Вольтметр своими руками: изготовление и проведение измерений
Ситуации, когда под рукой должен находиться вольтметр, встречаются достаточно часто. Для этого нет необходимости использовать заводской сложный прибор. Изготовить простенький вольтметр своими руками – не проблема, потому что состоит он из двух элементов: стрелочный измерительный блок и резистор. Правда, необходимо отметить, что пригодность вольтметра определяется его входным сопротивлением, которое состоит из сопротивлений его элементов.
Но необходимо учитывать тот факт, что резисторы есть разные с разными номиналами, а это говорит о том, что от установленного резистора будет зависеть входное сопротивление. То есть, подобрав правильно резистор, можно сделать вольтметр под замеры определенных уровней напряжений сетей. Сам же измерительный прибор чаще оценивается по показателю – относительное входное сопротивления, приходящееся на один вольт напряжения, его единица измерения – кОм/В.
То есть, получается так, что входное сопротивления на разных измеряемых участках разное, а относительная величина – показатель постоянный. К тому же, чем меньше отклоняется стрелка измерительного блока, тем больше относительная величина, а, значит, точнее будут измерения.
Прибор для измерения нескольких пределов
Кто не раз сталкивался с транзисторными конструкциями и схемами знает, что очень часто вольтметром приходится замерять цепи с напряжением от десятков долей одного вольта до сотен вольт. Простой приборчик, изготовленный своими руками, с одним резистором это не осилит, поэтому в схему придется подключить несколько элементов с разным сопротивлением. Чтобы вы поняли, о чем идет речь, предлагаем ознакомиться со схемой, расположенной снизу:
На ней показано, что в схеме установлено четыре резистора, каждый из которых отвечает за свой диапазон измерений:
- От 0 вольт до единицы.
- От 0 вольт до 10В.
- От 0 В до 100 вольт.
- От 0 до 1000 В.
Номинал каждого резистора поддается подсчету, который проводится на основе закона Ома. Здесь используется следующая формула:
R=(Uп/Iи)-Rп, где
- Rп – это сопротивление измерительного блока, возьмем, к примеру. 500 Ом;
- Uп – это максимальное напряжение измеряемого предела;
- Iи – это сила тока, при которой стрелка отклоняется до конца шкалы, в нашем случае – 0,0005 ампер.
Для несложного вольтметра из китайского амперметра можно выбрать следующие резисторы:
- для первого предела – 1,5 кОм;
- для второго – 19,5 кОм;
- для третьего – 199,5;
- для четвертого – 1999,5.
А вот относительная величина сопротивления этого прибора будет равна 2 кОм/В. Конечно, расчетные номиналы не совпадают со стандартными, поэтому резисторы придется подбирать близкими по значению. Далее проводится финишная подгонка, при которой производится градуировка самого прибора.
Как переделать вольтметр постоянного напряжения в переменное
Показанная на рисунке №1 схема – это вольтметр постоянного тока. Чтобы его сделать переменным или, как говорят специалисты, пульсирующим, необходимо в конструкцию установить выпрямитель, с помощью которого постоянное напряжение преобразуется в переменное. На рисунке №2 вольтметр переменного тока показан схематически.
Данная схема работает так:
- когда на левом зажиме находится положительная полуволна, то открывается диод D1, D2 в этом случае закрыт;
- напряжение проходит через амперметр к правому зажиму;
- когда положительная полуволна находится на правом конце, то D1 закрывается, и напряжение через амперметр не проходит.
В схему обязательно добавляется резистор Rд, сопротивление которого рассчитывается точно так же, как и остальные элементы. Правда, его расчетное значение делится на коэффициент, равный 2,5-3. Это в том случае, если в вольтметр устанавливается однополупериодный выпрямитель. Если используется двухполупериодный выпрямитель, то значение сопротивления делится на коэффициент: 1,25-1,5. Кстати, схема последнего изображена на рисунке №3.
Как правильно подключить вольтметр
Тот, кто не знает, но хочет проверить напряжение на каком-то участке электрической сети, должен задаться вопросом – как подключить вольтметр? Это на самом деле серьезный вопрос, в ответе которого лежит простое требование – подключение вольтметра необходимо проводить только параллельно нагрузке. Если будет произведено последовательное подключение, то сам прибор просто выйдет из строя, и вас может ударить током.
Все дело в том, что при таком соединении уменьшается сила тока, действующая на сам измерительный прибор. При этом сопротивлении его не меняется, то есть, остается большим. Кстати, никогда не путайте вольтметр с амперметром. Последний подключается к цепи последовательно, чтобы снизить показатель сопротивления до минимума.
И последний вопрос темы – как пользоваться вольтметром, изготовленным самостоятельно. Итак, в вашем приборе два щупа. Один подключается к нулевому контуру, второй к фазе. Так же можно проверить напряжение через розетку, предварительно определив, к какому гнезду запитан ноль, а к какому фаза. Или соединяете параллельно прибор к измеряемому участку. Стрелка измерительного блока покажет величину напряжения в сети. Вот так пользуются этим самодельным измерительным прибором.
onlineelektrik.ru
Цифровой вольтметр с LED дисплеем
Лицевая сторона
Общее описание:
Это простой, но в тоже время довольно точный вольтметр. Схема работает на основе АЦП (аналого-цифровой преобразователь) IC CL7107, сделанный компанией Intersil. В схеме имеется 40-контактная микросхема, которая отвечает за преоброзованике аналогового сигнала в цифровой. Схема, как это описано здесь может отображать любое напряжение постоянного тока в диапазоне 0-1999 Вольт.
Технические характеристики:
- Напряжение питания: + / — 5 В (симметричный)
- Требования к питанию: 200 мА (максимум)
- Диапазон измерения: + / — 0-1,999
Особенности:
- Малый размер
- Простота конструкции
- Низкая стоимость
- Простая настройка
- Малое количество внешних компонентов
Как это работает?
Схема:
Дисплей MAN6960
Аналого-цифровой преобразователь , (ADC отныне) более известен как двойной преобразователь наклона или интегрирующего преобразователя . Этот тип преобразователя , как правило, предпочтительнее, чем другие типы, так как он обладает более высокой точностью и прост в дизайне. Работу схемы проще понять, если она описана в два этапа. На первом этапе и в течение заданного периода входное напряжение интегрируется и на выходе интегратора в конце этого периода есть напряжение, которое прямо пропорционально входному напряжению. В конце установленного периода интегратор подается с внутренним опорным напряжением и на выходе схемы постепенно уменьшается, пока не достигнет уровня опорного напряжения (нуль). Второй этап известен как отрицательный период наклона и его продолжительность зависит от выхода интегратора в первом периоде. Поскольку продолжительность первой операции является фиксированной и длина второго является переменной можно сравнить два и таким образом входное напряжение на самом деле по сравнению с внутренним опорным напряжением, и результат кодируется и посылается на дисплей.
Задняя сторона
Все это звучит довольно просто, но это на самом деле серия очень сложных операций, которые все сделанные АЦП IC с помощью нескольких внешних компонентов, которые используются для настройки схемы и её работы. Более подробно схема работает следующим образом. Напряжение измеряется через точки 1 и 2 цепи и цепи через R3, R4 и C4, наконец, применяется к контактам 30 и 31 ИС. Это вход IC, как вы можете видеть из ее диаграммы (В высоких и в низких соответственно). Резистор R1 вместе с С1 используются для установки частоты внутреннего генератора (часы), который установлен на частоте около 48 Гц. В этот тактовой частоте насчитывается около трех различных показаний в секунду. Конденсатор C2, который соединен между выводами 33 и 34, ИС была выбрана, чтобы компенсировать погрешности, вызванной внутренним опорным напряжением, а также держит дисплей устойчивым. Конденсатор C3 и резистор R5 вместе образуют цепь, которая делает интеграцию входного напряжения и в то же время предотвращает разделение входного напряжения, делает контур быстрее и надежнее, возможность ошибки значительно снижается. Конденсатор C5 вынуждает инструмент отображать нуль, когда нет напряжения на его входе. Резистор R2 вместе с P1 используются для настройки прибора при вводе в эксплуатацию. Резистор R6 контролирует ток, который протекает через дисплей. Три правых дисплея подключены, чтобы они могли показать все цифры от 0 до 9, а первый слева может отображать только номер 1, и когда напряжение отрицательно знак минус. Вся схема работает от симметричной ? 5 В постоянного тока , которая применяется в контактах 1 (+5 В) , 21 (0 В) и 26 (-5 В) из IC.
Изготовление:
Прежде всего рассмотрим несколько основ в изготовлении электронной схемы на печатной плате. Плата выполнена из тонкого изолирующего материала, покрытого тонким слоем токопроводящей меди, которая формируется таким образом, чтобы сформировать необходимые проводники между различными компонентами схемы. Использование правильно спроектированной печатной платы очень необходимо, поскольку это ускоряет изготовление и существенно уменьшает возможность совершения ошибок. Медь должна быть луженая в процессе производства и покрыта специальным лаком, который защищает её окисления, а также чтобы делать пайки проще. Пайка компонентов к плате является единственным способом, чтобы построить вашу схему и от того, как вы это делаете зависит в значительной степени ваш успех или неудача. Эта работа не очень сложная, и если вы будете придерживаться нескольких правил, с которыми вы не должны иметь никаких проблем. Паяльник, который вы используете, должен быть легким и его мощность не должна превышать 25 Ватт. Есть много различных типов припоя на рынке и вы должны выбрать тот, который содержит необходимый флюс, чтобы обеспечить идеальную совместимость. Для того, чтобы спаять компонент правильно, вы должны сделать следующее: очистить компонент с помощью небольшого куска наждачной бумаги. Согните их на правильном расстоянии от компонента и вставьте компонент на своё место на борту.
Размещение:
PCB размеры: 77,6 мм х 44,18 мм или масштабировать его на уровне 35%
Возьмите горячий утюг и поместите его кончик на поводке компонентов, держа конец проволочного припоя в точке, где ведущий выходит. Когда припой начинает плавиться и течь, подождать, он охватит равномерно всю область вокруг отверстия и поток кипит и выходит из-под припоя. Вся операция не должна занимать более 5 секунд. Если все было сделано правильно поверхность шва должна иметь светлое металлическую отделку и ее края должны быть гладкие. Если припой в трещинах или имеет форму капли, то вы сделали сухой шов и вы должны удалить припой и переделывать. Постарайтесь, чтобы не перегреть дорожки, поскольку можно сместить их с доски и разбить их. Не используйте больше припои, так как вы работаете с риском короткого замыкания соседних дорожек на плате, особенно если они очень близко друг к другу. Когда вы закончите вашу работу, нужно отрезать избыток компонентов и очистите доску тщательно подходящим растворителем, чтобы удалить все остатки флюса, которые могут по-прежнему остаться на нем.
Рекомендуется начать работу по идентификации компонентов и разделения их на групп
payaem.ru
виды, схема, описание :: SYL.ru
Цифровой вольтметр является довольно востребованным прибором. Предназначен он исключительно для определения напряжения, которое имеется в электрической цепи. Подключение цифрового вольтметра может осуществляться двумя способами. В первом варианте он устанавливается параллельно цепи. Второй способ подразумевает подсоединение прибора непосредственно к источнику электроэнергии. Особенность цифровых вольтметров заключается в удобстве использования. Дополнительно они имеют довольно большой показатель внутреннего сопротивления. Это крайне важно, поскольку данный параметр влияет на точность устройства.
Какие типы бывают?
Все вольтметры можно разделить по виду измеряемой величины. Основными типами считаются устройства постоянного, а также переменного тока. Первый вид, в свою очередь, делится на выпрямительные, а также квадратичные приборы. Дополнительно существуют импульсные вольтметры. Отличительной их особенностью является измерение радиоимпульсных сигналов. При этом замеры напряжения они могут проводить как постоянного, так и переменного тока.
Схема цифрового вольтметра
Обычная схема цифрового вольтметра основана на дискретных величинах. Важную роль в ней играет входное устройство. При этом управляющий прибор взаимодействует с цифровым отсчетным блоком через десятичные числа. Особенность входного устройства заключается в высоком делителе напряжения. Если работа сводится к определению переменного тока, то оно работает как обычный преобразователь. При этом на выходе получается постоянный ток.
В это время центральный блок занимается аналоговым сигналом. В данной системе он представлен в виде цифрового кода. Процесс преобразования свойственен не только вольтметрам, но и мультиметрам. В некоторых моделях устройств применяется двоичный код. В таком случае процесс получения сигнала значительно упрощается, и преобразование происходит значительно быстрее. Старые модели вольтметров работали исключительно с десятичными числами. При этом проводилась регистрация измерительной величины. Дополнительно схема цифрового вольтметра имеет в себе центральный блок, который отвечает за все важные узлы прибора.
Цифровые преобразователи вольтметров
На сегодняшний день существует множество различных типов преобразователей, которые устанавливаются в вольтметры. Наиболее распространенными считаются времяимпульсные модели. Дополнительно существуют кодоимпульсные преобразователи.
Отличительной их особенностью от прочих устройств является возможность заниматься поразрядным уравновешиванием. В это время частотно-импульсные модели такой привилегии лишены. Однако с их помощью можно проводить пространственное кодирование, а это в некоторых исследованиях может быть крайне важным. Особенно это касается замеров напряжения в закрытых цепях электричества.
Самодельные вольтметры
Вольтметр (цифровой) своими руками сделать можно. В первую очередь подбирают детектор, который предназначен для определения средневыпрямленного значения. При этом устанавливается он, как правило, рядом с преобразователем переменного тока. Минимум-напряжение детектором определяется от 100 МВ, однако некоторые модели способны распознавать силу тока до 1000 МВ. Дополнительно, для того чтобы сделать вольтметр (цифровой) своими руками, потребуется транзистор, который влияет на чувствительность устройства, а именно его порог. Связан он с уровнем квантовой амплитуды напряжения. Еще на чувствительность влияет дискретность прибора. Если напряжение составляет менее 100 МВ, то уровень сопротивления непременно растет и может составить, в конечном счете, 10 Ом.
Сопротивление электрической схемы
Сопротивление, которое образуется в системе, зависит от количества знаков в цепи. В данном случае следует понимать, что шкалы вольтметров могут сильно отличаться. Отношение измеряемой величины прямо пропорционально напряжению. Дополнительно нужно учитывать помехозащищенность, которая также влияет на сопротивление устройства. Тут следует отметить, что именно цифровой встраиваемый вольтметр отличается большими амплитудами.
В данном случае это оказывает большое влияние на возникновения помех в цепи. Наиболее частой причиной резкого скачка считают неправильную работу блока питания. При этом средняя частота устройства может нарушаться. Таким образом, на входе в цепи имелось, к примеру, 50 Гц, а на выходе получилось 10 Гц. Как результат, в соединительном проводе образуется сопротивление. Постепенно это приводит к утечке, а происходит это в месте, где находятся клеммы. В данном случае проблема может быть решена путем заземления этого участка. В итоге помехи переходят на входную цепь и частота в приборе стабилизируется.
Погрешности измерений
Погрешность измерений вольтметра напрямую связана с источником питания. При этом следует учитывать напряжение наводки на выходе. Чаще всего помехи общего вида изменяют параметры сопротивления. В результате данный показатель может значительно уменьшиться. На сегодняшний день имеется три проверенных способа борьбы с разного рода помехами в вольтметрах. Первый прием заключается в применении проводов экранированного типа. При этом вход электрической цепи очень важно изолировать от оборудования.
Второй способ заключается в наличие интегрирующего элемента. В результате период помехи можно значительно уменьшить. Наконец, последним приемом принято считать установку специальных фильтров на вольтметры. Основной их задачей является повышение сопротивления в электрической цепи. В результате амплитуда помехи на выходе после блока значительно уменьшается. Также следует отметить, что многие системы преобразователей способны значительно увеличить скорость измерений. Однако при повышении производительности снижается точность регистрации данных. В итоге такие преобразователи могут быть причиной больших помех в электрической цепи.
Кодоимпульсные вольтметры
Кодоимплульсный цифровой вольтметр переменного тока работает по принципу поразрядного уравновешивания. При этом к данным устройствам применим метод компенсационного измерения напряжения. Процесс расчета в свою очередь осуществляется при помощи прецизионного делителя. Дополнительно рассчитывается опорное напряжение в электрической цепи.
В целом, компенсированный ток имеет несколько уровней. Согласно квантовой теории, исчисления производят в двоично-десятичной системе. Если использовать двухразрядный цифровой вольтметр для автомобиля, то напряжение распознается до 100 В. Весь процесс при этом осуществляется по командам. Особого внимания в работе заслуживает сравнение напряжений. Основано оно на принципе управляющих импульсов, а происходят они в системе через определенные интервалы времени. При этом есть возможность проводить переключение сопротивления одного делителя.
В результате на выходе происходит изменение предельной частоты. Одновременно есть возможность подключать отдельное устройство для сравнения показателей. Главное, не забывать учитывать размер делителя в звене. При этом сигнал устройства может не поступать. В итоге данные можно сравнить по положениям ключей. По сути, они являются кодом, который считывается вольтметром.
Упрощенная схема кодоимпульсного вольтметра-амперметра
Цифровой вольтметр-амперметр постоянного тока схематически можно представить в виде взаимодействующих элементов электрической цепи. Наиболее важным является входное устройство, которое играет роль источника опорного напряжения. Таким образом, прецизионный делитель связан с прибором сравнения.
В свою очередь, механизмы цифрового отсчета показывают сопротивление электрической цепи. Далее управляющие устройства способны напрямую взаимодействовать с входным прибором и проводить сравнения показателей напряжения сети. Наиболее просто процесс измерения можно представить в виде весов. При этом в системе часто бывают сбои. Связаны они по большей мере из-за неправильного сравнения.
Точность измерений
Точность измерений вольтметра-амперметра напрямую связана со стабильностью опорного напряжения. Дополнительно должен быть учтен порог прецизионного делителя во входном устройстве. Защита от помех в цепочке также берется во внимание. Для этого в самом начале электрической цепи имеется фильтр. В результате качество проведений лабораторных работ можно значительно улучшить.
Вольтметры с времяимпульсными типами преобразователей
Данные типы вольтметров используют специальные преобразователи, которые измеряют напряжение только в определенных интервалах времени. При этом учитываются импульсные колебания в электрической цепи. Дополнительно просчитывается средняя частота напряжения в системе. Для ее стабилизации, как правило, применяется дискретный сигнал, который посылается с выхода преобразователя.
При этом счетные импульсы способны значительно сократиться. На погрешность измерения вольтметров влияет множество факторов. В первую очередь это касается дискретизации сигнала. Также проблема может заключаться в нестабильности частоты. Связана она с порогом чувствительности электрической цепи. В результате сравнение напряжения устройством осуществляется нелинейно.
Простая схема вольтметра-амперметра с преобразователем
Цифровой вольтметр-амперметр с частотным преобразователем включает в обязательном порядке генератор, который следит за изменениями напряжения в электрической цепи. При этом измерение осуществляется поэтапно с интервалами. Генератор в электрической цепи используется линейного типа. Для сравнения полученных данных в устройстве имеется триггер. В свою очередь, для расчета частоты важно использовать счетчик, который принимает дискретный сигнал. Происходит это на выходе преобразователя вольтметра-амперметра. При этом учитывается величина предельного напряжения.
Непосредственно информация поступает на вход вольтметра-амперметра. На этом этапе осуществляется процесс сравнения, а когда возникает импульс, то система фиксирует нулевой уровень. Непосредственно сигнал в вольтметре-амперметре попадает на триггер, и в результате на выходе получается положительное напряжение. Возвращается импульс в исходное положение только после проведения устройством сравнения. При этом учитываются любые изменения предельной частоты, которые сформировались в данном промежутке времени. Также принимается во внимание коэффициент преобразования. Рассчитывается он исходя из показателя силы сигнала.
Дополнительно в формуле имеется счетный импульс, который появляется на выходе генератора. В результате напряжение может отображаться только при наличии определенных колебаний, которые возникают в электрической цепи. В конечном счете, сигнал должен дойти до выхода триггера и там считаться. При этом количество импульсов фиксируется в вольтметре-амперметре. Как результат, срабатывает индикатор, который оповещает о наличии напряжения.
Вольтметры двойного интегрирования
Цифровой вольтметр постоянного тока двойного интегрирования работает по принципу периодического повторения. При этом возврат исходного кода в цепи осуществляется автоматически. Работает данная система исключительно с постоянным током. При этом частота предварительно выпрямляется и подается на выходное устройство.
Погрешности дискретизации в вольтметрах не учитываются. Таким образом, могут возникнуть моменты несовпадений счетных импульсов. В результате на начало и конец интервала один параметр может сильно отличаться. Однако, как правило, погрешность не является критичной из-за работы преобразователя.
Особая проблема состоит именно в шумовой помехе. В результате она способна значительно искривить показатель напряжения. В конечном счете, это находит свое отображение в величине импульса, а именно его длительности. Таким образом, среди цифровых вольтметров данные типы не пользуются большой популярностью.
www.syl.ru
СТРЕЛОЧНЫЙ ВОЛЬТМЕТР
И то, что ко всему привыкаешь и то, что с кем поведешься от того и наберешься – прописные истины. Вот и я привык к своему мультиметру и когда его кто-то хватает (извините, берёт попользоваться) – меня «жаба душит». Сказать ничего не могу, это от меня домочадцы подцепили некоторое количества вируса радиолюбительства и теперь имеют потребность померить напряжение батареек в пульте, аккумулятора в телефоне и т.д. Терпел. Пока не услышал, что некоторые граждане заинтересовались напряжением в розетках.
Откуда появилась эта измерительная головка уже не помню, но всегда считал её «убитой в ноль» – ошибался. При проверке выяснилась её полная адекватность. Вот только внешний вид…
Разобрал по максимуму. Корпус отмыл, верхнюю часть подклеил. Со шкалы кончиком лезвия маленького канцелярского ножа соскрёб лишние нолики. Получилась шкала на 15 вольт. Вместо сопротивления на 150к запаял в колодку перемычку. Отломанный кончик стрелки вернул на место при помощи кусочка изоляции и клея.
Стрелка, конечно, нуждалась в балансировке. Сделал по следующей технологии уравновешивания стрелки имеющимися противовесами с капельками припоя на них (двигаем хорошо разогретым паяльником, эти самые капельки).
- Куда двигать – стрелку располагаем горизонтально и смотрим, что перевешивает, если стрелка, то каплю передвинуть от центра. Если противовес – то каплю к центру.
- Какую каплю двигать – стрелку располагаем вертикально.
- а) нужно двигать «к центру». Стрелка отклонилась вправо – двигаем правую каплю. Влево – левую.
- б) нужно двигать «от центра». Стрелка отклонилась вправо – двигаем левую каплю. Влево – правую.
Имеющиеся углубления в верхней части корпуса заполнил при помощи паяльника пластмассой и выровнял напильником, затем мелкой и потом самой мелкой шкуркой, наконец, покрасил и вставил в неё на клей вырезанное стекло. Покрасил и внутреннюю металлическую планку (чтоб всё в цвет), просушил и собрал.
Внешний шарм появился. А для придания технического изыска дополнил измерительную головку переключателем на три положения и тремя резисторами.
Измерительная головка стала обладательницей трёх пределов измерения: на 3, 15 и 30 вольт. Вот картинка печатной платы и схемы по совместительству:
Остановлюсь на моменте сборки. Как оказалось, научиться выколупывать компаунд из зазора между нижней и верхней частями измерительных головок и тем самым их разъединять не проблема, проблема их соединить. Ну не заморачиваться же, в самом деле, их заливкой компаундом по новой. Соединяю так:
В самом уголке сверлю отверстие несколько меньшее диаметром, чем приготовленные саморезы (исключительно алюминиевые) и… А если кого смущает возможность проникновения вовнутрь пыли, то для этого есть пластилин. По готовности измерителя (назвал его вольтметром первого уровня) проинструктировал причастных и выдал в пользование. Прибор понравился, особенно тем, что всего одна «кнопочка». В розетку просил щупы не толкать – лучше сразу гвоздики. С пожеланием успеха, Babay.
Форум по стрелочникам
Обсудить статью СТРЕЛОЧНЫЙ ВОЛЬТМЕТР
radioskot.ru
Электронный вольтметр своими. Цифровой вольтметр: виды, схема, описание
Цифровой вольтметр является довольно востребованным прибором. Предназначен он исключительно для определения напряжения, которое имеется в электрической цепи. Подключение цифрового вольтметра может осуществляться двумя способами. В первом варианте он устанавливается параллельно цепи. Второй способ подразумевает подсоединение прибора непосредственно к источнику электроэнергии. Особенность цифровых вольтметров заключается в удобстве использования. Дополнительно они имеют довольно большой показатель внутреннего сопротивления. Это крайне важно, поскольку данный параметр влияет на точность устройства.
Какие типы бывают?
Все вольтметры можно разделить по виду измеряемой величины. Основными типами считаются устройства постоянного, а также переменного тока. Первый вид, в свою очередь, делится на выпрямительные, а также квадратичные приборы. Дополнительно существуют импульсные вольтметры. Отличительной их особенностью является измерение радиоимпульсных сигналов. При этом замеры напряжения они могут проводить как постоянного, так и переменного тока.
Схема цифрового вольтметра
Обычная схема цифрового вольтметра основана на дискретных величинах. Важную роль в ней играет входное устройство. При этом управляющий прибор взаимодействует с цифровым отсчетным блоком через десятичные числа. Особенность входного устройства заключается в высоком делителе напряжения. Если работа сводится к определению переменного тока, то оно работает как обычный преобразователь. При этом на выходе получается постоянный ток.
В это время центральный блок занимается аналоговым сигналом. В данной системе он представлен в виде цифрового кода. Процесс преобразования свойственен не только вольтметрам, но и мультиметрам. В некоторых моделях устройств применяется двоичный код. В таком случае процесс получения сигнала значительно упрощается, и преобразование происходит значительно быстрее. Старые модели вольтметров работали исключительно с десятичными числами. При этом проводилась регистрация измерительной величины. Дополнительно схема цифрового вольтметра имеет в себе центральный блок, который отвечает за все важные узлы прибора.
Цифровые преобразователи вольтметров
На сегодняшний день существует множество различных типов преобразователей, которые устанавливаются в вольтметры. Наиболее распространенными считаются времяимпульсные модели. Дополнительно существуют кодоимпульсные преобразователи.
Отличительной их особенностью от прочих устройств является возможность заниматься поразрядным уравновешиванием. В это время частотно-импульсные модели такой привилегии лишены. Однако с их помощью можно проводить пространственное кодирование, а это в некоторых исследованиях может быть крайне важным. Особенно это касается замеров напряжения в закрытых цепях электричества.
Самодельные вольтметры
Вольтметр (цифровой) своими руками сделать можно. В первую очередь подбирают детектор, который предназначен для определения средневыпрямленного значения. При этом устанавливается он, как правило, рядом с преобразователем переменного тока. Минимум-напряжение детектором определяется от 100 МВ, однако некоторые модели способны распознавать силу тока до 1000 МВ. Дополнительно, для того чтобы сделать вольтметр (цифровой) своими руками, потребуется транзистор, который влияет на чувствительность устройства, а именно его порог. Связан он с уровнем квантовой амплитуды напряжения. Еще на чувствительность влияет дискретность прибора. Если напряжение составляет менее 100 МВ, то уровень сопротивления непременно растет и может составить, в конечном счете, 10 Ом.
Сопротивление электрической схемы
Сопротивление, которое образуется в системе, зависит от количества знаков в цепи. В данном случае следует понимать, что шкалы вольтметров могут сильно отличаться. Отношение измеряемой величины прямо пропорционально напряжению. Дополнительно нужно учитывать помехозащищенность, которая также влияет на сопротивление устройства. Тут следует отметить, что именно цифровой встраиваемый вольтметр отличается большими амплитудами.
В данном случае это оказывает большое влияние на возникновения помех в цепи. Наиболее частой причиной резкого скачка считают неправильную работу блока питания. При этом средняя частота устройства может нарушаться. Таким образом, на входе в цепи имелось, к примеру, 50 Гц, а на выходе получилось 10 Гц. Как результат, в соединительном проводе образуется сопротивление. Постепенно это приводит к утечке, а происходит это в месте, где находятся клеммы. В данном случае проблема может быть решена путем заземления этого участка. В итоге помехи переходят на входную цепь и частота в приборе стабилизируется.
Погрешности измерений
Погрешность измерений вольтметра напрямую связана с При этом следует учитывать напряжение наводки на выходе. Чаще всего помехи общего вида изменяют параметры сопротивления. В результате данный показатель может значительно уменьшиться. На сегодняшний день имеется три проверенных способа борьбы с разного рода помехами в вольтметрах. Первый прием заключается в применении проводов экранированного типа. При этом вход электрической цепи очень важно изолировать от оборудования.
Второй способ заключается в наличие интегрирующего элемента. В результате период помехи можно значительно уменьшить. Наконец, последним приемом принято считать установку специальных фильтров на вольтметры. Основной их задачей является повышение сопротивления в электрической цепи. В результате амплитуда помехи на выходе после блока значительно уменьшается. Также следует отметить, что многие системы преобразователей способны значительно увеличить скорость измерений. Однако при повышении производительности снижается точность регистрации данных. В итоге такие преобразователи могут быть причиной больших помех в электрической цепи.
Кодоимпульсные вольтметры
Кодоимплульсный цифровой вольтметр переменного тока работает по принципу поразрядного уравновешивания. При этом к данным устройствам применим метод компенсационного измерения напряжения. Процесс расчета в свою очередь осуществляется при помощи прецизионного делителя. Дополнительно рассчитывается опорное напряжение в электрической цепи.
В целом, компенсированный ток имеет несколько уровней. Согласно квантовой теории, исчисления производят в двоично-десятичной системе. Если использовать двухразрядный цифровой вольтметр для автомобиля, то напряжение распознается до 100 В. Весь процесс при этом осуществляется по командам. Особого внимания в работе заслуживает сравнение напряжений. Основано оно на принципе управляющих импульсов, а происходят они в системе через определенные интервалы времени. При этом есть возможность проводить переключение сопротивления одного делителя.
В результате на выходе происходит изменение предельной частоты. Одновременно есть возможность подключать отдельное устройство для сравнения показателей. Главное, не забывать учитывать размер делителя в звене. При этом сигнал устройства может не поступать. В итоге данные можно сравнить по положениям ключей. По сути, они являются кодом, который считывается вольтметром.
Упрощенная схема кодоимпульсного вольтметра-амперметра
Цифровой вольтметр-амперметр
advsk.ru
Цифровой вольтметр на очень высокую точность
Целью этого дела было собрать очень точный вольтметр, с 3 цифрами после запятой. Нужен был вольтметр постоянного напряжения показывающий значения напряжения в диапазоне 0-10 В. Имеющиеся мультиметры не подходили. Поэтому после принятия решения о самостоятельном исполнении выбор пал на микросхему ICL7135.
Схема точного цифрового вольтметра
Генератор сделан на микросхеме 4047, он должен также питать преобразователь отрицательного напряжения. Вольтметр имеет три диапазона измерений: 2 V, 20 V, 200 V.
В делителе применены резисторы 0,1%. При запуске системы возникла проблема её калибровки. Не имея доступа к эталонному прибору с точностью не менее 5 цифр, решено было купить готовый источник стабильных напряжений для калибровки. Основан он на AD584KH обеспечивает четыре уровня: 2,5 V и 5,0 V, 7,5 V и 10,0 V.
На прилагаемых фотографиях видно измеренные значения. Корпус вольтметра была изготовлен из листовой стали, выдранной из корпуса старого компьютера. Питание идёт постоянным напряжением от БП на 15 В.
Точность действительно сверх высокая. Показания реально стабильны, даже на открытых (не экранированных) измерительных проводах последняя цифра не «прыгает».
2shemi.ru
РадиоКот :: Простой цифровой вольтметр ch-c3200.
РадиоКот >Схемы >Цифровые устройства >Измерительная техника >Простой цифровой вольтметр ch-c3200.
В этой статье рассмотрен пример создания простого вольтметра постоянного тока на печатной платы ch-c0030pcb. Дан краткий принцип построения цифровых вольтметров, описание схемы, прошивки контроллеров, а также программа на ассемблере с комментариями. Большой популярностью пользуются цифровые вольтметры среди автолюбителей для контроля напряжения бортовой сети автомобиля. Поэтому рассматриваемая конструкция, ориентирована на возможность питания от бортовой сети автомобиля (12-24 вольта) и для индикации и контроля питающего напряжения.
Для реализации этого проекта нам потребуется PIC-контроллер с аналого-цифровым преобразователем (АЦП). По монтажному месту нам подойдут из серии PIC16 — PIC16F819 или PIC16F88.
Схема вольтметра.
Позиционное обозначение элементов сохранено согласно монтажной схемы платы. Питание подается на контакты 1,2 соединителя, контакты 3,4 используются для подключения индикатора или исполнительного устройства. Подается контролируемое напряжение на контакт 9. Контролируемое напряжение не должно превышать 100 вольт.Измерение напряжения. Для измерения напряжения будем использовать вход AN0. При помощи перемычек R20 и R18 сконфигурируем входную цепь. В качестве делителя входного напряжения будем использовать резисторы R1 и R2. Соотношение 20/1 позволит нам измерять постоянные напряжения до 100 вольт. В качестве опорного напряжения будем использовать напряжение стабилизатора питания контроллера.
В выбранных нами контроллерах встроен десяти разрядный АЦП, это значит, что выбранный нами диапазон опорного напряжения 5.0 вольт он «разделит» на 1024 значения. Т.е. если на вход контроллера AN0 подавать напряжение от 0 до 5 вольт, то с регистров АЦП ADRESH и ADRESL сможем сосчитать значение от 0 до 1023.
Значит, в нашем случае весовое значение одного разряда АЦП составит 5/1024 =0,0048828125 вольта.
Для вычисления напряжения необходимо полученное значение АЦП умножать на0,0048828125.
Например, при измерении мы получили значение 359. Для вычисления напряжения нам необходимо 359*0,0048828125 = 1,7529296875. Или округленно 1,8 вольта.
Но как нам измерять напряжения выше 5 вольт? Для этого и используется входной делитель на резисторах R1 и R2. Выберем R2=10 кОм, почему 10, потому если входные цепи АЦП требуют, что бы источник имел сопротивление не ниже 10 кОм. А в целях уменьшения входного тока, возьмём максимальное значение. R1 выберем равное = 200 кОм для обеспечения необходимого диапазона входного напряжения.
Коэффициент деления 200/10=20. Это значит, что напряжение, поступающее на вход делителя, будет уменьшено на его выходе в 20 раз. При максимальном входном напряжении на входе контроллера 5 вольт мы сможем измерять напряжения 5*20=100 вольт,(или для нашего случая 99,9 вольта). Такой диапазон достаточен для многих устройств, включая и автомобильную технику.
И так если мы выбрали для индикации минимального значения 0,1 вольт, то диапазон индицируемых значений составит от 0,1 до 99,9 вольт.
Для измерения переменного напряжения необходимо на вход добавить выпрямительный диод и изменить входной делитель, но в этой публикации создание вольтметра переменного тока рассматриваться не будет.
Программа.
Для работы контролера, необходимо программа, которая будет выполнять все наши требования по работе устройства. Программа написана на ассемблере с применение среды MPLAB IDE v8.83.
Наша программа кроме измерения напряжения и вывода его значения на индикатор будет выполнять и необходимые функции по контролю напряжения. Так как параметры по контролю напряжения необходимо задавать во время эксплуатации устройства, то добавим к нашему устройству кнопки управления. Кнопки управления подключаются к порту B микроконтроллера и используются для ввода параметров работы и калибровочных констант. Для сохранения параметров в отключенном состоянии используется EEPROM контроллера. Запоминание происходить при выходе из режима настройки.
Выбор PIC-контроллера.
Прошивка и текст на ассемблере выполнены для контроллера PIC16F88, но с незначительными изменениями в программе можно приметить и PIC16F819. Для этого в тексте программы есть пометки позволяющие переключиться с одного процессора на другой.
Сборочный чертеж верхняя сторона платы.
Сборочный чертеж нижняя сторона.
Программирование контроллера.
Программирование PIC контроллера можно выполнить непосредственно в плате, для этого можно использовать любой программатор позволяющий выполнять внутрисхемное программирование.
Для этого применяется соединитель CON1 (отверстие в плате).
Демонстрация доступа к функциям настройки параметров работы вольтметра.
Демонстрация калибровки вольтметра.
От того как правильно будет выполнена калибровка зависит точность паказаний нашего вольтметра. Для этого необходимо выполнить три правила:
1. Калибруют по максимальному значению измеряемого диапазона.
Что это значит? Если вы планируете измерять диапазон напряжений например, от 0 до 30 вольт, то необходимо выставить 30 вольт и по этому уровню калибровать вольтметр.
2. Калибровать надо по прибору более высокого класса.
Если вы желаете получить точность +/- 0,1 вольта выставить с точностью до сотых — 30,00. Реально это сделать из того что есть под руками сложно, поэтому надо попытаться установить максимально точно.
3. Подгонять показания надо как можно точнее выбирать точку смены индикации.
Как это делать посмотрите видеоролик. На ролике мы калибруем вольтметр по уровню напряжения 20 вольт.
Файлы:
Описание вольтметра.
Программа (ассемблер, MPLAB — V8.76) PIC16F88 (PIC16F819).
Схема вольтметра.
Прошивка для контроллера PIC16F88.
Сборочный чертеж платы.
Все вопросы в Форум.
Как вам эта статья? | Заработало ли это устройство у вас? |
www.radiokot.ru