Вольтметр переменного напряжения: 67649-17: FLUKE 5790В Вольтметры переменного напряжения эталонные

Содержание

Вольтметр переменного тока, описание программы

Программа Вольтметр переменного тока предназначена для измерения напряжения переменного тока. В программе предусмотрена возможность переключения между режимами измерения (СКЗ или Амплитуда), при этом в не зависимости от выбранного режима информация о текущем пиковом значении отображается всегда.

Описание программы Вольтметр переменного тока

Программа Вольтметр переменного тока предназначена для измерения напряжения переменного тока, поступающего на входные каналы измерительных приборов ZETLAB. На индикаторе отображаются среднеквадратичное (СКЗ) (true RMS), пиковое значение напряжения и интегральный уровень сигнала выбранного канала. Имеется возможность изменения усреднения отображаемого значения (0,1; 1 или 10 с) и выбора необходимого канала модуля АЦП и анализатора спектра или виртуального канала. Уровень сигнала может отображаться в линейном (в единицах измерения) или логарифмическом (в децибелах) масштабе.

При выборе времени усреднения 0,1 с пиковое значение и СКЗ правильно измеряются для сигнала с частотой не менее 20 Гц.
При выборе времени усреднения 1 с пиковое значение и СКЗ правильно измеряются для сигнала с частотой не менее 2 Гц.
При выборе времени усреднения 10 с пиковое значение и СКЗ правильно измеряются для сигнала с частотой не менее 0,2 Гц.

В составе анализатора спектра программа Вольтметр переменного тока является средством измерения с классом точности 0,5%, что позволяет использовать её для измерения интегральных уровней шумов и вибрации, для оценки метрологических характеристик измерительных трактов (программа для измерения амплитудно-частотных и фазо-частотных характеристик).

Программа Вольтметр переменного тока — виртуальный измерительный прибор, внесённый в Государственный реестр средств измерений для многоканального анализатора спектра ZET 017-U8 и переносных анализаторов спектра на шине USB 2.0 A19-U2 и ZET 017-U2.

Для измерения уровня сигнала в заданной частотной полосе необходимо воспользоваться программой Фильтрация сигналов для предварительной фильтрации сигналов. В этой программе можно задать частоты среза фильтров нижних и высших частот (ФНЧ и ФВЧ).

Для долговременного мониторинга и записи значений напряжения переменного тока используется программа Многоканальный самописец.

Поддерживаемое оборудование

Входными данными программы Вольтметр переменного тока являются цифровые данные канала сервера ZETLAB.

Программа Вольтметр переменного тока входит в состав следующего ПО:

  • ZETLAB BASE — программное обеспечение, поставляемое с модулями АЦП/ЦАП;
  • ZETLAB ANALIZ — программное обеспечение, поставляемое с анализаторами спектра;
  • ZETLAB VIBRO — программное обеспечение, поставляемое с системой управления вибростендами;
  • ZETLAB TENZO — программное обеспечение, поставляемое с тензостанциями;
  • ZETLAB SEISMO — программное обеспечение, поставляемое с сейсмостанциями;
  • ZETLAB NOISE — программное обеспечение, поставляемое с виброметром-шумомером;
  • ZETLAB SENSOR — программное обеспечение, поставляемое с цифровыми датчиками ZETSENSOR.

Вольтметр переменного тока  входит в группу программ Измерение

Вольтметр показывает напряжение. Какое значение напряжения показывает вольтметр переменного тока

Непосредственного отсчёта для определения напряжения или ЭДС в электрических цепях. Подключается параллельно нагрузке или источнику электрической энергии.

На низких частотах также можно отображать диодный диод или четыре диода в соединении Граца, а также функцию сглаживания конденсатора. Однако эффект дросселя, однако, неясен, учитывая низкую частоту. Рис. 3 Измерение измеренного тока. Даже в этом случае на первом этапе мы демонстрируем явление с помощью вольтметра, который регистрирует входное напряжение переменного тока и миллиамперметр, которые записывают ток. В начальной школе мы можем довольствоваться только взглядами учеников на разные вибрации двух датчиков.

Пригодны частоты 0, 3 Гц. Используя самую низкую достижимую частоту 0, 1 Гц, поток тока можно записать, как показано в таблице выше, и графически изображен. Низкочастотный трехфазный источник тока позволяет провести еще один, весьма иллюстративный эксперимент, моделирующий вращающееся магнитное поле в трехфазном электродвигателе. Просто примените соответствующие напряжения к модели тройной катушки трехфазного электродвигателя и увеличьте магнитное поле в области, где ротор хранится либо малыми магнитами, либо стальными пилами, либо одним магнитом.

Идеальный вольтметр должен обладать бесконечно большим внутренним сопротивлением. Поэтому чем выше внутреннее сопротивление в реальном вольтметре, тем меньше влияния оказывает прибор на измеряемый объект и, следовательно, тем выше точность и разнообразнее области применения.

Классификация и принцип действия

Классификация

  • По принципу действия вольтметры разделяются на:
    • электромеханические – магнитоэлектрические, электромагнитные, электродинамические, электростатические, выпрямительные, термоэлектрические;
    • электронные – аналоговые и цифровые
  • По назначению:
    • постоянного тока;
    • переменного тока;
    • импульсные;
    • фазочувствительные;
    • селективные;
    • универсальные
  • По конструкции и способу применения:
    • щитовые;
    • переносные;
    • стационарные

Аналоговые электромеханические вольтметры

  • Магнитоэлектрические, электромагнитные, электродинамические и электростатические вольтметры представляют собой измерительные механизмы соответствующих типов с показывающими устройствами . Для увеличения предела измерений используются добавочные сопротивления. Технические характеристики аналогового вольтметра во многом определяются чувствительностью магнитоэлектрического измерительного прибора. Чем меньше его ток полного отклонения, тем более высокоомные добавочные резисторы можно применить. А значит, входное сопротивление вольтметра будет более высоким. Тем не менее, даже при использовании микроамперметра с током полного отклонения 50 мкА (типичные значения 50..200 мкА), входное сопротивление вольтметра составляет всего 20 кОм/В (20 кОм на пределе измерения 1 В, 200 кОм на пределе 10 В). Это приводит к большим погрешностям измерения в высокоомных цепях (результаты получаются заниженными), например при измерении напряжений на выводах транзисторов и микросхем, и маломощных источников высокого напряжения.
    • ПРИМЕРЫ: М4265, М42305, Э4204, Э4205, Д151, Д5055, С502, С700М
  • Выпрямительный вольтметр представляет собой сочетание измерительного прибора, чувствительного к постоянному току (обычно магнитоэлектрического), и выпрямительного устройства.
    • ПРИМЕРЫ: Ц215, Ц1611, Ц4204, Ц4281
  • Термоэлектрический вольтметр – прибор, использующий ЭДС одной или более термопар, нагреваемых током входного сигнала.
    • ПРИМЕРЫ: Т16, Т218

Аналоговые электронные вольтметры общего назначения

Аналоговые электронные вольтметры содержат, помимо магнитоэлектрического измерительного прибора и добавочных сопротивлений, измерительный усилитель (постоянного или переменного тока), который позволяет иметь более низкие пределы измерения (до десятков – единиц милливольт и ниже), существенно повысить входное сопротивление прибора, получить линейную шкалу на малых пределах измерения переменного напряжения.

Съемка поля отличается и исключает неправильные представления о полевых линиях, таких как концентрические круговые круги. Рис. 5: Демонстрация медленного вращающегося поля трехфазного тока. Поскольку этот метод практически не подходит в начальных школах, мы хотим разработать выделенный ресурс для этой демонстрации и предложить его одному из производителей учебной помощи. Мы считаем, что учителя физики начальной школы, которые будут не только довольны мелом и доской, будут рады.

Если напряжение в цепи неизвестно, установите диапазон до наивысшего значения напряжения и установите диск на ṽ. Большинство мультиметров включаются в режиме автокоррекции. Это автоматически выбирает диапазон измерения в зависимости от присутствующего напряжения. Когда закончите, удалите провода в обратном порядке: сначала красный, затем черный. Подключите измерительные провода к цепи: сначала черный провод, красный – второй.

Цифровые электронные вольтметры общего назначения

Принцип работы вольтметров дискретного действия состоит в преобразова­нии измеряемого постоянного или медленно меняющегося напряжения в электрический код с помощью аналого-цифрового преобразователя , который отображается на табло в цифровой форме.

Примечание: переменное напряжение не имеет полярности. Предостережение: не позволяйте пальцам касаться свинцовых наконечников. Не позволяйте кончикам контактировать друг с другом. Прочтите измерение на дисплее. Когда закончите, сначала удалите красный провод, черный – второй.

Другие полезные функции при измерении переменного напряжения

Его можно просмотреть после завершения измерения. Нажмите на соответствующую кнопку, чтобы установить мультиметр для конкретного эталонного значения. Измерения отображаются выше и ниже опорного значения. Избегайте этой общей и серьезной ошибки: вставьте тестовые провода в неправильные входные гнезда. Это может привести к опасной дуговой вспышке.

Диодно-компенсационные вольтметры переменного тока

Принцип действия диодно-компенсационных вольтметров состоит в сравнении с помощью вакуумного диода пикового значения измеряемого напряжения с эталонным напряжением постоянного тока с внутреннего регулируемого источника вольтметра. Преимущество такого метода состоит в очень широком рабочем диапазоне частот (от единиц герц до сотен мегагерц), с весьма хорошей точностью измерения, недостатком является высокая критичность к отклонению формы сигнала от синусоиды.

  • ПРИМЕРЫ: В3-49, В3-63 (используется пробник 20 мм)

В настоящее время разработаны новые типы вольтметров, такие как В7-83 (пробник 20 мм) и ВК3-78 (пробник 12 мм), с характеристиками аналогичными диодно-компенсационным. Последние в скором времени могут быть допущены к применению в качестве рабочих эталонов. Из иностранных аналогов можно выделить вольтметры серии URV фирмы Rohde&Schwarz с пробниками диаметром 9 мм.

Импульсные вольтметры

1. Импульсные вольтметры предназначены для измерения амплитуд периодических импульсных сигналов с большой скважностью и амплитуд одиночных импульсов.

Фазочувствительные вольтметры

Фазочувствительные вольтметры (векторметры) служат для измерения квадратурных составляющих комплексных напряжений первой гармоники. Их снабжают двумя индикаторами для отсчета действительной и мнимой составляющих комплексного напряжения. Таким образом, фазочувствительный вольтметр дает возможность определить комплексное напряжение, а также его составляющие, принимая за нуль начальную фазу некоторого опорного напряжения.

Фазочувствительные вольтметры очень удобны для исследования амплитудно-фазовых характеристик четырехполюсников, например усилителей.

Селективные вольтметры

Селективный вольтметр способен выделять отдельные гармонические составляющие сигнала сложной формы и определять среднеквадратичное значение их напряжения. По устройству и принципу действия этот вольтметр аналогичен супергетеродинному радиоприёмнику без системы АРУ , в качестве низкочастотных цепей которого используется электронный вольтметр постоянного тока. В комплекте с измерительными антеннами селективный вольтметр можно применять как измерительный приёмник .

  • ПРИМЕРЫ: В6-4, В6-6, В6-9, В6-10, SMV 8.5, SMV 11, UNIPAN 233 (237), Селективный нановольтметр «СМАРТ»

Наименования и обозначения

Видовые наименования

  • Нановольтметр – вольтметр с возможностью измерения очень малых напряжений (менее 1мкВ)
  • Микровольтметр – вольтметр с возможностью измерения очень малых напряжений (менее 1мВ)
  • Милливольтметр – вольтметр для измерения малых напряжений (единицы – сотни милливольт)
  • Киловольтметр – вольтметр для измерения больших напряжений (более 1 кВ)
  • Векторметр – фазочувствительный вольтметр

Обозначения

  • Электроизмерительные вольтметры обозначаются в зависимости от их принципа действия
    • Д xx – электродинамические вольтметры
    • М xx – магнитоэлектрические вольтметры
    • С xx – электростатические вольтметры
    • Т xx – термоэлектрические вольтметры
    • Ф xx, Щ xx – электронные вольтметры
    • Ц xx – вольтметры выпрямительного типа
    • Э xx – электромагнитные вольтметры
  • Радиоизмерительные вольтметры обозначаются в зависимости от их функционального назначения по ГОСТ 15094
    • В2- xx – вольтметры постоянного тока
    • В3- xx – вольтметры переменного тока
    • В4- xx – вольтметры импульсного тока
    • В5- xx – вольтметры фазочувствительные
    • В6- xx – вольтметры селективные
    • В7- xx – вольтметры универсальные

Для того чтобы понять смысл этого вопроса, давайте внимательно рассмот­рим график синусоидального напряжения на рис. 4.2. В каждый момент вре­мени величина напряжения в нем разная – соответственно, будет разной и величина тока через резистор нагрузки, на который мы подадим такое напряжение. В моменты времени, обозначенные 772 и Т (то есть кратные поло­вине периода нашего колебания) напряжение на нагрузке вообще будет рав­но нулю (ток через резистор не течет), а в промежутках между ними – меня­ется вплоть до некоей максимальной величины, равной амплитудному значению А. Точно так же будет меняться ток через нагрузку, а следователь­но, и выделяемая мощность (которая от направления тока не зависит – фи­зики скажут, что мощность есть величина скалярная, а не векторная). Но процесс выделения тепла крайне инерционен – даже такой маленький пред­мет, как волосок лампочки накаливания, за 1/100 секунды, которые проходят между пиками напряжения в промышленной сети частотой 50 Гц, не успевает заметно остыть. Поэтому нас чаще всего интересует именно средняя мощ­ность за большой промежуток времени. Чему она будет равна?

Чтобы точно ответить на этот вопрос, нужно брать интегралы: средняя мощ­ность за период есть интеграл по времени от квадрата функции напряжения. Здесь мы приведем только результат: величина средней мощности в цепи пе­ременного тока определяется т. н. действующим значением напряжения (Щ, которое для синусоидального колебания связано с амплитудным его значением (f/a) следующей формулой:. Точно такая же формула справедлива для тока. Когда говорят «пе­ременное напряжение 220 В», то всегда имеется в виду именно действующее значение. При этом амплитудное значение равно примерно 311В, что легко подсчитать, если умножить 220 на корень из двух. Это значение нужно всегда иметь в виду при выборе компонентов для работы в сетях переменного тока – если взять диод, рассчитанный на 250 В, то он легко может выйти из строя при работе в обычной сети, в которой мгновенное значение превышает 300 В, хотя действующее значение и равно 220 В. А вот для компонентов, использующих эффект нагревания (лампочек, резисторов и т. п.) при расчете допустимой мощности нужно иметь в виду именно действующее значение.

Называть действующее значение «средним» неверно, правильно называть его среднеквадратическим (по способу вычисления – через квадрат функции от времени). Но существует и понятия среднего значения, причем не одно, а даже два. Просто «среднее» (строго по смыслу названия) – сумма всех мгновенных значений за период. Так как нижняя часть синусоиды (под осью абсцисс) стро­го симметрична относительно верхней, то можно даже не брать интегралов, чтобы сообразить, что среднее значение синусоидального напряжения, пока­занного на рис. 4.2, в точности равно нулю – положительная часть компенси­рует отрицательную. Но такая величина малоинформативна, поэтому чаще ис­пользуют средневыпрямленное (среднеамплитудное) значение, при котором знаки не учитываются (то есть в интеграл подставляется абсолютная величина напряжения). Эта величина (U связана с амплитудным значением (U по формулето есть равно примерно 1,57-f/c-

Рис. 4.5. Графики некоторых колебаний несинусоидальной формы

Для постоянного напряжения и тока действующее, среднее и среднеампли-тудное значения совпадают и равны просто величине напряжения (тока). Од­нако на практике часто встречаются переменные колебания, форма которых отличается и от постоянной величины, и от строго синусоидальной. aHi. Для прямоугольного колебания (рис. 4.5, б) с равны­ми по длительности положительными и отрицательными полуволнами (сим-

метричного меандра) соотношения очень просты: действующее значение = среднеамплитудному = амплитудному, как и для постоянного тока, а вот среднее значение равно, как и для синуса, нулю. В часто встречающемся на практике случае, когда минимум прямоугольного напряжения совпадает с нулем, то есть напряжение колеблется от нуля до напряжения питания (на рис. 4.5 не показано), такой меандр можно рассматривать аналогично случаю рис. 4.5, в, как сумму постоянного напряжения и прямоугольного. Для самого верхнего случая (рис. 4.5, а), который представляет собой синусоидальное напряжение, пропущенное через двухполупериодный выпрямитель (см. главу Р), действующее и среднеамплитудное значения будут равны соответствующим значениям для синусоиды, а вот среднее будет равно не нулю, а совпадать со среднеамплитудным. Для самого нижнего случая (рис. 4.5, г) указать все эти величины вообще непросто, так как они зависят от формы сигнала.

Но, даже выучив все это, вы все равно не сможете измерять величины напря­жений и токов несинусоидальной формы с помощью мультиметра! Не забы­вайте об этом, как и о том, что для каждого мультиметра есть предельные значения частоты колебаний – если вы включите мультиметр в цепь с ины­ми параметрами, он может показать все, что угодно – «погоду на Марсе», по распространенному выражению. Измерительные приборы для переменного напряжения проградуированы в значениях действующего напряжения, но измеряют они, как правило, среднеамплитудное (по крайней мере, большин­ство – на подробностях мы не будем сейчас задерживаться), и сообразить, как именно пересчитать показания, далеко не всегда просто. А для сложных сигналов, как на рис. 4.5, г, это выливается в сущую головоломку на уровне задач для студентов мехмата. Выручить может осциллограф и знание соот­ношений, приведенных ранее для сигналов самой распространенной формы, ну а для более сложных вычислять действующие и средние значения нам и не потребуется.

Заметки на полях

Единственный прибор, который правильно покажет значение действующего напряжения любой формы — это аналоговый вольтметр электромагнитной системы (их легко узнать по неравномерной шкале, деления на которой к кон­цу отстоят все дальше и дальше друг от друга). Для того чтобы несинусои­дальное напряжение измерить цифровым прибором, между измеряемой вели­чиной и вольтметром можно вставить интегрирующий фильтр (фильтр нижних частот), описанный в главе 5.

Для прямоугольных напряжений, представляющих собой меандр, подобный рис. 4.5, б, существует еще одна важная характеристика. Никто ведь не за­прещает представить себе прямоугольное напряжение, в котором впадины короче или длиннее всплесков. В электронике меандр без дополнительных пояснений означает симметричную форму прямоугольного напряжения, при которой впадины строго равны всплескам по длительности, но, вообще гово­ря, это необязательно. На рис. 4.6 приведены два примера таких напряжений в сравнении с симметричным меандром. Характеристика соотношений меж­ду длительностями частей периода называется скважностью и определяется, как отношение длительности всего периода к длительности положительной части (именно так, а не наоборот, то есть величина скважности всегда боль­ше I). Для меандра скважность равна 2, для узких коротких импульсбв она будет больше 2, для широких – меньше.

Руководство по символам мультиметра

| Семейный мастер на все руки

Если вам нужен мультиметр для проверки электрического оборудования в доме, очень важно знать, что означают все эти символы на циферблате.

На заре появления электричества лаборанты могли измерять электрический ток в цепи с помощью амперметра (гальванометра) и напряжение с помощью вольтметра. Отсюда они могли рассчитать сопротивление.

В 1920 году британский почтовый инженер Дональд Макади изобрел AVOmeter, который измерял все три величины (A = амперы, V = вольты, O = омы). Вскоре после этого электрики, работающие в полевых условиях, получили несколько портативных версий этого изобретения.

Современные мультиметры выполняют те же функции, что и AVOmeter, но они более сложны и могут выполнять множество других тестов. В зависимости от модели мультиметр может сказать вам, исправен ли диод или конденсатор, различить переменный и постоянный ток и измерить температуру провода. Функции обозначаются символами, расположенными вокруг циферблата.

Домовладельцам, занимающимся электромонтажными работами своими руками, не нужны те же функциональные возможности, что и специалистам по электронике, поэтому мультиметры, продаваемые в хозяйственных магазинах, менее сложны, чем те, что продаются в магазинах электроники. Даже в этом случае символы могут быть трудными для расшифровки. Вот краткое изложение электрических терминов и символов, которые вы найдете на базовом мультиметре для домашнего использования, и их значение.

На этой странице

Символы мультиметра, которые необходимо знать

Напряжение

Семейный мастер на все руки

Мультиметры могут измерять напряжение постоянного тока (DC) и напряжение переменного тока (AC), поэтому они должны отображать более одного символа напряжения. На некоторых старых моделях напряжение переменного тока обозначено как В переменного тока. В наши дни производители чаще всего помещают волнистую линию над буквой V, чтобы обозначить переменное напряжение.

Для обозначения напряжения постоянного тока принято размещать пунктирную линию со сплошной линией над ней над буквой V. Чтобы получить показания напряжения в милливольтах (одна тысячная вольта), установите циферблат в положение мВ.

  • «V» с волнистой линией над ним = напряжение переменного тока.
  • «V» с одним пунктирным и одним сплошным над ним = напряжение постоянного тока.
  • «мВ» с одной волнистой линией или парой линий, одной пунктирной и одной сплошной, над ней = милливольты переменного или постоянного тока.

Текущий

Семейный Разнорабочий

Как и напряжение, ток может быть переменным или постоянным. Поскольку единицей тока является ампер или ампер, для него используется символ А.

  • «А» с волнистой линией над ним = переменный ток.
  • «A» с двумя линиями, пунктирной и сплошной, над ней = постоянный ток.
  • мА = Миллиампер.
  • мкА (µ — греческая буква мю) = микроампер (миллионные доли ампера).

Сопротивление

Семейный мастер на все руки

Мультиметр измеряет сопротивление, пропуская через цепь слабый электрический ток. Символом единицы сопротивления, ома, является греческая буква омега (Ω). Измерители не различают сопротивление постоянному и переменному току, поэтому над этим символом нет линий.

На измерителях с параметрами выбора диапазона можно выбрать шкалу в килоомах (1000 Ом) и шкалу в мегаомах (один миллион Ом), которые представляют собой кОм и МОм соответственно.

  • Ом = Ом.
  • кОм = килоомы.
  • МОм = мегаом.

Непрерывность цепи

С помощью мультиметра проверьте наличие разрыва в электрической цепи. Счетчик измеряет сопротивление, и есть только два результата. Либо цепь разорвана (разомкнута), и в этом случае счетчик показывает бесконечное сопротивление, либо цепь не повреждена (замкнута), и в этом случае счетчик показывает 0 (или близко к нему).

Поскольку есть только две возможности, некоторые измерители издают звуковой сигнал при обнаружении непрерывности. Эта функция обозначена в настройках циферблата серией скобок увеличивающегося размера, обращенных влево, как боковая версия символа беспроводного приема на ноутбуке.

Проверка диодов и емкости

Семейный мастер на все руки

Специалисты по электронике чаще используют тесты диодов и емкости, чем электрики или домовладельцы. Но если у вас есть счетчик с этими функциями, полезно знать, что означают символы.

Функция проверки диодов выглядит как стрелка, указывающая на центр знака плюс. Когда эта функция выбрана, измеритель сообщит вам, работает ли диод (общий электронный компонент, который преобразует переменный ток в постоянный).

Функция емкости напоминает правую скобку справа от вертикальной линии. Оба пересекаются горизонтальной линией. Конденсаторы — это электронные устройства, которые накапливают заряд, и измеритель может измерять заряд.

Функция температуры измеряет температуру проводов цепи. Обозначается термометром.

Домкраты и кнопки

Семейный мастер на все руки

С каждым мультиметром поставляются два провода: черный и красный. Некоторые счетчики имеют три гнезда, а некоторые четыре. Гнезда, в которые вы подключаете провода, зависят от того, что вы тестируете.

  • COM – это обычный разъем, и он единственный черный. Вы всегда подключаете черный провод к этому разъему.
  • A — это разъем, к которому подключается красный провод, если вы измеряете большой ток до 10 ампер.
  • мАОм является разъемом для любых других измерений, включая чувствительные измерения тока, напряжения, сопротивления и температуры, если измеритель имеет только три разъема.
  • мАмкА — разъем для чувствительных измерений тока (менее одного ампера), если счетчик имеет четыре разъема.
  • — разъем для всех других измерений, кроме тока.

В верхней части дисплея счетчика, над циферблатом, вы обычно найдете две кнопки, одну слева и одну справа.

  • Смена. Для экономии места производители могут назначать две функции некоторым положениям циферблата. Вы получаете доступ к функции, отмеченной желтым цветом, нажав кнопку переключения, которая обычно также желтая и может быть отмечена или не отмечена.
  • Удержание. Нажатие этой кнопки фиксирует текущее показание для дальнейшего использования.

Ручной и автоматический выбор диапазона

Старый аналоговый мультиметр со стрелкой должен иметь несколько настроек диапазона. Если бы у измерителя был только большой диапазон, его нельзя было бы использовать для чувствительных измерений, потому что стрелка почти не отклонялась бы. С другой стороны, если бы у измерителя был только небольшой диапазон, любое измерение, превышающее этот диапазон, независимо от того, какое оно было бы, отклонило бы стрелку до максимума.

Цифровые мультиметры со светодиодными дисплеями были представлены в 1970-х годах, и сегодня большинство мультиметров являются цифровыми. У некоторых все еще есть настройки диапазона, которые вы выбираете с помощью циферблата. Но все чаще измеритель выбирает диапазон автоматически.

Поскольку эти мультиметры не имеют настроек диапазона (которые могут занимать до 18 положений шкалы), мультиметры с автоматическим диапазоном могут иметь больше функций, чем мультиметры с ручной настройкой диапазона.

Примечание. Сохраните руководство пользователя мультиметра для справки. Храните руководство и мультиметр в чистоте и сухости в пластиковом пакете для хранения в морозильной камере с застежкой-молнией объемом в литр или галлон.

Как использовать мультиметр для измерения напряжения (плюс советы по безопасности)

  1. Домашний
  2. Блог
  3. Как использовать мультиметр для измерения напряжения (плюс советы по безопасности)

Независимо от того, являетесь ли вы электриком или практичным домовладельцем, мультиметры — это отличные инструменты, которые всегда будут у вас под рукой. Однако их может быть сложно использовать, если вы не прошли обучение и не знаете, что делаете. В этой статье мы рассмотрим, как проверить напряжение переменного и постоянного тока с помощью мультиметра. Что еще более важно, мы научимся делать это безопасно, чтобы исключить риск поражения электрическим током. Давайте начнем!

Как измерить напряжение переменного тока  

Если вы пользуетесь мультиметром дома, скорее всего, вы используете его для измерения напряжения переменного тока, так как это наиболее распространенное применение мультиметров. Важно отметить, что если вам интересно, как использовать цифровой мультиметр или ручной, методы одинаковы. Разница лишь в том, что на цифровом мультиметре вы нажимаете кнопки, а на ручном — поворачиваете ручку. Вот как начать тестирование.

  • Выньте мультиметр из защитного чехла и включите его. Обязательно установите переключатель режимов в положение переменного напряжения.

  • Установите настройку напряжения так, чтобы она была такой же высокой или выше, чем напряжение тестируемого устройства. Чтобы быть в безопасности, вы можете включить его до самого высокого значения.

  • Вставьте черный щуп мультиметра в гнездо, помеченное как «общий» или «СОМ».

  • Вставьте красный щуп в другой слот, обычно помеченный буквой V. Он также может быть помечен буквой V, за которой следуют различные символы.

  • Приложите конец черного щупа к одной стороне измеряемого объекта, а конец красного щупа — к противоположной стороне.

  • Убедитесь, что на то, что вы пытаетесь измерить, подается питание. В противном случае вы не получите надежного чтения.

  • Выньте красный и черный щупы из гнезд и выключите мультиметр.

Вот и все, как проверить переменное напряжение с помощью мультиметра. Это не слишком сложно, но важно, чтобы вы следовали вышеуказанным шагам в дополнение к советам по безопасности, перечисленным ниже. Также полезно знать, каким должно быть напряжение для любого компонента, который вы тестируете. Таким образом, вы узнаете, является ли ваше чтение высоким или низким, что может указывать на потенциальную проблему. Вы можете использовать этот метод для проверки чего угодно, от выключателя света до автоматического выключателя и розетки.

Как проверить напряжение постоянного тока

Напряжение постоянного тока в основном используется в автомобилях, аккумуляторных батареях и автомобильных аккумуляторных батареях, и вот что вам нужно знать при использовании мультиметра с напряжением постоянного тока.

  • Подсоедините красный и черный щупы, выполнив те же действия, что и для переменного напряжения.

  • Установите переключатель режимов мультиметра в положение постоянного тока, а не переменного тока.

  • Поверните ручку или кнопку переключателя напряжения на максимальное значение напряжения 30 вольт. Вы можете оставить его там или уменьшить, пока не приблизитесь к фактическому напряжению того, что вы тестируете.

  • Прикоснитесь черным щупом к отрицательной клемме или стороне проверяемой батареи.

  • Прикоснитесь красным щупом к положительной клемме или стороне проверяемой батареи.

  • Выньте красный и черный щупы из гнезд и выключите мультиметр.

Рекомендуется сначала снять красный щуп, а затем черный, но подойдет любой порядок.

Советы по безопасности  

Теперь, когда вы знаете, как использовать мультиметр для проверки постоянного и переменного напряжения, давайте рассмотрим несколько советов по безопасности, о которых следует всегда помнить.

  • Не прикасайтесь к кончикам электродов, так как это может привести к поражению электрическим током 

  • Не касайтесь наконечниками друг друга

  • Не прикасайтесь наконечником к металлической поверхности 

  • Не вставляйте измерительные провода в неправильные гнезда

  • Никогда не проверяйте сеть переменного тока — доверьте это профессионалам 

  • Всегда носите защитные очки, перчатки, одежду с длинными рукавами 

  • Убедитесь, что коробка выключателя легко и быстро доступна  

  • Выключатель-выключатель для большинства электромонтажных работ

  • Убедитесь, что территория хорошо освещена и свободна от препятствий 

Работа с электричеством любого рода опасна и должна выполняться только при соблюдении вышеуказанных протоколов безопасности.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *