Виды теодолитов: Классификация и виды электронных теодолитов, принцип и особенности устройства

1.2. Типы теодолитов

Теодолиты различаются по точности, способу отсчитывания по лимбу, по конструкции, назначению и другим признакам.

По точности теодолиты делятся на:

  • высокоточные, с помощью которых горизонтальный угол измеряется одним полным приемом со средней квадратической погрешностью от 0,5″ до  1″;

  • точные, позволяющие измерять горизонтальный угол одним приемом со средней квадратической погрешностью от  2″ до  15″;

  • технические – со средней квадратической погрешностью от  20″ до  60″.

Средняя квадратическая погрешность измерения горизонтального угла указывается в шифре теодолита цифрами, например, Т2, Т5, Т30. В случае применения зрительной трубы с прямым изображением в шифре теодолита добавляется буква П, например, 2Т30П – теодолит со средней квадратической погрешностью измерения горизонтального угла  30″ и с трубой прямого изображения. Цифра 2 впереди шифра обозначает, что это теодолит второго поколения, то есть более совершенный, чем теодолит марки Т30.

Теодолит Т5 выпускается в двух вариантах – с уровнем при вертикальном круге (шифр Т5) и без уровня при вертикальном круге, но с компенсатором (шифр Т5К). Компенсатор представляет собой линзу или призму, подвешенную на четырех тонких проволоках. При наклоне оси вращения теодолита (вертикальной оси) в небольших пределах (1-2′) линза, сместившись под действием силы тяжести, сместит изображение делений вертикального круга таким образом, что отсчет по нему будет соответствовать отвесному положению оси вращения прибора, т.е. автоматически компенсирует наклон этой оси. Поэтому отсчет по вертикальному кругу при горизонтальном положении визирной оси будет равным или близким 0 даже при не строго отвесном положении оси вращения теодолита. Этот отсчет называют местом нуля, и точность его установки компенсатором определяется средней квадратической ошибкой  6″.

По конструкции теодолиты делятся на повторительные и простые. У повторительных теодолитов лимб и алидада имеют раздельное и совместное вращение, что позволяет производить измерения горизонтальных углов путем откладывания значения угла на лимбе несколько раз (при измерении углов способом повторений). У простых теодолитов цилиндрическая вертикальная ось жестко скреплена с алидадой.

Ниже рассмотрим точный теодолит Т5, технический теодолит Т30 и их модификации, которые обычно используются в инженерно-геодезических работах.

Теодолит Т5 (рис.3) и его модификации (Т5К, 2Т5, 2Т5К) относятся к разряду точных, с повторительной системой вертикальной оси и отсчетным приспособлением в виде шкалового микроскопа с ценой деления шкалы 1′, позволяющим производить отсчеты с точностью 0,1′(6″). Система отсчитывания односторонняя. Увеличение трубы 27

х, пределы визирования от 2 м до бесконечности, цена деления цилиндрического уровня 30″.

В теодолите Т5 при вертикальном круге имеется цилиндрический уровень, в теодолитах Т5К и его модификациях уровня при вертикальном круге нет, его заменяет компенсатор. Если на вертикальном круге теодолита Т5К установить отсчет, равный месту нуля, визирная ось трубы будет горизонтальна, и теодолит можно использовать как нивелир.

Горизонтальный круг (лимб) может быть скреплен с алидадой или отсоединен от нее с помощью специальной защелки повторительного устройства. Когда необходимо повернуть лимб вместе с алидадой, нажимают на клавишу защелки 5 (рис.3). Для того, чтобы горизонтальный круг оставался неподвижным, его отсоединяют от алидады нажатием на фиксатор защелки. На подставке зрительной трубы расположены закрепительный и микрометренный винты 3. В верхней части подставки с вертикальным кругом расположено зеркало для подсветки оптической системы, передающей изображения делений одной стороны горизонтального и вертикального кругов в отсчетный микроскоп. Вращением диоптрийных колец окуляры микроскопа и трубы устанавливаются по глазу до отчетливой видимости шкалы микроскопа и сетки нитей трубы.

Все эти теодолиты имеют оптический центрир. Объектив центрира расположен внутри вертикальной оси, а окуляр 2 выведен наружу и расположен у одной из подставок зрительной трубы. Для предварительного центрирования приборов может быть использован обычный нитяный отвес.

Теодолит Т30 (рис.4) и его модификации (2Т30, 2Т30П) относятся к разряду технических, с повторительной системой вертикальной оси. Система отсчитывания односторонняя. Увеличение трубы 18х (Т30) и 20х (2Т30), пределы визирования от 1,2 м до бесконечности, цена деления цилиндрического уровня 45″. Данные теодолиты применяются для прокладывания теодолитных и тахеометрических ходов, плановых и высотных съемок.

Рис.4. Теодолит Т30: 1 – основание; 2 – исп­ра­ви­тельный винт цилиндрического уровня;   3, 4 – закрепительный и наводящий винты алидады; 5 – цилиндрический уровень; 6 – наводящий винт зрительной трубы; 7 – кремальера; 8 – закрепительный винт зрительной трубы; 9 – визир; 10 – окуляр зрительной трубы;   11 – окуляр отсчетного микроскопа; 12 – колонка;         13 – подставка; 14 – закрепительный винт лимба;           15 – подъемный винт

 

В теодолите Т30 отсчетное приспособление выполнено в виде штрихового микроскопа, позволяющего брать отсчеты с точностью 1′, а в его модификациях (2Т30, 3Т30) – шкалового микроскопа тридцатисекундной точности. На зрительной трубе имеется оптический визир 9 (рис.4), в поле зрения которого виден светлый крест. Этот крест совмещается с предметом, который должен попасть в поле зрения зрительной трубы, но изображение предмета может быть размытым (иногда его изображение вообще не будет видно). Для получения четкого изображения предмета необходимо с помощью кремальеры 7 перемещать в трубе специальную фокусирующую линзу до тех пор, пока его изображение не станет четким. Зажимные винты зрительной трубы 8 и алидады горизонтального круга 3 закрепляются, и микрометренными винтами алидады горизонтального круга 4 и зрительной трубы 6 центр сетки нитей наводится на предмет. Отчетливость изображения сетки нитей получают вращением диоптрийного кольца окуляра трубы 10.

В теодолите Т30 подставка 13 жестко скреплена с основанием 1, служащим одновременно донцем футляра, что позволяет закрывать теодолит футляром, не снимая его со штатива. Ось вращения теодолита устанавливается в отвесное положение с помощью подъемных винтов 15 и цилиндрического уровня при алидаде горизонтального круга 5.

Полая вертикальная ось теодолита позволяет центрировать прибор над точкой местности с помощью зрительной трубы. Прибор снабжается окулярными насадками для зрительной трубы и микроскопа, которые применяют при наблюдении предметов, расположенных относительно горизонта под углом более 45  .

В теодолитах Т30 имеется только один цилиндрический уровень при алидаде горизонтального круга 5, который прикрепляется к подставке зрительной трубы параллельно визирной плоскости. Положение уровня изменяется юстировочными (исправительными) винтами 2. При алидаде вертикального круга уровня нет.

Теодолит по особому заказу может быть укомплектован ориентир-буссолью и уровнем, который прикрепляется к трубе для нивелирования горизонтальным визирным лучом. Обычно к зрительной трубе прикрепляют два визира. При установке уровня на трубе один из визиров должен быть снят.

   1.3. Уход за теодолитами

Теодолиты относятся к сложным оптико-механическим приборам. Для обеспечения их надежной работы необходимо бережное обращение с ними и постоянный уход. Перед использованием теодолита для наблюдений необходимо проверить общее состояние прибора, состояние оптических поверхностей и ампул уровней, наличие указанных в паспорте принадлежностей в комплекте. Далее проверяют вращение алидады и зрительной трубы, работу переключателя отсчетной системы, зажимных и отсчетных устройств, окуляров, кремальеры, плавность вращения подъемных винтов.

Разборка и чистка внутренних частей теодолита требует определенных навыков, наблюдатель же может выполнить несложные операции, особенно осторожно следует выполнять чистку просветленной оптики теодолита, которая особенно чувствительна к механическим повреждениям.

Во время производства наблюдений прибор рекомендуется защищать от нагрева солнцем и непосредственного воздействия осадков. Если теодолит попал под дождь, его необходимо обсушить и протереть мягкой салфеткой, не допуская сушку теодолита вблизи источников тепла.

При внесении теодолита с холода в теплое помещение футляр необходимо оставить закрытым в течение часа, а потом постепенно приоткрывать, обеспечивая плавный переход от холода к теплу. Перевозить и переносить теодолит нужно только в вертикальном положении, предварительно убедившись в надежном закреплении прибора в упаковке.

  1.4. Угловые измерения

Перед началом наблюдений следует проверить взаимодействие подвижных частей теодолита. Рекомендуется сделать несколько поворотов алидады, следя за положением пузырька уровня, и, в случае необходимости, произвести юстировку уровня.

Для компенсации погрешностей рекомендуется все операции в полуприеме выполнять однообразно, алидаду вращать в полуприеме только в одном направлении, в разных же полуприемах алидаду необходимо вращать в противоположном направлении. Отсчеты рекомендуется производить без остановок и задержек, так как задержки иногда приводят к плохим результатам. Не следует излишне затягивать зажимные винты алидады и трубы, а окончательное наведение трубы осуществлять однообразным вращением, лучше ввинчиванием. Всегда необходимо пользоваться средней частью винтовой нарезки всех наводящих устройств.

Надо следить за тем, чтобы алидада вращалась без рывков и заметных усилий, избегать возвратных движений алидады. После наведения на предмет не прилагать к трубе, подставкам трубы и алидаде каких-либо усилий, которые могут вызвать смещение частей теодолита.

При измерении горизонтальный угол определяется как разность отсчетов по горизонтальному кругу

,

где З – отсчёт по горизонтальному кругу при наблюдении задней точки, П – отсчет при наблюдении передней точки.

Так как деления на горизонтальном круге подписаны с возрастанием по часовой стрелке, то отсчет на заднюю точку должен быть всегда больше отсчета при наблюдении передней точки. В случае, если нулевое деление на горизонтальном круге размещается внутри измеряемого угла, отсчёт на заднюю точку будет меньше отсчёта на переднюю точку, тогда для получения величины угла к заднему отсчету необходимо добавить 360  .

При измерении горизонтального угла теодолит ставится над вершиной измеряемого угла: центрируется и горизонтируется. Центрирование и горизонтирование взаимно зависимы, поэтому после горизонтирования необходимо проверить центрирование и, если нужно, произвести исправление, а затем проверить горизонтирование.

Наиболее распространены в инженерной практике следующие способы измерения горизонтальных и одновременно вертикальных углов: приемов, круговых приемов, повторений. Измерение вертикальных углов значительно проще, чем измерение горизонтальных углов. Во-первых, горизонтальный угол есть разность измерений двух направлений, вертикальный же угол определяется одним направлением относительно некоторой фиксированной линии или плоскости, чаще горизонтальной; во-вторых, горизонтальный угол измеряется на различных участках круга, а вертикальный круг чаще всего перестановок не имеет; в-третьих, число приемов при измерении вертикальных углов значительно меньше, чем при измерении горизонтальных углов.

Наиболее часто при измерении горизонтальных углов применяются способ приемов и способ повторений. Когда из вершины выходит более двух направлений, применяется способ круговых приемов.

В способе приемов горизонтальный угол измеряется двумя самостоятельными полуприемами – при “круге лево” (Л) и при “круге право” (П). Наводят центр сетки нитей зрительной трубы при Л на заднюю точку и берут отсчет по горизонтальному кругу, затем, открепив алидаду горизонтального круга, центр сетки нитей трубы наводят на переднюю точку и тоже берут отсчет по горизонтальному кругу. На этом первый полуприем закончен. Величина угла в полуприеме определяется как разность отсчетов по горизонтальному кругу – заднего и переднего. Необходимо помнить, что отрицательных горизонтальных углов не бывает и, в случае отрицательного значения разности следует добавить полную окружность, т.е. 360  .

При выполнении второго полуприема необходимо “сбить лимб”. Закрепительный винт подставки теодолита (лимб) открепляется, лимб поворачивается вокруг оси на 90 , при закрепленной алидаде горизонтального круга. Затем труба переводится через зенит (поворачивается вокруг горизонтальной оси на пол-оборота) и при П наводится на переднюю точку (лимб закреплен, а алидада открепляется и теодолит поворачивается вокруг оси в нужном направлении). В предыдущем полуприеме наблюдения закончились на передней точке, и труба отфокусирована на эту точку. Целесообразно, чтобы не делать лишнюю фокусировку трубы, наблюдения во втором полуприеме начинать с передней точки. Берут последовательно передний и задний отсчеты по горизонтальному кругу и определяют величину горизонтального угла во втором полуприеме.

Значения угла, полученные в каждом из полуприемов, должны различаться между собой не более чем на двойную точность теодолита (для Т30 – 2′, для 2Т30 – 1′). Если это различие более допустимого, результаты измерений угла признаются неудовлетворительными, и измерения продолжаются до получения разницы значений в полуприемах в пределах допуска. За окончательное значение принимается среднее арифметическое из значений угла, полученных в двух полуприемах.

Если при какой-либо точке (вершине) требуется измерить несколько горизонтальных углов, то применяют способ круговых приемов. Отцентрировав теодолит над вершиной и приведя его в рабочее положение, трубу наводят на точку начального направления при Л и производят отсчет по горизонтальному кругу, который записывается в журнал. Вращением алидады по часовой стрелке трубу наводят на точки следующих направлений и записывают каждый раз соответствующий отсчет. Расхождение начального и конечного отсчетов на точку начального направления не должно превышать двойную точность теодолита, что гарантирует неподвижное положение лимба. На этом заканчивается первый полуприем.

Переведя трубу через зенит, ее снова наводят на точку начального направления, но уже при П, берут отсчет и, вращая алидаду против часовой стрелки,последовательно наводят трубу на точки следующих направлений и записывают соответствующие отсчеты по горизонтальному кругу. Этими наблюдениями заканчивается второй полуприем. Два же полуприема составляют один прием. Таких приемов может быть несколько. Между приемами лимб “сбивают” на угол 180 /n, где n-число приемов.

Обработка наблюдений сводится к вычислению средних отсчетов на каждую наблюдаемую точку при Л и П, при этом градусы записывают те, которые были получены в первом полуприеме. После этого определяют средний из средних отсчетов, полученных при наблюдении начального направления. Затем данный средний отсчет вычитают из средних отсчетов, вычисленных для точек следующих направлений, и получают, так называемые приведенные направления, которые являются углами между направлениями.

Дополнительным контролем измерения углов является постоянство значения двойной коллимационной ошибки, определяемой при Л и П. Колебания в значении двойной коллимационной ошибки допускаются в пределах двойной точности теодолита.

В способе повторений, как и в способе приемов, труба теодолита наводится на заднюю точку при Л, производится отсчет по горизонтальному кругу и записывается в журнал наблюдений. Открепив алидаду, трубу наводят на переднюю точку, при этом как только точка появится в поле зрения трубы, закрепительный винт алидады закрепляется, а окончательное наведение трубы на точку осуществляется микрометренными винтами алидады и трубы. Производится отсчет по горизонтальному кругу, который называется контрольным, и записывается в графу “примечания” с указанием номера (или обозначения) точки, на которую сделан отсчет.

После этого, при закрепленной алидаде, открепляется лимб, и труба наводится на заднюю точку, при этом окончательное наведение трубы на точку осуществляется микрометренными винтами лимба (подставки теодолита) и трубы. Отсчет по горизонтальному кругу не производится (он останется прежним).

Далее, открепив алидаду, труба снова наводится на переднюю точку, отсчет по горизонтальному кругу не производится. Важно помнить, что при откреплении алидады, окончательное наведение трубы на точку осуществляется микрометренными винтами алидады и трубы, а когда открепляется лимб, окончательное наведение трубы на точку осуществляется микрометренными винтами лимба и трубы.

Затем, при открепленном лимбе, труба наводится на заднюю точку в третий раз. Теперь открепляется алидада, и труба наводится на переднюю точку. Производится отсчет по горизонтальному кругу и записывается в соответствующую графу журнала. Вычитая из первого отсчета по горизонтальному кругу на заднюю точку последний отсчет на переднюю точку, получают трехкратное значение угла, которое делится на три (на число повторений). Так получают величину угла в полуприеме.

Для вычисления значения угла при Л необходимо к исходному отсчету на заднюю точку прибавить 360 столько раз, сколько раз указатель отсчетного микроскопа прошел мимо нуля лимба. Определить это легко, так как известно приближенное значение угла, которое получается как разность между первым отсчетом на заднюю точку и контрольным отсчетом на переднюю точку, который записан в графу “примечания”.

Во втором полуприеме (при П) угол измеряется на других частях лимба, для чего “сбивается лимб” (как и в способе приемов). Кроме того, если наблюдения при Л начинаются с задней точки, то при П наблюдения начинаются с передней. Если наведение трубы на заднюю точку при Лосуществлялось при открепленном лимбе, то теперь, при П, наведение трубы на заднюю точку осуществляется при открепленной алидаде, а наведение трубы на переднюю точку – при открепленном лимбе. Во втором полуприеме надобность в контрольном отсчете отпадает, так как предварительное значение угла уже известно.

Сделав отсчет на переднюю точку при П, после трехкратного повторения, когда при открепленной алидаде труба в третий раз будет наведена на заднюю точку, производится отсчет. Разность между последним и первым отсчетом даст трехкратное значение угла. Разделив его на три, получают величину угла во втором полуприеме (при П). За окончательное значение угла принимается среднее арифметическое из значений угла при Л и П, если эти значения отличаются друг от друга не более, чем на двойную точность теодолита. В рассмотренном случае было три повторения, в практике геодезических измерений повторений может быть больше, например четыре или шесть.

При измерении углов несколькими приемами, расхождение между значениями угла в различных приемах для теодолита Т2 может быть 10″, для Т5 – 20″, для Т30 – 1,5′.

  1.5. Поверки теодолитов Т30 и 2Т30

Чтобы теодолит обеспечивал получение неискаженных результатов измерений, он должен удовлетворять соответствующим геометрическим и оптико-механическим условиям. Действия, связанные с проверкой этих условий, называют поверками. Если какое-либо условие не соблюдается, производят его исправление, т.е. юстировку.

Оптико-механические условия:

  • зрительные трубы, лупы и микроскопы должны иметь надлежащее увеличение и достаточное поле зрение, обеспечивать четкие изображения предметов наблюдения и отсчетных шкал;

  • подвижные части теодолита должны правильно и плавно перемещаться в соответствующих плоскостях.

Геометрические условия (рис.5):

  • ось цилиндрического уровня при алидаде горизонтального круга PQ должна быть перпендикулярна к вертикальной оси вращения теодолита MN;

  • визирная ось зрительной трубы CD должна быть перпендикулярна к горизонтальной оси ее вращения AB;

  • ось вращения зрительной трубы AB должна быть перпендикулярна к оси вращения теодолита MN.

  •  

Нарушение этих условий приводит к появлению систематических погрешностей при измерении углов. Для того, чтобы исключить влияние этих погрешностей на результаты наблюдений, теодолит подвергается, в соответствии [1], специальным поверкам. Все поверки имеют свой номер и выполняются в строгой последовательности, соответствующей их нумерации.

  1.5.1. Проверка внешнего состояния и комплектности

Проверку внешнего состояния и комплектности теодолита проводят визуальным осмотром. При осмотре устанавливается соответствие теодолита следующим требованиям: маркировка прибора и футляра должна соответствовать требованиям ГОСТ 10529-86, а также технической документации на поверяемый теодолит; прибор и футляр не должны иметь механических повреждений, следов коррозии, препятствующих или затрудняющих работу с ними; теодолит должен иметь чистые поля зрения зрительной трубы и отсчетных устройств, а также четкие изображения визирных целей и отсчетных шкал; комплектность прибора должна соответствовать указанной в паспорте для данного вида работ.

2.2. Типы и устройство теодолитов

2.2.1. Классификация теодолитов

Теодолит– это геодезический прибор, предназначенный для измерения горизонтальных и вертикальных углов.

В настоящее время отечественными заводами в соответствии с действующим ГОСТом 10529–96 изготавливаются теодолиты четырех типов: Т05, Т1, Т2, Т5 и Т30.

Для обозначения модели теодолита используется буква Т и цифры, указывающие угловые секунды средней квадратической ошибки однократного измерения горизонтального угла.

 По точности теодолиты подразделяются на три группы:

техническиеТ30, предназначенные для измерения углов со средними квадратическими ошибками до ±30″;

точныеТ2 и Т5 – до ±2″ и ±5″;

высокоточныеТ05 и Т1 – до ±1″.

ГОСТом 10529–96 предусмотрена модификация точных и технических теодолитов. Так, например, теодолит Т5 должен изготовляться в двух вариантах: с цилиндрическим уровнем при алидаде вертикального круга и с компенсатором, заменяющим этот уровень. Теодолит с компенсатором при вертикальном круге обозначается Т5К. Компенсатор представляет собой линзу или призму, подвешенную на четырех тонких проволоках. При наклоне оси вращения теодолита (вертикальной оси) в небольших пределах (1′ – 2′) линза, сместившись под действием силы тяжести, сместит изображение делений вертикального круга таким образом, что отсчет по нему будет соответствовать отвесному положению оси вращения прибора, т.е. автоматически компенсирует наклон этой оси. Поэтому отсчет по вертикальному кругу при горизонтальном положении визирной оси будет равным или близким 0° даже при не строго отвесном положении оси вращения теодолита. Этот отсчет называют местом нуля.

Технические и эксплуатационные характеристики теодолитов постоянно улучшаются. Шифр обновленных моделей начинается с цифры, указывающей на соответствующее поколение теодолитов: 2Т2, 2Т5К, 3Т5КП, 3Т30, 3Т2, 4Т30П и т. д.

 По конструкции, предусмотренной ГОСТом 10529–96 типы теодолитов делятся на повторительные и неповторительные.

У повторительных теодолитов лимб имеет закрепительный и наводящий винты и может вращаться независимо от вращения алидады.

Неповторительнаясистема осей предусмотрена у высокоточных теодолитов.

2.2.2. Устройство теодолитов

Устройство теодолита основано на принципе измерения горизонтального угла (рис. 15).

При геодезических работах измеряют не угол между сторонами, а его ортогональную (горизонтальную) проекцию, называемую горизонтальным углом. Так, для измерения угла АВС (рис. 15) нужно предварительно спроектировать на горизонтальную плоскость точкиА,В, иС и измерить горизонтальный уголabc= β.

Рис. 15. Принцип измерения

горизонтального угла

Рассмотрим двугранный угол между вертикальными плоскостями V1иV, проходящими через стороны углаАВС. Уголβдля данного двугранного угла является линейным. Следовательно, углуβравен всякий другой линейный угол, вершина которого находится в любой точке на отвесном ребреВВ1двугранного угла, а стороны его лежат в плоскости, параллельной плоскостиМ. Итак, для измерения величины углаβможно в любой точке, лежащей на ребреВВ1двугранного угла, допустим в точкеb1, установить горизонтальный круг с градусными делениями и измерить на нем дугуa1c1, заключенную между сторонами двугранного угла, которая и будет градусной мерой углаa1b1c1, равнойβ, т. е. уголabc = β.

Для измерения горизонтальных проекций углов между линиями местности в теодолите используется горизонтальный угломерный круг с градусными делениями, называемый лимбом. Стороны угла проектируют на лимб с использованием подвижной визирной плоскостизрительной трубы. Она образуетсявизирной осью1трубы при её вращении вокруг горизонтальной оси. Данную плоскость поочередно совмещают со сторонами углаВАиВС, последовательно направляя визирную осьзрительной трубы на точки А и С. При помощи специального отсчетного приспособления алидады, которая находится над лимбом соосно с ним и перемещается вместе с визирной плоскостью, на лимбе фиксируют начало и конец дуги a1c1 (см. рис. 15), беря отсчеты по градусным делениям. Разность взятых отсчетов является значением измеряемого угла β.

Лимб и алидада, используемые для измерения горизонтальных углов, составляют в теодолите горизонтальный круг 17(рис. 16).Ось вращения алидады горизонтального круга называют основной осью теодолита.

В теодолите также имеется вертикальный круг 18с лимбом и алидадой, служащий для измерения вертикальных проекций углов – углов наклона. Принято считать углы наклона выше горизонта положительными, а ниже горизонта – отрицательными. Лимб вертикального круга обычно наглухо скреплён со зрительной трубой и вращается вместе с ней вокруг горизонтальной оси теодолита.

Рис. 16. Устройство теодолита Т30: 1 – основание; 2 – исправительный винт цилиндрического уровня; 3, 4 – закрепительный и наводящий винты алидады; 5 – цилиндрический уровень; 6 – наводящий винт зрительной трубы; 7 – кремальера; 8 – закрепительный винт зрительной трубы; 9 – визир; 10 – окуляр зрительной трубы; 11 – окуляр отсчетного микроскопа; 12 – колонка; 13 – подставка; 14 – закрепительный винт лимба; 15 – подъемный винт; 16 – наводящий винт лимба; 17 – гори­зонтальный круг; 18 – вертикальный круг; 19 – объектив зрительной трубы; 20 – зеркальце для подсветки штрихов отсчетного микроскопа; 21 – кронштейн для ориентир-буссоли

Перед измерением углов центр лимба горизонтального круга с помощью отвеса или оптического центрира устанавливают на отвесной линии, проходящей через вершину измеряемого угла, а плоскость лимба приводят в горизонтальное положение, используя с этой целью три подъемных винта 15и цилиндрический уровень5. В результате данных действий основная ось теодолита должна совпасть с отвесной линией, проходящей через вершину измеряемого угла.

Для установки, настройки и наведения теодолита на цели в нем имеется система винтов: становой и подъемные винты, закрепительные (зажимные) и наводящие (микрометренные) винты, исправительные (юстировочные) винты.

Становымвинтом теодолит крепят к головке штатива,подъемнымивинтами – горизонтируют.

Закрепительнымивинтами скрепляют подвижные части теодолита (лимб, алидаду, зрительную трубу) с неподвижными.Наводящимивинтами сообщают малое и плавное вращение закрепленным частям.

Зрительные трубы теодолитов чаще всего бывают астрономические, дающие обратное (перевернутое) изображение. Но в последнее время применяются трубы, которые дают прямое изображение.

При наблюдении предметов на них наводится вполне определенная точка трубы. Такой точкой является центр сетки нитей, представляющий собою пересечение горизонтальной нити и продолженной вертикальной. Сетка нитей (рис. 17) видна в поле зрения трубы и изображена на специальной сеточной диафрагме, размещенной вблизи переднего фокуса окуляра. Сеточная диафрагма представляет собою стеклянную пластинку в металлической оправе.

Она может слегка перемещаться в горизонтальном и вертикальном направлениях исправительнымивинтами сетки. Симметрично относительно горизонтальной нити нанесены дальномерные штрихи для определения расстояний.

К оптическим характеристикам зрительной трубы относятся: увеличение, поле зрения, относительная яркость и разрешающая способность, которую принимают за точность визирования трубой.

Увеличение зрительной трубы показывает во сколько раз увеличивается размер предмета, рассматриваемого в зрительную трубу, по сравнению с размером этого же предмета, видимого невооруженным глазом.

Полем зрения трубыназывается то пространство, которое видно в трубу при ее неподвижном положении.

Яркость изображения определяется количеством света, которое падает на глаз в секунду времени на квадратный миллиметр изображения. Такая яркость называется абсолютной, ее нельзя выразить определенным числом. Поэтому пользуются относительной яркостью, представляющей собой отношение абсолютной яркости вооруженного зрительной трубой глаза и невооруженного глаза.

Для приведения осей и плоскостей прибора в отвесное или горизонтальное положение служат уровни, они бывают двух типов: круглые – для предварительной, грубой установки приборов и цилиндрические – для окончательной, точной установки. Цилиндрический уровень представляет собой стеклянную трубку, внутренняя поверхность которой отшлифована в виде бочкообразного сосуда, в продольном сечении представляющего дугу окружности некоторого радиуса.

Стеклянные сосуды уровней заполняют эфиром или смесью эфира со спиртом в подогретом состоянии. Когда наполнитель остынет и сожмется в объеме, образуется пространство, заполненное парами наполнителя, то есть пузы­рек. При изменении температуры пары наполнителя легко переходят из парообразного состояния в жидкое и наоборот, отчего размеры пузырька изменяются. В цилиндрических уровнях добиваются, чтобы длина пузырька составляла примерно 1/3 длины трубки при температуре +20С. Чтобы можно было судить о перемещении пузырька, на наружной поверхности уровня наносятся штрихи. Расстояние между штрихами обычно равно 2 мм. Середина трубки уровня называется нуль-пунктом. На цилиндрическом уровне нуль-пункт обычно не обозначается, а относительно него штрихи наносятся симметрично. Касательная к внутренней поверхности трубки, проходящая через нуль-пункт вдоль длины цилиндрического уровня, называется осью уровня. Когда середина пузырька уровня совпадает с нуль-пунктом, ось уровня занимает горизонтальное положение. При смещении пузырька уровня на одно деление ось уровня наклоняется на некоторый угол, который называетсяценой деления уровня. Чем меньше цена деления уровня, тем чувствительнее, точнее уровень.

Рассмотрим подробно устройство и характеристики теодолита Т30 и его модификаций (2Т30, 4Т30П), которые обычно используются в инженерно-геодезических работах.

Теодолит Т30 (см. рис.16) и его модификации относятся к разряду технических с повторительной системой вертикальной оси. Система отсчитывания односторонняя. Увеличение трубы 18х (Т30) и 20х (2Т30, 4Т30П), пределы визирования от 1,2 м до бесконечности, цена деления цилиндрического уровня 45″. Данные теодолиты применяются для прокладывания теодолитных и тахеометрических ходов, плановых и высотных съемок.

На зрительной трубе имеется оптический визир 9, в поле зрения которого виден светлый крест. Этот крест совмещается с целью (предметом), который должен попасть в поле зрения трубы, но изображение предмета может быть размытым (иногда его изображение вообще не будет видно). Чтобы изображение предмета было четким, сначала вращением диоптрийного кольца окуляра трубы10получают отчетливое изображение сетки нитей (это действие называется установкой зрительной трубы по глазу). Затем с помощью кремальеры7перемещают в трубе специальную фокусирующую линзу до тех пор, пока изображение цели не станет четким, т. е. выполняют установку трубы по предмету. После этого зажимные винты зрительной трубы8и алидады горизонтального круга3закрепляются, и микрометренными винтами алидады4и трубы6 центр сетки нитей наводится на предмет.

В теодолите Т30 подставка 13жестко скреплена с основанием1, служащим одновременно донцем футляра, что позволяет закрывать теодолит футляром, не снимая его со штатива. Ось вращения теодолита устанавливается в отвесное положение с помощью подъемных винтов15и цилиндрического уровня при алидаде горизонтального круга5.

Полая вертикальная ось теодолита позволяет центрировать прибор над точкой местности с помощью зрительной трубы. Прибор снабжается окулярными насадками для зрительной трубы и микроскопа, которые применяют при наблюдении предметов, расположенных относительно горизонта под углом более 45° .

В теодолитах Т30 имеется только один цилиндрический уровень при алидаде горизонтального круга 5, который прикрепляется к подставке зрительной трубы параллельно визирной плоскости. Положение уровня изменяется юстировочными (исправительными) винтами2. При алидаде вертикального круга уровня нет.

Теодолит по особому заказу может быть укомплектован ориентир-буссолью и уровнем, который прикрепляется к трубе для нивелирования горизонтальным визирным лучом. Обычно к зрительной трубе прикрепляют два визира. При установке уровня на трубе один из визиров должен быть снят.

На рис. 18 приведено устройство технического теодолита 4Т30П.

В качестве отсчетных приспособлений в технических теодолитах применяются штриховой и шкаловой микроскопы (рис. 19).

В теодолите Т30 отсчетное приспособление выполнено в виде штрихового микроскопа (рис. 19, а), позволяющего брать отсчеты с точностью 1′, а в его модификациях (2Т30, 4Т30П) – шкалового микроскопа тридцатисекундной точности (рис. 19,б, в).

Изображение штрихов и цифр обоих кругов передаются в поле зрения микроскопа. Поворотом и наклоном зеркала 16 (см. рис. 18) достигают оптимального освещения поля зрения микроскопа и вращением диоптрийного кольца его окуляра 15 устанавливают по глазу четкое изображение отсчетного устройства.

В верхней части поля зрения отсчётного микроскопа, обозначенной буквой В, видны штрихи вертикального круга; в нижней части, обозначенной буквой Г, – штрихи горизонтального круга.

Рис. 18. Устройство теодолита 4Т30П: 1 – головка штатива; 2 – основание; 3 – подъемный винт; 4 – наводящий винт алидады; 5 – закрепительный винт алидады; 6 – наводящий винт зрительной трубы; 7 – окуляр зрительной трубы; 8 – предохранительный колпачок сетки нитей зрительной трубы; 9 – кремальера; 10 – закрепительный винт зрительной трубы; 11 – объектив зрительной трубы; 12 – цилиндрический уровень; 13 – винт поворота лимба; 14 – закрепительный винт; 15 – окуляр отсчетного микроскопа с диоптрийным кольцом; 16 – зеркальце для подсветки штрихов отсчетного микроскопа; 17 – колонка; 18 – ориентир-буссоль; 19 – вертикаль­ный круг; 20 – визир; 21 – диоптрийное кольцо окуляра зрительной трубы; 22 – испра­вительные винты цилиндрического уровня; 23 – подставка

В штриховом микроскопе теодолита Т30 в середине поля зрения виден штрих, относительно которого осуществляется отсчет по лимбу (рис.  19, а).Перед отсчетом по лимбу необходимо определить цену деления лимба. В теодолите Т30 цена деления лимба составляет 10 угловых минут, так как градус разделен на шесть частей. Число минут оценивается на глаз в десятых долях цены деления лимба. Точность отсчета составляет 1′.

В шкаловом микроскопе в поле зрения видна шкала, размер которой соответствует цене деления лимба (рис. 19, б,в). Для теодолита технической точности размер шкалы и цена деления лимба равны 60′. Шкала разделена на двенадцать частей и цена ее деления составляет 5 угловых минут. Если перед числом градусов знака минус нет, отсчет производится по шкале от 0 до 6 в направлении слева направо (рис. 19,б). Если перед числом градусов стоит знак минус, то минуты отсчитываются по шкале вертикального круга от –0 до –6 в направлении справа налево (рис. 19,в). Десятые доли цены деления шкалы берутся на глаз с точностью до 30”.

Рис. 19. Поле зрения отсчетных устройств: а – штрихового микроскопа с отсчетами по вертикальному кругу 358°48′, по горизонтальному 70°04′; б – шкалового микроскопа с отсчетами: по вертикальному кругу 1°11,5′, по горизонтальному 18°22′; в – по вертикальному кругу – минус 0°46,5′, по горизонтальному – 95°47′

Чтобы теодолит обеспечивал получение неискаженных результатов измерений, он должен удовлетворять соответствующим геометрическим и оптико-механическим условиям. Действия, связанные с проверкой этих условий, называют поверками. Поверки теодолита выполняются в соответствии с паспортом-инструкцией, прилагаемой к прибору, или инструкцией по проведению технологической поверки геодезических приборов [2].

Если какое-либо условие не соблюдается, с помощью исправительных винтов производят юстировку прибора.

Что такое теодолит? Типы, части и использование.

Теодолит — прибор для измерения вертикальных и горизонтальных углов. Теодолит используется для измерения углов с точностью до 10″ или 20″ в зависимости от наименьшего количества теодолита.

Содержание

Типы теодолитов

Транзитный теодолит

Транзитный теодолит может полностью вращаться вокруг своей горизонтальной оси в вертикальной плоскости.

Непроходной теодолит

 В непроходном теодолите зрительная труба не может вращаться полностью, но может вращаться вокруг своей горизонтальной оси в вертикальной плоскости до определенной степени для измерения угла подъема или опускания.

Нониусный теодолит

Если теодолит снабжен нониусной шкалой, то он называется нониусным теодолитом.

Микрометрический теодолит

Если он оснащен микрометром, то он называется микрометрическим теодолитом.

Размер теодолита

Размер теодолита определяется диаметром основного горизонтального градуированного круга. Например, теодолит диаметром 10 см означает, что диаметр основной градуированной окружности равен 10 см. В инженерных целях используются теодолиты диаметром от 8 до 12 см.

Детали транзитного теодолита

Подставка или опорная пластина

Это круглая пластина с центральным отверстием с резьбой для установки на штатив. Три ножных винта прикреплены к опорной плите с шаровым шарниром.

Винты для ног

Предусмотрены для выравнивания теодолита. Нижняя часть опорных винтов прикреплена к опорной пластине, а верхняя часть — к треугольной пластине.

Треугольная пластина

Это треугольная пластина с тремя ножными винтами на конце.

Выравнивающая головка

Сборка из опорной плиты, опорных винтов и треугольной пластины называется выравнивающей головкой.

Шпиндели

Шпиндели или оси крепятся к пластине трегера. В теодолите два шпинделя. Внутренний шпиндель или ось, цельная и коническая. Внешний шпиндель полый и соосен с внутренним шпинделем.

Запчасти для теодолита

Нижняя пластина

Прикрепляется к внешней оси и содержит горизонтальную шкалу, отградуированную от 0 до 360 градусов по часовой стрелке. Затем каждая степень подразделяется на дополнительные подразделения. Значение одного деления может быть 15 или 20 секунд.

Поставляется с зажимным винтом и тангенциальным винтом. При затягивании зажимного винта пластина фиксируется с внешней осью. Тангенциальный винт используется для тонкой настройки.

Верхняя пластина

Крепится к внутренним осям и содержит нониусы А и В. Снабжен верхним зажимом и тангенциальным винтом. Когда тангенциальный винт затягивается, он присоединяется к внутренней оси.

Пластинчатые пузырьки

Два пластинчатых пузырька прикреплены под прямым углом друг к другу на верхней поверхности нониуса. Эти пузырьки предназначены для выравнивания прибора для измерения горизонтального угла.

Стандартная или А-рама

Стандартная или А-рама поддерживает зрительную трубу, вертикальный круг и нониусные шкалы.

Телескоп

Поворачивается между стандартами под прямым углом к ​​горизонтальной оси. Может перемещаться в вертикальной плоскости и состоит из винтов фокусировки, тангенциального винта и прижимного винта

Вертикальный круг

Фиксируется вместе с оптикой и перемещается вместе с ней. Он разделен на четыре квадранта, каждый квадрант градуирован от 0 до 90 градусов в противоположных направлениях.

Пузырьки высоты

Предназначены для нивелирования при измерении вертикальных углов.

Компас

Иногда компас используется для измерения магнитного азимута линии.

Наименьший счет нониусного теодолита

Это разница между значением наименьшего деления основной шкалы и значением наименьшего деления нониусной шкалы. Это наименьшее значение, измеренное теодолитом.

Пусть (n-1) мелких делений основной шкалы делится на n мелких делений нониусной шкалы

Тогда n x v = (n-1)d

v= (n-1)d/n

v = значение наименьшего деления нониусной шкалы.

d = значение наименьшего деления основной шкалы.

Таким образом, наименьшее количество = d-v= d- (n-1)d/n= d/n

, например; d = 20’ и n = 60; наименьшее количество = 20/60 x 60 = 20 дюймов

Основные линии теодолита  

Существует шесть основных линий теодолита.

1. Вертикальная ось

Это ось вращения телескопа в горизонтальной плоскости.

2. Горизонтальная ось.

Ось вращения телескопа в вертикальной плоскости. Он также известен как ось цапфы.

3. Ось зрительной трубы

Is – воображаемая линия, проходящая через оптический центр предметного стекла и оптический центр окуляра.

4. Ось плоско-пузырьковой трубки

Это воображаемая линия, касательная к продольному изгибу плоско-пузырьковой трубки в средней точке.

5. Линия коллимации

Воображаемая линия, проходящая через пересечение перекрестия на диафрагме и оптическом центре объектива и ее продолжение

6. Ось высотного пузырька

Воображаемая линия, касательная к продольной кривой высоты пузырьковая трубка посередине.

Теодолит Применение

  • Используется для измерения горизонтальных углов.
  • Для измерения вертикальных углов.
  • Измерительный магнитный подшипник.
  • Можно измерить углы отклонения.
  • Измерение горизонтального расстояния между двумя точками.
  • Оценка высоты объекта по вертикали.
  • Нахождение разницы высот между двумя точками.
  • Ранжирование линии.
Категории Без категорий

[Решено] Сколько типов теодолитов?

Вариант 1 : 3

Бесплатно

CT 1: Доисторическая история Мадхья-Прадеша

38 тыс. пользователей

10 вопросов

10 баллов

7 минут

Пояснение :

Теодолиты обычно бывают трех типов.

  1. Повторяющийся теодолит
  2. Направление Теодолиты
  3. Вернье транзитный теодолит

Повторяющийся теодолит-

  • Повторяющиеся теодолиты относятся к тем теодолитам, которые измеряют углы по градуированной шкале. Затем выводится среднее значение меры угла. Это происходит путем деления суммы этих показаний на количество снятых показаний.
  • Повторяющиеся теодолиты используются в местах с неустойчивым основанием . Кроме того, их использование также происходит в местах, где пространство слишком ограничено. Это ограниченное пространство делает бесполезным использование других инструментов.
  • Повторяющиеся теодолиты, безусловно, более точны, чем теодолиты других типов . Это связано с тем, что здесь происходит уменьшение ошибок. Это возможно благодаря сравнению значений нескольких отсчетов, а не одного отсчета.

Направленный теодолит-

  • Направленные теодолиты относятся к тем теодолитам, которые определяют углы через окружность. Здесь установлен круг и направление телескопа на несколько сигналов.
  • Индивидуум может получать показания со всех направлений .
  • Теодолиты направления обычно используются геодезистами при триангуляции .
  • Более того, триангуляция — это процесс определения точки путем измерения углов от определенных известных точек на базовой линии.

Вернье транзитный теодолит-

  • Вернье транзитный теодолит – это те приборы, которые оснащены оптическим прицелом, который переворачивается для обеспечения обратного прицеливания и удвоения угла. Самое примечательное, что в результате довольно много ошибок при чтении.
  • Точность этих теодолитов меньше по сравнению с другими типами . Это связано с тем, что в них отсутствуют важные функции, такие как увеличение или измерения в микрометрах.
  • Нониусные переходы широко используются на строительных площадках. Это связано с тем, что они относительно легкие, что означает, что их можно легко перемещать.
  • Некоторые транзитные теодолиты Vernier измеряют как вертикальные, так и горизонтальные углы. Однако есть некоторые транзитные теодолиты с нониусом, которые измеряют только горизонтально.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *