET
|
Оригинал |
SLUA341 SLUP169 slup206 Питер Марковски СЛУП206 Руководство по проектированию и применению высокоскоростных полевых МОП-транзисторов ИК СЭМ 2005 СПИСОК ДРАЙВЕРОВ МОП-транзисторов Драйвер IGBT MOSFET Билл Андрейчак SLUA341 синхронный выпрямитель mosfet | |
2007 – AC24V
Аннотация: DC24V LM3102
|
Оригинал |
LM3102 ЭЦСОП-20 DC5VDC12VDC24VAC12VAC24V ДС300213-03-ДжП LM3102 AC24V DC24V | |
5a6 стабилитрон
Реферат: Двойной MOSFET dip стабилитрон 6. 2v 1w 10v ZENER DIODE 5A6 smd sot23 DG9415
|
Оригинал |
Si4418DY 130 мОм@ Si4420BDY Si6928DQ 35 мОм@ Si6954ADQ 53 мОм@ SiP2800 СУМ47Н10-24Л 24 мОм@ стабилитрон 5а6 двойной мосфет провал диод стабилитрон 6.2в 1вт 10В ЗЕНЕРСКИЙ ДИОД 5А6 смд сот23 ДГ9415 | |
2007 – MOSFET ВЧ усилитель
Реферат: Схема усилителя MOSFET IC MOSFET QG LM25116 Si7850DP 13MOSFET 5256A
|
Оригинал |
ЛМ25116 50 кГц ЦСОП-20ЭП дс300075 DS300156-01-JP МОП-транзистор ВЧ усилитель схема усилителя мосфета IC МОП-транзистор QG ЛМ25116 Si7850DP 13МОП-транзистор 5256А | |
2006 – S 170 МОП-транзистор
Аннотация: 8203 двойной MOSFET S 170 MOSFET SOT323 MOSFET P MOSFET ЧАСТОТА ПЕРЕКЛЮЧЕНИЯ IPS09N03LA P-канальный силовой MOSFET SO-8 TDA21102 MOSFET, все MOSFET, эквивалентные книге
|
Оригинал |
Б152-Х8203-Г4-С-7600 S 170 МОП-транзистор 8203 двойной мосфет S 170 МОП-транзистор МОП-транзистор SOT323 P ЧАСТОТА ПЕРЕКЛЮЧЕНИЯ MOSFET IPS09N03LA P-канальный силовой MOSFET SO-8 TDA21102 мосфет все mosfet эквивалент книги | |
2008 – АН1114
Реферат: smd транзистор 2t1 smps* ZVT AN1114A DELTA 2000 smps микросхема 1414 термистор ptc 10d DS01114A AN-1114 90 В переменного тока-230 В переменного тока
|
Оригинал |
АН1114 ДС01114А АН1114 смд транзистор 2t1 смпс* ЗВТ АН1114А ДЕЛЬТА 2000 смс микросхема 1414 термистор ptc 10d Ан-1114 90В переменного тока-230В переменного тока |
Предыдущий 1 2 3 . .. 23 24 25 Next
[PDF] Аппарат для дуговой сварки с полумостовым передним преобразователем
- 0547 @article{Birbir2017ArcWM,
title={Аппарат для дуговой сварки с полумостовым передним преобразователем},
автор={Яшар Бирбир},
journal={Международный журнал электроники и электротехники},
год = {2017},
страницы={106-109}
}
- Y. Birbir
- Опубликовано в 2017 г.
- Машиностроение
- Международный журнал электроники и электротехники
В данной статье представлен сварочный аппарат мощностью 3 кВт на основе полумостового прямого преобразователя. [] Ключ Метод Преобразователь использует интегральную схему ШИМ-контроллера текущего режима. SG1844 улучшает частоту переключения 100 кГц по размеру и весу, но частота переключения ограничена переключающими устройствами и материалом трансформатора. Этот метод управления обеспечивает правильное зажигание при напряжении 78 В. Важным требованием к источнику питания этого сварочного аппарата является управление формой волны ШИМ и ее адаптация… сварочные аппараты с фазосдвигающим трехступенчатым преобразователем постоянного тока ЗВС
3-уровневый фазовращатель ZVS-PWM с H-мостом DC/DC с преобразователем большой мощности на высокочастотном звене для аппарата дуговой сварки имеет уменьшенный размер фильтра, улучшенный динамический отклик и уменьшенные потери напряжения на полупроводниковых ключах.
Прямой автономный двухключевой прямоходовой преобразователь с повышающим ККМ для питания электромагнитных систем постоянного тока
- Димитров Б.Д. которые решают проблему с просадкой напряжения, возникающей в системе распределения электроэнергии, и обеспечивают стабильную работу контактной аппаратуры и релейных цепей при их промышленном применении.
ПОКАЗАНЫ 1-10 ИЗ 11 ССЫЛОК
СОРТИРОВАТЬ ПОРелевантности Наиболее влиятельные документыНедавность
Простой инвертор для аппаратов для дуговой сварки с выпрямителем с удвоением тока
В этом письме предлагается новая схема инвертора для аппаратов для дуговой сварки. Выходной выпрямитель, замененный двойным выпрямителем по току, может эффективно уменьшить пульсации выходного тока. Таким образом, нижняя…
Усовершенствованный преобразователь постоянного тока высокой мощности с полумостовым инвертором нового типа с мягким переключением и ШИМ-преобразователем с высокочастотным трансформатором для дуговой сварки
В этой статье представлена новая топология схемы полумостового переключателя шины постоянного тока с плавным переключением преобразователя постоянного тока с ШИМ инверторного типа для дуговой сварки. Предлагаемый силовой преобразователь состоит из…
Сравнительный анализ блоков питания мощностью 4 кВт для сварочного аппарата
- P. Cancelliere, V. Colli, R. D. Stefano, G. Tomassi
Engineering
Пятая международная конференция по силовой электронике и Системы привода, 2003. PEDS 2003.
- 2003
В статье рассматривается исследование, проведенное для оценки надежности топологии Н-моста для DC/DC преобразователя со стратегией фазовой модуляции с тремя различными силовыми устройствами. Первый…
Высокоскоростное динамическое управление для инверторного источника питания для дуговой сварки
- Zhu Zhi-ming
Материаловедение
- 1999
Источник сварочной мощности устанавливается на основе метода усреднения выходного тока и реализован постоянный выход (ток или напряжение)…
Новая схема управления смешанным током и напряжением для инверторных сварочных аппаратов
- Ю. Че, Ю. Джанг, М. Йованович, Дж. С. Го, Г. Чоу Electronics Conference and Exposition (Cat. No.01Ch47181)
- 2001
В этой статье предлагается новая схема управления смешанным током и напряжением для инверторно-управляемой дуговой сварочной машины. Предлагаемая схема управления использует как регулятор тока с обратной связью, так и…
Электронный сварочный аппарат с высокочастотным резонансным инвертором
- Л.