Зарядное устройство для шуруповерта Bosch схема
Электропитание
Главная Радиолюбителю Электропитание
В настоящий момент на рынке представлено огромное количество моделей аккумуляторных шуруповёртов Bosch и, соответственно, зарядных устройств к ним.
Зарядники отличаются следующими параметрами:
- Напряжение питания (возможны варианты с фиксированным напряжением 3.6, 7.2, 10.8, 12, 14.4, 18, 24, 36 вольт или варианты с настраиваемыми/выбираемыми выходными параметрами напряжения).
- Тип подключаемых аккумуляторов (это могут быть литий-ионные, никель-металлогидридные или никель-кадмиевые элементы).
- Время заряда и мощность (так, зарядное устройство может оснащаться технологией быстрой накачки энергии).
- Подключаемый разъём (за несколько поколений шуруповёртов накопилось большое число разных форматов подключений).
- Тип использования устройства (как правило зависит от типа шуруповёрта – бытовой он или профессиональный, первый тип устройств рассчитан на редкое использование и большое время заряда, второй – на ускоренный заряд и регулярное использование).
Классическое зарядное устройство – это вторичный источник напряжения (трансформатор) и дополнительные схемы, например: фильтрации, выпрямления, защиты, накачки и т.п.
То есть, для зарядки любой батареи будет достаточно трансформатора и диодного моста, как на схеме ниже.
Рис. 1. Схема зарядного устройства
Принцип работы такой:
1. трансформатор понижает сетевое напряжение до требуемого уровня;
2. диодный пост преобразует синусоидальные колебания тока на выходе трансформатора в прямоугольные импульсы;
3. простейший фильтр из конденсатора сглаживает переходы между импульсами с диодного моста.
На самом деле всё очень просто. Но в оригинальных схемах производителей зарядных устройств вводятся дополнительные узлы и блоки. В некоторых случаях, для уменьшения габаритов зарядки могут внедряться импульсные блоки питания.
Не самый последний показатель работы схемы блока питания – его мощность. Она зависит в первую очередь от параметров преобразователя (трансформатора или импульсного блока питания). Чем выше мощность, тем быстрее и эффективнее будет заряжаться аккумуляторная батарея. Мощность аккумуляторов определяется их напряжением, умноженным на ёмкость (измеряется в ампер-часах).
Схемы оригинальных ЗУ Bosh
Ничего нового производитель здесь не изобретёт. Технологии зарядки химических источников тока давно известны и обкатаны. Всё что нужно – уточнить номинал деталей и используемые технические решения.
Ниже рассмотрим несколько вариантов схем для зарядных устройств, которые уже детально изучены опытными пользователями.
Bosch AL1814
Внешний вид зарядки.
Рис. 2. Внешний вид зарядки
Схема принципиальная.
Рис. 3. Принципиальная схема зарядного устройства
При поиске неисправностей в первую очередь стоит проверить мосфет, далее резисторы и конденсаторы. Проверять элементы нужно с выпаиванием контактов, так измерения номинала будут соответствовать действительности.
Замену неисправных элементов стоит производить на точно такие же модели, но рабочие, в крайнем случае – на прямые аналоги.
Bosch AL 1115
Внешний вид устройства.
Рис. 4. Внешний вид устройства
Схема принципиальная электрическая.
Рис. 5. Принципиальная электрическая схема
Эта зарядка используется только для литий-ионных АКБ. Работает она на базе импульсного БП.
Bosch AL 2425 DV
Внешний вид прибора.
Рис. 6. Внешний вид прибора
Принципиальная схема находится здесь.
Несколько слов о самостоятельном ремонте
На самом деле, зарядки Bosch ничем не отличаются от устройств конкурентов и достаточно просто устроены. Для ремонта нужно:
- понимать немного в схемотехнике,
- уметь определять номинал и тип элемента по обозначениям на корпусе (часто они интернациональны),
- уметь проверять работоспособность отдельного элемента схемы (он выпаивается полностью или частично, например, если у элемента 2 контакта, то достаточно отпаять только одну ножку).
- иметь необходимый набор инструментов и измерительных приборов.
Полезные советы:
- Часто на плате имеются контрольные точки, типовые значения для сравнения указаны рядом с контактом (чтобы не выпаивать все детали без разбора можно отсечь лишние цепи с помощью контрольных точек).
- После разборки сразу произведите детальный осмотр схемы и элементов. Часто пострадавшие детали можно определить визуально (они потемнели, имеют трещины на корпусе, вздулись и т.п.).
- Наиболее уязвимыми элементами можно назвать транзисторы и микросхемы. Полупроводники чаще всего выходят из строя в сравнении с другими элементами схем (статистика не в их пользу).
- Для дешёвых зарядок принципиальных схем не найти, потому что их нет даже в сервисных мастерских. Производителю проще полностью заменить устройство, чем ремонтировать его силами специалистов. Но схему можно составить самостоятельно. Делать это нужно очень скрупулёзно, так как при большом количестве связей ошибок не избежать.
- Даже при наличии принципиальной схемы ремонт зарядок не сильно упрощается. Нужно знать расположение контрольных точек и стандартные для них значения измерений.
Вместо выводов
На самом деле для восстановления зарядных устройств принципиальные схемы не нужны. Достаточно последовательно проверить все ключевые элементы на номинал, ведь в схеме их часто не больше 10-20 шт.
Автор: RadioRadar
Дата публикации: 21.05.2019
Мнения читателей
Нет комментариев. Ваш комментарий будет первый.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:
www.radioradar.net
Al1814cv Принципиальная Схема – tokzamer.ru
Без этого мосфет не откроется, и напряжение на трансформаторе будет ноль. Второй вывод подключен к отдельному, третьему разъёму.
Если несколько раз подряд вилку из разетки вынуть каждый раз по-разному: раз , звук пропадает и процесс заряда акб начинается и заряжает батарею полностью, как надо. Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.
Необходимость в домашней мастерской ручного электроинструмента очевидна — это помощь при ремонте, строительстве и во многих других делах, которые возникают в повседневной жизни. В некоторых случаях, для уменьшения габаритов зарядки могут внедряться импульсные блоки питания.
Ремонт зарядного устройства для тяговых свинцовых аккумуляторов (для электровелосипеда)
Мощность аккумуляторов определяется их напряжением, умноженным на ёмкость измеряется в ампер-часах. Схема зарядного устройства Принцип работы такой: 1.
С резисторами R6 и R5 пришлось повозиться, но интернет помог понять родные номиналы сопротивления цветовые полоски или почернели или вообще выгорели!
Приведу его здесь. Второй вывод подключен к отдельному, третьему разъёму.
WorkBlog об электронных устройствах, электронных компонентах, электронных устройствах, ремонте техники и электроники, решении задач разработчика. Нужно знать расположение контрольных точек и стандартные для них значения измерений.
Силовая часть зарядного устройства состоит из силового трансформатора GS
Ремонт зарядного устройства шуруповерта Интерскол 12 вольт, на плате SD C804S
Архив блога
Ничего особого не делал! Установил относительно нормальный радиатор, предварительно зашкурив, хорошенько отшлифовав и обезжирив поверхности радиатора и транзистора, и смазав транзистор термопастой, для нормального теплоотвода.
Выработанные в начальной стадии импульсы производят открытие затвора полевого транзистора.
И определяется как произведение этих величин.
Примечание: напряжение от трансформатора не должно превышать 27 В. Тип подключаемых аккумуляторов это могут быть литий-ионные, никель-металлогидридные или никель-кадмиевые элементы.
Кстати, и никель-кадмиевые аккумуляторы для шуруповертов тоже относятся к классу гелевых.
Такие схемы решение достигается применение пакетного переключателя для регулировки сопротивления выходным током. Еще одной фирменной фишкой зарядных устройств для аккумуляторов шуруповертов бош является их универсальность.
Если, например, необходима работа при строительстве в круглосуточном режиме тогда понадобится несколько мощных батарей, если же инструмент используется как помощник в текущих делах в режиме: открутил — закрутил — положил, здесь особой мощности не потребуется.
Ремонт зарядного шуруповерта
Зарядное устройство для шуруповерта Bosch
Схема зарядного устройства Принцип работы такой: 1.
Ничего особого не делал! Но мосфет открывается в очень узком промежутке — от 5 до 6 вольт приблизительно.
Если, например, необходима работа при строительстве в круглосуточном режиме тогда понадобится несколько мощных батарей, если же инструмент используется как помощник в текущих делах в режиме: открутил — закрутил — положил, здесь особой мощности не потребуется. Их особенностью является полная герметичность ячейки.
Удовлетворение от проделанной созидательной работы и денежное довольствие в размере … известном только мне. Договорившись о цене вдарили по рукам. Подробнее об беспроводных изделиях в видеоролике.
Но здесь могут возникнуть большие сложности с клеммами и подключением к аккумулятору. Фирма Bosch предлагает универсальные зарядные устройства, с регулировкой напряжения на несколько стандартных диапазонов, например 12В, 14В, 16В, 18В. Помогите с сабжем.
Топ Статистики
Тем, кто интенсивно использует шуруповерт, это очень мешает в работе. Подробнее об беспроводных изделиях в видеоролике. В заряднике для шуруповёрта такой режим не реализован.
Если несколько раз подряд вилку из разетки вынуть каждый раз по-разному: раз , звук пропадает и процесс заряда акб начинается и заряжает батарею полностью, как надо. Полевик мне сразу не приглянулся. Несмотря на новизну видно, что система продумана и имеет большие перспективы.
Цепь открывает напряжение на базе поступающей через сопротивление R2. Схема собрана на основе классического импульсного частотного преобразователя с нагрузкой по напряжению и току. По истечении 50 — 60 минут, реле размыкает цепь заряда аккумулятора. Этот трансформатор должен также иметь достаточную мощность, чтобы обеспечить необходимый ток при длительной работе без перегрева обмоток. Аккумуляторы неодинаковы по типам и режимы заряда у них могут быть разными.
Ремонт зарядного устройства
Внешний вид
Она срисована с реальной печатной платы зарядного устройства. Заработало чудесное ЗУ сразу и без капризов.Если у Вас на первичной обмотке трансформатора ноль, а мосфет исправен, значит он не открывается. Лан, вези.
Еще хорошо бы проверить выпрямительный диод на вторичной обмотке. Классическое зарядное устройство — это вторичный источник напряжения трансформатор и дополнительные схемы, например: фильтрации, выпрямления, защиты, накачки и т.
Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых Ni-Cd элементов, каждый по 1,2 вольта. Зато фронты збс! За лак, дерьмовые комплектующие и тупой зарядник, который они из этого дерьма слепили. Гари и правда нет.
Подпишитесь!
Второй вывод подключен к отдельному, третьему разъёму. Зарядное устройство, которое предлагается ниже, обеспечивает нужный зарядный ток для любого аккумулятора из всех перечисленных.
Продлевать ему жизнь, методом улучшения отвода тепла от уязвимых деталей устройства и хорошей вентиляцией. Для более быстрой зарядки аккумуляторов ручного инструмента применяется схема подачи импульсного тока.
Топ Статистики
В процессе заряда оно соответствует текущему состоянию аккумулятора и обычно чуть выше номинального в конце заряжания. Схема, применяемая в данном устройстве — импульсная, время — от начала до окончания полного восстановления — 30 мин. Здесь же можно посмотреть большое количество ручного инструмента любой мощности цены и назначения. Нашел уже после ремонта : «привет коллеги меня зовут Игорь я из нижнего новгорода — так получилось, что за послекдний год имено таких зарядников отремонтировал не меньше сотни штук
Bosch AL Рис. Одно из распространенных аппаратов зарядки 12 В аккумуляторов является ЗУ изготовленное по нижеприведенной схеме. Сейчас не за компом, вечером постараюсь сделать.
Простое зарядное для li-ion аккумулятора своими руками
tokzamer.ru
Al1814cv схема зарядки шуруповерта – Морской флот
Очень много таких зарядных выходит из строя с одинаковыми дефектами, летит полевик первички STF3NK80Z N-channel 800V 2.5A, а за ним дружно транзюк раскачки 2N3904 и много чего из обвязки. Ниже на фото обвел красным что подверглось замене. Полевик был заменен более мощным STP4NK60Z N-channel 600 V 4 A в корпусе TO-220. Поскольку корпус TO-220FP в пластике, а TO-220 с металлической подложкой — пришлось 1 ногу радиатора отпаять от платы и загнуть.
конец
В настоящий момент на рынке представлено огромное количество моделей аккумуляторных шуруповёртов Bosch и, соответственно, зарядных устройств к ним.
Зарядники отличаются следующими параметрами:
- Напряжение питания (возможны варианты с фиксированным напряжением 3.6, 7.2, 10.8, 12, 14.4, 18, 24, 36 вольт или варианты с настраиваемыми/выбираемыми выходными параметрами напряжения).
- Тип подключаемых аккумуляторов (это могут быть литий-ионные, никель-металлогидридные или никель-кадмиевые элементы).
- Время заряда и мощность (так, зарядное устройство может оснащаться технологией быстрой накачки энергии).
- Подключаемый разъём (за несколько поколений шуруповёртов накопилось большое число разных форматов подключений).
- Тип использования устройства (как правило зависит от типа шуруповёрта – бытовой он или профессиональный, первый тип устройств рассчитан на редкое использование и большое время заряда, второй – на ускоренный заряд и регулярное использование).
Классическое зарядное устройство – это вторичный источник напряжения (трансформатор) и дополнительные схемы, например: фильтрации, выпрямления, защиты, накачки и т.п.
То есть, для зарядки любой батареи будет достаточно трансформатора и диодного моста, как на схеме ниже.
Рис. 1. Схема зарядного устройства
Принцип работы такой:
1. трансформатор понижает сетевое напряжение до требуемого уровня;
2. диодный пост преобразует синусоидальные колебания тока на выходе трансформатора в прямоугольные импульсы;
3. простейший фильтр из конденсатора сглаживает переходы между импульсами с диодного моста.
На самом деле всё очень просто. Но в оригинальных схемах производителей зарядных устройств вводятся дополнительные узлы и блоки. В некоторых случаях, для уменьшения габаритов зарядки могут внедряться импульсные блоки питания.
Не самый последний показатель работы схемы блока питания – его мощность. Она зависит в первую очередь от параметров преобразователя (трансформатора или импульсного блока питания). Чем выше мощность, тем быстрее и эффективнее будет заряжаться аккумуляторная батарея. Мощность аккумуляторов определяется их напряжением, умноженным на ёмкость (измеряется в ампер-часах).
Схемы оригинальных ЗУ Bosh
Ничего нового производитель здесь не изобретёт. Технологии зарядки химических источников тока давно известны и обкатаны. Всё что нужно – уточнить номинал деталей и используемые технические решения.
Ниже рассмотрим несколько вариантов схем для зарядных устройств, которые уже детально изучены опытными пользователями.
Внешний вид зарядки.
Рис. 2. Внешний вид зарядки
Рис. 3. Принципиальная схема зарядного устройства
При поиске неисправностей в первую очередь стоит проверить мосфет, далее резисторы и конденсаторы. Проверять элементы нужно с выпаиванием контактов, так измерения номинала будут соответствовать действительности.
Замену неисправных элементов стоит производить на точно такие же модели, но рабочие, в крайнем случае — на прямые аналоги.
Внешний вид устройства.
Рис. 4. Внешний вид устройства
Схема принципиальная электрическая.
Рис. 5. Принципиальная электрическая схема
Эта зарядка используется только для литий-ионных АКБ. Работает она на базе импульсного БП.
Bosch AL 2425 DV
Внешний вид прибора.
Рис. 6. Внешний вид прибора
Принципиальная схема находится здесь.
Несколько слов о самостоятельном ремонте
На самом деле, зарядки Bosch ничем не отличаются от устройств конкурентов и достаточно просто устроены. Для ремонта нужно:
- понимать немного в схемотехнике,
- уметь определять номинал и тип элемента по обозначениям на корпусе (часто они интернациональны),
- уметь проверять работоспособность отдельного элемента схемы (он выпаивается полностью или частично, например, если у элемента 2 контакта, то достаточно отпаять только одну ножку).
- иметь необходимый набор инструментов и измерительных приборов.
- Часто на плате имеются контрольные точки, типовые значения для сравнения указаны рядом с контактом (чтобы не выпаивать все детали без разбора можно отсечь лишние цепи с помощью контрольных точек).
- После разборки сразу произведите детальный осмотр схемы и элементов. Часто пострадавшие детали можно определить визуально (они потемнели, имеют трещины на корпусе, вздулись и т.п.).
- Наиболее уязвимыми элементами можно назвать транзисторы и микросхемы. Полупроводники чаще всего выходят из строя в сравнении с другими элементами схем (статистика не в их пользу).
- Для дешёвых зарядок принципиальных схем не найти, потому что их нет даже в сервисных мастерских. Производителю проще полностью заменить устройство, чем ремонтировать его силами специалистов. Но схему можно составить самостоятельно. Делать это нужно очень скрупулёзно, так как при большом количестве связей ошибок не избежать.
- Даже при наличии принципиальной схемы ремонт зарядок не сильно упрощается. Нужно знать расположение контрольных точек и стандартные для них значения измерений.
На самом деле для восстановления зарядных устройств принципиальные схемы не нужны. Достаточно последовательно проверить все ключевые элементы на номинал, ведь в схеме их часто не больше 10-20 шт.
Мнения читателей
Нет комментариев. Ваш комментарий будет первый.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:
Схема, устройство, ремонт
Без сомнений, электроинструмент значительно облегчает наш труд, а также сокращает время рутинных операций. В ходу сейчас и всевозможные шуруповёрты с автономным питанием.
Рассмотрим устройство, принципиальную схему и ремонт зарядного устройства для аккумуляторов от шуруповёрта фирмы “Интерскол”.
Для начала взглянем на принципиальную схему. Она срисована с реальной печатной платы зарядного устройства.
Печатная плата зарядного устройства (CDQ-F06K1).
Силовая часть зарядного устройства состоит из силового трансформатора GS-1415. Мощность его около 25-26 Ватт. Считал по упрощённой формуле, о которой уже говорил здесь.
Пониженное переменное напряжение 18V со вторичной обмотки трансформатора поступает на диодный мост через плавкий предохранитель FU1. Диодный мост состоит из 4 диодов VD1-VD4 типа 1N5408. Каждый из диодов 1N5408 выдерживает прямой ток 3 ампера. Электролитический конденсатор C1 сглаживает пульсации напряжения после диодного моста.
Основа схемы управления – микросхема HCF4060BE, которая является 14-разрядным счётчиком с элементами для задающего генератора. Она управляет биполярным транзистором структуры p-n-p S9012. Транзистор нагружен на электромагнитное реле S3-12A. На микросхеме U1 реализован своеобразный таймер, который включает реле на заданное время заряда – около 60 минут.
При включении зарядника в сеть и подключении аккумулятора контакты реле JDQK1 разомкнуты.
Микросхема HCF4060BE запитывается от стабилитрона VD6 – 1N4742A (12V). Стабилитрон ограничивает напряжение с сетевого выпрямителя до уровня 12 вольт, так как на его выходе около 24 вольт.
Если взглянуть на схему, то не трудно заметить, что до нажатия кнопки “Пуск” микросхема U1 HCF4060BE обесточена – отключена от источника питания. При нажатии кнопки “Пуск” напряжение питания от выпрямителя поступает на стабилитрон 1N4742A через резистор R6.
Далее пониженное и стабилизированное напряжение поступает на 16 вывод микросхемы U1. Микросхема начинает работать, а также открывается транзистор S9012, которым она управляет.
Напряжение питания через открытый транзистор S9012 поступает на обмотку электромагнитного реле JDQK1. Контакты реле замыкаются, и на аккумулятор поступает напряжение питания. Начинается заряд аккумулятора. Диод VD8 (1N4007) шунтирует реле и защищает транзистор S9012 от скачка обратного напряжения, которое образуется при обесточивании обмотки реле.
Диод VD5 (1N5408) защищает аккумулятор от разряда, если вдруг будет отключено сетевое питание.
Что будет после того, когда контакты кнопки “Пуск” разомкнутся? По схеме видно, что при замкнутых контактах электромагнитного реле плюсовое напряжение через диод VD7 (1N4007) поступает на стабилитрон VD6 через гасящий резистор R6. В результате микросхема U1 остаётся подключенной к источнику питания даже после того, как контакты кнопки будут разомкнуты.
Сменный аккумулятор.
Сменный аккумулятор GB1 представляет собой блок, в котором последовательно соединено 12 никель-кадмиевых (Ni-Cd) элементов, каждый по 1,2 вольта.
На принципиальной схеме элементы сменного аккумулятора обведены пунктирной линией.
Суммарное напряжение такого составного аккумулятора составляет 14,4 вольт.
Также в блок аккумуляторов встроен датчик температуры. На схеме он обозначен как SA1. По принципу действия он похож на термовыключатели серии KSD. Маркировка термовыключателя JJD-45 2A. Конструктивно он закреплён на одном из Ni-Cd элементов и плотно прилегает к нему.
Один из выводов термодатчика соединён с минусовым выводом аккумуляторной батареи. Второй вывод подключен к отдельному, третьему разъёму.
Алгоритм работы схемы довольно прост.
При включении в сеть 220V зарядное устройство ни как не проявляет свою работу. Индикаторы (зелёный и красный светодиоды) не светятся. При подключении сменного аккумулятора загорается зелёный светодиод, который свидетельствует о том, что зарядник готов к работе.
При нажатии кнопки “Пуск” электромагнитное реле замыкает свои контакты, и аккумулятор подключается к выходу сетевого выпрямителя, начинается процесс заряда аккумулятора. Загорается красный светодиод, а зелёный гаснет. По истечении 50 – 60 минут, реле размыкает цепь заряда аккумулятора. Загорается светодиод зелёного цвета, а красный гаснет. Зарядка завершена.
После зарядки напряжение на клеммах аккумулятора может достигать 16,8 вольт.
Такой алгоритм работы примитивен и со временем приводит к так называемому “эффекту памяти” у аккумулятора. То есть ёмкость аккумулятора снижается.
Если следовать правильному алгоритму заряда аккумулятора для начала каждый из его элементов нужно разрядить до 1 вольта. Т.е. блок из 12 аккумуляторов нужно разрядить до 12 вольт. В заряднике для шуруповёрта такой режим не реализован.
Вот зарядная характеристика одного Ni-Cd аккумуляторного элемента на 1,2V.
На графике показано, как во время заряда меняется температура элемента (temperature), напряжение на его выводах (voltage) и относительное давление (relative pressure).
Специализированные контроллеры заряда для Ni-Cd и Ni-MH аккумуляторов, как правило, работают по так называемому методу дельта -ΔV. На рисунке видно, что в конце зарядки элемента происходить уменьшение напряжения на небольшую величину – порядка 10mV (для Ni-Cd) и 4mV (для Ni-MH). По этому изменению напряжения контроллер и определяет, зарядился ли элемент.
Так же во время зарядки происходит контроль температуры элемента с помощью термодатчика. Тут же на графике видно, что температура зарядившегося элемента составляет около 45 0 С.
Вернёмся к схеме зарядного устройства от шуруповёрта. Теперь понятно, что термовыключатель JDD-45 отслеживает температуру аккумуляторного блока и разрывает цепь заряда, когда температура достигнет где-то 45 0 С. Иногда такое происходит раньше того, как сработает таймер на микросхеме HCF4060BE. Такое происходит, когда емкость аккумулятора снизилась из-за “эффекта памяти”. При этом полная зарядка такого аккумулятора происходит чуть быстрее, чем за 60 минут.
Как видим из схемотехники, алгоритм заряда не самый оптимальный и со временем приводит к потере электроёмкости аккумулятора. Поэтому для зарядки аккумулятора можно воспользоваться универсальным зарядным устройством, например, таким, как Turnigy Accucell 6.
Возможные неполадки зарядного устройства.
Со временем из-за износа и влажности кнопка SK1 “Пуск” начинает плохо срабатывать, а иногда и вообще отказывает. Понятно, что при неисправности кнопки SK1 мы не сможем подать питание на микросхему U1 и запустить таймер.
Также может иметь место выход из строя стабилитрона VD6 (1N4742A) и микросхемы U1 (HCF4060BE). В таком случае при нажатии кнопки включение зарядки не происходит, индикация отсутствует.
В моей практике был случай, когда стабилитрон пробило, мультиметром он “звонился” как кусок провода. После его замены зарядка стала исправно работать. Для замены подойдёт любой стабилитрон на напряжение стабилизации 12V и мощностью 1 Ватт. Проверить стабилитрон на “пробой” можно также, как и обычный диод. О проверке диодов я уже рассказывал.
После ремонта нужно проверить работу устройства. Нажатием кнопки запускаем зарядку АКБ. Приблизительно через час зарядное устройство должно отключиться (засветится индикатор “Сеть” (зелёный). Вынимаем АКБ и делаем “контрольный” замер напряжения на её клеммах. АКБ должна быть заряженной.
Если же элементы печатной платы исправны и не вызывают подозрения, а включения режима заряда не происходит, то следует проверить термовыключатель SA1 (JDD-45 2A) в аккумуляторном блоке.
Схема достаточно примитивна и не вызывает проблем при диагностике неисправности и ремонте даже у начинающих радиолюбителей.
morflot.su
Bosch al1814cv схема зарядного устройства ремонт
Очень много таких зарядных выходит из строя с одинаковыми дефектами, летит полевик первички STF3NK80Z N-channel 800V 2.5A, а за ним дружно транзюк раскачки 2N3904 и много чего из обвязки. Ниже на фото обвел красным что подверглось замене. Полевик был заменен более мощным STP4NK60Z N-channel 600 V 4 A в корпусе TO-220. Поскольку корпус TO-220FP в пластике, а TO-220 с металлической подложкой — пришлось 1 ногу радиатора отпаять от платы и загнуть.
конец
В настоящий момент на рынке представлено огромное количество моделей аккумуляторных шуруповёртов Bosch и, соответственно, зарядных устройств к ним.
Зарядники отличаются следующими параметрами:
- Напряжение питания (возможны варианты с фиксированным напряжением 3.6, 7.2, 10.8, 12, 14.4, 18, 24, 36 вольт или варианты с настраиваемыми/выбираемыми выходными параметрами напряжения).
- Тип подключаемых аккумуляторов (это могут быть литий-ионные, никель-металлогидридные или никель-кадмиевые элементы).
- Время заряда и мощность (так, зарядное устройство может оснащаться технологией быстрой накачки энергии).
- Подключаемый разъём (за несколько поколений шуруповёртов накопилось большое число разных форматов подключений).
- Тип использования устройства (как правило зависит от типа шуруповёрта – бытовой он или профессиональный, первый тип устройств рассчитан на редкое использование и большое время заряда, второй – на ускоренный заряд и регулярное использование).
Классическое зарядное устройство – это вторичный источник напряжения (трансформатор) и дополнительные схемы, например: фильтрации, выпрямления, защиты, накачки и т.п.
То есть, для зарядки любой батареи будет достаточно трансформатора и диодного моста, как на схеме ниже.
Рис. 1. Схема зарядного устройства
Принцип работы такой:
1. трансформатор понижает сетевое напряжение до требуемого уровня;
2. диодный пост преобразует синусоидальные колебания тока на выходе трансформатора в прямоугольные импульсы;
3. простейший фильтр из конденсатора сглаживает переходы между импульсами с диодного моста.
На самом деле всё очень просто. Но в оригинальных схемах производителей зарядных устройств вводятся дополнительные узлы и блоки. В некоторых случаях, для уменьшения габаритов зарядки могут внедряться импульсные блоки питания.
Не самый последний показатель работы схемы блока питания – его мощность. Она зависит в первую очередь от параметров преобразователя (трансформатора или импульсного блока питания). Чем выше мощность, тем быстрее и эффективнее будет заряжаться аккумуляторная батарея. Мощность аккумуляторов определяется их напряжением, умноженным на ёмкость (измеряется в ампер-часах).
Схемы оригинальных ЗУ Bosh
Ничего нового производитель здесь не изобретёт. Технологии зарядки химических источников тока давно известны и обкатаны. Всё что нужно – уточнить номинал деталей и используемые технические решения.
Ниже рассмотрим несколько вариантов схем для зарядных устройств, которые уже детально изучены опытными пользователями.
Внешний вид зарядки.
Рис. 2. Внешний вид зарядки
Рис. 3. Принципиальная схема зарядного устройства
При поиске неисправностей в первую очередь стоит проверить мосфет, далее резисторы и конденсаторы. Проверять элементы нужно с выпаиванием контактов, так измерения номинала будут соответствовать действительности.
Замену неисправных элементов стоит производить на точно такие же модели, но рабочие, в крайнем случае — на прямые аналоги.
Внешний вид устройства.
Рис. 4. Внешний вид устройства
Схема принципиальная электрическая.
Рис. 5. Принципиальная электрическая схема
Эта зарядка используется только для литий-ионных АКБ. Работает она на базе импульсного БП.
Bosch AL 2425 DV
Внешний вид прибора.
Рис. 6. Внешний вид прибора
Принципиальная схема находится здесь.
Несколько слов о самостоятельном ремонте
На самом деле, зарядки Bosch ничем не отличаются от устройств конкурентов и достаточно просто устроены. Для ремонта нужно:
- понимать немного в схемотехнике,
- уметь определять номинал и тип элемента по обозначениям на корпусе (часто они интернациональны),
- уметь проверять работоспособность отдельного элемента схемы (он выпаивается полностью или частично, например, если у элемента 2 контакта, то достаточно отпаять только одну ножку).
- иметь необходимый набор инструментов и измерительных приборов.
- Часто на плате имеются контрольные точки, типовые значения для сравнения указаны рядом с контактом (чтобы не выпаивать все детали без разбора можно отсечь лишние цепи с помощью контрольных точек).
- После разборки сразу произведите детальный осмотр схемы и элементов. Часто пострадавшие детали можно определить визуально (они потемнели, имеют трещины на корпусе, вздулись и т.п.).
- Наиболее уязвимыми элементами можно назвать транзисторы и микросхемы. Полупроводники чаще всего выходят из строя в сравнении с другими элементами схем (статистика не в их пользу).
- Для дешёвых зарядок принципиальных схем не найти, потому что их нет даже в сервисных мастерских. Производителю проще полностью заменить устройство, чем ремонтировать его силами специалистов. Но схему можно составить самостоятельно. Делать это нужно очень скрупулёзно, так как при большом количестве связей ошибок не избежать.
- Даже при наличии принципиальной схемы ремонт зарядок не сильно упрощается. Нужно знать расположение контрольных точек и стандартные для них значения измерений.
На самом деле для восстановления зарядных устройств принципиальные схемы не нужны. Достаточно последовательно проверить все ключевые элементы на номинал, ведь в схеме их часто не больше 10-20 шт.
Мнения читателей
Нет комментариев. Ваш комментарий будет первый.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:
не замерял, не вижу смысла если переделанная штатовская зарядка BC330 отрабатывала четко те же 1:20:00 на 2,0 Ah аккумуляторах, как и заведомо исправная.
Добрый день.
Проблема как у всех.
Заменил:
-полевик на f5nk80z
-биполярный всунул кт3102А . (блин у меня в нем сомнения, но поставил что было под руками)
-резисторы 3R9; 30R
-диод 4148 на кд522А
После”ремонта” на вых зарядки имею около 4В,светодиод постоянно горит.
Присутсвует писк транса.
При вставлении акб светодиод 3 раза моргнет и дальше горит без моргания.
Возникли вопросы
-какое напряжение без нагрузки должно быть во вторичке после диода на конденсаторе ?
-должно ли быть напряжение на выходе зарядки без подключенного акб?
Еще один вопрос. какое напряжение нужно подавать на вторичку если убрать из схемы высоковольтную часть (заменить ее другой )
В теме переделки зарядок 110 В в 220 В найдите мой недавний пост по переделке BC 330 в AL 1115 CV. В нём есть данные по трансформатору, что позволяет прикинуть коэффициент трансформации. Либо можете попытаться дождаться, когда у меня дойдут руки (при следующей нескорой их переделке) ткнуть осциллографом во вторичную обмотку и снять осциллограммы напряжений
Здравствуйте, сгорела зарядка Bosch al1115CV. Вопрос можно ли заменить F3NK80Z на STP5NK80ZFP TO220-3 и 2N3904 на 2N4401BU? резисторы R5 — 3.3 Ом, R6 — 30 Ом?
мосфет — однозначно да, сам такие ставил, а также 4 А варианты. по биполярнику — даташиты сравните, но вроде проблем быть не должно. резисторы — ищите пост по переделке, там данные на все сопротивления
SergILD написал :
мосфет — однозначно да, сам такие ставил, а также 4 А варианты. по биполярнику — даташиты сравните, но вроде проблем быть не должно. резисторы — ищите пост по переделке, там данные на все сопротивления
Спасибо за ответ схему нашел.
Посмотрел даташиты на биполярники
2N3904 2N4401BU
SergILD написал:
мосфет — однозначно да, сам такие ставил, а также 4 А варианты. по биполярнику — даташиты сравните, но вроде проблем быть не должно. резисторы — ищите пост по переделке, там данные на все сопротивления
Помогите народ, поставил STP5NK80ZFP и 2N4401BU резисторы R5, R6 запаял.
Включаю горит зел светодиод, писк транформатора, ставлю аккум моргнет и горит. На выходе аккб 1,8 вольта.
Итак, принесли AL 1115 CV, сгорел, выявлены в первичке: взорвавшийся мосфет, пара подожженых резисторов, пробитый транзистор. Заменил транзистор на 2N2222, резисторы R14=1k 1/4W — по номиналу; R6=30R 1/4W — на 33 Ом (что нашёл), мосфет на P4NK60ZFP.
При подаче питания не было реакции, предположил, что управление от АКБ, принесли АКБ (заряд 12V), с нею неизменно.
Напряжение до мосфета есть, понимаю, что транзистор не открывается, оптопара реагирует на прозвон, (при подаче на светочасть напряжения с одного мультиметра в режиме прозвона, на фоточасти изменяется сопротивление — падает с 79 до 62Ом), на установку АКБ оптопара никак не реагирует. Детальки на низкой стороне звонил — вроде целые.
Куда ещё копнуть? где что посмотреть? Может не доглядел где?
Attractor написал:
Итак, принесли AL 1115 CV, сгорел, выявлены в первичке: взорвавшийся мосфет, пара подожженых резисторов, пробитый транзистор. Заменил транзистор на 2N2222, резисторы R14=1k 1/4W — по номиналу; R6=30R 1/4W — на 33 Ом (что нашёл), мосфет на P4NK60ZFP.
При подаче питания не было реакции, предположил, что управление от АКБ, принесли АКБ (заряд 12V), с нею неизменно.
Напряжение до мосфета есть, понимаю, что транзистор не открывается, оптопара реагирует на прозвон, (при подаче на светочасть напряжения с одного мультиметра в режиме прозвона, на фоточасти изменяется сопротивление — падает с 79 до 62Ом), на установку АКБ оптопара никак не реагирует. Детальки на низкой стороне звонил — вроде целые.
Куда ещё копнуть? где что посмотреть? Может не доглядел где?
чинил недавно AL 1820 CV. с похожими симптомами, полупроводники в первичке целы, но полевик не работает
были мертвый и не до конца убитый оптроны. проверьте их. один был пробит и не открывался, у другого падение напряжение в открытом состоянии было 600 мВ.
Итак, после одного из тестовых включений был выявлен обрыв по R6, после замены при включении лёгкий щелчок и снова он выгорает. Также в обрыве R5; пробой мосфета по И-З, по И-С обрыв; у транзистора обрыв по Э-Б, Б-К как диод.
Решилось заменой резисторов по номиналу, мосфет заменил на STP7NK80ZFP (пусть будет запас мощности), транзистор заменил на c945 (давным-давно со старых БП надёргал; да, придётся (3)Б выгнуть между (1)Э и (2)К — т.к. несовместим по выводам; да, у него характеристики пониже, чем у родного, но тем не менее. )
Тест — ОК! При включении зеленый загорелся, после замигал, АКБ дозарядился.
Вот решил поиздеваться на зарядником после ремонта и поставил кулер (греется заметно меньше), благо есть запасной al 1130 cv
небольшое дополнение
переделывал на днях BC330 по собственной методике доведения до “состояния 1 в 1” с европейской версией AL1115CV.
после прогона заряда в качестве тестирования — получил выгорание почти всех элементов в первичке, аналогично первому посту, с идентичной картиной по сгоревшим резисторам. выгорели также диоды моста, ну и прочие радости, в итоге выжило два диода в первичке.
восстановил первичку, в итоге — повторение фейерверка. правда полевик был какой-то неправильный ST P4NK80Z FP в неизолированном! корпусе, при покупке не обратил на это внимание.
вот и думаю теперь, проблема связана с некачественной намоткой трансформатора или с фейковыми мосфетами
вроде делал всё грамотно и по феншую.
отложил на период праздников
Люди, подскажите, пожалуйста, если кто понимает — что может быть с AL1115cv.
Дефект выражается в следующем: при включении з/у в розетку (без разницы: вставлена акб или нет) слышен очень тихий звук “стрёкот”, что-то на подобие кузнечика, зарядка не идёт, лампочка постоянно горит. Если несколько раз подряд вилку из разетки вынуть (каждый раз по-разному: 3-5-7 раз), звук пропадает и процесс заряда акб начинается и заряжает батарею полностью, как надо.
Ещё один момент: ВСЕГДА (даже если, жужжит при вклюённом состоянии) — СРАЗУ как только вынимаешь вилку из разетки, в течении нескольких секунд, пока ещё горит лампочка, звук пропадает; а если при этом была вставлена акб, то лампочка начинает мигать в обычном режиме, как при процессе заряда, несколько раз, до тех пор пока не погаснет.
И ещё: хотел по-лучше послушать: что именно издаёт звук на плате (думал выпаять элемент, издающий звук и купить аналог в радиолавке). Так вот, когда разобрал корпус и включил — всё пропало и работало идеально. Включал — Выключал несколько раз, и с АКБ, и без АКБ — всё отлично. Подумал пыль (б/у неск. лет). Продул аккуратно, собрал обратно. Всё как и до разборки: стрекочет, скотина ! ! !
В общем как-то так.
З.Ы. В электрике, не очень соображаю, но т.к. “золотого запасу” на новый зарядник пока нет, хотелось-бы узнать мнение знающих людей: можно-ли “малой кровью” как-то восстановить стабильную работоспособность данного агрегата.
NedPhA написал:
Люди, подскажите, пожалуйста, если кто понимает — что может быть с AL1115cv.
Дефект выражается в следующем: при включении з/у в розетку (без разницы: вставлена акб или нет) слышен очень тихий звук “стрёкот”, что-то на подобие кузнечика, зарядка не идёт, лампочка постоянно горит. Если несколько раз подряд вилку из разетки вынуть (каждый раз по-разному: 3-5-7 раз), звук пропадает и процесс заряда акб начинается и заряжает батарею полностью, как надо.
Ещё один момент: ВСЕГДА (даже если, жужжит при вклюённом состоянии) — СРАЗУ как только вынимаешь вилку из разетки, в течении нескольких секунд, пока ещё горит лампочка, звук пропадает; а если при этом была вставлена акб, то лампочка начинает мигать в обычном режиме, как при процессе заряда, несколько раз, до тех пор пока не погаснет.
И ещё: хотел по-лучше послушать: что именно издаёт звук на плате (думал выпаять элемент, издающий звук и купить аналог в радиолавке). Так вот, когда разобрал корпус и включил — всё пропало и работало идеально. Включал — Выключал несколько раз, и с АКБ, и без АКБ — всё отлично. Подумал пыль (б/у неск. лет). Продул аккуратно, собрал обратно. Всё как и до разборки: стрекочет, скотина ! ! !
В общем как-то так.
З.Ы. В электрике, не очень соображаю, но т.к. “золотого запасу” на новый зарядник пока нет, хотелось-бы узнать мнение знающих людей: можно-ли “малой кровью” как-то восстановить стабильную работоспособность данного агрегата.
“стрекотать” может основной электролит или трансформатор (маловероятней, он сидит на лаке обычно), не уверен что с этим звуком связана Ваша проблема.
у меня каждая вторая зарядка после переделки издаёт такой свист, так как конденсатор я не фиксирую специальным герметиком.
фотографию со стороны элементов сделайте, может конденсатор основной у Вас вздулся, объяснить чем-то другим нестабильную работу в этом изделии сложно.
crast.ru
Зарядное устройство для шуруповерта bosch al1814cv схема — Строительный портал №1
ремонт зарядного устройства для шуруповертаСодержание статьи:
Ремонт зарядного для шуруповерта
По вопросам ремонта аккумулятора, а также приобретения элементов (банок) обращайтесь к нашим специалистам:
Тел. 063 977-93-42 095 258-61-30 068 197-06-78
Ремонт зарядного для шуруповерта своими руками.
Почему зарядное устройство не заряжает аккумулятор? Заряд аккумулятора быстро заканчивается? Аккумуляторы для шуруповерта не заряжаются полностью? На эти вопросы постараемся ответить в статье ниже.
Довольно частой проблемой при эксплуатации шуруповерта является быстрое время разрядки батарей. Причиной может быть либо изношенность аккумуляторной батареи, либо неправильная работа зарядного устройства.
Именно вариантам устранения неисправностей со стороны зарядного устройства мы посвящаем нашу статью. В качестве примера мы возьмем зарядное устройство BOSCH AL 60DV 1419 7.2-14.4 V – данное устройство предназначено для работы с никель-кадмиевыми аккумуляторами. Выглядит оно следующим образом (см. рис. ниже)
Данное зарядное устройство является оригинальным, но производится оно не в Швейцарии или Германии, а в Китае. В прочем ничего плохого в этом нету, качество соответствует стандарту.
Разьем BOSCH – трехконтактный: два силовых разьема, и один управляющий.
Самая часто возникающая ситуация – батарея установлена в зарадное – но зарядка заканчивается буквально за 5 мин. при этом батарея разряжена, а зарядка останавливается.
Для того что б разобраться в проблеме надо разобрать зарядное. Выкручиваем 4 шурупа снизу и раскрываем корпус. Внутри в одном отсеке находится трансформатор переменного тока, а во второй – выпрямитель вместе с управляющим чипом и силовыми разъёмами. (см. рис. ниже)
Далее включаем в сеть устройство и измеряем на трансформаторе напряжение – если все в порядке то переходим к следующему этапу.
Не стоит трогать выпрямитель и чип управления, они скорее всего в полном порядке. Перейдем к контактной группе – два силовых контакта и один управляющий. Для того что б понять в чем может крыться неисправность нам нужно измерить напряжение на силовых клеммах во время заряда. Для этого мы припаиваем к каждому из контактов по тонкому проводку – для того что б была возможность измерять напряжение во время работы устройства.
Лучше всего выбрать несколько цветов и соответственно + и – их припаять. После пайки собираем зарядное устройство и тестируем с помощью мультиметра напряжение на клеммах во время заряда (см. рис ниже)
Напряжение на приборе не стабильно и колеблется от 2-3 вольт до 13-15 вольт. При этом если пошевелить аккумулятор то происходит сбой – пропадение контакта. Именно здесь и есть причина – за время эксплуатации прибора – клеммы разгибаются и плохой контакт влечет за собой зарядку аккумуляторов шуруповерта – через раз.
Итак понятно что не стабильный контакт сбивает работу зарядной логики – особенно третьего контакта – управляющего – именно он отвечет за то какое напряжение подается на силовые клеммы. Его нельзя просто так замкнуть – не получится – потому что внутри каждой батареи есть терморезистор (не просто термореле) – и сопротивление го меняется в зависимости от температуры внутри батареи. Таким образом он защищает аккумулятор от перезаряда и перегрева одновременно. Да хитры немцы, но ведь и из этой ситуации есть выход – первое мы разбираем снова зарядное подгибаем клеммы, втрое с помощью мультиметра контролируем процесс зарядки – напряжение на силовых клеммах постепенно будет расти, а потом снижаться при этом индикаторная лампочка на зарядном будет дополнительным индикатором заряда (см. рис. ниже).
Скорость роста напряжения на клеммах говорит о еще оном очень важном факторе – износе батареи – если напряжение растет довольно быстро и достигает 16- 17 В то батарея в хорошем состоянии. Если батарея принимает заряд медленно – высокая вероятность того что в сборке есть негодные аккумуляторы и их пора заменить.
Итак после восстановления нормального контакта между батареей и зарядным мы наблюдаем нормальный процесс зарядки. Если гнездо зарядного устройства, сильно раздолбано то необходимо зафиксировать аккумулятор в нужном положении с помощью такого простого предмета как изолента. Провода припаянные для индикации мы рекомендуем оставить – с их помощью легко определить неисправность устройства или же аккумулятора.
Вывод: не всегда прерывание процесса заряда имеет причины со стороны аккумулятороной батареи, не стоит бежать и перепаковывать аккумулятор. Также не стоит спешить выбрасывать зарядное и искать новое – часто вопрос заключается в простом наличии контакта между клеммами аккумулятора шуруповерта и зарядного устройства к нему.
По вопросам ремонта аккумулятора, зарядного, а также приобретения элементов (банок) обращайтесь к нашим специалистам:
Адрес: г. Киев Харьковский рынок 47 место (Новые ряды)
Тел. 063 977-93-42 095 258-61-30 068 197-06-78
Схема проезда:
Ремонт зарядного устройства аккумуляторной дрели (шуруповерта)
Ремонт зарядного устройства шуруповерта своими руками
Зарядное устройство у аккумуляторных дрелей и шуруповертов выходит из строя довольно часто. Ремонтировать их в мастерских нет смысла. Ремонт будет дороже нового зарядного устройства. А в некоторых случаях и сопоставим с ценой нового шуруповерта. Поэтому опишем в статье элементарную поломку, которую способен устранить любой пользователь при наличии минимума инструмента.
Итак, имеем зарядное устройство. Оно не подает никаких признаков жизни:
Переворачиваем его. Откручиваем все винты:
Снимаем крышку. Видим еще два винта, которыми прикручена плата. Откручиваем и их:
Первым делом проверяем трансформатор. Тестером замеряем напряжение на его выходе:
Напряжения нет, как видно на фото. Прозванием сетевой кабель, чтобы исключить возможность его перелома. Проверяем тестером вторичную и первичную обмотки. Видим, что первичная обмотка в обрыве. Новый трансформатор стоит столько же, сколько и зарядное устройство. Отечественный аналог вдвое дешевле. Но не спешите покупать новую деталь. В импортных трансформаторах в первичной обмотке находится предохранитель. Удалите оболочку. Вот тут стоял предохранитель на 2А:
Отпаиваем его и проверяем. Повезло, он в обрыве. Берем любой подходящий по размеру и току предохранитель:
Припаиваем его на штатное место:
Изолируем его любыми подручными средствами. Удобнее всего использовать термоклей:
Пока не собрано зарядное устройство, проверяем его:
Собираем в обратной последовательности. Контрольная проверка:
Вместо того, чтобы паять предохранитель каждый раз, можно купить разъем под отечественный предохранитель, просверлить в корпусе отверстие и вывести его наружу. Тогда, в будущем, замена будет секундным делом, но ремонт зарядки шуруповёрта займет больше времени. Если устройство вам срочно не понадобится, как в нашем случае, то не торопитесь. Сделайте все один раз и навсегда. Ведь, если предохранитель запаян и снова сгорит, то придется повторить процедуру ремонта с самого начала.
Ручной инструмент
Ремонт зарядного устройства шуруповерта:
Тип: ЗУ-180КВ
Входное напряжение: 220В, 50Гц
Потребляемая мощность:70Вт
Выходное напряжение: 18В пост.
При чрезмерном перегреве выпрямительных диодов образовалась желтизна, это значит, что диод пробит , пропускает электрический ток в обоих направлениях, то есть стал простым куском провода. Стоит пробить хоть один диод из выпрямительного устройства (диодного моста), он закоротит на себя понижающий трансформатор, что вызовет перегрев остальных диодов и обмоток трансформатора. Последствия перегрева – пробой остальных диодов и междувитковое замыкание обмоток понижающего трансформатора.
Выпаял диоды, проверил аркашкой , оказались два диода пробиты. Перепаяв аналогичные диоды, собрал зарядное устройство и включил в сеть, а оно не подает признаков жизни. Разобрал зарядное снова, прозвонил первичную и вторичную обмотку трансформатора, оказалось, что на первичной обмотке обрыв.
Вспомнил, что есть тепловая защита, она ставится практически во все электробытовые приборы (обогреватели, вентиляторы, зарядное устройство, фены, и так далее.) Осталось найти тепловой датчик, куда его установили.
Осторожно снимаю верхнюю часть изоляции трансформатора, тут и есть этот датчик. При нагревании свыше его номиналов у него нарушается проводимость.
до 130 С
Заменить датчик было нечем, я его просто исключил (зашунтировал) из обмотки трансформатора, аккуратно спаял вместе две ножки датчика.
Для надёжности, прозвонил первичную обмотку.
Собрал всё аккуратно, включил зарядное в сеть. Появилась зелёная индикация, зарядное устройство исправно.
Вот такие бывают мелочи, по которым зарядное устройство может не работать. Надеюсь, что кому-то статья поможет починить зарядное устройство.
________________________________________________________________________________
Ремонт дрели:
Не исправна дрель.
В энергетике всего две неисправности, это нет контакта, или есть там, где его не надо
По каким-то причинам дрель перестала работать, в первую очередь обращаем внимание, на наличие напряжение на удлинителе или в розетке. Проверить наличие напряжения можно однополюсным индикатором (отвертка), но он может показать лишь наличие фазы и не более, а если обрыв на нулевом проводе. Можно обойтись сподручным электроинструментом, включить в этот же удлинитель или розетку заведомо исправный (ночник, утюг и т.п.) тем самым определить исправность удлинителя и наличие напряжения на нем.
Для того чтобы определить обрыв в схеме можно воспользоваться омметром или тестером со звуковым оповещением целостности цепи. Подключаемся к контактам на вилке, прибор не реагирует, так как кнопка на дрели не нажата в рабочие положение, нажимаем её, прибор должен показать или оповестить звуковым сигналам о целостности схемы.
Возможные неисправности дрели:
1) Не исправен питающий шнур.
2) Не исправна кнопка включения дрели.
3) Не исправен переключатель реверса или он стоит в нейтральном положении.
4) Износились графитные щитки.
5) Обрыв статорной обмотки.
Осматриваем вилку, питающий шнур дрели, например, у питающего шнура два больных места: постоянно переламывается провод у основания вилки и у рукоятки дрели, с виду провод, как бы целый, но на самом деле в местах, где провод часто перегибается, питающие жилы переламываются, а провод держится за счет изоляции.
Если неисправна кнопка или переключатель реверса проще купить новый и заменить. Можно конечно разобрать, почистить контакты, но собрать будет хлопотно, много маленьких запчастей и пружинок, которые все норовят выпрыгнуть.
Сильное искрение на коллекторе говорит о том, что пора заменить изношенные графитные щитки, если дело не в изношенных щетках, то пора покупать новую дрель. А если искрение на коллекторе сопровождается запахом женой черемухи, то это 100% горят обмотки дрели из-за междувиткового замыкания.
Допустим, определились с поломкой дрели, сгорел якорь и статорная обмотка. Перемотать у дрели якорь хлопотное дело, лучше не стоит, конечно, есть умельцы, перематывают. Проще купит на металорынке новый якорь, а обмотку возбуждения можно перемотать самому. Взять подходящий обмоточный провод можно: например, с катушки магнитного пускателя или разобрать трансформатор.
Подчитать необходимое количество витков можно, воспользовавшись формулами с подобной темой: Ремонт бытового вентилятора.
А лучше подчитать количество витков при размотке катушки, так как количество витков рассчитано для этой марки трансформаторного железа сердечника.
При перемотке обмоток необходимо выполнить условия: намотка обмоток производится в одном направление, например, у катушки отмечаем начало обмотки, мотаем провод по часовой стрелке, закончив намотку, помечаем конец вывода. Вторая обмотка навивается в том же направление, с отметкой выводов начало и конец.
На рис. изображено устройство двигателя дрели:
– сердечник с двумя полюсами N и S, состоящий из шихтованного трансформаторного железа.
– якорь, вращающаяся часть двигателя.
– пара щеткодержателей с графитными щетками. (Щ-1, Щ-2)
– две обмотки с четырьмя выводами Н-К, Н-К (начало конец)
На рисунке изображена схема подключения коллекторного двигателя с правым вращением якоря. Красными стрелками показано направление тока в обмотках возбуждения магнитных полюсов. Буква М это крутящий момент, направление вращение якоря, показано стрелкой.
Для реверса (смены направления вращение якоря) достаточно поменять щеточные вывода местами.
Схема коллекторного двигателя с переключателем для реверса (направление вращение якоря).
В левом положение рычага на переключателе, верхний и нижний контакт находятся в замкнутом состоянии, а с лева и справа контакт разомкнут, вращение якоря левое.
В правом положение рычага на переключателе, пара контактов вверху и внизу размыкаются, а другая пара контактов с лева и справа замыкаются, вращение якоря правое.
Как оказалось, что не сложно перемотать обмотку возбуждения. Теперь зная принцип работы коллекторного двигателя, не составит труда применить реверс к подобным эл. двигателям.
________________________________________________________________________________
Ремонт аккумулятора шуруповерта:
У многих есть в хозяйстве аккумуляторный шуруповерт, не важно, какой фирмы, рано или поздно аккумуляторы выйдут из строя. Аккумуляторы будут быстро разряжаться, или вовсе не будут брать заряд. При аккуратной эксплуатации, аккумуляторов, они прослужат около 3 – 5 лет, а сам шуруповерт работал бы столько же, как минимум.
Что можно сделать, ведь сам шуруповерт рабочий и выкидывать жалко. Поделюсь практическим примером, как я переделал свой шуруповерт с кадмиевых на литиевый аккумулятор.
Не стоит пытаться собрать аккумуляторную батарею из стандартных пальчиковых аккумуляторов, так как у них маленькая тока отдача. Шуруповерт будет работать в холостую, а крутить шурупы не хватит мощности аккумулятора. Для этого нужен аккумулятор с большой тока отдачей.
Столкнувшись с подобной ситуацией, необходимо было собрать батарею для шуруповерта. Поискал в Интернете аккумуляторы с высокой тока отдачей, как всегда море информации, знай, разгребай нужное. Решил написать статью, как переделать шуруповерт на литиевый аккумулятор.
Подумал, где такие аккумуляторы могут применяться, навело на мысль, что в авиамоделях должны применяться такие аккумуляторы, плюс они должны быть еще и легкими. Нашел сайт радиоуправляемые модели, там большой выбор литиевых (LiPo) аккумуляторов.
На сайте нашел литиевый аккумулятор, по характеристикам то, что надо. Мой шуруповерт фирмы Бикор с аккумуляторами 18 В. Прежде чем приступить к заказу аккумулятора, решил поискать в Интернете переделки шуруповерта на литиевый аккумулятор. Оказывается, что умельцы практикуют подобные аккумуляторы. Взвесил все за и против, почитал особенности и эксплуатацию Lipo аккумулятора, решил переделать шуруповерт на литиевый аккумулятор, для начала хотя бы один.
Сделал заказ на сайте, и пока посылка шла около месяца, я изучал все тонкости литиевых аккумуляторов. Оказывается, что если аккумулятор полностью разрядить он выходит из строя, чтобы этого не произошло, заказал на сайте датчик разряда аккумулятора
Для зарядки пришлось заказать специальное зарядное устройство, которое следит за равномерностью заряда каждой банки аккумулятора и не дает перезаряжаться аккумулятору. Заряжать литиевый аккумулятор простым зарядным нельзя, вероятность перезаряда и воспламенения его.
Для удобства и безопасного монтажа аккумулятора, на сайте заказал силовые разъемы и балансировочные. В довесок к посылке заказал термоусадочную трубку, которая пригодилась при пайке силового разъема, которую усадил при помощи зажигалки с турбо пламенем.
Долгожданная посылка пришла.
За вечер не торопясь, отремонтировал аккумулятор шуруповерта. Старые аккумуляторы демонтировал. Вставил новый литиевый аккумулятор (Lipo), он подошел, как родной.
Индикатор компактный, для установки придумывать нечего не пришлось, приклеил его на двухсторонний скотч, для подключения длины провода достаточно.
Подключить индикатор контроля напрямую, чтобы он был постоянно включенный не интересно. На шуруповерте есть светодиод, который включается в момент легкого нажатия курка кнопки, вот и от него и запитаем наш индикатор.
Светодиод подключен через резистор, ограничивающий его ток. Наш контроллер напряжения нужно подключить до резистора, чтобы он не повлиял на точность работы.
На некоторых моделях шуруповертов ограничивающий резистор стоит в кнопке и не дает возможности подключиться до него. Тогда придется делать подключение через транзистор, который будет включать и отключать индикатор.
Схема простая, имеет два вида, зависит, от чего управляет кнопка, плюсом или минусом.
Источники: http://www.napruga.com/index.php?state=58, http://muzhik-v-dome.ru/tehnika-i-tehnologii/remont-zaryadnogo-ustroystva-akkumulyatornoy-dreli-shurupoverta/, http://www.elektritestvo.ru/remont-svoimi-rukami/-08-21/ruchnoy-instrument
Source: sferatd.rustroyka.radiomoon.ru
Зарядное устройство для шуруповерта 1814 бош схема
kotnatan
В настоящий момент на рынке представлено огромное количество моделей аккумуляторных шуруповёртов Bosch и, соответственно, зарядных устройств к ним.
Зарядники отличаются следующими параметрами:
- Напряжение питания (возможны варианты с фиксированным напряжением 3.6, 7.2, 10.8, 12, 14.4, 18, 24, 36 вольт или варианты с настраиваемыми/выбираемыми выходными параметрами напряжения).
- Тип подключаемых аккумуляторов (это могут быть литий-ионные, никель-металлогидридные или никель-кадмиевые элементы).
- Время заряда и мощность (так, зарядное устройство может оснащаться технологией быстрой накачки энергии).
- Подключаемый разъём (за несколько поколений шуруповёртов накопилось большое число разных форматов подключений).
- Тип использования устройства (как правило зависит от типа шуруповёрта – бытовой он или профессиональный, первый тип устройств рассчитан на редкое использование и большое время заряда, второй – на ускоренный заряд и регулярное использование).
Классическое зарядное устройство – это вторичный источник напряжения (трансформатор) и дополнительные схемы, например: фильтрации, выпрямления, защиты, накачки и т.п.
То есть, для зарядки любой батареи будет достаточно трансформатора и диодного моста, как на схеме ниже.
Рис. 1. Схема зарядного устройства
Принцип работы такой:
1. трансформатор понижает сетевое напряжение до требуемого уровня;
2. диодный пост преобразует синусоидальные колебания тока на выходе трансформатора в прямоугольные импульсы;
3. простейший фильтр из конденсатора сглаживает переходы между импульсами с диодного моста.
На самом деле всё очень просто. Но в оригинальных схемах производителей зарядных устройств вводятся дополнительные узлы и блоки. В некоторых случаях, для уменьшения габаритов зарядки могут внедряться импульсные блоки питания.
Не самый последний показатель работы схемы блока питания – его мощность. Она зависит в первую очередь от параметров преобразователя (трансформатора или импульсного блока питания). Чем выше мощность, тем быстрее и эффективнее будет заряжаться аккумуляторная батарея. Мощность аккумуляторов определяется их напряжением, умноженным на ёмкость (измеряется в ампер-часах).
Схемы оригинальных ЗУ Bosh
Ничего нового производитель здесь не изобретёт. Технологии зарядки химических источников тока давно известны и обкатаны. Всё что нужно – уточнить номинал деталей и используемые технические решения.
Ниже рассмотрим несколько вариантов схем для зарядных устройств, которые уже детально изучены опытными пользователями.
Внешний вид зарядки.
Рис. 2. Внешний вид зарядки
Рис. 3. Принципиальная схема зарядного устройства
При поиске неисправностей в первую очередь стоит проверить мосфет, далее резисторы и конденсаторы. Проверять элементы нужно с выпаиванием контактов, так измерения номинала будут соответствовать действительности.
Замену неисправных элементов стоит производить на точно такие же модели, но рабочие, в крайнем случае — на прямые аналоги.
Внешний вид устройства.
Рис. 4. Внешний вид устройства
Схема принципиальная электрическая.
Рис. 5. Принципиальная электрическая схема
Эта зарядка используется только для литий-ионных АКБ. Работает она на базе импульсного БП.
Bosch AL 2425 DV
Внешний вид прибора.
Рис. 6. Внешний вид прибора
Принципиальная схема находится здесь.
Несколько слов о самостоятельном ремонте
На самом деле, зарядки Bosch ничем не отличаются от устройств конкурентов и достаточно просто устроены. Для ремонта нужно:
- понимать немного в схемотехнике,
- уметь определять номинал и тип элемента по обозначениям на корпусе (часто они интернациональны),
- уметь проверять работоспособность отдельного элемента схемы (он выпаивается полностью или частично, например, если у элемента 2 контакта, то достаточно отпаять только одну ножку).
- иметь необходимый набор инструментов и измерительных приборов.
- Часто на плате имеются контрольные точки, типовые значения для сравнения указаны рядом с контактом (чтобы не выпаивать все детали без разбора можно отсечь лишние цепи с помощью контрольных точек).
- После разборки сразу произведите детальный осмотр схемы и элементов. Часто пострадавшие детали можно определить визуально (они потемнели, имеют трещины на корпусе, вздулись и т.п.).
- Наиболее уязвимыми элементами можно назвать транзисторы и микросхемы. Полупроводники чаще всего выходят из строя в сравнении с другими элементами схем (статистика не в их пользу).
- Для дешёвых зарядок принципиальных схем не найти, потому что их нет даже в сервисных мастерских. Производителю проще полностью заменить устройство, чем ремонтировать его силами специалистов. Но схему можно составить самостоятельно. Делать это нужно очень скрупулёзно, так как при большом количестве связей ошибок не избежать.
- Даже при наличии принципиальной схемы ремонт зарядок не сильно упрощается. Нужно знать расположение контрольных точек и стандартные для них значения измерений.
На самом деле для восстановления зарядных устройств принципиальные схемы не нужны. Достаточно последовательно проверить все ключевые элементы на номинал, ведь в схеме их часто не больше 10-20 шт.
Мнения читателей
Нет комментариев. Ваш комментарий будет первый.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:
vi-pole.ru
Зарядное устройство для шуруповерта bosch al1814cv схема
kotnatan
В настоящий момент на рынке представлено огромное количество моделей аккумуляторных шуруповёртов Bosch и, соответственно, зарядных устройств к ним.
Зарядники отличаются следующими параметрами:
- Напряжение питания (возможны варианты с фиксированным напряжением 3.6, 7.2, 10.8, 12, 14.4, 18, 24, 36 вольт или варианты с настраиваемыми/выбираемыми выходными параметрами напряжения).
- Тип подключаемых аккумуляторов (это могут быть литий-ионные, никель-металлогидридные или никель-кадмиевые элементы).
- Время заряда и мощность (так, зарядное устройство может оснащаться технологией быстрой накачки энергии).
- Подключаемый разъём (за несколько поколений шуруповёртов накопилось большое число разных форматов подключений).
- Тип использования устройства (как правило зависит от типа шуруповёрта – бытовой он или профессиональный, первый тип устройств рассчитан на редкое использование и большое время заряда, второй – на ускоренный заряд и регулярное использование).
Классическое зарядное устройство – это вторичный источник напряжения (трансформатор) и дополнительные схемы, например: фильтрации, выпрямления, защиты, накачки и т.п.
То есть, для зарядки любой батареи будет достаточно трансформатора и диодного моста, как на схеме ниже.
Рис. 1. Схема зарядного устройства
Принцип работы такой:
1. трансформатор понижает сетевое напряжение до требуемого уровня;
2. диодный пост преобразует синусоидальные колебания тока на выходе трансформатора в прямоугольные импульсы;
3. простейший фильтр из конденсатора сглаживает переходы между импульсами с диодного моста.
На самом деле всё очень просто. Но в оригинальных схемах производителей зарядных устройств вводятся дополнительные узлы и блоки. В некоторых случаях, для уменьшения габаритов зарядки могут внедряться импульсные блоки питания.
Не самый последний показатель работы схемы блока питания – его мощность. Она зависит в первую очередь от параметров преобразователя (трансформатора или импульсного блока питания). Чем выше мощность, тем быстрее и эффективнее будет заряжаться аккумуляторная батарея. Мощность аккумуляторов определяется их напряжением, умноженным на ёмкость (измеряется в ампер-часах).
Схемы оригинальных ЗУ Bosh
Ничего нового производитель здесь не изобретёт. Технологии зарядки химических источников тока давно известны и обкатаны. Всё что нужно – уточнить номинал деталей и используемые технические решения.
Ниже рассмотрим несколько вариантов схем для зарядных устройств, которые уже детально изучены опытными пользователями.
Внешний вид зарядки.
Рис. 2. Внешний вид зарядки
Рис. 3. Принципиальная схема зарядного устройства
При поиске неисправностей в первую очередь стоит проверить мосфет, далее резисторы и конденсаторы. Проверять элементы нужно с выпаиванием контактов, так измерения номинала будут соответствовать действительности.
Замену неисправных элементов стоит производить на точно такие же модели, но рабочие, в крайнем случае — на прямые аналоги.
Внешний вид устройства.
Рис. 4. Внешний вид устройства
Схема принципиальная электрическая.
Рис. 5. Принципиальная электрическая схема
Эта зарядка используется только для литий-ионных АКБ. Работает она на базе импульсного БП.
Bosch AL 2425 DV
Внешний вид прибора.
Рис. 6. Внешний вид прибора
Принципиальная схема находится здесь.
Несколько слов о самостоятельном ремонте
На самом деле, зарядки Bosch ничем не отличаются от устройств конкурентов и достаточно просто устроены. Для ремонта нужно:
- понимать немного в схемотехнике,
- уметь определять номинал и тип элемента по обозначениям на корпусе (часто они интернациональны),
- уметь проверять работоспособность отдельного элемента схемы (он выпаивается полностью или частично, например, если у элемента 2 контакта, то достаточно отпаять только одну ножку).
- иметь необходимый набор инструментов и измерительных приборов.
- Часто на плате имеются контрольные точки, типовые значения для сравнения указаны рядом с контактом (чтобы не выпаивать все детали без разбора можно отсечь лишние цепи с помощью контрольных точек).
- После разборки сразу произведите детальный осмотр схемы и элементов. Часто пострадавшие детали можно определить визуально (они потемнели, имеют трещины на корпусе, вздулись и т.п.).
- Наиболее уязвимыми элементами можно назвать транзисторы и микросхемы. Полупроводники чаще всего выходят из строя в сравнении с другими элементами схем (статистика не в их пользу).
- Для дешёвых зарядок принципиальных схем не найти, потому что их нет даже в сервисных мастерских. Производителю проще полностью заменить устройство, чем ремонтировать его силами специалистов. Но схему можно составить самостоятельно. Делать это нужно очень скрупулёзно, так как при большом количестве связей ошибок не избежать.
- Даже при наличии принципиальной схемы ремонт зарядок не сильно упрощается. Нужно знать расположение контрольных точек и стандартные для них значения измерений.
На самом деле для восстановления зарядных устройств принципиальные схемы не нужны. Достаточно последовательно проверить все ключевые элементы на номинал, ведь в схеме их часто не больше 10-20 шт.
Мнения читателей
Нет комментариев. Ваш комментарий будет первый.
Вы можете оставить свой комментарий, мнение или вопрос по приведенному вышематериалу:
не замерял, не вижу смысла если переделанная штатовская зарядка BC330 отрабатывала четко те же 1:20:00 на 2,0 Ah аккумуляторах, как и заведомо исправная.
Добрый день.
Проблема как у всех.
Заменил:
-полевик на f5nk80z
-биполярный всунул кт3102А . (блин у меня в нем сомнения, но поставил что было под руками)
-резисторы 3R9; 30R
-диод 4148 на кд522А
После”ремонта” на вых зарядки имею около 4В,светодиод постоянно горит.
Присутсвует писк транса.
При вставлении акб светодиод 3 раза моргнет и дальше горит без моргания.
Возникли вопросы
-какое напряжение без нагрузки должно быть во вторичке после диода на конденсаторе ?
-должно ли быть напряжение на выходе зарядки без подключенного акб?
Еще один вопрос. какое напряжение нужно подавать на вторичку если убрать из схемы высоковольтную часть (заменить ее другой )
В теме переделки зарядок 110 В в 220 В найдите мой недавний пост по переделке BC 330 в AL 1115 CV. В нём есть данные по трансформатору, что позволяет прикинуть коэффициент трансформации. Либо можете попытаться дождаться, когда у меня дойдут руки (при следующей нескорой их переделке) ткнуть осциллографом во вторичную обмотку и снять осциллограммы напряжений
Здравствуйте, сгорела зарядка Bosch al1115CV. Вопрос можно ли заменить F3NK80Z на STP5NK80ZFP TO220-3 и 2N3904 на 2N4401BU? резисторы R5 — 3.3 Ом, R6 — 30 Ом?
мосфет — однозначно да, сам такие ставил, а также 4 А варианты. по биполярнику — даташиты сравните, но вроде проблем быть не должно. резисторы — ищите пост по переделке, там данные на все сопротивления
SergILD написал :
мосфет — однозначно да, сам такие ставил, а также 4 А варианты. по биполярнику — даташиты сравните, но вроде проблем быть не должно. резисторы — ищите пост по переделке, там данные на все сопротивления
Спасибо за ответ схему нашел.
Посмотрел даташиты на биполярники
2N3904 2N4401BU
SergILD написал:
мосфет — однозначно да, сам такие ставил, а также 4 А варианты. по биполярнику — даташиты сравните, но вроде проблем быть не должно. резисторы — ищите пост по переделке, там данные на все сопротивления
Помогите народ, поставил STP5NK80ZFP и 2N4401BU резисторы R5, R6 запаял.
Включаю горит зел светодиод, писк транформатора, ставлю аккум моргнет и горит. На выходе аккб 1,8 вольта.
Итак, принесли AL 1115 CV, сгорел, выявлены в первичке: взорвавшийся мосфет, пара подожженых резисторов, пробитый транзистор. Заменил транзистор на 2N2222, резисторы R14=1k 1/4W — по номиналу; R6=30R 1/4W — на 33 Ом (что нашёл), мосфет на P4NK60ZFP.
При подаче питания не было реакции, предположил, что управление от АКБ, принесли АКБ (заряд 12V), с нею неизменно.
Напряжение до мосфета есть, понимаю, что транзистор не открывается, оптопара реагирует на прозвон, (при подаче на светочасть напряжения с одного мультиметра в режиме прозвона, на фоточасти изменяется сопротивление — падает с 79 до 62Ом), на установку АКБ оптопара никак не реагирует. Детальки на низкой стороне звонил — вроде целые.
Куда ещё копнуть? где что посмотреть? Может не доглядел где?
Attractor написал:
Итак, принесли AL 1115 CV, сгорел, выявлены в первичке: взорвавшийся мосфет, пара подожженых резисторов, пробитый транзистор. Заменил транзистор на 2N2222, резисторы R14=1k 1/4W — по номиналу; R6=30R 1/4W — на 33 Ом (что нашёл), мосфет на P4NK60ZFP.
При подаче питания не было реакции, предположил, что управление от АКБ, принесли АКБ (заряд 12V), с нею неизменно.
Напряжение до мосфета есть, понимаю, что транзистор не открывается, оптопара реагирует на прозвон, (при подаче на светочасть напряжения с одного мультиметра в режиме прозвона, на фоточасти изменяется сопротивление — падает с 79 до 62Ом), на установку АКБ оптопара никак не реагирует. Детальки на низкой стороне звонил — вроде целые.
Куда ещё копнуть? где что посмотреть? Может не доглядел где?
чинил недавно AL 1820 CV. с похожими симптомами, полупроводники в первичке целы, но полевик не работает
были мертвый и не до конца убитый оптроны. проверьте их. один был пробит и не открывался, у другого падение напряжение в открытом состоянии было 600 мВ.
Итак, после одного из тестовых включений был выявлен обрыв по R6, после замены при включении лёгкий щелчок и снова он выгорает. Также в обрыве R5; пробой мосфета по И-З, по И-С обрыв; у транзистора обрыв по Э-Б, Б-К как диод.
Решилось заменой резисторов по номиналу, мосфет заменил на STP7NK80ZFP (пусть будет запас мощности), транзистор заменил на c945 (давным-давно со старых БП надёргал; да, придётся (3)Б выгнуть между (1)Э и (2)К — т.к. несовместим по выводам; да, у него характеристики пониже, чем у родного, но тем не менее. )
Тест — ОК! При включении зеленый загорелся, после замигал, АКБ дозарядился.
Вот решил поиздеваться на зарядником после ремонта и поставил кулер (греется заметно меньше), благо есть запасной al 1130 cv
небольшое дополнение
переделывал на днях BC330 по собственной методике доведения до “состояния 1 в 1” с европейской версией AL1115CV.
после прогона заряда в качестве тестирования — получил выгорание почти всех элементов в первичке, аналогично первому посту, с идентичной картиной по сгоревшим резисторам. выгорели также диоды моста, ну и прочие радости, в итоге выжило два диода в первичке.
восстановил первичку, в итоге — повторение фейерверка. правда полевик был какой-то неправильный ST P4NK80Z FP в неизолированном! корпусе, при покупке не обратил на это внимание.
вот и думаю теперь, проблема связана с некачественной намоткой трансформатора или с фейковыми мосфетами
вроде делал всё грамотно и по феншую.
отложил на период праздников
Люди, подскажите, пожалуйста, если кто понимает — что может быть с AL1115cv.
Дефект выражается в следующем: при включении з/у в розетку (без разницы: вставлена акб или нет) слышен очень тихий звук “стрёкот”, что-то на подобие кузнечика, зарядка не идёт, лампочка постоянно горит. Если несколько раз подряд вилку из разетки вынуть (каждый раз по-разному: 3-5-7 раз), звук пропадает и процесс заряда акб начинается и заряжает батарею полностью, как надо.
Ещё один момент: ВСЕГДА (даже если, жужжит при вклюённом состоянии) — СРАЗУ как только вынимаешь вилку из разетки, в течении нескольких секунд, пока ещё горит лампочка, звук пропадает; а если при этом была вставлена акб, то лампочка начинает мигать в обычном режиме, как при процессе заряда, несколько раз, до тех пор пока не погаснет.
И ещё: хотел по-лучше послушать: что именно издаёт звук на плате (думал выпаять элемент, издающий звук и купить аналог в радиолавке). Так вот, когда разобрал корпус и включил — всё пропало и работало идеально. Включал — Выключал несколько раз, и с АКБ, и без АКБ — всё отлично. Подумал пыль (б/у неск. лет). Продул аккуратно, собрал обратно. Всё как и до разборки: стрекочет, скотина ! ! !
В общем как-то так.
З.Ы. В электрике, не очень соображаю, но т.к. “золотого запасу” на новый зарядник пока нет, хотелось-бы узнать мнение знающих людей: можно-ли “малой кровью” как-то восстановить стабильную работоспособность данного агрегата.
NedPhA написал:
Люди, подскажите, пожалуйста, если кто понимает — что может быть с AL1115cv.
Дефект выражается в следующем: при включении з/у в розетку (без разницы: вставлена акб или нет) слышен очень тихий звук “стрёкот”, что-то на подобие кузнечика, зарядка не идёт, лампочка постоянно горит. Если несколько раз подряд вилку из разетки вынуть (каждый раз по-разному: 3-5-7 раз), звук пропадает и процесс заряда акб начинается и заряжает батарею полностью, как надо.
Ещё один момент: ВСЕГДА (даже если, жужжит при вклюённом состоянии) — СРАЗУ как только вынимаешь вилку из разетки, в течении нескольких секунд, пока ещё горит лампочка, звук пропадает; а если при этом была вставлена акб, то лампочка начинает мигать в обычном режиме, как при процессе заряда, несколько раз, до тех пор пока не погаснет.
И ещё: хотел по-лучше послушать: что именно издаёт звук на плате (думал выпаять элемент, издающий звук и купить аналог в радиолавке). Так вот, когда разобрал корпус и включил — всё пропало и работало идеально. Включал — Выключал несколько раз, и с АКБ, и без АКБ — всё отлично. Подумал пыль (б/у неск. лет). Продул аккуратно, собрал обратно. Всё как и до разборки: стрекочет, скотина ! ! !
В общем как-то так.
З.Ы. В электрике, не очень соображаю, но т.к. “золотого запасу” на новый зарядник пока нет, хотелось-бы узнать мнение знающих людей: можно-ли “малой кровью” как-то восстановить стабильную работоспособность данного агрегата.
“стрекотать” может основной электролит или трансформатор (маловероятней, он сидит на лаке обычно), не уверен что с этим звуком связана Ваша проблема.
у меня каждая вторая зарядка после переделки издаёт такой свист, так как конденсатор я не фиксирую специальным герметиком.
фотографию со стороны элементов сделайте, может конденсатор основной у Вас вздулся, объяснить чем-то другим нестабильную работу в этом изделии сложно.
morflot.su