Зарядка для литиевых аккумуляторов шуруповерта своими руками: Схемы самодельных зарядок для литий-ионных аккумуляторов (18650, 14500 li-ion), как правильно заряжать литий-полимерные АКБ

Содержание

Зарядное Устройство Для Литиевых Аккумуляторов Шуруповерта

Переделка шуруповерта на литиевые аккумуляторы: инструкция

Переделка шуруповерта на литиевые аккумуляторы имеет смысл. Преимуществом является то, что они имеют большую электрическую плотность. В результате, установив такое устройство в корпус шуруповерта, мы сможем достичь увеличения продолжительности работы инструмента во много раз. Ток зарядки у литиевых аккумуляторов высокой мощности, в особенности у новых модификаций она может достигать 1-2 С. Подзарядить такой прибор можно за 1 час, при этом не завышая рекомендуемые производителем параметры и не портя качество изделия.

Как выглядят литиевые аккумуляторы?

Большинство устройств из лития заключено в призматический корпус, но некоторые модели обладают цилиндрической формой. В таких батареях применяются рулонные электроды и сепараторы. Корпус производится из алюминия или стали. Положительный полюс выходит на корпусную крышку.

В призматических конфигурациях электроды имеют вид прямоугольных пластин. Для обеспечения безопасности в батарее предусмотрено устройство, выступающее регулятором всех процессов и размыкающее электрическую цепь при критических ситуациях. Повышенная герметизация корпуса не дает вытекать наружу электролиту и проникать внутрь кислороду и влаге.

Какие меры следует соблюдать, чтобы не повредить

литиевый аккумулятор?
  • В силу ограничений технологии показатель заряженности литиевых аккумуляторов не должен быть выше 4,25-4,35 В. Разряд не должен доходить до показателя 2,5-2,7. Это условие указывается в техническом паспорте для каждой конкретной модели. При завышении этих значений вы можете вывести устройство из строя. Применяются специальные контроллеры зарядки и разрядки, которые сохраняют напряжение на литиевой ячейке в пределах нормы. Переделка шуруповерта на литиевый аккумулятор с контроллером защитит устройство от сбоя в работе.
  • Показатель напряжения литиевых аккумуляторов кратен 3,7 В (3,6 В). У Ni-Mh-моделей этот показатель составляет 1,2 В. Это явление объяснимо. Номинальное напряжение в литиевых устройствах сохраняется на отдельной ячейке. Литиевый аккумулятор 12 вольт никогда собран не будет. Номинал будет составлять 11,1 В (три последовательные ячейки) или 14,8 В (четыре последовательные ячейки). Помимо этого, показатель напряжения литиевой ячейки меняется при работе при полной зарядке на 4,25 В, а при полной разрядке. на 2,5 В. Показатель напряжения 3S (3 serial. три последовательных соединения) будет изменяться при функционировании приспособления от 12,6 В (4,2х3) до 7,5 В (2,5х3). Для 4S-конфигурации этот показатель колеблется от 16,8 до 10 В.
  • Переделка шуруповерта на литиевые аккумуляторы 18650 (подавляющее большинство изделий обладает именно этим размером) требует учета разницы в габаритах с Ni-Mh-ячейками. Диаметр ячейки 18 650 равен 18 мм, а высота составляет 65 мм. Очень важно подсчитать, какое количество ячеек поместится в корпусе. При этом следует помнить, что для модели с мощностью 11,1 В вам будет нужно количество ячеек, кратное трем. Для модели с мощностью 14,8 В — четырем. Еще должен поместиться контроллер и коммутационные провода.
  • Устройство для зарядки для аккумулятора на основе лития отличается от приспособления для Ni-Mh-модификаций.

В статье будет рассмотрено, как происходит переделка шуруповерта на литиевые аккумуляторы Li-Po. Инструмент укомплектован парой Ni-Mh-аккумуляторных батарей с показателем напряжения 12 В и емкостью 2,6 Ач. Будет рассмотрена переделка шуруповерта Hitachi. Литиевые аккумуляторы обеспечат прибору долговременную службу.

Выбираем номинальное напряжение

В первую очередь следует определиться с выбором показателя номинала напряжения для устройства на основе лития. Выбор следует осуществить между 3S-моделью (диапазон ее напряжения составляет от 12,6 до 7,5 В) и 4S-Li-Ion-батареей (диапазон напряжения. от 16,8 до 10 В).

Преимущества второго варианта

Второй вариант является более подходящим, потому что напряжение в батарее довольно быстро падает с максимального показателя до минимального (с 16,8 до 14,8 В). Для электрического мотора, чем, собственно говоря, и является шуруповерт, превышение в 2,8 В не является критичной отметкой.

Самый низкий показатель напряжения у 3S-Li-Ion-модификации. Он равен 7,5 В, что является недостаточным для нормального функционирования электрического приспособления. Смонтировав четыре конфигурации, мы увеличим электрическую емкость аккумулятора.

Как определиться с выбором литиевых ячеек?

Чтобы осуществить выбор ячеек на основе лития, следует наметить ограничительные факторы. В настоящее время производятся литиевые устройства с допустимым значением нагрузки тока в 20-25 А.

Импульсные значения тока (непродолжительные, до 1-2 сек) достигают 30-35 А. Конфигурация аккумулятора не будет нарушена.

Сколько ячеек поместится в корпус?

Собрать 4S2P (четыре последовательных соединения и два параллельных) не получится. Переделка литиевые аккумуляторы 18650 предполагает наличие восьми ячеек. Как же им уложиться в четыре? На каждую ячейку ляжет максимальная нагрузка тока.

Зарядное устройство CC CV для Li-Ion батареи шуруповерта.

Как с помощью недорогой платы #CCCV на XL4015E1, превратить любой блок питания в зарядное устройство для Li-Ion .

Переделываем зарядное устройство шуруповерта Интерскол 12В под Li Ion аккумуляторы

Для правильного алгоритма заряда Li-Ion аккумуляторов и для увеличения срока их службы штатное зарядное.

Как определить показатель максимального тока в шуруповерте?

Переделка 12В шуруповерта на литиевые аккумуляторы предполагает подсоединение устройства к лабораторному источнику питания с показателем максимального тока в 30 А. Регулятор ограничителя ставится на максимальное значение. Создав уровень напряжения источника питания близким к номинальному показателю будущего аккумулятора, начинаем плавное нажатие на курок. Ток, который потребляется шуруповертом, поднимется до отметки 5 А. Теперь следует резко нажать на курок. Это закоротит цепь питания. Ток достигнет мощности 20-30 А. Возможно, его показатель был бы гораздо выше, но мощность источника питания не даст это зафиксировать. Это будет непродолжительный ток нагрузки при резком нажатии на курок шуруповерта. Любая модель такого прибора отреагирует аналогично.

Далее следует зажать наконечник шуруповерта тисками и пронаблюдать, до какого значения повысится ток потребления при режиме работы, когда в шуруповерте сработает трещотка. Показатель тока в этом случае возрастает до 10-12 А.

Так можно определиться с величиной тока нагрузки. В этом случае он будет равен 5 А на холостом ходу и 30 А при резком начале, а при максимальной нагрузке составит 12 А. Изготовитель должен выбрать литиевые ячейки, номинальный показатель тока нагрузки которых будет составлять 10-20 А, а импульсный — 25-30 А.

Как выбрать контроллер?

Итак, происходит переделка шуруповерта на литиевые аккумуляторы. Штатная зарядка для устройства требуется обязательно. При выборе контроллера учтите, что прибор должен соответствовать двум параметрам:

  • показателю номинального рабочего напряжения;
  • показателю номинального рабочего тока.

С напряжением все предельно ясно: если батарея 11,1 В, то и контроллер будет с таким же напряжением.

Понятие «номинальный рабочий ток» подразумевает пропускную способность защиты платы. Таким образом, контроллер на 4 А рассчитан на отметку тока 4 А, а при показателе 8 А на него ложится дополнительная нагрузка. В этом случае сработает защитное устройство. Все эти технические данные изложены в паспорте каждой модификации контроллера. При этом одна модификация может обладать показателем тока ограничения 30 А, а другая — 50 А. И оба эти устройства формально будут пригодны для функционирования. Также при создании литиевого аккумулятора имеется ограничение в габаритах. Поэтому следует приобретать такой контроллер, который уместится в корпусе старой батарейки.

Разборка и сборка

Переделка шуруповерта на литиевые аккумуляторы включает следующие этапы:

  • Следует вскрыть старый аккумулятор, отвинтив пять шурупов.
  • Извлечь из корпуса Ni-Mh-батарею. Будет заметно, что контактная площадка, входящая в зацепление с контактной группой шуруповерта, приварена к минусовому контакту одной из Ni-Mh-ячеек. Точки сварки следует обрезать посредством инструмента с вмонтированным в него отрезным камнем DREMEL 4000.
  • К контактам припаиваются провода, сечение которых составляет не меньше 2 мм 2 для силовых выводов и 0,2 мм 2 для терморезистора. Контактная площадка вклеивается в корпус аккумулятора посредством термоклея.
  • По показателю внутреннего сопротивления на измерителе подбираются четыре ячейки. Значение должно быть одним и тем же для всех четырех приборов.
  • Литиевые ячейки склеиваются термоклеем так, чтобы они располагались в корпусе компактно.
  • Сварка ячеек проводится на станке для контактной сварки посредством сварочной ленты из никеля (показатель ее сечения должен быть равен 2Х10 мм).

Установка платы защиты

Этот этап может показать, насколько облегчена конструкция аккумулятора из лития. Вес устройства Ni-Mh был равен 536 г. Вес нового устройства из лития равен 199 г, что будет вполне ощутимо. В весе удалось выиграть 337 г. При этом наблюдается увеличение энергетической емкости.

Батарея монтируется в корпус. Пустоты заполняются мягким материалом от упаковки.

Подключение к шуруповерту

  • Резкое нажатие на курок провоцирует срабатывание защитного механизма по току. Но на самом деле такой защитный режим вряд ли будет нужен при пользовании инструментом. Если не провоцировать защиту специально, то работа шуруповерта будет отличаться стабильностью.
  • Наконечник следует зажать в тиски. Мощность батареи свободно вызывает срабатывание трещотки, которая ограничивает увеличение количества оборотов кручения.
  • Литиевая батарея шуруповерта разряжается на электронной нагрузке. Показатель тока разряда должен равняться 5 А.
  • Аккумулятор вставляется в штатное ЗУ. Показатель тока заряда при измерении равен 3 А, что допустимо для литиевых ячеек. Для конфигурации LG INR18650HG2 максимальным током заряда станет 4 А, что указано в технической характеристике.

Сколько времени требуется на замену аккумуляторов?

Переделка шуруповерта на литиевые аккумуляторы займет примерно 2 часа. Если будет осуществлена проверка всех параметров, тогда понадобится 4 часа.

Все можно сделать самостоятельно, без помощи другого человека. Но контактную сварку и выбор аккумуляторов без специализированного оборудования не провести.

Чем можно еще тестировать степень заряженности кроме контролера?

Осуществлена переделка шуруповерта на литиевые аккумуляторы. Штатная зарядка, встроенная в корпус, является идеальным вариантом. Но стоимость контроллера достаточно высокая. Обойдется прибор в 30 , что равнозначно стоимости самого аккумулятора.

Чтобы провести тестирование уровня заряда аккумулятора из лития на ходу, не применяя зарядное устройство, можно использовать специальный индикатор RC helicopter lipo battery AKKU portable voltage meter tester alarm 2-6S AOK. Стоимость прибора очень низкая. Он имеет аналогичный устройству iMax6 разъем балансировки и зарядки. К батарее устройство подключается посредством переходника. Это приспособление для контроля уровня напряжения является очень удобным. Оно может замерить от двух до шести соединенных между собой последовательно ячеек из лития, а также выдать суммарный показатель или напряжение каждого элемента в отдельности с предельной точностью.

Сколько будет стоить замена Ni-Mh на литиевое

устройство?

Каких денежных затрат потребует переделка шуруповерта на литиевый аккумулятор?

Цена на такое устройство складывается из стоимости нескольких составляющих:

  • конфигурация 4S-аккумулятора на основе лития стоит 2200 р. ;
  • покупка контролера для зарядки и разрядки плюс балансира обходится в 1240 р.;
  • стоимость сварочной работы и сборки составляет 800 р.

Получается, что литиевый аккумулятор, сделанный своими руками, обоходится в 4240 р.

Для сравнения возьмем аналогичную конфигурацию из лития фабричного производства. К примеру, устройство Makita 194065-3 предназначено для шуруповерта. Оно обладает аналогичными параметрами. Стоимость такого прибора составляет 6500 р. Получается, что переделка шуруповерта на литиевые аккумуляторы экономит 2300 р.

Источник

Зарядное для аккумуляторов шуруповерта на базе XL4015

Зарядное для аккумуляторов шуруповерта на базе модуля XL4015

В статье пойдет речь о переделке зарядного устройства для аккумуляторов к шуруповерту Интерскол. Основой всей схемы является модуль на базе контроллера DC-DC XL4015. Внешний вид зарядного устройства показан на фото ниже.


Я уже писал про данное зарядное в статье «Зарядное для шуруповерта» и фотографии взяты из той статьи.

Прошло время, родные аккумуляторы приказали долго жить. Я их заменил на литий-ионные. Было использовано четыре аккумулятора по 3,7 вольт. Таким образом, напряжение аккумуляторной батареи увеличилось до, примерно, шестнадцати вольт. Как самому сделать литий-ионную аккумуляторную батарею с использованием платы контроля BMS, в Сети очень много, поэтому я повторяться не буду. В связи с этим увеличилась мощность двигателя шуруповерта, но, ни каких критических последствий от повышения напряжения питания на три вольта, для двигателя выявлено не было. Хотя возможно повышение искрения коллекторных щеток при больших нагрузках. Внешний вид модуля показан на фото ниже.

Это понижающий DC-DC преобразователь с функцией стабилизации тока нагрузки и выходного напряжения, имеющий регулировки по обоим выходным параметрам. Так же модуль имеет в своем составе индицирующие светодиоды разного свечения. Как впоследствии оказалось, в моем модуле все светодиоды были красного свечения. Это обстоятельство породило проблемы с информативностью состояния схемы при переделке зарядного. Ох, уж эти китайские партнеры!

И так, как вы уже успели заметить все индицирующие светодиоды, установленные на плате модуля, в SMD исполнении. Для визуализации их свечения вне корпуса зарядного устройства потребуется изготовить световоды. Смотрим фото ниже.

Данные световоды это небольшие цилиндрики, сделанные из оргстекла. Торец, направленный к соответствующему светодиоду должен быть отполирован. Верхняя сферическая часть, выходящая за поверхность корпуса, также полируется. Светодиоды, индицирующие режим заряда и режим окончания заряда, расположены близко друг к другу, поэтому я для них сделал один световод, так как полагал, что цвет свечения у них разный. Если и вам попадется такой модуль, то лучше для этих светодиодов сделать отдельные световоды. На фото ниже видно как работает световод.


Слева светодиод работает, справа светодиод выключен.

Световоды вклеивал в корпус суперклеем с содой. Плата модуля крепится к корпусу при помощи двух стоек с резьбой с одной стороны и гаек. Другой конец стоек просто впаивается в крепежные отверстия, расположенные на плате модуля. Смотрим фото ниже.

В корпусе так же просверлены отверстия под отвертку напротив регулирующих винтов подстроечных многооборотных резисторов.

Трансформатор для зарядного устройства

В связи с тем, что напряжение новых аккумуляторов больше, все же пришлось разбирать сетевой трансформатор. Выходное напряжение «родного» трансформатора без конденсатора фильтра было порядка 13 вольт. С конденсатором фильтра — 18,33В, это в режиме ХХ. При токе нагрузки, равному одному амперу, это напряжение падало до уровня порядка 15,7В. Это конечно недостаточно для зарядки литий-ионных аккумуляторов до уровня 16,4 вольта. Старое число витков вторичной обмотки у моего трансформатора было 67 провода диаметром 0,8мм. Домотал еще двадцать витков такого же провода, получил вторичку с 87-ю витками, при этом вторичное напряжение на конденсаторе под нагрузкой увеличилось до 23 вольт. Выпрямительный диодный мост и конденсатор фильтра впаяны в схему навесным способом. Смотрим фото ниже.


Настройка схемы

Вообще, если вы пользуетесь Li-Ion аккумуляторами, то я бы предложил к обязательному прочтению перевод статьи «Правильная эксплуатация может продлить жизнь литий-ионного аккумулятора». Автор Фрэн Хоффард (www.powerelectronics.com) Очень интересная статья. Исходя из знаний, полученных после прочтения, я выставил ток заряда, равный один ампер и конечное напряжение для всей батареи 16,4 вольта. Вообще это напряжение должно быть чуть больше напряжения отключения аккумуляторов в плате BMS.

Удачи. К.В.Ю.

Скачать статью

Зарядное_для_аккумуляторов_шуруповерта_на_базе_модуля_XL4015 (1788 Загрузок)

Просмотров:9 061


Метки: XL4015, Зарядное, Шуруповерт

Руководство по сборке зарядного устройства для литиевых аккумуляторов

Литий-ионные аккумуляторы великолепны. Они дешевы и могут хранить много энергии. Создание литий-ионного аккумулятора — это весело и полезно, и создание зарядного устройства — не исключение. Когда вы можете создать собственное зарядное устройство для литий-ионных аккумуляторов, экспериментировать со всевозможными конфигурациями элементов становится намного практичнее. В некоторых случаях создание зарядного устройства часто дешевле, чем его покупка, и может обеспечить гораздо большую производительность.

Создание зарядного устройства своими руками имеет много преимуществ. Во-первых, общая стоимость часто ниже, чем покупка одного. Кроме того, самодельные зарядные устройства обычно имеют более высокую производительность на доллар, чем готовые. Самодельное зарядное устройство можно настроить на любое напряжение в пределах возможностей преобразователя. Это означает, что с помощью самодельного зарядного устройства вы можете заряжать множество различных типов аккумуляторов. Еще одна замечательная вещь в создании зарядного устройства для аккумуляторов своими руками — это чувство выполненного долга. Зарядное устройство для литий-ионных аккумуляторов важно и несколько сложно для понимания. Так что, если вы можете построить зарядное устройство для аккумулятора своими руками, это, скорее всего, означает, что вы также можете делать много других интересных вещей. Самодельное зарядное устройство можно использовать даже для питания различных устройств. Это означает, что если вы можете построить зарядное устройство для аккумуляторов, вы также можете создать источники питания для самых разных вещей, поскольку процесс почти такой же.

В этой статье мы расскажем, как сделать зарядное устройство для аккумуляторов своими руками. Мы также рассмотрим некоторые основы аккумуляторов и предоставим подробный список преимуществ сборки зарядного устройства своими руками.

Что такое зарядное устройство?

В случае литий-ионных аккумуляторов зарядное устройство представляет собой источник постоянного тока. Литий-ионные аккумуляторы необходимо заряжать в 2 этапа. Первая фаза представляет собой постоянный ток, где напряжение будет достигать того значения, которое необходимо для поддержания постоянного тока. Следующая и последняя фаза – фаза постоянного напряжения. Это когда напряжение поддерживается постоянным, а ток медленно падает до нуля.

Самодельные зарядные устройства против покупки зарядного устройства

Когда вы покупаете зарядное устройство, вы ограничены определенным уровнем напряжения и тока этого зарядного устройства. Когда вы можете построить зарядное устройство, настройка данного зарядного устройства для конкретного приложения становится тривиальной задачей. Например, литий-ионный аккумулятор 3S NMC имеет максимальное зарядное напряжение 12,6 вольт. Это прекрасно работает, но клетки деградируют примерно через 500–800 циклов.

Снижение зарядного напряжения до 12 В снижает емкость примерно на 20%, но более чем удваивает срок службы, что может быть лучше для некоторых приложений. Точный контроль над напряжением и током дает вам большую гибкость при проектировании систем с батарейным питанием.

Следует также учитывать, что при использовании встроенного зарядного устройства вы просто доверяете ему. Вы доверяете ему правильное напряжение, а если это не так, вы доверяете своей BMS, чтобы обеспечить вашу безопасность. Вы верите, что он не заряжает ваши клетки слишком быстро или слишком медленно, и нет никакого способа легко проверить вещи, не покупая дополнительные вещи.

При сборке самодельного зарядного устройства вам понадобится какой-то способ контроля напряжения и тока, чтобы собрать его правильно. Это гарантирует, что самодельное зарядное устройство на самом деле является , выдающим напряжение и ток, как вы думаете.

Каковы преимущества изготовления самодельного зарядного устройства?

Даже если вы предпочитаете купить зарядное устройство, а не собирать его, вам все равно важно знать, как сделать зарядное устройство для аккумулятора. Если вы знаете, как построить зарядное устройство для аккумуляторов, то у вас будет четкое понимание основных концепций, связанных с зарядкой литий-ионных аккумуляторов.

Эти знания помогут вам лучше подготовиться к процессу покупки, потому что вы будете знать, на что обращать внимание и чего следует избегать. Кроме того, если вы знаете, как построить зарядное устройство для аккумулятора, то вы будете знать, как его починить, что может быть удобно.

Низкая стоимость

Вообще говоря, изготовление зарядного устройства обойдется намного дешевле, чем его покупка. Это имеет смысл, потому что, когда вы покупаете зарядное устройство, вы платите за стоимость материалов, а также за работу и другие включенные сборы, связанные с управлением компанией, у которой вы покупаете зарядное устройство.

Каждый раз, когда вы готовы поработать, чтобы что-то сделать, время, которое вы тратите на проект, экономит ваши деньги, потому что это деньги, которые в противном случае были бы выплачены кому-то другому за то, что вы делаете.

Более высокая производительность

Компании, производящие зарядные устройства для аккумуляторов, делают это ради прибыли. Таким образом, в их интересах использовать компоненты самого низкого качества, которые являются приемлемыми. Это означает, что менее популярные бренды будут использовать самые дешевые, а иногда и электронные компоненты, чтобы максимально снизить стоимость.

Несмотря на то, что компании более высокого класса не делают вещи или плохо, они все же заинтересованы в максимально возможном снижении стоимости компонентов. Когда вы строите собственное зарядное устройство для аккумулятора своими руками, эти вещи не применяются. У вас есть полная свобода выбора компонентов самого высокого качества. Хорошая новость заключается в том, что деньги, которые вы сэкономите, собрав его самостоятельно, с лихвой компенсируют затраты на выбор более дорогих компонентов.

Гораздо более гибкий

Если вы соберете самодельное зарядное устройство для аккумуляторов, скорее всего, оно будет сделано с каким-либо регулируемым регулятором напряжения. Будь то повышающий преобразователь постоянного тока или понижающий преобразователь постоянного тока, в любом случае у него будут настройки. Это означает, что когда вы строите самодельное зарядное устройство, вы создаете многофункциональное устройство, которое можно использовать не только для зарядки одного типа батареи, но и для многих других целей.

Самодельное зарядное устройство можно настроить на зарядку любой батареи любого химического состава в пределах допустимого напряжения.

Чувство выполненного долга

Нет ничего более приятного, чем использование самодельного устройства. Особенно, когда он работает хорошо, и особенно, когда вы должны использовать его на регулярной основе.

Изучение нового навыка

Каждый раз, когда вы преодолеваете неспособность, это серьезное улучшение жизни. Переход от невозможности построить зарядное устройство своими руками к возможности построить его означает, что вы можете делать новые вещи. Расширение кругозора — это всегда хорошо.

Другие полезные приложения

Помимо возможности заряжать различные типы аккумуляторов, самодельное зарядное устройство также может быть самостоятельным регулируемым источником питания. Все, что вам нужно сделать, это установить ток на регуляторе до упора. Как только ток установлен на максимум, регулятор будет работать точно так же, как регулятор постоянного напряжения.

В этом режиме вы можете настроить самодельное зарядное устройство на 12 вольт и запустить любое 12-вольтовое устройство или настроить его на 5 вольт и заряжать USB-устройства. Когда вы создаете зарядное устройство для аккумуляторов своими руками, возможности безграничны.

Материалы и инструменты, необходимые для сборки зарядного устройства для батареи

Детали, необходимые для сборки зарядного устройства, зависят от химического состава, напряжения и других факторов батареи, которую вы собираетесь заряжать. В этом примере мы будем использовать наиболее распространенный тип перезаряжаемой батареи: литий-ионный NMC.

При использовании литий-ионной химии NMC максимальное напряжение заряда составляет 4,2 вольта. Однако для максимально долгого срока службы элементы NMC следует заряжать до 4 вольт на элемент. Зарядка элемента NMC до 4 вольт на элемент снижает его емкость на 20%, но увеличивает общий срок службы примерно на 250%.

В этом примере мы сосредоточимся на создании зарядного устройства, которое может заряжать литий-ионный аккумулятор 3S NMC с максимальным зарядным напряжением 12,6 вольт.

Блок питания

Чтобы построить зарядное устройство, первое, что вам понадобится, это блок питания переменного тока в постоянный. Для этого есть много вариантов. Вы можете использовать компьютерный блок питания ATX, специальный блок питания переменного тока в постоянный высокой мощности или даже недорогой компактный блок питания USB PD. Зарядное устройство представляет собой источник питания и регулятор, объединенные в один блок.

В этой статье мы рассмотрим все три, но для примера мы будем использовать блок питания USB-C PD мощностью 65 Вт.

Регулятор

Вам также понадобится стабилизатор постоянного тока. Регулятор должен быть преобразователем постоянного тока, если ваш источник питания имеет более высокое напряжение, чем аккумулятор, который вы хотите зарядить. Если, с другой стороны, аккумулятор, который вы хотите зарядить, имеет более высокое напряжение, чем ваш блок питания, вам придется использовать повышающий преобразователь постоянного тока.

В этом примере мы будем работать с 20-вольтовым триггером USB PD для зарядки 12,6-вольтовой батареи, поэтому регулятор будет понижающим преобразователем.

Как правило, более гибко начинать с более высокого напряжения, чем требуется, и использовать понижающий преобразователь, чтобы снизить напряжение до необходимого уровня. Таким образом, вы можете получить доступ ко всем напряжениям между вашим входным напряжением и нулем, а не ограничиваться диапазоном напряжений, как в случае с повышающим преобразователем.

Провод

Вам понадобится провод, чтобы соединить все вместе. Для большинства зарядных устройств подойдет провод калибра от 18 до 16.

Мультиметр

Вам понадобится мультиметр для установки выходного напряжения регулятора и проверки текущего напряжения батареи. Для этого вы можете использовать практически любой мультиметр, поскольку даже самые дешевые измерители на Amazon более чем достаточно точны.

Наиболее важным аспектом дешевого мультиметра является звуковой сигнал непрерывности. Тестирование непрерывности — это функция мультиметра, которая позволяет узнать, соединены ли два проводящих элемента электрически или нет. Хотя измерение непрерывности является важной функцией мультиметра, которая есть у всех мультиметров, не каждый мультиметр имеет зуммер. Таким образом, с этими счетчиками вы должны отвести взгляд от того, что вы исследуете, чтобы узнать, подключены они или нет. Итак, при покупке недорогого мультиметра убедитесь, что он оснащен зуммером непрерывности.

Измеритель тока

Несмотря на то, что мультиметр можно использовать для проверки тока, это не удобный процесс, и вы не можете использовать мультиметр для одновременной проверки тока и напряжения. Измерители тока, подобные этому, — отличные инструменты, и, безусловно, их полезно иметь в своем арсенале, но для этого примера мы будем использовать кабель USB C-C со встроенным ваттметром.

Процесс зарядки аккумулятора

Зарядка литий-ионного аккумулятора, будь то NMC или LFP, включает в себя двухэтапный процесс. Первый этап – фаза постоянного тока. Во время фазы постоянного тока батарея будет получать постоянный ток от зарядного устройства. Величина тока, которую батарея может безопасно потреблять на этом этапе, определяется максимальным током заряда ячейки батареи и ее параллельной конфигурацией.

Как только напряжение батареи поднимается примерно до 95% от целевого напряжения, зарядка переключается в режим постоянного напряжения. В фазе постоянного напряжения ток естественным образом упадет с установленного уровня тока до 0, в то время как напряжение останется прежним.

В этом примере мы будем использовать аккумуляторные элементы BAK N18650CK с максимальным током заряда 1C и емкостью 3050 мА. Это батарея 1S3P, что означает, что батарея состоит всего из трех последовательно соединенных элементов BAK N18350CK.

Объяснение C-скорости батареи

Если бы это была батарея большего размера с большим количеством параллельных групп, она могла бы безопасно заряжаться с большей скоростью. Например, вот как он выходит из строя с батареей 3S3P, использующей те же элементы:    

Когда литий-ионный элемент NMC разряжен, его напряжение составляет около 2,6 вольт. Таким образом, если аккумулятор можно заряжать только током 3,05 ампер, а его напряжение составляет 2,6 вольта, то его можно заряжать только при максимальной мощности 7,93 Вт.

Через некоторое время в процессе зарядки напряжение аккумуляторной батареи увеличится. Когда ячейка достигает 2,9вольт, зарядное устройство по-прежнему будет обеспечивать 3 ампера.

Во время фазы постоянного тока аккумуляторные батареи заряжаются с максимальной скоростью, но, как видно сверху, по мере роста напряжения аккумуляторной батареи все больше и больше энергии поступает в батарею. Как только ячейка достигает установленного напряжения зарядного устройства, ток начинает падать, в результате чего ячейки батареи поглощают все меньше и меньше энергии.

Выбор источника питания для самодельного зарядного устройства

Первым шагом в создании зарядного устройства является получение приличного источника питания. Есть много вариантов на выбор, но в этой статье мы рассмотрим три: блок питания ATX, выделенный блок питания и блок питания USB C PD.

Блок питания ATX

Современные блоки питания ATX для ПК хорошо сконструированы, недороги и поддерживают высокие уровни тока. Нередко можно найти блок питания ATX, способный выдавать 20 А и более по цене менее 50 долларов. Чтобы включить блок питания ATX снаружи ПК, все, что вам нужно сделать, это соединить зеленый провод с любым черным проводом.

Это заставляет блок питания думать, что он установлен на включенном компьютере. Желтый провод имеет напряжение 12 вольт и обычно подходит для тока от 10 до 20 ампер. Блоки питания ATX удобны в использовании, потому что в доме часто есть старые, неиспользуемые компьютеры.

Специализированный блок питания

На Amazon и eBay доступно множество 12-вольтовых, 24-вольтовых и регулируемых специализированных блоков питания. Этот тип блока питания обычно больше, чем блок питания ATX, но с ним, возможно, проще работать, поскольку он не требует модификаций. Кроме того, в отличие от блоков питания ATX, отдельный блок питания может выдавать более 12 вольт.

Это полезно, если вы хотите использовать понижающий преобразователь для зарядки аккумуляторов с напряжением выше 12 вольт, но ниже 24. Отдельный блок питания — хорошее решение для мощного зарядного устройства.

Блок питания USB C PD

Полнофункциональный блок питания USB C PD может обеспечивать выбираемое выходное напряжение 5 В, 9 В, 12 В, 15 В и 20 В. В отличие от ATX и специализированных блоков питания, на рынке существует множество блоков питания GaN (нитрид галлия) USB C PD. Блоки питания GaN намного эффективнее и занимают гораздо меньше места, чем блоки питания, использующие традиционные кремниевые МОП-транзисторы.

Это означает, что небольшой блок питания USB C PD может обеспечить 100 Вт энергии, в то время как традиционный блок питания такого же размера может обеспечить только около 40 Вт. Дополнительным преимуществом блоков питания USB C PD является совместимость с широким спектром других устройств USB C, таких как телефоны, планшеты и даже ноутбуки.

Пошаговое руководство по сборке зарядного устройства

В этом пошаговом руководстве мы расскажем, как собрать зарядное устройство, которое может заряжать любые литий-ионные или свинцово-кислотные аккумуляторы, поддерживающие зарядное напряжение в пределах 2,6 В. вольт до 19вольт. Этот диапазон может показаться узким, но на самом деле он охватывает довольно много аккумуляторов. Это зарядное устройство может заряжать литий-ионный аккумулятор 1S, 2S, 3S или 4S NMC или литий-ионный аккумулятор 1S, 2S, 3S, 4S или 5S LFP. Он может заряжать даже 12-вольтовые свинцово-кислотные аккумуляторы. Чтобы выяснить, какое напряжение вам нужно для зарядки аккумуляторной батареи, вы можете использовать наш инструмент планировщика батарей.

USB PD поддерживает 5 В, 9 В, 12 В и 15 В, но не все адаптеры питания с портами USB C поддерживают всю спецификацию USB PD. Для зарядки аккумуляторов мы рекомендуем использовать блок питания USB C PD мощностью не менее 65 Вт. Хорошей новостью является то, что если блок питания USB C PD рассчитан на 65 Вт, то он будет поддерживать полный диапазон напряжений.

USB PD — интеллектуальное решение для питания. Он начинается с безопасных 5 вольт, а затем спрашивает устройство, к которому оно подключено, какое напряжение оно поддерживает. Как только устройство отвечает, блок питания USB PD выбирает требуемое напряжение.

Это удобно для обмена данными между устройствами и обеспечивает плавное автоматическое согласование напряжения. Однако USB PD поддерживает небольшие устройства, называемые «триггерами». Триггеры подключаются к источнику питания USB PD через кабель USB C и либо имеют способ выбрать напряжение на плате, либо имеют фиксированное напряжение. В этом примере мы будем использовать выбираемый сорт.

В этом примере будет использоваться понижающий преобразователь постоянного тока. Этот тип преобразователя имеет потенциометры для управления током и напряжением. Ближайший к выходу потенциометр регулирует напряжение. Другой управляет током. Когда вы получаете новый понижающий преобразователь, лучше всего повернуть эти ручки до упора, прежде чем прикреплять их в первый раз.

Требуемые детали:

  • Блок питания USB PD
  • Триггер USB PD
  • Понижающий преобразователь постоянного тока
  • Кабель ваттметра USB PD
  • Литий-ионный аккумулятор 3S
[[ aff type=guide ]]

Шаг 1: Вставьте блок питания USB PD в розетку.

Шаг 2: Подключите кабель ваттметра USB C-C к блоку питания USB PD.

ПРИМЕЧАНИЕ: Этот кабель имеет экран на одном конце, который показывает, сколько энергии проходит через кабель. Вам нужен экран на конце устройства, а не на конце источника питания, потому что кабель считывает мощность, протекающую только в одном направлении. Экран не горит, когда кабель подключен только к источнику питания.

Шаг 3: Подключите кабель USB C к триггеру напряжения.

ПРИМЕЧАНИЕ: В этот момент загорается экран на кабеле измерителя мощности. Некоторые триггеры имеют фиксированное выходное напряжение, но этот триггер можно выбрать. Удобно иметь возможность установить напряжение срабатывания, чтобы легко обновить/модифицировать бытовую электронику для работы от USB PD, но для зарядки аккумулятора лучше всего установить напряжение на 20 вольт, чтобы максимальное количество мощности было доступно от источника питания.

Подсоедините мультиметр к выходу триггера напряжения, чтобы убедиться, что он выдает ожидаемое напряжение.

Шаг 4: Наденьте разъем на выход триггера напряжения или припаяйте к ним провода, чтобы его можно было подключить к входу понижающего преобразователя.

Шаг 5: Подключите выход триггера напряжения к входу понижающего преобразователя и включите понижающий преобразователь с помощью переключателя в углу платы.

Шаг 6: Подсоедините мультиметр к выходу понижающего преобразователя. Если вы воспользовались приведенным выше советом и полностью выкрутили его, то на мультиметре вы должны увидеть около 1,5 вольта. Поверните внешний потенциометр по часовой стрелке, и напряжение возрастет.

Шаг 7: Продолжайте поворачивать потенциометр, пока не достигнете желаемого максимального зарядного напряжения. В данном случае это 12,6 вольта.

Шаг 8: Подсоедините аккумулятор к выходу понижающего преобразователя.

ПРИМЕЧАНИЕ : Поскольку ток установлен на ноль, вы заметите, что выходной сигнал понижающего преобразователя падает, чтобы соответствовать напряжению батареи. Это нормально.

Шаг 9: Медленно поворачивайте потенциометр тока, пока не увидите, что цифры на кабеле ваттметра начинают расти.

[[ aff type=guide ]]

ПРИМЕЧАНИЕ: Что касается того, к какому числу привести, это требует некоторой математики. Это число в ваттах, а не в амперах. Аккумулятор в этом примере хорош для зарядного тока около 3 ампер и в настоящее время составляет 9 ампер. 0,71 вольт.

9,71 вольт x 3 ампера  =  29,13 Вт

Итак, в этом примере мы будем поворачивать потенциометр, пока ваттметр не покажет 30 Вт. Теперь помните, что ток будет оставаться неизменным в течение большей части процесса зарядки, но напряжение батареи будет расти. Это означает, что нормально видеть, как ватты на счетчике растут и растут во время процесса зарядки.

В конце концов, напряжение батареи достигнет целевого напряжения зарядки, а затем вы увидите, что мощность начинает падать. Вот как вы узнаете, что батарея заряжается.

Простое зарядное устройство для литиевых батарей с помощью настольного источника питания

Хотя знать, как сделать зарядное устройство своими руками, очень здорово, но это, безусловно, требует много работы. Итак, если вы хотите получить все преимущества изготовления собственного зарядного устройства с минимальными затратами труда, вам следует приобрести регулируемый настольный блок питания.

С регулируемым настольным блоком питания вы можете делать то же самое, что описано в этой статье, но намного проще. Все, что вам нужно сделать, это купить блок питания, установить напряжение и силу тока в соответствии с вашими потребностями и подключить его к аккумулятору.

Просто убедитесь, что любой настольный блок питания, который вы хотите купить, поддерживает диапазон напряжения, совместимый с любой батареей, которую вы пытаетесь зарядить с его помощью, и что он имеет CC/CV (постоянный ток, постоянное напряжение). Это решение в основном берет все части и детали, описанные в этой статье, и помещает их все в одну удобную коробку. Самое замечательное в этом типе блоков питания то, что они всегда имеют четкие, легко читаемые встроенные экраны.

Заключение

Всё! Так же просто построить зарядное устройство. Конечно, есть много разных способов построить зарядное устройство и много разных типов аккумуляторов для зарядки. Встроенный в этом примере можно легко настроить для зарядки аккумуляторной батареи 4S LFP, просто увеличив его выходное напряжение до 14,6 вольт.

Когда вы научитесь собирать зарядное устройство, вы узнаете, как управлять напряжением и током и заставить его делать именно то, что вам нужно. Этот опыт является полезным и чрезвычайно полезным в практической, повседневной жизни. Важно помнить, что зарядное устройство — это всего лишь особый вид регулируемого источника питания. Стандартный регулируемый блок питания — это всего лишь регулятор постоянного напряжения. Это означает, что с большинством регулируемых источников питания вы не можете контролировать ток. Самодельное зарядное устройство немного сложнее, чем использование регулируемого источника питания, потому что в самодельном зарядном устройстве вы можете контролировать как напряжение, так и силу тока.

Сборка зарядного устройства своими руками дает несколько ключевых преимуществ. С экономической точки зрения, самостоятельная работа всегда сэкономит вам деньги по сравнению с покупкой готового продукта. Возможность выбирать свои собственные компоненты без необходимости срезать углы для достижения конкретных производственных показателей означает, что вы можете быть уверены, что ваше зарядное устройство для аккумуляторов DIY изготовлено из компонентов самого высокого качества. Зарядное устройство для литий-ионных аккумуляторов — не простое устройство. Итак, если вы узнаете, что нужно для создания зарядного устройства для аккумуляторов своими руками, вы резко расширите свои возможности, что всегда хорошо. Кроме того, установка максимального тока на регуляторе напряжения постоянного тока делает этот регулятор ничем не отличающимся от источника питания постоянного напряжения. Это, конечно, не очень хорошо для зарядки аккумуляторов, но это означает, что самодельное зарядное устройство можно использовать не только для зарядки аккумуляторов.

Мы надеемся, что эта статья помогла вам узнать все, что вам нужно знать о том, как построить зарядное устройство для аккумуляторов. Спасибо за прочтение!

Самостоятельное руководство по сборке зарядного устройства для литиевых аккумуляторов

Литий-ионные аккумуляторы великолепны. Они дешевы и могут хранить много энергии. Создание литий-ионного аккумулятора — это весело и полезно, и создание зарядного устройства — не исключение. Когда вы можете создать собственное зарядное устройство для литий-ионных аккумуляторов, экспериментировать со всевозможными конфигурациями элементов становится намного практичнее. В некоторых случаях создание зарядного устройства часто дешевле, чем его покупка, и может обеспечить гораздо большую производительность.

Сборка зарядного устройства своими руками дает множество преимуществ. Во-первых, общая стоимость часто ниже, чем покупка одного. Кроме того, самодельные зарядные устройства обычно имеют более высокую производительность на доллар, чем готовые. Самодельное зарядное устройство можно настроить на любое напряжение в пределах возможностей преобразователя. Это означает, что с помощью самодельного зарядного устройства вы можете заряжать множество различных типов аккумуляторов. Еще одна замечательная вещь в создании зарядного устройства для аккумуляторов своими руками — это чувство выполненного долга. Зарядное устройство для литий-ионных аккумуляторов важно и несколько сложно для понимания. Так что, если вы можете построить зарядное устройство для аккумулятора своими руками, это, скорее всего, означает, что вы также можете делать много других интересных вещей. Самодельное зарядное устройство можно использовать даже для питания различных устройств. Это означает, что если вы можете построить зарядное устройство для аккумуляторов, вы также можете создать источники питания для самых разных вещей, поскольку процесс почти такой же.

В этой статье мы расскажем, как сделать зарядное устройство для аккумуляторов своими руками. Мы также рассмотрим некоторые основы аккумуляторов и предоставим подробный список преимуществ сборки зарядного устройства своими руками.

Что такое зарядное устройство?

В случае литий-ионных аккумуляторов зарядное устройство представляет собой источник постоянного тока. Литий-ионные аккумуляторы необходимо заряжать в 2 этапа. Первая фаза представляет собой постоянный ток, где напряжение будет достигать того значения, которое необходимо для поддержания постоянного тока. Следующая и последняя фаза – фаза постоянного напряжения. Это когда напряжение поддерживается постоянным, а ток медленно падает до нуля.

Самодельные зарядные устройства против покупки зарядного устройства

Когда вы покупаете зарядное устройство, вы ограничены определенным уровнем напряжения и тока этого зарядного устройства. Когда вы можете построить зарядное устройство, настройка данного зарядного устройства для конкретного приложения становится тривиальной задачей. Например, литий-ионный аккумулятор 3S NMC имеет максимальное зарядное напряжение 12,6 вольт. Это прекрасно работает, но клетки деградируют примерно через 500–800 циклов.

Снижение зарядного напряжения до 12 В снижает емкость примерно на 20%, но более чем удваивает срок службы, что может быть лучше для некоторых приложений. Точный контроль над напряжением и током дает вам большую гибкость при проектировании систем с батарейным питанием.

Следует также учитывать, что при использовании встроенного зарядного устройства вы просто доверяете ему. Вы доверяете ему правильное напряжение, а если это не так, вы доверяете своей BMS, чтобы обеспечить вашу безопасность. Вы верите, что он не заряжает ваши клетки слишком быстро или слишком медленно, и нет никакого способа легко проверить вещи, не покупая дополнительные вещи.

При сборке самодельного зарядного устройства вам понадобится какой-то способ контроля напряжения и тока, чтобы собрать его правильно. Это гарантирует, что самодельное зарядное устройство на самом деле является , выдающим напряжение и ток, как вы думаете.

Каковы преимущества изготовления самодельного зарядного устройства?

Даже если вы предпочитаете купить зарядное устройство, а не собирать его, вам все равно важно знать, как сделать зарядное устройство для аккумулятора. Если вы знаете, как построить зарядное устройство для аккумуляторов, то у вас будет четкое понимание основных концепций, связанных с зарядкой литий-ионных аккумуляторов.

Эти знания помогут вам лучше подготовиться к процессу покупки, потому что вы будете знать, на что обращать внимание и чего следует избегать. Кроме того, если вы знаете, как построить зарядное устройство для аккумулятора, то вы будете знать, как его починить, что может быть удобно.

Низкая стоимость

Вообще говоря, изготовление зарядного устройства обойдется намного дешевле, чем его покупка. Это имеет смысл, потому что, когда вы покупаете зарядное устройство, вы платите за стоимость материалов, а также за работу и другие включенные сборы, связанные с управлением компанией, у которой вы покупаете зарядное устройство.

Каждый раз, когда вы готовы поработать, чтобы что-то сделать, время, которое вы тратите на проект, экономит ваши деньги, потому что это деньги, которые в противном случае были бы выплачены кому-то другому за то, что вы делаете.

Более высокая производительность

Компании, производящие зарядные устройства для аккумуляторов, делают это ради прибыли. Таким образом, в их интересах использовать компоненты самого низкого качества, которые являются приемлемыми. Это означает, что менее популярные бренды будут использовать самые дешевые, а иногда и электронные компоненты, чтобы максимально снизить стоимость.

Несмотря на то, что компании более высокого класса не делают вещи или плохо, они все же заинтересованы в максимально возможном снижении стоимости компонентов. Когда вы строите собственное зарядное устройство для аккумулятора своими руками, эти вещи не применяются. У вас есть полная свобода выбора компонентов самого высокого качества. Хорошая новость заключается в том, что деньги, которые вы сэкономите, собрав его самостоятельно, с лихвой компенсируют затраты на выбор более дорогих компонентов.

Гораздо более гибкий

Если вы соберете самодельное зарядное устройство для аккумуляторов, скорее всего, оно будет сделано с каким-либо регулируемым регулятором напряжения. Будь то повышающий преобразователь постоянного тока или понижающий преобразователь постоянного тока, в любом случае у него будут настройки. Это означает, что когда вы строите самодельное зарядное устройство, вы создаете многофункциональное устройство, которое можно использовать не только для зарядки одного типа батареи, но и для многих других целей.

Самодельное зарядное устройство можно настроить на зарядку любой батареи любого химического состава в пределах допустимого напряжения.

Чувство выполненного долга

Нет ничего более приятного, чем использование самодельного устройства. Особенно, когда он работает хорошо, и особенно, когда вы должны использовать его на регулярной основе.

Изучение нового навыка

Каждый раз, когда вы преодолеваете неспособность, это серьезное улучшение жизни. Переход от невозможности построить зарядное устройство своими руками к возможности построить его означает, что вы можете делать новые вещи. Расширение кругозора — это всегда хорошо.

Другие полезные приложения

Помимо возможности заряжать различные типы аккумуляторов, самодельное зарядное устройство также может быть самостоятельным регулируемым источником питания. Все, что вам нужно сделать, это установить ток на регуляторе до упора. Как только ток установлен на максимум, регулятор будет работать точно так же, как регулятор постоянного напряжения.

В этом режиме вы можете настроить самодельное зарядное устройство на 12 вольт и запустить любое 12-вольтовое устройство или настроить его на 5 вольт и заряжать USB-устройства. Когда вы создаете зарядное устройство для аккумуляторов своими руками, возможности безграничны.

Материалы и инструменты, необходимые для сборки зарядного устройства для батареи

Детали, необходимые для сборки зарядного устройства, зависят от химического состава, напряжения и других факторов батареи, которую вы собираетесь заряжать. В этом примере мы будем использовать наиболее распространенный тип перезаряжаемой батареи: литий-ионный NMC.

При использовании литий-ионной химии NMC максимальное напряжение заряда составляет 4,2 вольта. Однако для максимально долгого срока службы элементы NMC следует заряжать до 4 вольт на элемент. Зарядка элемента NMC до 4 вольт на элемент снижает его емкость на 20%, но увеличивает общий срок службы примерно на 250%.

В этом примере мы сосредоточимся на создании зарядного устройства, которое может заряжать литий-ионный аккумулятор 3S NMC с максимальным зарядным напряжением 12,6 вольт.

Блок питания

Чтобы построить зарядное устройство, первое, что вам понадобится, это блок питания переменного тока в постоянный. Для этого есть много вариантов. Вы можете использовать компьютерный блок питания ATX, специальный блок питания переменного тока в постоянный высокой мощности или даже недорогой компактный блок питания USB PD. Зарядное устройство представляет собой источник питания и регулятор, объединенные в один блок.

В этой статье мы рассмотрим все три, но для примера мы будем использовать блок питания USB-C PD мощностью 65 Вт.

Регулятор

Вам также понадобится стабилизатор постоянного тока. Регулятор должен быть преобразователем постоянного тока, если ваш источник питания имеет более высокое напряжение, чем аккумулятор, который вы хотите зарядить. Если, с другой стороны, аккумулятор, который вы хотите зарядить, имеет более высокое напряжение, чем ваш блок питания, вам придется использовать повышающий преобразователь постоянного тока.

В этом примере мы будем работать с 20-вольтовым триггером USB PD для зарядки 12,6-вольтовой батареи, поэтому регулятор будет понижающим преобразователем.

Как правило, более гибко начинать с более высокого напряжения, чем требуется, и использовать понижающий преобразователь, чтобы снизить напряжение до необходимого уровня. Таким образом, вы можете получить доступ ко всем напряжениям между вашим входным напряжением и нулем, а не ограничиваться диапазоном напряжений, как в случае с повышающим преобразователем.

Провод

Вам понадобится провод, чтобы соединить все вместе. Для большинства зарядных устройств подойдет провод калибра от 18 до 16.

Мультиметр

Вам понадобится мультиметр для установки выходного напряжения регулятора и проверки текущего напряжения батареи. Для этого вы можете использовать практически любой мультиметр, поскольку даже самые дешевые измерители на Amazon более чем достаточно точны.

Наиболее важным аспектом дешевого мультиметра является звуковой сигнал непрерывности. Тестирование непрерывности — это функция мультиметра, которая позволяет узнать, соединены ли два проводящих элемента электрически или нет. Хотя измерение непрерывности является важной функцией мультиметра, которая есть у всех мультиметров, не каждый мультиметр имеет зуммер. Таким образом, с этими счетчиками вы должны отвести взгляд от того, что вы исследуете, чтобы узнать, подключены они или нет. Итак, при покупке недорогого мультиметра убедитесь, что он оснащен зуммером непрерывности.

Измеритель тока

Несмотря на то, что мультиметр можно использовать для проверки тока, это не удобный процесс, и вы не можете использовать мультиметр для одновременной проверки тока и напряжения. Измерители тока, подобные этому, — отличные инструменты, и, безусловно, их полезно иметь в своем арсенале, но для этого примера мы будем использовать кабель USB C-C со встроенным ваттметром.

Процесс зарядки аккумулятора

Зарядка литий-ионного аккумулятора, будь то NMC или LFP, включает в себя двухэтапный процесс. Первый этап – фаза постоянного тока. Во время фазы постоянного тока батарея будет получать постоянный ток от зарядного устройства. Величина тока, которую батарея может безопасно потреблять на этом этапе, определяется максимальным током заряда ячейки батареи и ее параллельной конфигурацией.

Как только напряжение батареи поднимается примерно до 95% от целевого напряжения, зарядка переключается в режим постоянного напряжения. В фазе постоянного напряжения ток естественным образом упадет с установленного уровня тока до 0, в то время как напряжение останется прежним.

В этом примере мы будем использовать аккумуляторные элементы BAK N18650CK с максимальным током заряда 1C и емкостью 3050 мА. Это батарея 1S3P, что означает, что батарея состоит всего из трех последовательно соединенных элементов BAK N18350CK.

Объяснение C-скорости батареи

Если бы это была батарея большего размера с большим количеством параллельных групп, она могла бы безопасно заряжаться с большей скоростью. Например, вот как он выходит из строя с батареей 3S3P, использующей те же элементы:    

Когда литий-ионный элемент NMC разряжен, его напряжение составляет около 2,6 вольт. Таким образом, если аккумулятор можно заряжать только током 3,05 ампер, а его напряжение составляет 2,6 вольта, то его можно заряжать только при максимальной мощности 7,93 Вт.

Через некоторое время в процессе зарядки напряжение аккумуляторной батареи увеличится. Когда ячейка достигает 2,9вольт, зарядное устройство по-прежнему будет обеспечивать 3 ампера.

Во время фазы постоянного тока аккумуляторные батареи заряжаются с максимальной скоростью, но, как видно сверху, по мере роста напряжения аккумуляторной батареи все больше и больше энергии поступает в батарею. Как только ячейка достигает установленного напряжения зарядного устройства, ток начинает падать, в результате чего ячейки батареи поглощают все меньше и меньше энергии.

Выбор источника питания для самодельного зарядного устройства

Первым шагом в создании зарядного устройства является получение приличного источника питания. Есть много вариантов на выбор, но в этой статье мы рассмотрим три: блок питания ATX, выделенный блок питания и блок питания USB C PD.

Блок питания ATX

Современные блоки питания ATX для ПК хорошо сконструированы, недороги и поддерживают высокие уровни тока. Нередко можно найти блок питания ATX, способный выдавать 20 А и более по цене менее 50 долларов. Чтобы включить блок питания ATX снаружи ПК, все, что вам нужно сделать, это соединить зеленый провод с любым черным проводом.

Это заставляет блок питания думать, что он установлен на включенном компьютере. Желтый провод имеет напряжение 12 вольт и обычно подходит для тока от 10 до 20 ампер. Блоки питания ATX удобны в использовании, потому что в доме часто есть старые, неиспользуемые компьютеры.

Специализированный блок питания

На Amazon и eBay доступно множество 12-вольтовых, 24-вольтовых и регулируемых специализированных блоков питания. Этот тип блока питания обычно больше, чем блок питания ATX, но с ним, возможно, проще работать, поскольку он не требует модификаций. Кроме того, в отличие от блоков питания ATX, отдельный блок питания может выдавать более 12 вольт.

Это полезно, если вы хотите использовать понижающий преобразователь для зарядки аккумуляторов с напряжением выше 12 вольт, но ниже 24. Отдельный блок питания — хорошее решение для мощного зарядного устройства.

Блок питания USB C PD

Полнофункциональный блок питания USB C PD может обеспечивать выбираемое выходное напряжение 5 В, 9 В, 12 В, 15 В и 20 В. В отличие от ATX и специализированных блоков питания, на рынке существует множество блоков питания GaN (нитрид галлия) USB C PD. Блоки питания GaN намного эффективнее и занимают гораздо меньше места, чем блоки питания, использующие традиционные кремниевые МОП-транзисторы.

Это означает, что небольшой блок питания USB C PD может обеспечить 100 Вт энергии, в то время как традиционный блок питания такого же размера может обеспечить только около 40 Вт. Дополнительным преимуществом блоков питания USB C PD является совместимость с широким спектром других устройств USB C, таких как телефоны, планшеты и даже ноутбуки.

Пошаговое руководство по сборке зарядного устройства

В этом пошаговом руководстве мы расскажем, как собрать зарядное устройство, которое может заряжать любые литий-ионные или свинцово-кислотные аккумуляторы, поддерживающие зарядное напряжение в пределах 2,6 В. вольт до 19вольт. Этот диапазон может показаться узким, но на самом деле он охватывает довольно много аккумуляторов. Это зарядное устройство может заряжать литий-ионный аккумулятор 1S, 2S, 3S или 4S NMC или литий-ионный аккумулятор 1S, 2S, 3S, 4S или 5S LFP. Он может заряжать даже 12-вольтовые свинцово-кислотные аккумуляторы. Чтобы выяснить, какое напряжение вам нужно для зарядки аккумуляторной батареи, вы можете использовать наш инструмент планировщика батарей.

USB PD поддерживает 5 В, 9 В, 12 В и 15 В, но не все адаптеры питания с портами USB C поддерживают всю спецификацию USB PD. Для зарядки аккумуляторов мы рекомендуем использовать блок питания USB C PD мощностью не менее 65 Вт. Хорошей новостью является то, что если блок питания USB C PD рассчитан на 65 Вт, то он будет поддерживать полный диапазон напряжений.

USB PD — интеллектуальное решение для питания. Он начинается с безопасных 5 вольт, а затем спрашивает устройство, к которому оно подключено, какое напряжение оно поддерживает. Как только устройство отвечает, блок питания USB PD выбирает требуемое напряжение.

Это удобно для обмена данными между устройствами и обеспечивает плавное автоматическое согласование напряжения. Однако USB PD поддерживает небольшие устройства, называемые «триггерами». Триггеры подключаются к источнику питания USB PD через кабель USB C и либо имеют способ выбрать напряжение на плате, либо имеют фиксированное напряжение. В этом примере мы будем использовать выбираемый сорт.

В этом примере будет использоваться понижающий преобразователь постоянного тока. Этот тип преобразователя имеет потенциометры для управления током и напряжением. Ближайший к выходу потенциометр регулирует напряжение. Другой управляет током. Когда вы получаете новый понижающий преобразователь, лучше всего повернуть эти ручки до упора, прежде чем прикреплять их в первый раз.

Требуемые детали:

  • Блок питания USB PD
  • Триггер USB PD
  • Понижающий преобразователь постоянного тока
  • Кабель ваттметра USB PD
  • Литий-ионный аккумулятор 3S
[[ aff type=guide ]]

Шаг 1: Вставьте блок питания USB PD в розетку.

Шаг 2: Подключите кабель ваттметра USB C-C к блоку питания USB PD.

ПРИМЕЧАНИЕ: Этот кабель имеет экран на одном конце, который показывает, сколько энергии проходит через кабель. Вам нужен экран на конце устройства, а не на конце источника питания, потому что кабель считывает мощность, протекающую только в одном направлении. Экран не горит, когда кабель подключен только к источнику питания.

Шаг 3: Подключите кабель USB C к триггеру напряжения.

ПРИМЕЧАНИЕ: В этот момент загорается экран на кабеле измерителя мощности. Некоторые триггеры имеют фиксированное выходное напряжение, но этот триггер можно выбрать. Удобно иметь возможность установить напряжение срабатывания, чтобы легко обновить/модифицировать бытовую электронику для работы от USB PD, но для зарядки аккумулятора лучше всего установить напряжение на 20 вольт, чтобы максимальное количество мощности было доступно от источника питания.

Подсоедините мультиметр к выходу триггера напряжения, чтобы убедиться, что он выдает ожидаемое напряжение.

Шаг 4: Наденьте разъем на выход триггера напряжения или припаяйте к ним провода, чтобы его можно было подключить к входу понижающего преобразователя.

Шаг 5: Подключите выход триггера напряжения к входу понижающего преобразователя и включите понижающий преобразователь с помощью переключателя в углу платы.

Шаг 6: Подсоедините мультиметр к выходу понижающего преобразователя. Если вы воспользовались приведенным выше советом и полностью выкрутили его, то на мультиметре вы должны увидеть около 1,5 вольта. Поверните внешний потенциометр по часовой стрелке, и напряжение возрастет.

Шаг 7: Продолжайте поворачивать потенциометр, пока не достигнете желаемого максимального зарядного напряжения. В данном случае это 12,6 вольта.

Шаг 8: Подсоедините аккумулятор к выходу понижающего преобразователя.

ПРИМЕЧАНИЕ : Поскольку ток установлен на ноль, вы заметите, что выходной сигнал понижающего преобразователя падает, чтобы соответствовать напряжению батареи. Это нормально.

Шаг 9: Медленно поворачивайте потенциометр тока, пока не увидите, что цифры на кабеле ваттметра начинают расти.

[[ aff type=guide ]]

ПРИМЕЧАНИЕ: Что касается того, к какому числу привести, это требует некоторой математики. Это число в ваттах, а не в амперах. Аккумулятор в этом примере хорош для зарядного тока около 3 ампер и в настоящее время составляет 9 ампер. 0,71 вольт.

9,71 вольт x 3 ампера  =  29,13 Вт

Итак, в этом примере мы будем поворачивать потенциометр, пока ваттметр не покажет 30 Вт. Теперь помните, что ток будет оставаться неизменным в течение большей части процесса зарядки, но напряжение батареи будет расти. Это означает, что нормально видеть, как ватты на счетчике растут и растут во время процесса зарядки.

В конце концов, напряжение батареи достигнет целевого напряжения зарядки, а затем вы увидите, что мощность начинает падать. Вот как вы узнаете, что батарея заряжается.

Простое зарядное устройство для литиевых батарей с помощью настольного источника питания

Хотя знать, как сделать зарядное устройство своими руками, очень здорово, но это, безусловно, требует много работы. Итак, если вы хотите получить все преимущества изготовления собственного зарядного устройства с минимальными затратами труда, вам следует приобрести регулируемый настольный блок питания.

С регулируемым настольным блоком питания вы можете делать то же самое, что описано в этой статье, но намного проще. Все, что вам нужно сделать, это купить блок питания, установить напряжение и силу тока в соответствии с вашими потребностями и подключить его к аккумулятору.

Просто убедитесь, что любой настольный блок питания, который вы хотите купить, поддерживает диапазон напряжения, совместимый с любой батареей, которую вы пытаетесь зарядить с его помощью, и что он имеет CC/CV (постоянный ток, постоянное напряжение). Это решение в основном берет все части и детали, описанные в этой статье, и помещает их все в одну удобную коробку. Самое замечательное в этом типе блоков питания то, что они всегда имеют четкие, легко читаемые встроенные экраны.

Заключение

Всё! Так же просто построить зарядное устройство. Конечно, есть много разных способов построить зарядное устройство и много разных типов аккумуляторов для зарядки. Встроенный в этом примере можно легко настроить для зарядки аккумуляторной батареи 4S LFP, просто увеличив его выходное напряжение до 14,6 вольт.

Когда вы научитесь собирать зарядное устройство, вы узнаете, как управлять напряжением и током и заставить его делать именно то, что вам нужно. Этот опыт является полезным и чрезвычайно полезным в практической, повседневной жизни. Важно помнить, что зарядное устройство — это всего лишь особый вид регулируемого источника питания. Стандартный регулируемый блок питания — это всего лишь регулятор постоянного напряжения. Это означает, что с большинством регулируемых источников питания вы не можете контролировать ток. Самодельное зарядное устройство немного сложнее, чем использование регулируемого источника питания, потому что в самодельном зарядном устройстве вы можете контролировать как напряжение, так и силу тока.

Сборка зарядного устройства своими руками дает несколько ключевых преимуществ. С экономической точки зрения, самостоятельная работа всегда сэкономит вам деньги по сравнению с покупкой готового продукта. Возможность выбирать свои собственные компоненты без необходимости срезать углы для достижения конкретных производственных показателей означает, что вы можете быть уверены, что ваше зарядное устройство для аккумуляторов DIY изготовлено из компонентов самого высокого качества.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *