Переделка зарядного устройства шуруповерта: Переделка Зарядного Устройства Шуруповерта Для Литиевых

Переделка шуруповерта на литий, часть вторая, заряжаем правильно / Aliexpress / Shopper

Я уже рассказал как правильно переделать батарею для аккумуляторного инструмента. Также я писал, что расскажу об особенностях заряда, а предметом обзора на этот раз выступит плата DC-DC преобразователя.
Кому интересно, прошу в гости.

Изначально я планировал ограничиться двумя частями, переделкой батареи и зарядного. Но пока готовил обзор, в голове созрела идея для третьей части обзора, более сложной.
А в этой части я расскажу как можно переделать родное трансформаторное зарядное, если оно еще работает, ну или если еще жив силовой трансформатор.

Платка преобразователя была заказана довольно давно в количестве нескольких штук (про запас), заказывалась специально для этой переделки, потому как имеет некоторые особенности, впрочем не буду забегать далеко, бем последовательны.

Для начала я разделю зарядные устройства не три основных типа:
1. Самые простые — трансформатор, диодный мост и несколько деталей. Такими зарядными комплектуют ультрабюджетный инструмент.

2. Фирменные. По сути то же самое, но в состав уже входят простенькие «мозги», автоматические отключающие заряд в конце.
3. «Продвинутые» — импульсный блок питания, контроллер заряда, иногда заряд нескльких батарей одновременно.

Инструмент из первой категории редко попадает под переделку, так как часто проще (и дешевле) купить новый, а третья категория обычно имеет свои сложности по переделке. В принципе можно переделать и устройства третьей группы, но не в рамках статьи, так как типов таких зарядных очень много и к каждой нужен индивидуальный подход.

В этот раз я буду переделывать зарядное устройство из второй группы, фирменное, хотя и простое. Но при этот переделка имеет много общего и с первой группой, потому будет полезна большему количеству читателей.

Для того, чтобы зарядить аккумулятор надо не просто подключить его к блоку питания, такой эксперимент обычно заканчивается не очень хорошо.

Надо подключить его к зарядному устройству. И здесь наступает небольшое непонимание, так как довольно много людей привыкло называть зарядными устройствами небольшие блоки питания от которых они заряжают свои смартфоны, планшеты и ноутбуки. Это не зарядные устройства, а блоки питания.

Чем же отличается зарядное устройство от блока питания.
Блок питания предназначен выдавать стабилизированное напряжение в диапазоне заявленных токов нагрузки.
Зарядное устройство обычно сложнее, так как выходное напряжение у него зависит от тока нагрузки, который в свою очередь ограничен. При этом в зарядном устройстве находится узел прекращающий заряд в конце, а также иногда и защита от подключения аккумулятора в неправильной полярности.

Самое простое зарядное устройство это просто блок питания и резистор (иногда лампа накаливания, что даже лучше) последовательно с аккумулятором. Такая схема ограничивает тока заряда, но как вы понимаете ничего больше она сделать не может.

Чуть сложнее, когда ставят еще и таймер, отключающий заряд после определенного времени, но такой принцип быстро «убивает» аккумуляторы.
Например так сделано в одном из недорогих зарядных для шуруповертов (фото не мое).

Следующим классом идут более «умные » зарядные устройства, хотя по сути они не на много лучше предыдущего.
Например вот фото фирменного зарядного устройства Bosch, предназначенного для заряда NiCd аккумуляторов.

Но все эти зарядные устройства кажутся очень простыми после взгляда на современные варианты для заряда литиевых аккумуляторов.

Конечно последний вариант не совсем вписывается в нашу концепцию переделки, так как на желательно чтобы наше зарядное не только заряжало правильно, а и стоило при этом минимальных денег.

Зарядные устройства китайских шуруповертов выглядят конечно не в пример проще, но опять же, делать с нуля такое устройство вряд ли кто то захочет, хотя именно это я и планирую сделать в третьей части, правда корректнее.

И так, для начала предположим что у нас на руках имеется зарядное устройство которое просто не подходит под новый тип аккумуляторов, но является исправным. Ну или по крайней мере у него исправен трансформатор.
Как я писал выше, можно даже использовать просто резистор или лампочку, но это «не наш метод».

Условная схема типичного недорогого зарядного устройства выглядит примерно так:
Трансформатор, диодный мост, тиристор и схема управления. Правда иногда вместо тиристора стоит реле, ток никак не ограничивается и может присутствовать схема термоконтроля от перегрева (хотя и она не всегда спасает.

Но нам от этой схемы нужно только трансформатор и диодный мост, правда придется добавить еще конденсатор, так мы получим некую исходную неизменную часть, она отмечена красным и дальше меняться не будет.

Диодный мост обычно находится на плате и при необходимости его можно использовать (если он исправен). Т.е. по большому счету можно выпаять из платы все радиоэлементы, оставив только четыре диода и клеммы для подключения батареи, а саму плату использовать как основу.
Катод у диодов помечен полоской, точка, где соединяются два вывода помеченные полоской — плюс, соответственно точка соединения «не меченных» выводов — минус. К двум другим точкам соединения подключается трансформатор.

Правда открыв зарядное устройство вы можете увидеть и такую картину (не обращайте внимание на отсутствие трансформатора):

В этом случае придется выпаивать все.

Диоды на плате удобно заменить на готовый диодный мост, к выводам АС подключается трансформатор, + и — соответственно идут дальше в схему.
Можно конечно сказать как подобрать конденсатор, но я советую не заморачиваться и поставить такой как на фото, емкость 1000мкФ, напряжение 35 Вольт. Емкость можно и больше, например 2200, а напряжение 50 или 63 Вольта, большая емкость и напряжение смысла не имеют, а только увеличат габарит конденсатора.
Конденсатор можно любой, подойдет даже «нонейм». Да, ставить его надо в любом случае, независимо от исправности диодного моста.

Теперь переходим к самому зарядному, а точнее к его вариантам, этот узел помечен на последней схеме прямоугольником.
Самый простой и при этом относительно правильный способ, поставить микросхему стабилизатора напряжения LM317.


Но как я писал выше, ток заряда надо ограничивать. Да, многие схемы могут не только ограничивать, а и стабилизировать его, но по большому счету аккумуляторам неважно, будет ток заряда 1, 2 или 3 Ампера, неважно будет ли он стабилен в процессе заряда или «плавать», важно чтобы ток заряда не превышал установленный для аккумуляторов. Хотя для аккумуляторов, которые ставят в шуруповерты превысить его тяжело, так как они могут работать не только при больших токах разряда, но и заряда.
Простейшее решение, перевести микросхему LM317 из режима стабилизации напряжения в режим стабилизации тока, а если говорить точнее, то добавить режим стабилизации тока.
Достигается это добавлением одного резистора, как показано на схеме.
Номинал резистора рассчитать очень просто: 1.25/I (ток в Амперах) = R (номинал резистора в Омах).
Например нужен ток 1.5 Ампера, тогда будет 1.25/1.5= 0.83 Ома.

Номиналы резисторов делителя напряжения также рассчитать довольно просто, но я бы советовал последовательно с верхним резистором поставить подстроечный, чтобы точно выставить напряжение, так как в отличии от тока здесь точность важна.


Можно воспользоваться специальным калькулятором, но он не очень удобен, потому предложу номиналы без него, для напряжения 12.6 Вольта (3 последовательных аккумулятора 3.7 Вольта) верхний резистор нужен 1.5кОм, последовательно с ним подстроечный 200 Ом, а нижний резистор 13кОм.

Я специально указал, что подстроечный резистор ставится последовательно с верхним резистором. В случае обрыва на выходе будет минимальное напряжение. Если оборвать нижний резистор, то на выходе будет максимальное напряжение. Кстати, в распространенных платах DC-DC преобразователей сделано наоборот, в случае обрыва подстроечного резистора они дадут на выход максимальное напряжение.

Все хорошо в вышеприведенной схеме, простота, цена, но большая выделяемая мощность сводит на нет все преимущества, так как радиатор будет нужен весьма внушительный, потому для больших токов заряда она не очень подходит.

Более правильным вариантом будет применить понижающий DC-DC преобразователь. Например такой:

Конечно в исходном виде он не будет ограничивать ток, но при желании его можно доработать (на тот случай если он уже есть).
Доработка проста и я ее уже описывал в одном из своих обзоров, правда там в конце я применял ее как драйвер светодиодов, но по сути это неважно.
Надо:
1 транзистор типа BC557 или любой аналог (да хоть известный КТ361 или КТ3107)
2 резистора номиналом 33-200 Ом любой мощности.
1 резистор в качестве токового шунта
1 керамический конденсатор 0.1мкФ.

Токоизмерительный резистор рассчитывается очень просто, как и в случае с LM317, только значения чуть другие.

0,6/I (ток в Амперах) = R (номинал резистора в Омах).
Например нужен ток 1.5 Ампера, тогда будет 0,6/1.5= 0.4 Ома.

Выход добавочной схемы подключается к выводу 4 микросхемы LM2596, если применена другая микросхема, то ищем в описании вывод помеченный как FB и подключаем к нему.

В таком варианте при помощи подстроечного резистора устанавливаем выходное напряжение (на холостом ходу). Правда такая схема может немного недозаряжать аккумуляторы, хотя и не сильно, но это плата за простоту. Чтобы заряжать полностью, надо переключить вход измерения напряжения (один из резисторов делителя напряжения) к выходу всей схемы.

Все вышеприведенные способы заряда работоспособны, но не очень удобны.
Более правильно будет применить плату, которая «умеет» не только стабилизировать выходное напряжение, а и ток.

Например вот такая платка. Отличить подходящие платы от других весьма просто, в описании должно быть написано — DC-DC StepDown, а на плате присутствовать как минимум два подстрочных резистора.

Но помимо регулировки выходного тока данная плат имеет еще дополнительный бонус в виде индикации:
1. Светодиод вверху, показывает режим ограничения тока
2. Пара светодиодов внизу, показывают окончание заряда.

Индикация заряда аккумулятора реализована очень просто, переключение светодиодов происходит при падении тока ниже чем 1/10 от изначально установленного. Такой режим работы очень распространен и используется во многих простых зарядных устройствах.
Т.е. к примеру мы установили ток заряда в 1.5 Ампера, подключили аккумулятор, когда ток заряда упадет ниже чем 150мА, то один из светодиодов погаснет, а второй засветится, показывая тем самым, что процесс заряда окончен.

Схема данной платы, возможно будет полезна.

Получается, что данная плата весьма неплохо подходит для заряда аккумуляторов, сначала выставляем напряжение окончания заряда из расчета 4,2 Вольта на элемент, а затем ток заряда.
Для гурманов можно предложить такую же плату, но с индикацией тока заряда и напряжения на батарее, но как по мне, то в данном случае это лишнее.
Я делал обзор этой платы, собственно это и есть фото из того обзора, там же я показывал как самому сделать импульсный блок питания.

Так будет выглядеть этот вариант на блок схеме.

Вот мы потихоньку и подобрались к предмету обзора, который прежде всего заинтересовал своей низкой ценой. У меня очень большие подозрения насчет «фирменности» установленной микросхемы, но если не использовать ее на все заявленные 3 Ампера, то она вполне жизнеспособна.

Так получилось, что изначально я не думал делать обзор данной платы и хотя их было куплено 4 штуки, но дома у меня осталась всего одна и та уже со следами моего вмешательства.
Я выпаял родные светодиоды и припаял другие.

В исходном виде на плате расположены три светодиода:
1. Заряжено.
2. Заряд
3. Индикация ограничения тока.

Как работает индикация.
Светодиоды Заряд и Заряжено включены так, что светит только один из них, потому можно их рассматривать как один. В платах без регулировки тока при которой будет срабатывать индикация, переключение происходит при падении тока заряда ниже 1/10 от установленного резистором — Ограничение тока. В обозреваемой плате можно установить произвольный ток срабатывания, я бы советовал выставить 1/5.

Светодиод индикации ограничения тока работает несколько по другому, он светит когда происходит ограничение тока, т.е. когда ток при установленном напряжении стремится вырасти больше, чем установлено регулятором.
Например выставили ток 1 Ампер и 10 Вольт (условно), подключили нагрузку, которая при 10 Вольт потребляет 0.5 Ампера. На выходе будет 10 Вольт 0.5 Ампера. Затем подключили нагрузку, которая при 10 Вольт будет потреблять 1.5 Ампера, на выходе будет 1 Ампер и 8 Вольт (условно), т.е. плата снизит напряжение до такого значения при котором ток на выходе не будет превышать установленного и при этом засветит светодиод.

Также на плате находится три подстроечных резистора:
1. Регулировка выходного напряжения.
2. Регулировки порога срабатывания индикации окончания заряда.
3. Регулировка порога ограничения выходного тока.

Плата весьма простая, на ней расположена собственно микросхема LM2596, стабилизатор 78L05 и компаратор LM358.
LM2596 собственно ШИМ контроллер.
78L05 используется дли питания компаратора и как источник опорного напряжения.
LM358 «следит» за током и попутно управляет индикацией

В качестве токового шунта работает дорожка на печатной плате.
Такой метод измерения тока не очень хорош, так как ток будет «плавать» в зависимости от температуры платы, но так как для нас стабильность выходного тока не имеет значения, то можно не обращать на это внимание.

Расположение контактов, органов управления и индикации со страницы товара.

Платы с возможностью ограничения выходного тока весьма хорошо подходят для заряда аккумуляторов. А те платы, которые имеют индикацию окончания заряда, позволяют еще и получить некое удобство, позволяющее знать что аккумулятор заряжен.
Но есть у всех вышеперечисленных способов один минус, все эти варианты не могут отключить аккумулятор после окончания заряда, т.е. полностью прекратить процесс.
Конечно мне скажут, а как же живут аккумуляторы в блоках бесперебойного питания. А вот здесь есть особенность, у некоторых типов аккумуляторов есть понятие — циклический заряд и так называемый Standby, т.е. поддерживающий. Тот же свинцовый аккумулятор в циклическом режиме заряжают до 14. 3-15 Вольт, а в дежурном только до 13.8-13.9 Вольта.

Если аккумулятор не отключить, то небольшой ток заряда всегда будет через него течь, и хотя литиевым аккумуляторам в этом плане немного «повезло», ток у них падает очень значительно, но все равно, оставлять их в таком режиме не рекомендуется.
Дело в том, что кадмиевые или свинцовые просто начинают разрушаться, нагреваться и все, а с литиевыми возможно возгорание. Да, литиевые аккумуляторы имеют защитный клапан, но лишняя защита никогда не мешает.

Очень часто задают вопрос — а как же плата защиты, ведь она может отключить аккумулятор по завершении заряда. Может и не только может, а и отключит, только сделает это она не при 4.2 Вольта на элемент, а при 4.25-4.35 Вольта, так как функция отключения для нее скорее защитная, а не основная. Потому так делать крайне не рекомендуется.

Собственно потому я придумал простенькую схемку, которая будет отключать аккумулятор по завершению заряда. Принцип работы очень прост (потому имеет некоторые ограничения). Подключили аккумулятор, так как конденсатор С1 разряжен, то через него течет ток, который открывает транзистор, а он подает ток на реле. Реле подключает к зарядному аккумулятор, а дальше реле питается через оптрон, который подключен к выходу индикации заряда платы преобразователя.

Соответственно была разработана небольшая платка, причем в универсальном исполнении.

Ну а дальше все просто и знакомо, печатаем плату на бумаге, переносим на текстолит, травим.

Когда я придумывал схему, то старался ее максимально упростить, применив минимум компонентов.
1. Реле — любое с напряжением обмотки 12 Вольт (для вариантов с 3-4 аккумуляторами) и контактами рассчитанными на ток хотя бы 2х от тока заряда.
2. Транзистор — BC846, 847, или известный КТ315, КТ3102, а также аналоги.
3. Диод — любой маломощный диод.
4. Резисторы — любые в диапазоне 15 — 33кОм
5. Конденсатор — 33-47мкФ 25-50 Вольт.
6. Оптрон — PC817, стоит на большинстве плат блоков питания.

Собрал плату.

Плату я сделал универсальной, можно применить вместо реле полевой транзистор, часть компонентов остается та же, что и была до этого. Кроме того такой вариант более универсален, так как подходит для шуруповертов с 3-4-5 аккумуляторами.
Но у такой платы есть недостаток. Внутри транзистора есть «паразитный» диод и если оставить аккумулятор подключенным к зарядному устройству, но выключить его из розетки, то аккумулятор будет разряжаться через схему зарядного. В том варианте, что я показал выше, будет похожая проблема, но там ток совсем маленький, около 0.5мА и для полного разряда аккумулятору понадобится около 4000 часов.

Здесь применены немного другие номиналы, хотя по сути важен только номинал резисторов R4 и R5. Номинал R5 должен быть по крайней мере в 2 раза меньше чем у R4.

Подбираем компоненты для будущей платы. К сожалению транзистор скорее всего придется купить, так как в готовых устройствах такие применяются редко, они могут встречаться на материнских платах, но крайне редко.

Плата универсальная, можно применить реле и сделать по предыдущей схеме, а можно применить полевой транзистор.

Теперь блок схема зарядного устройства будет выглядеть следующим образом:
Трансформатор, затем диодный мост и конденсатор фильтра, потом плата DC-DC преобразователя, ну и в конце плата отключения.
Полярность выводов индикации заряда я не подписывал, так как на разных платах может быть по разному, если что то не работает, то надо просто поменять их местами, тем самым изменив полярность на противоположную.

Переходим собственно к переделке.
Первым делом я перерезаю дорожки от выхода диодного моста, клемм подключения аккумулятора и светодиода индикации заряда. Цель — отключить их от остальной схемы, чтобы она не мешала «процессу». Можно конечно просто выпаять все детали кроме диодов моста, будет то же самое, но мне было проще перерезать дорожки.

Затем припаиваем фильтрующий конденсатор. Я припаял его прямо к выводам диодов, но можно поставить отдельный диодный мост, как я показывал выше.
Помним, что вывод с полоской — плюс, без полоски — минус. У конденсатора длинный вывод — плюс.

Печатные платы сверху не влазили совсем, постоянно упираясь в верхнюю крышку, потому пришлось разместить их снизу. Здесь конечно было тоже не все так гладко, пришлось выкусить одну стойку и немного подпилить пластмассу, но в любом случае здесь им было куда лучше.
по высоте они стали даже с запасом.

Переходим к электрическим соединениям. Для начала припаиваем провода, сначала я хотел применить более толстые, но потом понял что просто с ними не развернусь в тесном корпусе и взял обычные многожильные сечением 0.22мм.кв.
К верхней плате припаял провода:
1. Слева — вход питания платы преобразователя, подключается к диодному мосту.
2. Справа — белый с синим — выход платы преобразователя. Если применена плата отключения, то к ней, если нет, то на контакты аккумулятора.
3. Красный с синим — выход индикации процесса заряда, если с платой отключения, то к ней, если нет, то на светодиод индикации.
4. Черный с зеленым — Индикация окончания заряда, если с платой отключения, то на светодиод, если нет, то никуда не подключаем.

К нижней плате припаяны пока только провода к аккумулятору.

Да, совсем забыл, на левой плате виден светодиод. Дело в том, что я совсем забыл и выпаял все светодиоды, которые были на плате, но проблема в том, что если выпаять светодиод индикации ограничения тока, то ток ограничиваться не будет, потому его надо оставить (помечен на плате как CC/CV), будьте внимательны.

В общем соединяем все так, как на показано, фото кликабельно.

Затем клеим на дно корпуса двухсторонний скотч, так как снизу платы не совсем гладкие, то лучше использовать толстый. В общем этот момент каждый делает как удобно, можно приклеить термоклеем, привинтить саморезами, прибить гвоздями 🙂

Приклеиваем платы, провода прячем.
В итоге у нас должны остаться свободными 6 проводов — 2 к батарее, 2 к диодному мосту и 2 к светодиоду.

На желтый провод внимание не обращайте, это частный случай, у меня нашлось только реле на 24 Вольта, потому я его запитал от входа преобразователя.
Когда готовите провода, то всегда старайтесь соблюдать цветовую маркировку, красный/белый — плюс, черный/синий — минус.

Подключаем провода к родной плате зарядного. Здесь конечно у каждого будет по своему, но общий принцип думаю понятен. Особенно внимательно надо проверить правильность подключения к клеммам аккумулятора, лучше предварительно проверить тестером, где плюс и минус, впрочем то же самое касается и входа питания.

После всех этих манипуляций обязательно надо проверить и возможно заново установить выходное напряжение платы преобразователя, так как в процессе монтажа можно сбить настройку и получить на выходе не 12.6 Вольт (напряжение трех литиевых аккумуляторов), а к примеру 12.79.
Также можно подкорректировать и ток заряда.

Так как настройка порога срабатывания индикации окончания заряда не очень удобна, то я рекомендую купить плату с двумя подстроечными резисторами, это проще. Если купили плату с тремя подстроечными резисторами, то для настройки надо подключить к выходу нагрузку примерно соответствующую 1/10 — 1/5 от установленного тока заряда. Т.е. если ток заряда 1.5 Ампера и напряжение 12 Вольт, то это может быть резистор номиналом 51-100 Ом мощностью около 1-2 Ватт.

Настроили, перед сборкой проверяем.
Если сделали все правильно, то при подключении аккумулятора должно сработать реле и включиться заряд. В моем случае светодиод индикации при этом погасает, а включается когда заряд окончен. Если хотите сделать наоборот, то можно включить этот светодиод последовательно с входом оптрона, тогда светодиод будет светить пока идет заряд.

Так как в заголовке обзора все таки указана плата, а обзор о переделке зарядного, то я решил проверить и саму плату. Через пол часа работы при токе заряда 1 Ампер температура микросхемы была около 60 градусов, потому я могу сказать, что данную плату можно использовать до тока 1.5 Ампера. Впрочем это я подозревал с самого начала, при токе в 3 Ампера плата скорее всего выйдет из строя из-за перегрева. Максимальный ток при котором плату еще можно относительно безопасно использовать — 2 Ампера, но так как плата находится в корпусе и охлаждение не очень хорошее, то я рекомендую 1.5 Ампера.

Все, скручиваем корпус и ставим на полный прогон. Мне правда пришлось перед этим разрядить аккумулятор, так как я его зарядил в процессе подготовки прошлой части.
Если к зарядному подключается заряженный аккумулятор, то на 1.5-2 секунды срабатывает реле, потом опять отключается, так как ток низкий и блокировка не происходит.

Так, а теперь о хорошем и не очень.
Хорошее — переделка удалась, заряд идет, плата отключает аккумулятор, в общем просто, удобно и практично.
Плохое — Если в процессе заряда отключить питания зарядного, а потом опять включить, то заряд автоматически не включится.
Но есть куда большая проблема. В процессе подготовки я использовал плату из предыдущего обзора, но там же я писал, что плата без контроллера, потому полностью блокироваться не умеет. Но более «умные» платы в критической ситуации полностью отключают выход, а так как он одновременно является и входом то при подключении к зарядному которое я переделал выше, стартовать оно не будет. Для старта необходимо напряжение, и плате для старта необходимо напряжение 🙁

Решения данной проблемы несколько.
1. Поставить между входом и выходом платы защиты резистор, через который на клеммы будет попадать ток для старта зарядного, но как поведет себя плата защиты, я не знаю, для проверки ничего нет.
2. Вывести вход для зарядного на отдельную клемму батареи, так часто делается у аккумуляторного инструмента с литиевыми аккумуляторами. Т.е. заряжаем через одни контакты, разряжаем через другие.
3. Не ставить плату отключения вообще.
4. Вместо автоматики поставить кнопку как на этой схеме.

Вверху вариант без платы защиты, внизу просто реле, оптрон и кнопка. Принцип прост, вставили аккумулятор в зарядное, нажали на кнопку, пошел заряд, а мы пошли отдыхать. Как только заряд будет окончен, реле полностью отключит аккумулятор от зарядного.

Обычные зарядные устройства постоянно пытаются подать напряжение на выход если оно ниже определенного значения, но такой вариант доработки неудобен, а с реле не очень то и применим. Но пока думаю, возможно и получится сделать красиво.

Что можно посоветовать по поводу выбора вариантов заряда батарей:
1. Просто применить плату с двумя подстроечными резисторами (она есть в обзоре), просто, вполне корректно, но лучше не забывать что зарядное включено. День-два проблем думаю не будет, но уехать в отпуск и забыть зарядное включенным я бы не рекомендовал.
2. Сделать как в обзоре. Сложно, с ограничениями, но более правильно.
3. Использовать отдельное зарядное, например известный Imax.
4. Если в вашей батарее сборка из двух-трех аккумуляторов, то можно использовать B3.

5. Взять блок питания и немного доработать его.

6. Сделать полностью свое зарядное, со всем автоотключениями, корректным зарядом и расширенной индикацией. Самый сложный вариант. Но это тема третьей части обзора, впрочем там же скорее всего будет и переделка блока питания в зарядное.

Кроме того я часто встречаю вопросы насчет балансировки элементов в батарее. Лично я считаю, что это лишнее, так как качественные и подобранные аккумуляторы разбалансировать не так просто. Если хочется просто и качественно, то куда проще купить плату защиты с функцией балансировки.

Недавно был вопрос, можно ли сделать так, чтобы зарядное умело заряжать и литиевые аккумуляторы и кадмиевые. Да, сделать можно, но лучше не нужно так как кроме разной химии аккумуляторы имеют и разное напряжение. Например сборке из 10 кадмиевых аккумуляторов надо 14.3-15 Вольт, а из трех литиевых — 12.6 Вольта. В связи с этим нужен переключатель, который можно случайно забыть переключить. Универсальный вариант возможен только если количество кадмиевых аккумуляторов кратно трем, 9-12-15, тогда их можно заряжать как литиевые сборки 3-4-5. Но в распространенных батареях инструмента стоят сборки 10 штук.

На этом вроде все, я постарался ответить на некоторые вопросы, которые мне задают в личке. Кроме того, обзор скорее всего будет дополнен ответами на ваши следующие вопросы.

Купленные платы вполне работоспособны, но микросхемы скорее всего поддельные, потому нагружать лучше не более чем на 50-60% от заявленного.

А я пока думаю что надо иметь в правильном зарядном устройстве, которое будет делаться с нуля. Пока из планов —
1. Автостарт заряда при установке аккумулятора
2. Рестарт при пропадании питания.
3. Несколько ступеней индикации процесса заряда
4. Выбор количества аккумуляторов и их типа при помощи джамперов на плате.
5. Микропроцессорное управление

Хотел применить специализированную микросхему (вроде даже бесплатный семпл можно заказать), но она работает только в линейном режиме, а это нагрев :((((

Возможно будет полезно, ссылка на архив с трассировками и схемами, но как я выше писал, добавочная плата скорее всего не будет работать с платами, которые полностью отключают аккумуляторы.

Дополнение, такие способы переделки подходят только для батарей до 14.4 Вольта (примерно), так как зарядные устройства под 18 Вольт аккумуляторы выдают напряжение выше 35 Вольт, а платы DC-DC рассчитаны только до 35-40.

Переделка шуруповерта на литий. Часть 3

870 просмотров

Ранее мы разобрались с тем на что будем менять (часть 1) и как будем контролировать (часть 2).

А теперь давайте поговорим о том, чем мы будем заряжать то, что натворили или собираемся. Ввиду того, что не смотря на тоже самое напряжение  (или близкое к оригиналу) АКБ, заряжать надо теперь нам все это уже по другому.

Давайте опять обговорим требования к зарядному.

реклама

Требования:

1. Соответствующий ток заряда
2. Контроль процесса заряда
3. Автоматическое отключение зарядного от АКБ (дабы не допускать перезаряда)

И опять я хотел бы обратиться к материалу товарища  kirich (огромное ему спасибо за проделанную работу!)

реклама

Условная схема типичного недорогого зарядного устройства выглядит примерно так:

Трансформатор, диодный мост, тиристор и схема управления. Правда иногда вместо тиристора стоит реле, ток никак не ограничивается и может присутствовать схема термоконтроля от перегрева (хотя и она не всегда спасает.

зарядное устройство

Но нам от этой схемы нужно только трансформатор и диодный мост, правда придется добавить еще конденсатор, так мы получим некую исходную неизменную часть, она отмечена красным и дальше меняться не будет.

зарядное устройство

Диодный мост обычно находится на плате и при необходимости его можно использовать (если он исправен). Т.е. по большому счету можно выпаять из платы все радиоэлементы, оставив только четыре диода и клеммы для подключения батареи, а саму плату использовать как основу.
Катод у диодов помечен полоской, точка, где соединяются два вывода помеченные полоской — плюс, соответственно точка соединения «не меченных» выводов — минус. К двум другим точкам соединения подключается трансформатор.

Зарядное устройство

Правда открыв зарядное устройство вы можете увидеть и такую картину (не обращайте внимание на отсутствие трансформатора):

В этом случае придется выпаивать все.

Зарядное устройство

Диоды на плате удобно заменить на готовый диодный мост, к выводам АС подключается трансформатор, + и — соответственно идут дальше в схему.

Можно конечно сказать как подобрать конденсатор, но я советую не заморачиваться и поставить такой как на фото, емкость 1000мкФ, напряжение 35 Вольт. Емкость можно и больше, например 2200, а напряжение 50 или 63 Вольта, большая емкость и напряжение смысла не имеют, а только увеличат габарит конденсатора.

Конденсатор можно любой, подойдет даже «нонейм». Да, ставить его надо в любом случае, независимо от исправности диодного моста.

Теперь о контроле и зарядке. Правильным вариантом будет применить понижающий DC-DC преобразователь.
И более правильно будет применить плату, которая «умеет» не только стабилизировать выходное напряжение, а и ток.

Например вот такая платка. Отличить подходящие платы от других весьма просто, в описании должно быть написано — DC-DC StepDown, а на плате присутствовать как минимум два подстрочных резистора.

контроллер заряда

Но помимо регулировки выходного тока данная плат имеет еще дополнительный бонус в виде индикации:

1. Светодиод вверху, показывает режим ограничения тока

2. Пара светодиодов внизу, показывают окончание заряда.

Индикация заряда аккумулятора реализована очень просто, переключение светодиодов происходит при падении тока ниже чем 1/10 от изначально установленного. Такой режим работы очень распространен и используется во многих простых зарядных устройствах.

Т.е. к примеру мы установили ток заряда в 1.5 Ампера, подключили аккумулятор, когда ток заряда упадет ниже чем 150мА, то один из светодиодов погаснет, а второй засветится, показывая тем самым, что процесс заряда окончен.

Обзоры данной платы делал коллега ksiman, потому для более детального описания проще дать ссылку.

контроллер заряда

Схема данной платы также из указанного выше обзора, возможно будет полезна.

схема контроллера

Получается, что данная плата весьма неплохо подходит для заряда аккумуляторов, сначала выставляем напряжение окончания заряда из расчета 4,2 Вольта на элемент, а затем ток заряда.

Вот мы потихоньку и подобрались к предмету разговора, который прежде всего заинтересовал своей низкой ценой. У меня очень большие подозрения насчет «фирменности» установленной микросхемы, но если не использовать ее на все заявленные 3 Ампера, то она вполне жизнеспособна.

В исходном виде на плате расположены три светодиода:
1. Заряжено.
2. Заряд
3. Индикация ограничения тока.

Как работает индикация.

Светодиоды Заряд и Заряжено включены так, что светит только один из них, потому можно их рассматривать как один. В платах без регулировки тока при которой будет срабатывать индикация, переключение происходит при падении тока заряда ниже 1/10 от установленного резистором — Ограничение тока. В обозреваемой плате можно установить произвольный ток срабатывания, я бы советовал выставить 1/5.

Светодиод индикации ограничения тока работает несколько по другому, он светит когда происходит ограничение тока, т.е. когда ток при установленном напряжении стремится вырасти больше, чем установлено регулятором.

Например выставили ток 1 Ампер и 10 Вольт (условно), подключили нагрузку, которая при 10 Вольт потребляет 0.5 Ампера. На выходе будет 10 Вольт 0.5 Ампера. Затем подключили нагрузку, которая при 10 Вольт будет потреблять 1.5 Ампера, на выходе будет 1 Ампер и 8 Вольт (условно), т.е. плата снизит напряжение до такого значения при котором ток на выходе не будет превышать установленного и при этом засветит светодиод.

светодиоды контроллера

Также на плате находится три подстроечных резистора:

1. Регулировка выходного напряжения.
2. Регулировки порога срабатывания индикации окончания заряда.
3. Регулировка порога ограничения выходного тока.

Плата весьма простая, на ней расположена собственно микросхема LM2596, стабилизатор 78L05 и компаратор LM358.
LM2596 собственно ШИМ контроллер.
78L05 используется дли питания компаратора и как источник опорного напряжения.
LM358 «следит» за током и попутно управляет индикацией

плата

В качестве токового шунта работает дорожка на печатной плате.

Такой метод измерения тока не очень хорош, так как ток будет «плавать» в зависимости от температуры платы, но так как для нас стабильность выходного тока не имеет значения, то можно не обращать на это внимание.

Расположение контактов, органов управления и индикации со страницы товара.

Платы с возможностью ограничения выходного тока весьма хорошо подходят для заряда аккумуляторов. А те платы, которые имеют индикацию окончания заряда, позволяют еще и получить некое удобство, позволяющее знать что аккумулятор заряжен.

Но есть у всех вышеперечисленных способов один минус, все эти варианты не могут отключить аккумулятор после окончания заряда, т.е. полностью прекратить процесс.

Конечно мне скажут, а как же живут аккумуляторы в блоках бесперебойного питания. А вот здесь есть особенность, у некоторых типов аккумуляторов есть понятие — циклический заряд и так называемый Standby, т.е. поддерживающий. Тот же свинцовый аккумулятор в циклическом режиме заряжают до 14. 3-15 Вольт, а в дежурном только до 13.8-13.9 Вольта.

Если аккумулятор не отключить, то небольшой ток заряда всегда будет через него течь, и хотя литиевым аккумуляторам в этом плане немного «повезло», ток у них падает очень значительно, но все равно, оставлять их в таком режиме не рекомендуется.

Дело в том, что кадмиевые или свинцовые просто начинают разрушаться, нагреваться и все, а с литиевыми возможно возгорание. Да, литиевые аккумуляторы имеют защитный клапан, но лишняя защита никогда не мешает.

Очень часто задают вопрос — а как же плата защиты, ведь она может отключить аккумулятор по завершении заряда. Может и не только может, а и отключит, только сделает это она не при 4.2 Вольта на элемент, а при 4.25-4.35 Вольта, так как функция отключения для нее скорее защитная, а не основная. Потому так делать крайне не рекомендуется.

Собственно потому я придумал простенькую схемку, которая будет отключать аккумулятор по завершению заряда. Принцип работы очень прост (потому имеет некоторые ограничения). Подключили аккумулятор, так как конденсатор С1 разряжен, то через него течет ток, который открывает транзистор, а он подает ток на реле. Реле подключает к зарядному аккумулятор, а дальше реле питается через оптрон, который подключен к выходу индикации заряда платы преобразователя.

отключение АКБ

Соответственно была разработана небольшая платка, причем в универсальном исполнении.

печатная плата

Когда я придумывал схему, то старался ее максимально упростить, применив минимум компонентов.

1. Реле — любое с напряжением обмотки 12 Вольт (для вариантов с 3-4 аккумуляторами) и контактами рассчитанными на ток хотя бы 2х от тока заряда. (забегая в перед скажу, я взял такое)
2. Транзистор — BC846, 847, или известный КТ315, КТ3102, а также аналоги.
3. Диод — любой маломощный диод.
4. Резисторы — любые в диапазоне 15 — 33кОм
5. Конденсатор — 33-47мкФ 25-50 Вольт.
6. Оптрон — PC817, стоит на большинстве плат блоков питания.

Собрал плату.

Плату я сделал универсальной, можно применить вместо реле полевой транзистор, часть компонентов остается та же, что и была до этого. Кроме того такой вариант более универсален, так как подходит для шуруповертов с 3-4-5 аккумуляторами.

Но у такой платы есть недостаток. Внутри транзистора есть «паразитный» диод и если оставить аккумулятор подключенным к зарядному устройству, но выключить его из розетки, то аккумулятор будет разряжаться через схему зарядного. В том варианте, что я показал выше, будет похожая проблема, но там ток совсем маленький, около 0.5мА и для полного разряда аккумулятору понадобится около 4000 часов.

Здесь применены немного другие номиналы, хотя по сути важен только номинал резисторов R4 и R5. Номинал R5 должен быть по крайней мере в 2 раза меньше чем у R4.

Подбираем компоненты для будущей платы. К сожалению транзистор скорее всего придется купить, так как в готовых устройствах такие применяются редко, они могут встречаться на материнских платах, но крайне редко.

Плата универсальная, можно применить реле и сделать по предыдущей схеме, а можно применить полевой транзистор.

Теперь блок схема зарядного устройства будет выглядеть следующим образом:

Трансформатор, затем диодный мост и конденсатор фильтра, потом плата DC-DC преобразователя, ну и в конце плата отключения.

Полярность выводов индикации заряда я не подписывал, так как на разных платах может быть по разному, если что то не работает, то надо просто поменять их местами, тем самым изменив полярность на противоположную.

Все, скручиваем корпус и ставим на полный прогон. Мне правда пришлось перед этим разрядить аккумулятор, так как я его зарядил в процессе подготовки прошлой части.

Если к зарядному подключается заряженный аккумулятор, то на 1.5-2 секунды срабатывает реле, потом опять отключается, так как ток низкий и блокировка не происходит.

И конечно ссылка на архив с трасировкой плат автора.

В моем случае зарядное представляет из себя следующее устройство:

Схема выглядит примерно так:

В большинстве случаев, простые зарядные именно так и выглядят. Зеленый светодиод сигнализирует о том, что зарядное подключено к сети. А красный по большому щету вообще не о чем, он сигнализирует о том, что есть падение напряжения на токозадающем резисторе R1, т.е. АКБ подключен. Ни о каком токе заряда или контроле состояния речи не идет.

Вот это чудо и буду я переделывать используя весь тот материал, который вам предоставил в следующей части.

Поделится

Установка беспроводного зарядного устройства в стол

предыдущий | Далее

 

 

Если вы пришли к выводу, что беспроводное зарядное устройство лучше всего использовать в качестве скрытого инструмента, вы, несомненно, задумаетесь о том, как это сделать. Как следует из названия, мы заметили, что все больше и больше людей по понятным причинам устанавливают беспроводные зарядные устройства внутри мебели.

Это не только гарантирует легкий доступ к зарядному устройству, но и предохранит зарядную панель от возможных повреждений, которые она могла бы получить, если бы ее положили на стол. Достаточно взглянуть на традиционное зарядное устройство и увидеть, сколько на нем царапин и потертостей.

Теперь, когда дело доходит до установки беспроводного зарядного устройства на выбранный вами стол, вы должны сначала выяснить, какой предмет мебели получит эту награду. Как мы скоро узнаем, когда дело доходит до индукционной зарядки, не все поверхности одинаковы. На самом деле, некоторые более толстые поверхности могут даже полностью препятствовать доставке заряда.

Чтобы быть в безопасности, вы должны выбрать деревянный стол с тонкой столешницей, на которой можно разместить инструмент. Вы также должны убедиться, что именно этот стол вы собираетесь использовать в обозримом будущем, потому что это изменение является постоянным.

Требования

Помимо стола, который вы выбрали для размещения зарядного устройства, вы также должны иметь под рукой все необходимые инструменты. Для начала вам понадобятся защитные очки, биметаллическая кольцевая пила, держатель оправки, плоская отвертка, ручная дрель/беспроводная отвертка и беспроводная зарядная панель, которую вы планируете установить.

Имейте в виду, что установка беспроводного зарядного устройства на стол также может быть выполнена с минимальными усилиями с вашей стороны, если вы достаточно просто установите его под столешницей.

Другими словами, если верхняя часть стола достаточно тонкая, некоторые зарядные панели могут просто проникать в поверхность волнами, что означает, что вы можете просто прикрепить их к столу снизу.

Если это не так, по крайней мере убедитесь, что ваш стол может выдержать изменение и что процедура не требует, чтобы вы подходили слишком близко к частям, которые обеспечивают структурную устойчивость вашего стола. Возможно, вам следует держаться подальше от любых вращающихся частей, которые могут помешать подаче заряда или повредить само зарядное устройство.

Установка

Несмотря на множество инструментов, которые вы подготовили для работы, вам будет приятно узнать, что процесс установки на самом деле довольно прост.

Прежде всего, привинтите биметаллическую коронку и держатель оправки так, чтобы их резьба вошла в два отверстия коронки. Чтобы убедиться, что два элемента плотно соединены друг с другом, используйте плоскую отвертку, чтобы затянуть резьбовой штифт на держателе оправки.

Помните, что когда вы устанавливаете беспроводное зарядное устройство на письменный или стол, размещение зарядной площадки должно соответствовать требуемой ориентации ваших устройств Qi-ready. Если зарядное устройство и телефон не выровнены должным образом, заряд может снизиться или, что еще хуже, ваш телефон может вообще не заряжаться.

В любом случае, предполагая, что вы определили правильное выравнивание и выбрали правильное место для установки, вы не можете приступить к сверлению фактического отверстия. Вы делаете это, закрепляя биметаллическую кольцевую пилу с держателем оправки в аккумуляторном шуруповерте/ручной дрели. Затем вы центрируете биметаллическую кольцевую пилу и прорезаете отверстие.

Теперь убедитесь, что вы сверлите в постоянном темпе и с постоянным давлением, избегая, насколько это возможно, маятниковых движений. Если вы сделаете это правильно, у вас останется идеально вырезанное отверстие для беспроводного зарядного устройства. Все, что вам нужно сделать сейчас, это вставить зарядную панель в отверстие и подключить шнур питания к настенной розетке.

Учитывая все обстоятельства, эта процедура не займет у вас больше нескольких минут, если у вас есть все необходимые инструменты, и не должна быть особенно сложной.

Похожие сообщения в блоге

Впереди светлое будущее Qi: как инфраструктура беспроводной зарядки постоянно развивается

Тем не менее, мы можем понять, почему столы в ресторанах со встроенными беспроводными зарядными устройствами никогда не смогут сравниться с автономными зарядными станциями.

Беспроводные зарядные устройства на основе стандарта Qi — как далеко могут зайти технологии?

Например, зарядный луч генерируется лазерным излучателем, сконфигурированным для создания сфокусированного луча в ближнем инфракрасном спектре.

Будущее беспроводной зарядки выглядит многообещающе

 Единая глобальная экосистема беспроводной зарядки во многих отношениях позволяет новым технологиям придерживаться определенного набора функциональных параметров.

Переделка Зарядного устройства для шуруповертов Hitachi • CIMFLOK.COM

Если у вас есть (или валялись у друзей) старая Ni-Cd отвертка и все аккумуляторы сели, да еще зарядное устройство сломано (сгорело), ​​закажите Карта МТ3608 за 40р на Али, ищем старую зарядку от сотового телефона (навалом) и старые аккумуляторы для ноутбука (из которых нам нужны аккумуляторы Li-Ion 18650).

Сегодня мы будем переделывать старый шуруповерт с никель-кадмиевых аккумуляторов на литий-ионные, и соответственно модифицировать его зарядное устройство.

Все легко переделывается. Начнем с аккумуляторов.

Если шуруповерт был на 12В, нам понадобится 4 батарейки 18650 (максимум 16,8В), если на 14,4В. 5 шт (максимум 21В), если на 18В. 6 шт. (максимум 25,2 В). Запас прочности электродвигателя и других механизмов у шуруповерта большой, и увеличить мощность нам не помешает.

Сначала тестируются аккумуляторы 18650 Li-Ion, если есть из чего выбирать, то подбираются с такой же емкости . Это можно сделать дорого и аккуратно, используя BT-C3100 V2.2 или аналогичный. На них написана заводская емкость аккумуляторов 18650 от 2000-2200 мАч ноутбуков, если нет, то ее можно разделить на 2 емкости, написанные на шильдике аккумулятора. Бегать будет лучше, если дать 3 цикла заряда/разряда. Если измеренная емкость на 5-10% ниже написанной, то это допустимо, если же емкость значительно ниже, то аккумуляторы потеряли емкость. Также измеряем внутреннее сопротивление аккумуляторов в приборе и оно тоже должно быть одинаковым.

Без точных приборов достаточно зарядить Li-Ion аккумуляторы 18650 до 4,2В любой подходящей зарядкой с ограничением по напряжению, дать такую ​​же нагрузку и заодно измерить напряжение на них. Если оно упало до того же значения, то нормально. Например, нагружаем полностью заряженный 18650 нагрузкой 3-5 Ом (ток от 1,5 до 0,8 А), а через такое же время (например, три минуты) измеряем, сколько осталось от 4,2В под нагрузкой и без нагрузки. Если конечное напряжение под нагрузкой и без нагрузки одинаковое, аккумуляторы подходят. Это указывает на одинаковую грузоподъемность и одинаковое внутреннее сопротивление.

Старые дохлые/закрытые Ni-Cd аккумуляторы выкидываем из корпуса сменной батареи, а вместо них запаиваем Li-Ion до нужного нам напряжения. Для самих Li-Ion аккумуляторов лучше оставить плоские разъемы от ноутбука, но если все-таки припаивать провода к Li-Ion, охлаждать припой обдувом, паять быстро флюсом или кислотой для уменьшения времени нагрева аккумулятора поверхности во избежание повреждений. Возьмите провода для пайки от старого компьютерного БП, или потолще.

Будет лучше, если аккумуляторы будут припаяны через плату балансировки заряда: «Плата защиты баланса 4S или 6S», это не позволит зарядить аккумуляторы выше 4,2В. Так же через такую ​​плату будут лучше заряжаться аккумуляторы разной емкости, но в случае разных аккумуляторов, менее емкие будут деградировать намного быстрее, т.к. будут разряжаться ниже минимального напряжения 2,8В, при этом еще будет запас напряжения на более емких. Отвертка еще крутится, но более слабые батарейки уже разряжаются.

Затем проверяем как шуруповерт включает Li-Ion аккумуляторы, обычно это увеличение мощности на 20-40% и уменьшение веса сменного аккумулятора.

Теперь переходим к переделке зарядки, особенно если она сгорела, или если ее нет. У разных фирм они разные, Бош, Штурм, Хитачи, все по разному. Из зарядного кейса можно достать всю начинку, кроме клеммника. По большому счету нам нужна только клеммная колодка для подключения съемного аккумулятора. Конечно, в случае все будет лучше. У меня был слишком большой ток от тяжелого трансформатора, а он был тяжелым, поэтому я нашел ему лучшее применение (в лабораторном БП).


Вывод зарядного устройства для сотового припаиваем к плате МТ3608 на контактах ВВн, плюс, минус. Включаем, подкручиваем резистор до нужного нам выходного напряжения, это 16,8, 21 или 25,2В соответственно, какой у вас Li-Ion аккумулятор.

МТ3608 – повышающий преобразователь напряжения с широтно-импульсной модуляцией, на обычных платах выходной конденсатор нужно припаять к большому контакту выхода VOut и соответственно зачистить землю рядом с ним для припайки конденсатора. Это недоработка китайцев, плохо работает плата с завода.

Делаем ограничение тока заряда, для этого нам понадобится резистор 5-15 Ом и самый простой и маленький диод. Припаяйте плюсовой провод VOut непосредственно к клеммной колодке плюса аккумулятора. А VOut- через резистор в минусовом проводе. С точки измерения резистора диод (анод) припаиваем (катод с полоской) к сигналу FB микросхемы, это 3-й контакт МТ3608, он маленький, но прозванивается на потенциометре на другую сторону платы, где легче паять.

Подключаем аккумулятор на зарядку и проверяем ток заряда, он будет от 50 мА (15 Ом) до 200 мА (5 Ом). Соответственно, ток от заряда ячейки будет, например, 50мА (21В/5В/КПД) = 300мА, а для 200мА (21В/5В/КПД) = 1200мА (может быть великоват, не всякая зарядка ячейки потянет Это). Проверяем зарядку, если она греется или напряжение с нее падает с 5В до 2,5В, то ток надо уменьшить во избежание перегрева.

Вы спросите, почему такой маленький зарядный ток, ведь заряжаться будет долго. Первый момент, при больших токах заряда, близких к 1,0С (С-емкость Li-Ion аккумулятора), время заряда около часа, через 1-2 года таких зверств аккумулятор однозначно умирает. Во-вторых, даже старые Li-Ion аккумуляторы имеют свойство восстанавливаться при малых токах зарядки (если конечно химия не потекла и не вздулась), а малоточная зарядка точно продлит жизнь аккумулятору. Вы можете посмотреть https://www.youtube.com/watch?v=ep8o8DVPz_0, чтобы изучить проблему.

Минусы: долгое время полной зарядки (10-20 часов). Крайне нежелательно ставить Li-Ion аккумуляторы ниже 3В на ячейку, то есть делать полный разряд (когда отвертка крутится намного слабее), Li-Ion аккумуляторы намного раньше теряют свою емкость на морозе, даже при 0 градусах шуруповерт будет мало работать (Можно надеть перчатку или шарф или шарф только на батарею шуруповерта для кратковременной работы на морозе, или греть только батарею в помещении на батарее отопления).

Вместо зарядки от сотового можно взять 5В или 12В от компьютерного БП или БП от роутера/модема.

Как-то мне попалась очень слабенькая китайская батарейка от сотового. Написано 5В, 450мА. Даже при 21В 50 мА у МТ3608 перегрузилась зарядка и выходное напряжение упало до 2В, зарядка начала кипеть. Что пришлось переделать:

Сначала сделал ограничение по напряжению начала преобразования Uвх для МТ3608 ( чтобы преобразователь не переводил зарядный БП в состояние 2В 2А, когда все начинало сильно греться и сжечь ) На схеме простых деталей резистор R2 можно заменить подстроечным на 1-10-100кОм (оптимально 10к и R1 10к тогда). Это дало возможность запускать преобразователь StepUp только от повышенного входного напряжения, максимальный ток для китайской зарядки был при напряжении 4,3 В, если немного увеличить подстроечник, преобразователь переставал работать и напряжение подскакивало до 5В.

Еще хотел поднять зарядный ток, 21В 80 мА не хватило.

Чем выше напряжение на вторичной обмотке высокочастотного трансформатора преобразователя питания, тем больше мощности можно снять при одном и том же токе (а максимальный ток зависит от сечения провода), но можно перейти на насыщение или перегрев трансформатора, а цепь питания может уйти в защиту или перегореть.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *