Регулятор мощности тиристорный, схемы регуляторов напряжения на тиристорах
В статье стоит раскрыть тему того, как совершает работу тиристорный регулятор напряжения, схему которого можно более подробно осмотреть в интернете.
В повседневной жизни в большинстве случаев может развиться особая необходимость в регулировании общей мощности бытовых приборов, к примеру, электроплит, паяльника, кипятильника, а также ТЭНов, на транспорте — оборотов двигателя и прочего. В этом случае на помощь нам придёт простая и радиолюбительская конструкция — это особый регулятор мощности на тиристоре.
- Как совершает свою работу тиристор?
- Область использования тиристорных устройств
- Как работает такое устройство?
- Тиристорный регулятор напряжения своими руками
- Способы регулирования фазового напряжения в сети
- Схемы на тиристорах
Создать такое устройство не составит особого труда, оно может стать тем первым самодельным прибором, который будет выполнять функцию регулировки температуры жала в паяльнике
Следует отметить, что навесной тип монтажа — это вариант осуществления сборки радиоэлектронных компонентов без использования при этом специальной печатной платы, а при качественном навыке он помогает быстро собрать электронные устройства со средней сложностью производства.
Также вы можете заказать электронный тип конструктора тиристорного типа регулятора, а тот, кто хочет полностью разобраться во всём самостоятельно, должен изучить некоторые схемы и принцип функционирования прибора.
Между прочим, такое устройство является регулятором общей мощности. Такое устройство может быть применимо для управления общей мощностью либо управлением числа оборотов. Но для начала нужно полностью разобраться в общем принципе функционирования такого устройства, ведь это поможет понять, на какую нагрузку стоит рассчитывать при использовании такого регулятора.
Как совершает свою работу тиристор?
Тиристор — это управляемый полупроводниковый прибор, который способен быстро провести ток в одну сторону. Слово управляемый обозначает тиристор не просто так, так как с его помощью, в отличие от диода, который также проводит общий ток лишь к одному полюсу, можно выбирать отдельный момент, когда тиристор начнёт процесс проведения тока.
Тиристор обладает сразу тремя выводами тока:
- Катод.
- Анод.
- Управляемый электрод.
Чтобы осуществить течение тока через такой тиристор, стоит выполнить следующие условия: деталь обязана в обязательном порядке расположена на самой цепи, которая будет находиться под общим напряжением, на управляющую часть электрода должен быть подан нужный кратковременный импульс. В отличие от транзистора, управление таким тиристор не будет требовать от пользователя удержания управляющего сигнала.
Но в этом все трудности использования такого прибора заканчиваться не будут: тиристор можно легко закрыть, если прервать поступление в него тока по цепи, либо создав обратное напряжение анод — катод. Это будет значить то, что применение тиристора в цепях постоянного тока считается довольно специфичным и в большинстве случаев полностью неблагоразумно, а в цепях переменного, к примеру, в таком устройстве как тиристорный регулятор, схема создана таким методом, чтобы было полностью обеспечено условие для закрытия прибора. Любая данная полуволна будет полностью закрывать соответствующий отдел тиристора.
Вам, скорее всего, сложно понять схему его строения. Но, не нужно расстраиваться — ниже будет более подробно описан процесс функционирования такого устройства.
Область использования тиристорных устройств
В каких целях можно использовать такое устройство, как регулятор мощности тиристор. Такой прибор позволяет более эффективно регулировать мощность нагревательных приборов, то есть осуществлять нагрузку на активные места. Во время работы с высокоиндуктивной нагрузкой тиристоры способны просто не закрыться, что может приводить к выходу такого оборудования из нормальной работы.
Можно ли самостоятельно осуществить регулирование оборотов в двигателе прибора?
Многие из пользователей, которые видели или даже на практике применяли дрели, углошлифовальные машины, которые по-другому называются болгарками, и другими электроинструментами. Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Такой элемент как раз и будет находиться в тиристорном регуляторе мощности (общая схема такого прибора указана в интернете), при помощи которого и происходит изменение общего числа оборотов.
Стоит обратить своё внимание на то, что регулятор не может самостоятельно менять свои обороты в асинхронных двигателях. Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом.
Как работает такое устройство?
Описанные ниже характеристики будет соответствовать большинству схем.
- Тиристорный регулятор общей мощности, принцип и особенности работы которого будут основаны на фазовости управления величиной напряжения, изменяет и общую мощность в приборах. Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Выше, при описании принципа функционирования работы тиристора было сказано о том, что любой тиристор включает в себя функционирование лишь в одном направлении, то есть осуществляет управление своей полуволной от синусоидов. Что же это может означать?
- Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения (действующее значение, которое и воспроизводит нагрузку) будет намного меньше, чем световое. Такое явление можно рассмотреть на графиках движения.
При этом происходит определённая область, которая будет находиться под особым напряжением. Когда воздействие положительной полуволны окончится и начнётся новый период движения с отрицательно полуволной, то один из таких тиристоров начнёт закрываться, и в это же время откроется новый тиристор.
Вместо слов положительная и отрицательная волна стоит использовать первая и вторая (полуволна).
В то время как на схему начинает своё воздействие первая полуволна, происходит особая зарядка ёмкости С1, а также С2. Скорость их полной зарядки будет ограничена потенциометром R 5. Такой элемент будет полностью переменным, и при его помощи будет задаваться выходное напряжение. В тот момент, когда на поверхности конденсатора С1 появится нужное для открытия диристора VS 3 напряжения, весь динистор откроется, а через него начнёт проходить ток, при помощи которого откроется тиристор VS 1.
Во время пробоя динистра и образуется точка на общем графике. После того как значение напряжение перейдёт нулевую отметку, и схема будет находиться под воздействием второй полуволны, тиристор VS 1, закроется, а процесс будет повторяться, только уже для второго динистра, тиристора, а также конденсатора. Резисторы R 3 и R 3 нужны для ограничения общего тока управления, а R 1 и R 2 — для процесса термостабилизации всей схемы.
Принцип действия второй схемы будет точно такой же, но в ней будет происходить управление лишь одной из полуволн переменного тока. После того, как пользователь будет понимать принцип работы устройства и его общую схему строение, он сможет понять как собрать или же в случае необходимости починить тиристорный регулятор мощности самостоятельно.
Тиристорный регулятор напряжения своими руками
Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока. Это будет означать то, что не нужно касаться руками элементов регулятора.
Следует спроектировать конструкцию вашего прибора таким образом, чтобы по возможности вы смогли спрятать её в регулируемом устройстве, а также найти более свободное место внутри корпуса. Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Такое решение сможет частично обезопасить человека от поражения током, а также избавит его от необходимости поиска подходящего корпуса у прибора, обладает привлекательным внешним строением, а также создано с использованием промышленных технологий.
Способы регулирования фазового напряжения в сети
- Есть сразу несколько способов осуществления регуляции переменного напряжения в тиристорах: можно совершать пропуск или же запрещать выход на регуляторе целых четыре полупериода (либо периода) переменного напряжения. Можно включать не в начале совершения полупериода сетевого напряжения, а с совершением некоторой задержки. В течение данного времени напряжение на выходе из регулятора будет равняется отметки нуль, а общая мощность не будет передаваться на выход устройства. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
- Время задержки в большинстве случаев именуют углом открывания тиристора, так как во время нулевого значения угла почти всё напряжение от входа будет переходить к выходу, только падение на открытой области тиристора начнёт теряться. Во время увеличения общего тиристорного угла регулятор напряжения будет значительно снижать выходной параметр напряжения.
- Регулировочная характеристика у такого прибора во время своей работы, во время активной нагрузки осуществляется особо интенсивно. При угле равному 90 градусов (электрических) на выходе из разъёма будет половина входного напряжения, а при общем угле в 180 электрических градусов на выходе будет показатель нуль.
На основе принципов и особенностей фазового регулирования напряжения можно построить определённые схемы регулирования, стабилизации, а в отдельных случаях с плавного пуска. Для осуществления более плавного пуска напряжение стоит со временем повышать от нуля до максимального показателя. Таким образом, во время открывания тиристора максимальный показатель значения должен изменяться до отметки нуль.
Схемы на тиристорах
Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. Последние довольно дорогие совершать использование, и собрать их, не имея особого опыта, довольно сложно. В то время как аналоговые приборы (считаются по своей сути регуляторами общей мощности) не составит труда создать самостоятельно.
Довольно простая схема прибора, которая поможет регулировать показатель мощности на паяльнике.
- VD — КД209 (либо близкие по его общим характеристикам).
- R 1 — сопротивление с особым номиналом в 15 кОм.
- R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм.
- Rn — это общая нагрузка (в этом случае вместо неё будет использован особый маятник).
Такое устройство для регуляции может контролировать не только положительный полупериод, по этой причине мощность паяльника будет в несколько раз меньше номинальной. Управляется такой тиристор с помощью специальной цепи, которая несёт в себе два сопротивления, а также ёмкость. Время зарядки конденсата (оно будет регулироваться особым сопротивлением R2) влияет на длительность открытия такого тиристора.
Тиристорный регулятор мощности
В современных радиолюбительских схемах широкое распространение получили различные виды деталей, в том числе и тиристорный регулятор мощности. Чаще всего эта деталь используется в паяльниках на 25-40 ватт, которые в обычных условиях легко перегреваются и становятся непригодными к работе. Эта проблема легко решается с помощью регулятора мощности, позволяющего выставлять точную температуру.
Содержание
Применение тиристорных регуляторов
Как правило, тиристорные регуляторы мощности применяются для улучшения рабочих свойств обычных паяльников. Современные конструкции, оснащенные множеством функций, отличаются высокой стоимостью, а их использование будет неэффективным при небольших объемах паяльных работ. Поэтому, более целесообразным будет оборудование обычного паяльника тиристорным регулятором.
Регулятор мощности на тиристоре широко применяется в системах регулировки яркости светильников. На практике они представляют собой обычные настенные выключатели с вращающейся ручкой-регулятором. Однако такие приспособления способны нормально работать лишь с обычными лампами накаливания. Они совершенно не воспринимаются современными компактными люминесцентными лампами, из-за расположенного внутри них выпрямительного моста с электролитическим конденсатором. Тиристор просто не будет работать во взаимодействии с этой схемой.
Такие же непредсказуемые результаты получаются и при попытках отрегулировать яркость светодиодных ламп. Поэтому для регулируемого источника освещения наиболее оптимальным вариантом будет использование обычных ламп накаливания.
Существуют и другие области применения тиристорных регуляторов мощности. Среди них следует отметить возможность регулировки ручного электроинструмента. Регулирующие устройства устанавливаются внутри корпусов и позволяют изменять количество оборотов дрели, шуруповерта, перфоратора и прочего инструмента.
Принцип работы тиристора
Действие регуляторов мощности тесно связано с принципом работы тиристора. На радиосхемах он обозначается значком, напоминающим обычный диод. Каждому тиристору свойственна односторонняя проводимость и, соответственно, способность к выпрямлению переменного тока. Участие в этом процессе становится возможным при условии подачи к управляющему электроду положительного напряжения. Сам управляющий электрод располагается со стороны катода. В связи с этим, тиристор ранее носил название управляемого диода. До подачи управляющего импульса, тиристор будет закрытым в любом направлении.
Для того чтобы визуально определить исправность тиристора, его включают в общую цепь со светодиодом через источник постоянного напряжения в 9 вольт. Дополнительно вместе со светодиодом подключается ограничительный резистор. Специальная кнопка замыкает цепь и напряжение с делителя подается к управляющему электроду тиристора. В результате, тиристор открывается и светодиод начинает излучать свет.
При отпускании кнопки, когда она перестает удерживаться в нажатом положении, свечение должно продолжаться. В случае повторного или неоднократного нажатия кнопки ничего не изменится – светодиод все так же будет светить с одинаковой яркостью. Это свидетельствует об открытом состоянии тиристора и его технической исправности. Он будет находиться в открытом положении до того момента, пока подобное состояние не прервется под влиянием внешних воздействий.
В некоторых случаях могут быть исключения. То есть при нажатии кнопки светодиод загорается, а при отпускании кнопки – он гаснет. Такая ситуация становится возможной из-за тока, проходящего через светодиод, значение которого меньше по сравнению с током удержания тиристора. Чтобы схема работала нормально, светодиод рекомендуется заменить лампой накаливания, что приведет к увеличению тока. Другим вариантом будет подбор тиристора, у которого ток удержания будет меньше. Параметр тока удержания у различных тиристоров может быть с большим разбросом, в таких случаях приходится подбирать элемент для каждой конкретной схемы.
Схема простейшего регулятора мощности
Тиристор участвует в выпрямлении переменного напряжения так же, как и обыкновенный диод. Это приводит к однополупериодному выпрямлению в незначительных пределах с участием одного тиристора. Для достижения желаемого результата, с помощью регуляторов мощности осуществляется управление двумя полупериодами напряжения сети. Это становится возможным благодаря встречно-параллельному включению тиристоров. Кроме того, тиристоры могут включаться в цепь диагонали выпрямительного моста.
Простейшую схему тиристорного регулятора мощности лучше всего рассматривать на примере регулировки мощности паяльника. Нет смысла начинать регулировку прямо с нулевой отметки. В связи с этим регулировать можно только один полупериод положительного сетевого напряжения. Прохождение отрицательного полупериода осуществляется через диод, без каких-либо изменений, непосредственно к паяльнику, обеспечивая его половинную мощность.
Прохождение положительного полупериода происходит через тиристор, за счет чего и выполняется регулировка. В цепи управления тиристором присутствуют простейшие элементы в виде резисторов и конденсатора. Зарядка конденсатора происходит от верхнего провода схемы, через резисторы и конденсатор, нагрузку и нижний провод схемы.
Управляющий электрод тиристора соединяется с плюсовым выводом конденсатора. Когда на конденсаторе напряжение возрастает до значения, позволяющего включать тиристор, происходит его открытие. В результате, в нагрузку пропускается какая-то часть положительного полупериода напряжения. Одновременно наступает разрядка конденсатора и подготовка к следующему циклу.
Для регулировки скорости заряда конденсатора используется переменный резистор. Чем быстрее произойдет зарядка конденсатора до значения напряжения, при котором открывается тиристор, тем раньше наступит открытие тиристора. Следовательно, в нагрузку поступит большее количество положительного полупериода напряжения. Данная схема, в которой используется тиристорный регулятор мощности, служит основой для других схем, применяющихся в различных областях.
Тиристорный регулятор мощности своими руками
6. Тиристоры, симисторы, диаки Есть несколько тиристоров выведены на 6.1. Триаки выглядят одинаково, а диаки выглядят как маломощные выпрямительные диоды. Их символы и распиновка представлена на рис. 6.2. Тиристор – усовершенствованный диод.
Помимо анода (А) и катода (k) у него есть еще один вывод, который обычно
описан как ворота (G), как показано на рисунке 6. 2a. Так же диод
делает, тиристор проводит ток, когда анод положителен по сравнению с
катода, но только если напряжение на затворе положительное и
на затвор поступает достаточный ток для включения устройства. Когда
тиристор начинает проводить ток в затвор не имеет значения, а тиристор
можно отключить, только отключив ток между анодом и катодом. Для
пример см. на рис. 6.3. Если S1 закрыт, тиристор не будет проводить ток, и
глобус не загорится. Если S2 замкнут на очень короткое время,
глобус загорится. Чтобы выключить глобус, необходимо открыть S1. Тиристоры имеют маркировку в некоторых
схемы как SCR, что является аббревиатурой от Silicon Controlled
Выпрямитель. Тиристоры и симисторы имеют буквенно-цифровую маркировку КТ430, для
пример. 6. 1 Практические примеры Рисунок 6.5 определяет наличие света в комнате. Без света, фототранзистор не проводит. При наличии света фототранзистор проводит и звонок активируется. Выключение света не остановит тревога. Тревога отключается через S1. Схема мигания глобуса показана на рис. 6.6. Эта схема мигает глобусом мощностью 40 Вт несколько раз в секунду. Напряжение сети регулируется с помощью диод 1N4004. Зарядка конденсатора 220u и его напряжение поднимается. Когда это напряжение достигает расчетного напряжения диака (20 В), конденсатор разряжается через диак в симистор. Этот включает симистор и зажигает лампочку на очень короткий промежуток времени, через некоторое время (установленное 100 тыс. горшок), конденсатор снова заряжается, и весь цикл повторяется. Регулятор 1k устанавливает текущий уровень, необходимый для срабатывания симистора. Схема для управления яркостью шара или скоростью двигателя показан на рис. 6.7 Если основное назначение этой схемы — управление яркостью света лампочка, RS и CS не необходимый. |
Коэффициент безопасности по напряжению тиристора. Заключительный отчет (Технический отчет)
Запас прочности по напряжению тиристора. Заключительный отчет (Технический отчет) | ОСТИ.GOVперейти к основному содержанию
- Полная запись
- Другое связанное исследование
В рамках этого проекта были исследованы теоретические и экспериментальные основы снижения коэффициента снижения номинальных характеристик тиристоров, используемых в конструкциях твердотельных преобразователей. Этот коэффициент, известный как коэффициент безопасности по напряжению (VSF), используется в качестве запаса прочности для защиты тиристоров от переходных процессов напряжения, возникающих в приложениях. Для конструкций с принудительной коммутацией (или самокоммутацией) преобразователей необходимо применять VSF в диапазоне от 1,4 до 1,8, чтобы получить экономичную единицу для коммунального применения с батареями и топливными элементами. Представленная работа показывает, что эти низкие запасы могут быть использованы в успешных проектах, а также определяет и исследует компоненты VSF и их зависимость от характеристик схемы и тиристоров.
- Авторов:
- Мунгенаст, Дж.; Кирк, Д.
- Дата публикации:
- Исследовательская организация:
- Power Semiconductors, Inc. , Девон, Коннектикут (США)
- Идентификатор ОСТИ:
- 6898367
- Номер(а) отчета:
- ЭПРИ-ЕМ-825
- Тип ресурса:
- Технический отчет
- Страна публикации:
- США
- Язык:
- Английский
- Тема:
- 30 ПРЯМОЕ ПРЕОБРАЗОВАНИЕ ЭНЕРГИИ; 25 НАКОПЛЕНИЕ ЭНЕРГИИ; ЭЛЕКТРИЧЕСКИЕ БАТАРЕИ; ИНВЕРТОРЫ; ТОПЛИВНЫЕ ЭЛЕМЕНТЫ; ЗАЩИТНЫЕ УСТРОЙСТВА ОБОРУДОВАНИЯ; ТИРИСТОРЫ; АВАРИЯ; ДИЗАЙН; ЭЛЕКТРОННЫЕ ЦЕПИ; НЕУДАЧИ; ТОК УТЕЧКИ; ПЕРЕНАПРЯЖЕНИЕ; ПРОИЗВОДИТЕЛЬНОСТЬ; ТЕСТИРОВАНИЕ ПРОИЗВОДИТЕЛЬНОСТИ; НАДЕЖНОСТЬ; БЕЗОПАСНОСТЬ; НАГРУЗКИ; ПЕРЕХОДНЫЕ ПЕРИОДЫ; ТОКИ; ПРЯМЫЕ ПРЕОБРАЗОВАТЕЛИ ЭНЕРГИИ; ЭЛЕКТРИЧЕСКИЕ ТОКИ; ЭЛЕКТРИЧЕСКОЕ ОБОРУДОВАНИЕ; ЭЛЕКТРОХИМИЧЕСКИЕ ЯЧЕЙКИ; СИСТЕМЫ НАКОПЛЕНИЯ ЭНЕРГИИ; ОБОРУДОВАНИЕ; ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ; ТЕСТИРОВАНИЕ; 300503 * – Топливные элементы – материалы, компоненты и вспомогательное оборудование; 250903 – Аккумуляторы энергии – Батареи – Материалы, компоненты и вспомогательное оборудование
Форматы цитирования
- MLA
- АПА
- Чикаго
- БибТекс
Мангенаст, Дж. , и Кирк, Д.. Коэффициент безопасности по напряжению тиристора. Заключительный отчет . США: Н. П., 1978.
Веб. дои: 10.2172/6898367.
Копировать в буфер обмена
Mungenast, J., & Kirk, D.. Коэффициент безопасности по напряжению тиристора. Заключительный отчет . Соединенные Штаты. https://doi.org/10.2172/6898367
Копировать в буфер обмена
Мунгенаст, Дж., и Кирк, Д., 1978.
«Коэффициент безопасности по напряжению тиристора. Итоговый отчет». Соединенные Штаты. https://doi.org/10.2172/6898367. https://www.osti.gov/servlets/purl/6898367.
Копировать в буфер обмена
@статья{osti_6898367,
title = {Коэффициент безопасности по напряжению тиристора. Заключительный отчет},
автор = {Мунгенаст, Дж. и Кирк, Д.},
abstractNote = {В этом проекте исследованы теоретические и экспериментальные основы снижения коэффициента снижения номинальных характеристик тиристоров, используемых в конструкциях твердотельных преобразователей. Этот коэффициент, известный как коэффициент безопасности по напряжению (VSF), используется в качестве запаса прочности для защиты тиристоров от переходных процессов напряжения, возникающих в приложениях. Для конструкций с принудительной коммутацией (или самокоммутацией) преобразователей необходимо применять VSF в диапазоне от 1,4 до 1,8, чтобы получить экономичную единицу для коммунального применения с батареями и топливными элементами. Представленная работа показывает, что эти низкие запасы могут быть использованы в успешных проектах, а также определяет и исследует компоненты VSF и их зависимость от характеристик схемы и тиристоров.},
дои = {10,2172/6898367},
URL-адрес = {https://www.