Схема зарядного устройства автомат для шуруповерта: Схема зарядного устройства для шуруповерта 12вольт. Электрическая схема зарядного устройства шуруповерта

Содержание

до 10 А, своими руками, ЗУ для АКБ из трансформатора

Автор Акум Эксперт На чтение 12 мин Просмотров 99.4к. Опубликовано Обновлено

Практически каждый автолюбитель рано или поздно сталкивается с необходимостью подзарядки аккумуляторной батареи стационарным зарядным устройством (СЗУ). Причин тут множество – частые пуски, короткие поездки, длительные стоянки. Но для того чтобы батарея служила долго, она должна не только быть постоянно заряженной, но и правильно заряжаться. В этой статье мы рассмотрим несколько схем регуляторов зарядного тока. Ведь этот узел – неотъемлемая часть любого «правильного» СЗУ.

Содержание

  1. Простые зарядные устройства с ручной регулировкой
  2. Простой регулятор с балластными конденсаторами
  3. С плавной регулировкой тока зарядки
  4. С зарядкой ассиметричным током
  5. Схемы регуляторов тока на микросхемах
  6. Стабилизатор
  7. Регулятор-стабилизатор
  8. Регулятор тока и напряжения
  9. Подведем итоги

Простые зарядные устройства с ручной регулировкой

Начнем с простых устройств, позволяющих вручную регулировать параметры зарядки. Поскольку большинство аккумуляторных батарей легковых автомобилей имеет емкость не более 100-120 Ач, зарядного устройства, обеспечивающего ток до 10 ампер, будет вполне достаточно.

Простой регулятор с балластными конденсаторами

Сделать такое зарядное устройство, не имеющее дефицитных деталей, сможет каждый, умеющий пользоваться мультиметром и держать в руках паяльник. Взглянем на схему, приведенную ниже.

Схема простого зарядного устройства с балластными конденсаторами

Устройство состоит из понижающего трансформатора Tr1, мощного выпрямителя, собранного на диодах VD1-VD4 и набора конденсаторов разной емкости С1-С4. Каждый из конденсаторов может включаться в цепь питания трансформатора при помощи отдельного выключателя S2-S4. Емкости конденсаторов подобраны так, что каждый последующий обеспечивает выходной ток ЗУ вдвое больший, чем предыдущий.

В зависимости от номинала и количества подключенных конденсаторов будет изменяться выходное напряжение, а значит, и зарядный ток. Комбинируя конденсаторы выключателями S2-S4, можно изменять зарядный ток от 1 до 15 А с шагом 1 А, что более чем достаточно для зарядки любой АКБ.

Напряжение на клеммах аккумуляторной батареи, подключенной к клеммам XS2, XS3, можно контролировать при помощи вольтметра PU1. Величину зарядного тока покажет амперметр PA1. Выключателем питания служит тумблер S1.

В конструкции можно использовать любой сетевой трансформатор (можно самодельный), обеспечивающий ток не менее 10 А при выходном напряжении 22-24 В. Диоды Д305 можно заменить на любые выпрямительные, рассчитанные на прямой ток не менее 10 А и выдерживающие обратное напряжение не ниже 40 В. Диоды выпрямительного моста необходимо установить на изолированные друг от друга радиаторы с площадью рассеяния не менее 100 см2 каждый.

Важно! Если полупроводники будут устанавливаться на один общий радиатор, то это нужно делать через изолирующие слюдяные прокладки. При этом рассеиваемая площадь радиатора выбирается не менее 300 см2 .

Конденсаторы C2-C4 – неполярные, бумажные, рассчитанные на рабочее напряжение не ниже 300 В. Подойдут, к примеру, МБГЧ, МБГО, КБГ-МН, МБМ, МБГП, которые широко использовались в качестве фазосдвигающих для асинхронных двигателей бытовой техники. На месте PU1 может работать любой вольтметр постоянного тока с пределом измерения 30 В. PA1 – амперметр с пределом измерения 20-30 А, в качестве которого удобно использовать любой микроамперметр с соответствующим шунтом.

С плавной регулировкой тока зарядки

Следующая схема сложнее, где в качестве регулирующего элемента использует тиристор. Преимущество данной конструкции – плавная регулировка выходного напряжения, а значит, и зарядного тока. Диапазон регулировки – 0-10 А. Принцип работы СЗУ – фазоимпульсное управление ключом (тиристором).

Схема импульсного зарядного устройства

Прибор состоит из силового трансформатора T1, выпрямительного моста, собранного на мощных диодах VD1-VD4, и схемы регулировки тока, собранной на транзисторах VT1, VT2 и тиристоре VS1. Переменное напряжение величиной 18-22 В поступает со вторичной обмотки силового трансформатора на выпрямительный мост. Выпрямленное, оно подается на схему регулировки. В начале полуволны начинает заряжать конденсатор С2. Скорость его зарядки можно плавно регулировать переменным резистором R1.

Как только конденсатор зарядится до определенной величины, откроется аналог однопереходного транзистора, собранный на элементах VT1, VT2. Конденсатор быстро разрядится через управляющий электрод тиристора, последний откроется и будет находиться в таком состоянии до окончания этой полуволны. При появлении следующей процесс повторится.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Таким образом, при каждой полуволне тиристор будет открываться с той или иной задержкой (зависит от времени заряда конденсатора С2), отсекая передний ее фронт. Чем большая часть полуволны будет отсечена, тем меньшее действующее напряжение будет приложено к клеммам аккумулятора, а значит, и зарядный ток будет ниже.

В качестве силового подойдет любой сетевой трансформатор с напряжением на вторичной обмотке 18-22 В при токе не менее 10 А. На месте VT1, кроме указанного, могут работать КТ361Б-КТ361Е, КТ502Г, КТ502В, КТ3107А, КТ501Ж-KT501K. Вместо КТ315А подойдут КТ315Б-Д, КТ3102А, КТ312Б,  КТ503В-Г, П307. В качестве С2 могут использоваться конденсаторы типа МБГП, К73-17, К42У-2, К73-16, К73-11 емкостью 0.47-1 мкФ. Вместо КД105Б подойдут КД105В, КД105Г или Д226 с любой буквой. Переменный резистор R1 типа СПО-1, СП-1, СПЗ-30а.

Амперметр PA1 – любой с током полного отклонения 10 А. Вместо мощных выпрямительных диодов Д245 подойдут любые из серий КД213, КД203, Д245, КД210, Д242, Д243, выдерживающие ток не менее 10 А и обратное напряжение на ниже 50 В. Их необходимо установить на радиаторы площадью не менее 100 см2. Тиристор КУ202В можно заменить на КУ202Г-Е и даже на Т-160 или Т-250. Он тоже устанавливается на радиатор.

Полезно! Если выходное напряжение трансформатора несколько выше 22 В (скажем, 24-28 В), то можно использовать и его. Единственное, при этом необходимо номинал резистора R5 увеличить до 200 Ом.

С зарядкой ассиметричным током

Это зарядное устройство имеет предел регулировки тока от 0 до 10 А и производит зарядку ассиметричным током, при котором определенное время батарея заряжается, а остальную часть – разряжается током около 600 мА. Это существенно продлевает жизнь АКБ и предотвращает сульфатацию.

Схема СЗУ с зарядкой ассиметричным током

Здесь регулировка зарядного тока производится по высокому переменному напряжению при помощи симметричного тиристора (симистора). Принцип регулировки тот же, что и в предыдущей схеме, – фазоимпульсное управление. Но схема регулятора выглядит и работает несколько иначе.

В начале положительной полуволны зарядка конденсатора С2 происходит через резистор R3 и диод VD1 диодного моста VD1-VD4. Как только конденсатор зарядится до напряжения зажигания газоразрядной лампы HL1 (время зарядки зависит от положения движка переменного резистора R1), последняя зажжется. Конденсатор быстро разрядится через управляющий электрод симистора, и он откроется, подавая напряжение на сетевую обмотку понижающего трансформатора Т1.

В таком состоянии симистор будет находиться до окончания полупериода. При отрицательной полуволне конденсатор будет заряжаться через резистор R5 и диод VD2. При этом полярность напряжения будет противоположной предыдущей. Снова разряд в лампе, тиристор открывается, пропуская на обмотку уже отрицательную полуволну.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Любопытно! Резисторы R3 и R5 исполняют еще одну немаловажную роль. Они попеременно через диоды VD3 и VD4 шунтируют сетевую обмотку трансформатора. Это предотвращает закрывание симистора сразу после короткого открывающего импульса на время, пока ток в обмотке Т1, являющейся индуктивной нагрузкой, не установится выше тока удержания симмитричного тиристора.

Пониженное напряжение, величина которого зависит от положения движка R1, выпрямляется диодами VD5, VD6 и подается на клеммы аккумуляторной батареи, производя ее зарядку выбранным нами током. После закрытия симистора и до следующего его открытия батарея разряжается через нагрузочный резистор R6, обеспечивающий разрядный ток порядка 600 мА.

Зарядный ток можно контролировать при помощи амперметра PA1, прибор PV1 показывает напряжение на клеммах АКБ.

Важно! Устанавливая величину зарядного тока по амперметру, необходимо учитывать и ток (600 мА), протекающий через резистор R6. То есть, если мы установим на приборе 6 А, фактический зарядный ток, протекающий через АКБ, будет составлять 6 – 0.6 = 5.4 А.

О деталях. В качестве сетевого подойдет любой трансформатор соответствующей мощности (выдаваемый ток не менее 10 А) с выходным напряжением 20 В и отводом от середины. Если вторичная обмотка не имеет отвода от середины, то можно использовать выпрямитель, собранный по мостовой схеме. Диоды VD5, VD6 – любые мощные выпрямительные на ток не менее 10 А и обратное напряжение не ниже 40 В.

VD1-VD4 можно заменить на любые выпрямительные, выдерживающие ток не менее 200 мА и напряжение 300 В. Конденсаторы С1, С2 – пленочные или бумажные, неполярные. Симистор можно заменить на КУ208В. Амперметр PA1 имеет предел измерения 15-20 А, вольтметр PV1 – 20 В. Мощные выпрямительные диоды VD5, VD6 и симистор VS1 необходимо установить на радиаторы. При этом диоды можно установить на общий радиатор без изолирующих прокладок. Диоды VD1-VD4 в радиаторе не нуждаются.

Схемы регуляторов тока на микросхемах

Выше мы рассмотрели несколько схем зарядных устройств с ручной регулировкой. Основной их недостаток – отсутствие стабилизации. В процессе зарядки АКБ ток через нее уменьшается, а это значит, что придется постоянно контролировать и подстраивать этот параметр. Но построить стабилизированный источник питания ненамного сложнее. Для начала несколько схем регулятора тока для зарядного устройства со стабилизацией, которые можно использовать для построения стационарных ЗУ.

Стабилизатор

Эта схема позволяет заряжать шести- и двенадцативольтовые батареи током одной, заранее установленной стабильной величины до 10 ампер.

Стабилизатор тока для зарядного устройства

Сердцем узла является интегральный стабилизатор напряжения, включенный по схеме токовой стабилизации. Величина зарядного тока будет зависеть от номинала резистора R4, который можно рассчитать по формуле:

I = 1.2/R,

где:

  • I – необходимый зарядный ток в А;
  • R – номинал резистора R4 в Ом.

Поскольку сама по себе микросхема КР142ЕН12А маломощная, для обеспечения большей мощности используются  транзисторные ключи T1 и T2, включенные параллельно. Резисторы R1 и R2 – токовыравнивающие. Они компенсируют разброс параметров транзисторов.

Несмотря на токовыравнивающие резисторы желательно подбирать транзисторы с как можно более близкими коэффициентами передачи.

Резисторы R1, R2, R4 изготавливаются из отрезков обмоточного провода необходимой длины, которые для большей компактности свернуты в спираль. Транзисторы VT1 и VT2 можно установить на один общий радиатор без изолирующих прокладок. Площадь рассеяния радиатора – 300 см2. Если на место R4 установить мощный реостат сопротивлением 0.8 Ом, то легко получить регулируемый стабилизатор.

Регулятор-стабилизатор

Эта схема является регулируемым стабилизатором и в отличие от предыдущей имеет более высокий КПД, поскольку рассеиваемая мощность на токозадающем резисторе намного меньше из-за его низкого сопротивления.

Схема регулятора-стабилизатора на операционном усилителе

Узел собран на операционном усилителе LM358 и полевом транзисторе IRFZ44. Регулировка зарядного тока производится при помощи переменного резистора R3. Резистор R5 является токозадающим.

При указанных на схеме номиналах R5 регулировка будет производиться в диапазоне 0 … 8 А. Если необходимы большие величины, то номинал резистора нужно уменьшить.

На месте T1 может работать транзистор STP55NF06, стабилитрон 1N4734A заменим на любой маломощный с напряжением стабилизации 5.6 В. Отечественные аналоги микросхемы LM358 – КР1401УД5, КР1053УД2, КР1040УД1. Полевой транзистор устанавливаем на радиатор.

Регулятор тока и напряжения

И напоследок рассмотрим схему, которая будет полезна для конструирования зарядного устройства с регулировкой напряжения и тока. Подойдет она и в качестве лабораторного источника питания. Устройство обеспечивает плавную регулировку напряжения в диапазоне 2.4-28 вольт и регулировку ограничения тока от 0 до 15 ампер. По сути, это готовое зарядное устройство-автомат, достаточно добавить к схеме силовой трансформатор с выходным напряжением 18-22 В и способный обеспечить ток до 15 А.

Схема универсального регулятора

Регулятор напряжения собран на транзисторах Т1 Т2 и регулируемом стабилитроне D1 по схеме обычного параметрического стабилизатора. Величина выходного стабилизированного напряжения регулируется при помощи переменного резистора P1. Стабилизатор-регулятор тока выполнен на интегральном стабилизаторе напряжения DD1 и мощном полевом транзисторе T3. Регулировка осуществляется при помощи переменного резистора P2. Схемы обоих узлов классические и особых пояснений не требуют.

Единственное, скажем пару слов о назначении светодиодов Led1 и Led2. Они служат для индикации правильного подключения СЗУ к аккумуляторной батарее. Если полярность верная, то загорится индикатор Led1: можно подключать зарядное устройство к сети и начинать зарядку. Если полярность перепутана, то загорится Led2. Пока прибор не включен в сеть, ему ничего не грозит. Просто меняем полярность на правильную.

Полезно! Зарядка батареи производится следующим образом. Резистором P1 устанавливаем конечное напряжение зарядки (14.5 В), резистором P2 – начальный ток заряда (0.1 от емкости батареи). В процессе зарядки АКБ напряжение на ее клеммах будет увеличиваться, и как только оно достигнет установленного нами значения, ток зарядки упадет до 100-200 мА, процесс закончен.

В устройстве вместо моста KBPC2510 можно использовать любые мощные выпрямительные диоды (VD1-VD4), выдерживающие ток не менее 15 А и обратное напряжение 50 В. Транзистор TIP35C можно заменить на КТ867А, TIP41С – на КТ805 или КТ819. Диоды и транзисторы нужно установить на радиаторы площадью не менее 100 см2 каждый. Если используется мост, то он тоже должен иметь радиатор. Аналоги управляемого стабилитрона TL431 – КР142ЕН19А, К1156ЕР5Т, KA431AZ, LM431BCM, HA17431VP, IR9431N.

Интегральный стабилизатор напряжения L7812CV заменим на LM7812CT, UA7812CKC KA7812A, MC7812CT, КР142ЕН8Б. Полевой транзистор IRFP250 можно заменить на IRFP260. Ему тоже нужен радиатор. Светодиоды – любые индикаторные, желательно разного цвета свечения.

Подведем итоги

Итак, мы выяснили, что схем, позволяющих регулировать параметры зарядки аккумуляторной батареи, немало. Сложные и простые, с широким функционалом и просто стабилизаторы – выбирать есть из чего. Ну а тем, кого не удовлетворила, надо признать, довольно скромная подборка конструкций, можно рекомендовать статью «» и несколько роликов по теме.

Простое зарядное устройство

Зарядное устройство из готовых узлов

Зарядное устройство с автоматическим отключением

Сейчас читают:

Схемы зарядных устройств (с использованием LM317, LM338)

Поделки своими руками для автолюбителей

В настоящей статье мы обсудим несколько простых схем зарядных устройств, предназначенных для зарядки аккумуляторов 12 В. Эти устройства очень простые и недорогие по своей конструкции, но при

этом обладают высокой точностью в поддержании выходного напряжения и тока. Все предложенные здесь схемы контролируют выходной ток. Это означает, что поступающий в аккумулятор ток никогда не будет выходить за предварительно определенный, фиксированный уровень.

Примечание: Если вам нужно зарядное устройство для аккумуляторов с мощным током, то ваши потребности могут быть удовлетворены данными конструкциями устройств зарядки свинцово-кислотных аккумуляторов.

Простейшее зарядное устройство для аккумуляторов 12 В

Как я неоднократно повторял во многих статьях, основным критерием безопасной зарядки аккумулятора является поддержание максимально входного напряжения, величина которого чуть ниже напряжения зарядки, указанного в спецификации аккумулятора, а также поддержание тока на уровне, не вызывающем нагрев аккумулятора.

При соблюдении этих двух условий вы можете заряжать любой аккумулятор, используя простую, приведённую схему.

В приведенной, простейшей схеме, выход трансформатора составляет 12 В. Это означает, что пиковое напряжение после выпрямления будет составлять 12 х 1.41 = 16.92 В. Хотя это несколько выше, чем 14 В, уровня полного заряда для аккумулятора, сам аккумулятор поврежден не будет. При этом рекомендуется отключать аккумулятор, как только амперметр покажет нулевое значение напряжения.

Автоматическое отключение: Если вы хотите, чтобы приведенная выше схема обеспечивала автоматическое отключение зарядного устройства по завершению зарядки, вы легко можете добиться этого, добавив на выход биполярный транзистор, как показано ниже:

В данной схеме мы использовали общий эмиттер биполярного транзистора, к базе которого подключено 15 В. Это означает, что напряжение эмиттера никогда не опустится ниже 14 В. А когда на контактах аккумулятора напряжение превысит 14 В, транзистор переходит в состояние обратного смещения, и просто осуществляет автоматический режим отключения. Вы можете изменять значение напряжения 15 В стабилитрона, пока не получите для аккумулятора напряжение примерно в 14.3 В.

В результате первая схема преобразуется в полностью автоматическую систему зарядки АКБ, которую несложно сделать. Кроме того, поскольку здесь не используется конденсаторный фильтр, то 16 В применяется не в качестве непрерывного напряжения постоянного тока, а скорее, как 100 Гц выключатель. Это снижает нагрузку на аккумулятор, а также предотвращает сульфатирование пластин аккумулятора.

Почему важен контроль тока?

Зарядка аккумулятора любого вида может носить критический характер, и поэтому требует уделять ей определенное внимание. Когда сила тока, заряжающего аккумулятор, значимо высокая, контроль тока становится важным фактором. Все мы знаем, насколько «умными» являются линейные стабилизаторы LM317, и не удивительно, что эти устройства применяются в большом количестве схем и приложений, требующих точное управление мощностью.

Представленная ниже схема зарядного устройства для аккумуляторов 12В с контролем тока на базе LM317 показывает, как можно сконфигурировать LM317, используя всего лишь пару сопротивлений и источник питания в виде стандартного диодного моста для обеспечения зарядки аккумулятора 12 В со всей возможной точностью.

Как это работает?

Стабилизатор подключается в обычном режиме, когда сопротивления R1 и R2 используются для требуемой регулировки напряжения. Входная мощность подается на LM317 с обычного диодного моста. После фильтрации через конденсатор C1 напряжение составляет примерно 14 вольт. Отфильтрованный постоянный ток с напряжением в 14 В, поступает на входной контакт стабилизатора. Контакт регулировки LM317 подключён через фиксированное сопротивление R1 и переменное сопротивление R2. Изменяя величину сопротивления R2 может плавно менять выходное напряжение, подаваемое на аккумулятор. Без подключения сопротивления Rc вся схема вела бы себя, как простой источник питания.

Однако сопротивление Rc и транзистор BC547 на указанных позициях в схеме, обеспечивают возможность воспринимать ток, поступающий в аккумулятор. Пока этот ток остается в требуемых безопасных границах, напряжение остается на заданном уровне. Однако при повышении силы тока стабилизатор снижает напряжение, ограничивая дальнейший рост тока и гарантируя безопасность аккумулятора.

Формула для расчета Rc:

R = 0.6/I, где I — максимальная величина требуемого выходного тока.

Для оптимальной работы LM317 будет требоваться наличие теплоотвода (радиатора).

Для наблюдения за состоянием зарядки аккумулятора используется подключенный к схеме потенциометр. Как только он покажет нулевое напряжение, аккумулятор можно отсоединить от зарядного устройства и использовать по назначению.

Принципиальная схема № 1

Список элементов

Для изготовления описанной выше схемы требуются следующие элементы; R1 = 240 Ом R2 = 10 кОм с предварительной установкой C1 = 1000 мкФ/25 В Диоды = 1N4007 TR1 = 0-14 В, 1 А

Как подсоединить потенциометр к схеме с LM317 или LM338?

Следующая схема (2) показывает, как правильно подключить 3-контактный потенциометр к схеме, использующей стабилизатор напряжения LM317 или LM338. Для подключения потенциометра к схеме его центральный контакт и любой боковой контакт соединяется с выходными контактами схемы. Третий контакт потенциометра не используется.


схема 2

Компактное зарядное устройство аккумуляторов 12В на базе LM338

Интегральная схема LM 338 представляет собой выдающееся устройство, которое может быть применено в неограниченном числе возможных приложений электронных схем. Ниже мы покажем, как использовать ее для получения автоматического зарядного устройства аккумуляторов 12 В.

Почему именно ИС LM338 ?

Основной функцией этой ИС является управление напряжением, и при незначительных, простых модификациях она может быть применена для управления током. Схема зарядного устройства аккумуляторов идеально подходит для этой ИС и мы намерены изучить одну такую схему для создания автоматического зарядного устройства аккумуляторов 12 В с использованием ИС LM338. Обращаясь к принципиальной схеме, мы видим, что вся схема построена вокруг ИС LM301, формирующей схему управления для выполнения отключения. LM338 настроена в качестве контроллера силы тока, и как модуль прерывающего выключателя.

Использование LM338 в качестве регулятора, а операционного усилителя в качестве компаратора

Вся работа зарядного устройства может быть проанализирована с учетом следующих соображений: LM 301 используется в качестве компаратора и её не инвертированный вход подключается к опорной точке, создаваемой делителем напряжения, состоящего из R2 и R3. Напряжение, снятое с точки соединения R3 и R4, используется для установки выходного напряжения LM338 на уровень, который несколько выше требуемого напряжения зарядки – это примерно 14 вольт. Данное напряжение подается на заряжаемый аккумулятор через сопротивление R6, включенное в схему в качестве датчика силы тока. Сопротивление в 500 Ом, соединяющее входные и выходные контакты LM338, гарантирует, что даже после того, как схема будет автоматически отключена, аккумулятор будет постепенно заряжаться пока он остается подключенным к выходу схемы. Кнопка пуска (start) используется для запуска процесса зарядки после подсоединения к выходу схемы частично разряженного аккумулятора. Выбор величины R6 позволяет получать различные скорости зарядки в зависимости от емкости аккумулятора.

Функционирования схемы (согласно объяснениям +ElectronLover)

«После того, как заряжаемый аккумулятор будет иметь полный заряд, напряжение на инвертированном входе операционного усилителя станет выше установленного напряжения на неинвертированном входе LM338. Это моментально переключит логику усилителя на низкий уровень».

Согласно моим предположениям: V+ = VCC — 74 мВ V- = VCC — Ток зарядки x R6 VCC= напряжение на контакте 7 усилителя

Когда аккумулятор зарядится полностью, ток зарядки уменьшается. V- становится выше, чем V+, выход усилителя снижается, включая PNP и LED. Кроме того, поскольку R4 через диод будет соединено с заземлением, то R4 становится параллельным R1, снижая фактическое сопротивление на управляющем контакте LM338 до уровня заземления.

Напряжение (LM338) = 1.2+1.2 x Reff / (R2+R3), где Reff — это сопротивление регулирующего контакта по отношению к заземлению.

Когда Reff понижается, выходное напряжение LM338 снижается, прекращая процесс зарядки.

Популярное;

↑ Критерий отключения

Итак, токовый режим выбран, следующий и самый сложный этап — выбор критерия отключения зарядки. Обычно используются: • отключение по таймеру, • по достижению порогового напряжения, • по мизерному падению напряжения при полной зарядке, • по температуре батареи.
Проблема в том, что в одних случаях реализация сложна, в других ненадежна. Приемлемый вариант — пороговое напряжение

, но если хотя бы один элемент плохой, напряжение никогда не достигнет порогового уровня. Поэтому я рекомендую при первой зарядке проконтролировать напряжение конкретной батареи. В литературе написано, что напряжение полной зарядки на элемент составляет 1,45-1,48 В.

Аналоги LM317

Что делать, если нет возможности использовать LM317? Можно воспользоваться ее аналогами. Братьями-близнецами данного компонента являются UPC317, GL317, ECG1900 и SG317. Отечественный же аналог — это KP142Eh22A, а также существует KP142ЕН12 с фиксированным напряжением.

Если LM317 не хватает мощности для вашего проекта, то можно воспользоваться более мощными вариантами:

  • LM350AT и LM350T – максимальный выходной ток 3А и мощность 25Вт
  • LM350K – ток 3 А и мощность 30 Вт
  • LM338T и LM338K – ток 5 А

Все эти микросхемы имеют одинаковые выводы, поэтому схемы не придется никак менять.

↑ Режим зарядки по току

Мне позвонил друг и сказал, что ему нужно зарядное устройство к шуруповерту на дачу. C его слов, аккумуляторов в батарее 10 штук емкостью 1400 мА-час. Значит, требуется заряжать батарею 12 Вольт. Аккумуляторы никель-кадмиевые, для них возможны три режима зарядки: «А» — медленный, током 0,1 от ёмкости, время зарядки 14-16 часов; «Б» — сверхбыстрый, током от 1 до 4 ёмкости, время порядка 1 часа; «В» — ускоренный, током примерно 0,25 от ёмкости, время зарядки 4-6 часов.

На мой взгляд, вариант «А» слишком медленный, пока батарея зарядится, или желание работать пропадет, или будет пора уезжать.

Вариант «Б» рискован, велика вероятность взрыва или выхода из строя батареи, для предотвращения этого нужен контроль за температурой каждого элемента, схема должна быть сложной, лучше на микроконтроллере, для него придется писать и отлаживать программу, далеко не все аккумуляторы могут выдержать такой режим, особенно герметичные.

Остается режим «В» — вечером батарея ставится на зарядку, утром аккумуляторы полностью заряжены, заряд полный, вероятность проблем минимальна.

Анализ промышленных схем удивил. В них обычно нет стабилизации тока, ограничение происходит за счет сопротивления вторичной обмотки питающего трансформатора. Значит при отклонении сетевого напряжения или не будет полной зарядки, или ток значительно возрастет. У нас ток зарядки будет стабилизирован

на заданном уровне, что полностью избавляет от указанных недостатков.

Виды LM317

Микросхема продается в нескольких варианта корпуса, в зависимости от потребности в размерах, нагрузки и подключении, а также типу монтажа схемы — каждый может выбрать наиболее подходящий ему вариант.

Наиболее популярна LM317T в корпусе TO-220 на 1.5 Ампер. Это считается универсальным вариантом, так как может использоваться в навесном монтаже, а также поверхностном. Радиатор в таком корпусе позволяет отводить излишнее тепло и испытывать более серьезные нагрузки, чем его собратья, а при необходимости его можно прикрепить к большему радиатору.

↑ Схема и детали

Для радиолюбительской самоделки, на мой взгляд, нужно, чтобы конструкция была: — простая, — недорогая, — из доступных деталей, — плата должна быть с простой разводкой.
Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.

Желательно использовать то, что есть под рукой , что не надо искать по рынкам и магазинам. Для зарядок есть специальная микросхема L200C

, но мне было интереснее применить
КР142ЕН12 (LM317)
.

Трансформатор нашелся с вторичной обмоткой на 18 Вольт. Чтобы убедиться в его пригодности, было измерено напряжение под нагрузкой 300 мА, оно оказалось 16 Вольт. Это нормально, т.к. допустимо падение на 10% .

Резисторы применены в основном SMD, транзистор КТ503 можно заменить практически любым той же проводимости.

Для индикации я использовал сверхъяркие светодиоды неизвестной марки, поскольку они отлично светятся уже при токе 1 мА. Можно ставить любые светодиоды, но придется подобрать резисторы R6, R9 для желаемой их яркости.

↑ Настройка зарядного устройства

Без нагрузки подстройкой R5 убедиться, что напряжение на выходе плавно регулируется около значения в 14 Вольт. Подгонкой R7, R8 добиться зажигания D6 при напряжении 14…14,2 Вольт. На печатной плате предусмотрено место для подключения SMD резисторов параллельно R7, R8 для их подгонки. При указанных на схеме номиналах, подстройка не потребовалась.
Затем подстройкой R5 установить на выходе напряжение 14,4…14,5 Вольт. Подключить нагрузку, например, 20 Ом и убедиться, что ток в нагрузке примерно 300 мА. Закоротить ненадолго выход и убедиться, что оба диода гаснут, а предохранитель не перегорает. Без нагрузки должны светиться оба светодиода, при подключении аккумулятора красный светодиод гаснет. Если цепь заряда оборвана или аккумулятор заряжен полностью, красный светодиод не гаснет.

Подключить аккумулятор, убедиться, что красный светодиод гаснет и зарядка проходит нормально. При приближении к полной зарядке красный диод должен загореться. Проконтролировать напряжение на полностью заряженной батарее и, при необходимости, подкорректировать резистором R5 выходное напряжение. Если напряжение заметно отличается от нормы, батарея неисправна. Надо проконтролировать состояние всех элементов батареи и заменить неисправный.

Как проверить LM317?

В отличие от транзисторов, данную микросхему невозможно проверить мультиметром. Такой способ никак не гарантирует правильную работу из-за большого количества внутренних элементов, не соединенных с выводами. Поэтому, если какой-то из них выйдет из строя, то проверить это мультиметром будет проблематично. Самый простой способ проверки работы LM317 — это создать простейший стенд на макетной плате, а запитать его можно будет всего лишь от батарейки.

Таким образом, вы сможете быстро убедиться в полностью рабочем состоянии элемента, даже если необходимо проверить несколько штук.

↑ Файлы

Здравствуй, читатель! Меня зовут Игорь, мне 45, я сибиряк и заядлый электронщик-любитель. Я придумал, создал и содержу этот замечательный сайт с 2006 года. Уже более 10 лет наш журнал существует только на мои средства.

— Спасибо за внимание! Игорь Котов, главный редактор журнала «Датагор»

Зарядное устройство для свинцово-кислотных (автомобильных аккумуляторов) можно довольно быстро собрать на микросхеме LM317T. А самое большое преимущество в том, что не обязательно быть радиолюбителем для её реализации, достаточно примитивных познаний физики и электротехники. Схема зарядного устройства проста в настройке, и требует минимум навесных элементов, а при этом довольно надёжная и дешёвая.

Необходимые компоненты

  1. Трансформатор на 12В 1А.
  2. Микросхема LM317 (2 шт. ) (купить на AliExpress).
  3. Диодный мост W005.
  4. Контактная колодка (2 шт.).
  5. Конденсаторы 1000 мкФ (купить на AliExpress) и 1 мкФ (купить на AliExpress).
  6. Конденсаторы 0,1 мкФ (5 шт.) (купить на AliExpress).
  7. Резистор 1 кОм (5 шт.) (купить на AliExpress).
  8. Диоды Nn007 (3 шт.).
  9. Операционный усилитель LM358 (купить на AliExpress).
  10. Шунтирующее сопротивление (проводник) 0.05 Ом (купить на AliExpress).
  11. Плата Arduino Nano (опционально) (купить на AliExpress).
  12. ЖК дисплей 16х2 (опционально) (купить на AliExpress).

Схема автоматического портативного зарядного устройства на 12 В с использованием LM317

Вы когда-нибудь пытались разработать зарядное устройство, которое автоматически заряжает аккумулятор, когда напряжение аккумулятора ниже указанного напряжения? В этой статье объясняется, как спроектировать автоматическое зарядное устройство для аккумуляторов.

Подзарядное устройство автоматически отключает процесс зарядки, когда аккумулятор полностью заряжен. Это предотвращает глубокий заряд аккумулятора. Если напряжение батареи ниже 12В, то схема автоматически заряжает батарею.

Схема

Схема автоматического зарядного устройства 12 В Схема автоматического зарядного устройства батареи

Эта схема автоматического зарядного устройства состоит в основном из двух частей: блока питания и блока сравнения нагрузки.

Основное напряжение питания 230В, 50Гц подключается к первичной обмотке трансформатора с центральным отводом для понижения напряжения до 15-0-15В.

Выход трансформатора подключен к диодам D1, D2. Здесь диоды D1, D2 используются для преобразования низкого переменного напряжения в пульсирующее постоянное напряжение. Этот процесс также называется ректификацией. Пульсирующее постоянное напряжение подается на конденсатор емкостью 470 мкФ для устранения пульсаций переменного тока.

Таким образом, на выходе конденсатора нерегулируемое постоянное напряжение. Это нестабилизированное постоянное напряжение теперь подается на регулируемый регулятор напряжения LM317 для обеспечения регулируемого постоянного напряжения.

Выходное напряжение этого регулятора напряжения варьируется от 1,2 В до 37 В, а максимальный выходной ток этой ИС составляет 1,5 А. Выходное напряжение этого регулятора напряжения изменяется путем изменения потенциометра 10k, который подключен к регулировочному контакту LM317.

[Также читайте: Как сделать регулируемый таймер ]

Выход стабилизатора напряжения Lm317 подается на аккумулятор через диод D5 и резистор R5. Здесь диод D5 используется для предотвращения разряда батареи при отключении основного питания.

Когда аккумулятор полностью заряжен, стабилитрон D6, включенный в обратном направлении, открыт. Теперь база NPN-транзистора BD139 получает ток через стабилитрон, так что общий ток заземляется.

В этой схеме зеленый светодиод используется для индикации заряда аккумулятора. Резистор R3 используется для защиты зеленого светодиода от высокого напряжения.

Выходное видео:
Принцип работы

Если напряжение батареи ниже 12В, то ток от LM317 IC течет через резистор R5 и диод D5 к батарее. В это время стабилитрон D6 не будет проводить ток, так как весь ток уходит на зарядку аккумулятора.

Когда напряжение батареи поднимается до 13,5В, подача тока к батарее прекращается, стабилитрон получает достаточное напряжение пробоя и пропускает через себя ток.

Теперь база транзистора получает достаточный ток для включения, так что выходной ток регулятора напряжения LM317 заземляется через транзистор Q1. В результате красный светодиод указывает на полный заряд.

Настройки зарядного устройства

Выходное напряжение зарядного устройства должно быть менее чем в 1,5 раза больше напряжения аккумулятора, а ток зарядного устройства должен составлять 10 % от тока аккумулятора. Зарядное устройство должно иметь защиту от перенапряжения, короткого замыкания и обратной полярности.

ПРИМЕЧАНИЕ : Также есть идея, как построить схему индикатора уровня заряда аккумулятора?

2. Автоматическое зарядное устройство

Схема цепи

В этом проекте упоминается схема автоматического зарядного устройства для герметичных свинцово-кислотных аккумуляторов. Это схема импульсного зарядного устройства, которая помогает увеличить срок службы батарей. Работа этой схемы объясняется ниже.

LM317 действует как регулятор напряжения и устройство контроля тока. Стабилитрон на 15 В используется для настройки LM317 на подачу 16,2 В на выходе при отсутствии нагрузки. Когда 2N4401 включается выходом 555, контакт ADJ LM317 заземлен, и его выходное напряжение составляет 1,3 В.

LM358 действует как компаратор и повторитель напряжения. LM336 используется для подачи опорного напряжения 2,5 В на неинвертирующую клемму (вывод 3) LM358. Сеть делителя напряжения используется для подачи части напряжения батареи на инвертирующую клемму (вывод 2) LM358.

Когда заряд батареи достигает 14,5 В, входное напряжение инвертирующего вывода LM358 немного превышает 2,5 В на контакте 3, установленном LM336. Это сделает вывод 555 высоким.

В результате загорается красный светодиод и открывается транзистор. Это заземлит контакт ADJ LM317, и его выходное напряжение упадет до 1,3 В.

Когда заряд батареи падает ниже 13,8 В, выход LM358 высокий, а выход 555 низкий. В результате напряжение поступает от LM317 к аккумулятору, а зеленый светодиод загорается, указывая на зарядку.

[Связанный пост Зарядное устройство для свинцово-кислотных аккумуляторов с использованием LM317]

3. Зарядное устройство с использованием SCR

В этом проекте реализована схема автоматического зарядного устройства с использованием SCR. Его можно использовать для зарядки аккумуляторов 12 В. Аккумуляторы с разным потенциалом, например, 6В и 9В.V также можно заряжать, выбирая соответствующие компоненты. Схема работает следующим образом.

Напряжение питания переменного тока преобразуется в постоянное напряжение 15 В с помощью трансформатора и мостового выпрямителя, при этом загорается зеленый светодиод. Выход постоянного тока представляет собой пульсирующий постоянный ток, так как после выпрямителя нет фильтра.

Это важно, так как тиристор перестает проводить ток только при нулевом напряжении питания или отключении от питания, а это возможно только при пульсирующем постоянном токе.

Сначала SCR1 начинает проводить ток, поскольку на него подается напряжение затвора через резисторы R2 и D5. Когда SCR1 находится в проводящем состоянии, через аккумулятор проходит 15 В постоянного тока, и аккумулятор начинает заряжаться. Когда заряд батареи почти полный, она препятствует протеканию тока, и ток начинает течь через резистор R5.

Это фильтруется с помощью C1, и когда потенциал достигает 6,8 В, стабилитрон ZD1 начинает проводить и подает достаточное напряжение затвора на SCR2, чтобы включить его.

В результате ток течет через SCR2 через резистор R2, а SCR1 отключается, так как отключаются как напряжение затвора, так и напряжение питания. Красный светодиод горит, указывая на полный заряд батареи.

Знать, как разработать схему автоматического отключения и автоматической зарядки аккумулятора с использованием SCR.

Самодельное аварийное зарядное устройство для телефона с двигателем постоянного тока

 

Во время перебоев в подаче электроэнергии, когда все батареи в вашем доме разряжаются, единственным выходом для вас будет это зарядное устройство для экстренного телефона. В этом руководстве показано, как заряжать телефон с помощью двигателя постоянного тока 12 В и нескольких других деталей.

Рис. 1. Прототип простого зарядного устройства для телефона в экстренных ситуациях на базе двигателя постоянного тока0003

2. Колесо

3. Отвертка

4. 1N4007 Диод

5. 7805 ИС регулятора

6. Конденсатор

7. Кабель LED02 330 Ом 9.0 Резистор 900 Ом 9.0 0003

 

Примечание

— Это всего лишь первая версия, в которой используется очень мало компонентов, поэтому она довольно неэффективна. Это никогда не заменит коммерческое настенное зарядное устройство переменного тока!

 

— Я придумал это, когда в моем городе на целую неделю отключили электричество и не осталось другого источника для зарядки телефонов. Количество заряда, которое вы можете получить, зависит от выносливости человека, вращающего колесо. Не ожидайте, что он зарядит устройство на 100%.

 

— И, наконец, выключите телефон во время зарядки для лучшего результата.

 

Объяснение

Ну, это основы физики, но все же позвольте мне дать вам небольшое объяснение.

 

Двигатели — это устройства, преобразующие электрическую энергию в механическую. Пример: вентиляторы, вибратор в вашем мобильном телефоне и т. д.

 

Генераторы — это устройства, преобразующие механическую энергию в электрическую. Пример: динамо-машины, используемые в велосипедных фонарях, дизельные генераторы, используемые в квартирах и магазинах и т. д.

 

Двигатель постоянного тока также может работать как генератор постоянного тока и наоборот, поскольку их конструкция и принцип действия аналогичны. Поэтому я бы использовал мотор-редуктор на 12 В постоянного тока в качестве генератора, поскольку нам нужен источник питания для зарядки нашего устройства.

Теперь может возникнуть вопрос, почему я использую мотор-редуктор вместо обычного. Позвольте мне объяснить вам это:

 

Обычный двигатель постоянного тока 12 В (можно найти в магнитофоне или DVD-приводе) при включении может развивать скорость в диапазоне 1000-3000 об / мин. Точно так же, если вы хотите генерировать некоторую мощность, используя тот же двигатель постоянного тока, вам придется вращать двигатель в этом диапазоне, чтобы получить приличную мощность, что невозможно для человека.

 

Шестерня в редукторном двигателе снижает чистую скорость вращения и увеличивает крутящий момент при включении питания. И те же шестерни преобразуют крутящий момент, который вы прилагаете, в скорость и, следовательно, заставляют вал двигателя вращаться с высокой скоростью, даже если вы вращаете вал шестерни на низкой скорости.

 

Подробнее о редукторных двигателях постоянного тока см. здесь: Как работает Greared DC Motor

 

Почему я выбираю двигатель на 100 об/мин?

Двигатели с более высокой скоростью (например, 200 об/мин, 500 об/мин) слишком легко вращались, но производили меньшую мощность, а двигатели с более низкой скоростью (например, 10 об/мин) требовали большего крутящего момента для вращения. Так что 100 об/мин в данном случае было оптимальным.

 

В зависимости от скорости, с которой мы вращаем вал, напряжение меняется, и, очевидно, оно может легко пересечь 5 Вольт, что может повредить устройство (в данном случае наш телефон), поэтому мы используем регулятор напряжения 7805 и конденсаторы.

 

 

Как я уже сказал, это очень простая поделка, которая не займет много времени. Вы можете сделать это за столько же времени, сколько требуется для приготовления лапши быстрого приготовления.

 

— Соберите все детали, показанные на картинке.

Рис. 2. Изображение, показывающее различные компоненты, использованные при разработке аварийного зарядного устройства для телефона на базе двигателя постоянного тока

– Проделайте отверстие в колесе далеко от центра. Это позволит вам вставить что-то вроде отвертки и повернуть ее.

Рис. 3. Изображение, показывающее колесо, используемое в качестве ручки для вращения двигателя постоянного тока на зарядном устройстве для телефона в экстренных ситуациях

Рис. 4. Изображение, показывающее отверстие, просверленное в колесе для установки отвертки

– Прикрепите двигатель к шасси/зажиму так, чтобы он оставался прочным, пока вы его вращаете.

Рис. 5: Изображение, показывающее двигатель постоянного тока, прикрепленный к шасси

. Теперь прикрепите колесо к валу двигателя и затяните винт на колесе.

Рис. 6. Изображение, показывающее колесо, прикрепленное к двигателю постоянного тока на шасси

. Разместите остальную часть схемы на макетной плате.

Рис. 7: Прототип схемы зарядки телефона в экстренных случаях

— Обрежьте кабель USB таким образом, чтобы линия +5 В (красного цвета) и линия заземления (в основном черная, но здесь она была белой) были открыты, и подключите их к макетной плате в соответствующих местах.

Рис. 8. Изображение, показывающее провода заземления и VCC, отсоединенные от USB-кабеля

— Теперь подключите один из проводов от двигателя к диоду, а другой — к земле.

Рис. 9. Изображение, показывающее проводные соединения между двигателем постоянного тока и цепью зарядного устройства 9.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *