Импульсный паяльник из энергосберегающей лампы своими руками: Импульсный паяльник своими руками: схема, устройство, принцип работы

Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Паяльник с моментальным нагревом подходит для работы с небольшими деталями и сплавами. При использовании этого прибора экономится время и энергозатраты на пайку. Паяльник готов к работе сразу после включения. Гибкое жало можно изогнуть наиболее удобные образом. Прибор не требует постоянно поддержания температуры, его включают только на время выполнения операции. К тому же сборка паяльника с моментальным нагревом не занимает много времени. Рабочая схема монтируется на основе энергосберегающей лампы, вся конструкция помещается внутри клеевого пистолета.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы

Содержание

Для работы понадобится:


  • клеевой пистолет;
  • энергосберегающие лампы одна на 105 Вт и вторая на 30 Вт;
  • кабель зарядки с ферритовой шайбой;
  • медная шина;
  • медная проволока.

Изготовление паяльника с моментальным нагревом


Моментальный паяльник из клеевого пистолета и энергосберегающей лампы

Из клеевого пистолета вынимаем все содержимое. Нам понадобится только корпус.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Берем кабель зарядки и демонтируем ферритовую шайбу. Для этого разрезаем кабель в районе утолщения.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Снимает обмотку и вытаскиваем тор.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Раскручиваем энерголампу. Достаем плату.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Убираем из платы дроссель.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы

Собираем импульсный трансформатор. Для этого обмотку дросселя наматываем на ферритовую шайбу, получилось чуть более 100 витков. Делаем вторичный виток, используя медную шину. На концах закрепляем болты.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Разбираем вторую энергосберегающую лампу.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Стандартная схема энергосберегающей ламы выглядит так.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Для сборки паяльника потребуют только отдельные элементы микросхемы.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Демонтируем высоковольтные силовые транзисторы из платы энерголампы на 30 Вт, и вместо них устанавливаем транзисторы из лампы на 100 Вт, а также транзистор MJE 13009.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Также меняем диоды на более мощный диодный мост. Смотрите все изменения на схеме, они помечены красным. Окончательная схема для паяльника.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Плата будет выглядеть вот так.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Собираем схему целиком. Помещаем все детали в корпус лампы. Проверяем работу паяльника.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Вынимаем все оборудование из корпуса и вносим корректировки в конструкцию. Для этого заполняем ненужные отверстия в корпусе пистолета эпоксидной смолой.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Устанавливаем выключатель. Отпиливаем заднюю часть спускового курка для корректной работы заслонки. Приклеиваем заднюю часть ударника обратно.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Устанавливаем пусковой механизм. Предварительно держатель пускового механизма крепим к корпусу эпоксидной смолой.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Изолируем импульсный трансформатор с помощью термопасты.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы
Подсоединяем и укладываем все провода плотно в корпус пистолета.
Моментальный паяльник из клеевого пистолета и энергосберегающей лампы

Проводим сборку всей конструкции. Проверяем работу паяльника.

Смотрите видео


Импульсный паяльник своими руками: схема, устройство, принцип работы

Импульсные паяльники зарекомендовали себя как удобный, экономичный и безопасный инструмент радиомонтажника. Магазины предлагают множество моделей на любой вкус и кошелек.

Самостоятельное изготовление такого устройства может быть продиктовано не столько соображениями экономии, сколько жаждой познания и тягой к самореализации домашних мастеров. В этой статье мы расскажем об устройстве и особенностях импульсного паяльника и опишем несколько способов его самостоятельного изготовления.

Импульсный паяльник своими рукамиИмпульсный паяльник своими руками
Импульсный паяльник своими руками

Устройство паяльника работающего по импульсному принципу

Импульсный паяльник устроен относительно просто. Он состоит из:

  • Жало — рабочий орган, представляет собой V- образный отрезок медной проволоки толщиной от 1 до 3 миллиметров, закрепленный в держателе.
  • Источник питания — подает на жало электрический ток низкого напряжения .
  • Рукоятка пистолетного типа.
  • Кнопка включения устройства.
  • Сетевой кабель с вилкой.
  • Лампочка или светодиод подсветки рабочей зоны (необязательно, но очень удобно)

Самый сложный узел — это источник питания. Он преобразует сетевое напряжение в 220 В 50 герц в низкое напряжение высокой частоты (20-40 килогерц). Входная цепь источника через кнопку включения соединена с сетевым кабелем, а к выходной цепи подключены контакты жала. Существуют различные схемы блоков питания импульсных паяльников.

Устройство импульсного паяльника
Устройство импульсного паяльника

Устройство импульсного паяльника

Источник питания может быть встроенным в рукоятку. Закрепленный в корпусе трансформатор обладает большим весом и заметными размерами. При длительной работе это будет сильно утомлять оператора. В некоторых вариантах исполнения источник питания выполняют в виде отдельного блока. Это повышает безопасность и удобство пользования прибором. Кнопка включения устройства вмонтирована в рукоятку.

Основные конструктивные отличия от обычного паяльника:

  • Наличие блока питания.
  • Наличие кнопки включения.
  • Отсутствие нагревательного элемента.
  • Нет необходимости в подставке — температура паяльника повышается только на время пайки, после отпускания кнопки он очень быстро остывает до комнатной температуры .

Конкретные конструкции самодельных импульсных паяльников могут отличаться друг от друга в зависимости от того, какие устройства легли в их основу.

Принцип действия

В основу работы устройства положен простой физический принцип нагревания проводника при пропускании через него сильного электрического тока.

При включении устройства нажатием кнопки кнопкой замыкается входящая цепь блока питания, высокое напряжение преобразуется трансформатором в низкое напряжение на вторичной обмотке, в выходной цепи возникает ток, который быстро нагревает жало. При отпускании кнопки цепь размыкается, ток перестает течь и нагрев прекращается.

Сила тока в рабочей цепи достигает 25-50 ампер при невысоком напряжении около 2 вольт. Вторичная обмотка трансформатора должна быть намотана проводом, должна иметь сечение в несколько раз больше, чем сечение проволоки жала. То же самое касается токопроводящих шин, соединяющих концы жала с вторичной обмоткой. Это предотвратит их перегрев и непроизводительные затраты энергии на их нагревание.

Вместо трансформатора в последнее время все шире стали применяться импульсные источники питания. Они позволяют в несколько раз снизить вес и габариты блока при той же производительности.

Источники тока для питания импульсных паяльников

Перед началом самостоятельного изготовления паяльника следует, исходя из доступных материалов, определиться с выбором типа источника.

Традиционно импульсный паяльник в качестве источника питания использовал мощный понижающий трансформатор и назывался так только из-за кратковременного режима работы.

Такое устройство просто по конструкции, но обладает большим весом и габаритами.

Источник питанияИсточник питания

Источник питания

Ставшие доступными не так давно импульсные блоки питания устроены намного сложнее. Они сначала выпрямляют поступающее на их вход низкочастотное сетевое напряжение, далее преобразуют его в высокочастотное (20-40 килогерц) и уже его подают на первичную обмотку трансформатора. Высокочастотные трансформаторы в несколько раз меньше по массе и габаритам, чем низкочастотные, поэтому весь импульсный источник питания, несмотря на сложное устройство, занимает места в несколько раз меньше, чем один низкочастотный трансформатор.

Резюмируя, можно сказать, что трансформаторные источники просты и надежны, но тяжелы и громоздки.

Импульсные существенно сложнее по устройству, но позволяют сэкономить вес и габариты.

Процесс переделки понижающего трансформатора

Выбирая понижающий трансформатор, следует помнить, что его мощность должна быть от 50 до 150 ватт. Меньшая приведет к перегреву и выходу устройства из строя, большая — к неоправданному утяжелению и громоздкости.

Импульсный паяльник на основе трансформатораИмпульсный паяльник на основе трансформатора

Импульсный паяльник на основе трансформатора

Первичную обмотку переделывать не нужно, а вторичную следует удалить, разобрав пластины. Точный расчет вторичной обмотки не требуется, важнее обеспечить максимальное сечение ее провода или шины. Обычно наматывают от двух до шести витков. Сечение должно быть в пределах от 6 до 10 мм

2.

Важно! Витки вторичной обмотки не должны касаться друг друга и сердечника трансформатора.

Если вторичная обмотка выполняется медной шиной, ее концы можно оставить подлиннее и использовать в качестве токопроводов, закрепив жало непосредственно к ним. Отсутствие лишних соединений повысит надежность работы и улучшит температурный режим устройства.

После окончания намотки и монтажа обязательно проверьте обмотку тестером на отсутствие замыкания

Импульсный паяльник из понижающего трансформатораИмпульсный паяльник из понижающего трансформатора

Импульсный паяльник из понижающего трансформатора

Переделка электронного трансформатора

Импульсный источник питания для паяльника берется «как есть» и подвергается минимальным переделкам. Чаще всего применяют импульсный блок питания для галогенных ламп на напряжение 12 вольт и мощностью 60 ватт, но подойдет и любой с близкими параметрами.

Поскольку в современных блоках питания используются неразборные тороидальные трансформаторы, намотанные на ферритовом кольце и прочно закрепленные на плате, то старую вторичную обмотку не удаляют, а просто отключают.

Новую вторичную обмотку делают из всего одного витка медной шины большого сечения, аккуратно просовывая ее в центральное отверстие выходного трансформатора.

Если у нашедшегося под рукой провода или шины сечение недостаточное, то следует сделать две вторичные обмотки из одного витка, подключив их к токопроводам параллельно.

В целом процесс переделки своими руками электронного трансформатора в импульсный паяльник получается проще, чем в случае низкочастотного трансформатора.

Изготовление жала паяльника

Жало — самый простой, но, тем не менее, ответственный узел паяльника.

Жало паяльникаЖало паяльника

Жало паяльника

Медная проволока должна быть диаметром 1-2 миллиметра, крепить ее к токопроводным шинам следует болтовыми соединениями с шайбами. Если под рукой найдутся цанговые соединения на такой диаметр- то паяльник приобретет намного более эстетичный вид.

После нескольких пробных паек, возможно, придется изменить диаметр проволоки. Слишком тонкая будет перегреваться сама, и перегревать припаиваемые детали, слишком толстая, напротив, будет медленно прогреваться, задерживая основную работу.

Подбором толщины проволоки надо добиться разогрева жала до стабильной температуры за 5-7 секунд. Чрезмерное увеличение толщины приведет к росту потребляемой мощности и к перегреву вторичной обмотки выходного трансформатора. В ходе пробных паек нужно обязательно проверять степень ее нагрева, не допуская тления или даже воспламенения изоляции.

Преимущества и недостатки

Импульсный паяльник, собранный своими руками, будет выгодно отличаться от других типов паяльников следующим:

  • Малый расход электроэнергии. Она не тратится на обогрев мастерской, а расходуется только в момент пайки.
  • Безопасность. Жало в нерабочем состоянии мгновенно остывает, таким устройством нельзя обжечься, поджечь что-либо на рабочем столе или проплавить изоляцию.
  • Удобство использования, ремонта и обслуживания. Жало можно изготовить заменить за считанные минуты. Кроме того, жалу можно придать любую форму для выпаивания деталей в труднодоступных местах или среди плотного монтажа.

Кроме достоинств, этому типу устройств присущ и недостаток: большой вес и размеры утомляют руку при длительном использовании. Чтобы избежать этого, применяют импульсный источник питания и даже выносят его в отдельный блок.

Изготовление импульсного микросхемного паяльника

Для изготовления паяльника, которым можно выпаивать и впаивать в печатные платы микросхемы и другие электронные компоненты, отличающиеся особой чувствительностью к перегреву, в конструкцию устройства добавляют специально переделанный резистор, играющий роль защитного устройства. Хорошо подойдет резистор типа МЛТ сопротивлением 8 ом и рассеиваемой мощностью 0,5-2 ватта

Паяльник для микросхем своими рукамиПаяльник для микросхем своими руками

Паяльник для микросхем своими руками

Кроме того, потребуется:

  • Полоска двухстороннего фольгированного текстолита 10Х30 миллиметров.
  • Кусок стальной проволоки толщиной 0,8 мм.
  • Медная проволока для жала.
  • Корпус шариковой ручки.
  • Импульсный блок питания 12-15 вольт 1 ампер.

Последовательность изготовления следующая:

  1. Снять лакокрасочное покрытие с резистора, нагрев его в муфельной печи или газовой горелкой.
  2. надфилем или лобзиком отпилить один из выводов .
  3. просверлить в этом месте отверстие диаметром 1,1 мм, достигнув внутренней полости. Второй вывод следует подключить к источнику питания, он же будет крепить устройство к ручке.
  4. Расширить отверстие в корпусе сопротивления на конус так, чтобы исключить контакт жала и внутренних стенок резистора, к этому месту надо будет припаять второй провод к блоку питания.
  5. Стальную проволоку надо согнуть пополам, выгнуть в месте сгиба кольцо по диаметру резистора (должно садиться очень плотно) и загнуть его под прямым углом.
  6. Кольцо залудить, надеть на резистор и припаять так, чтобы концы стальной проволоки были направлены в одну сторону с оставшимся выводом.
  7. Из полоски текстолита вырезать плату таким образом, чтобы на широкой части с разных сторон было две контактные площадки для припаивания концов проволоки и второго вывода резистора соответственно, средняя должна плотно входить в корпус ручки, а узкая — иметь контактные площадки для подпайки проводов от блока питания.
  8. Припаять концы проволоки и вывод сопротивления к плате, с дугой стороны припаять провода от блока питания
  9. В отверстие резистора плотно вставить кусочек термостойкого изолятора (той же керамики, например), чтобы исключит контакт жала со вторым выводом.
  10. Вставить медное жало в отверстие. Жалу можно придать любую удобную для пайки форму, изогнуть, сплющить, заточить и т.д.
  11. Пропустить провода через корпус ручки, вставить в него плату и подсоединить провода к блоку питания.
Устройство паяльника для микросхемУстройство паяльника для микросхем

Устройство паяльника для микросхем

Работа таким импульсным микросхемным паяльником, сделанным своими руками, безопасна для микросхем и не утомляет руку.

Отличия от обычного паяльника

Основные отличия импульсного паяльника от обычного заключаются в следующем:

  • Нагревательный элемент как таковой отсутствует. Нагревается само жало за счет проходящего по нему сильного тока. Жало включают в цепь вторичной обмотки трансформатора.
  • Быстрый прогрев жала (несколько секунд).
  • Экономичность (электроэнергия расходуется только в момент пайки).
  • Безопасность. Паяльник нагревается на несколько секунд и так же быстро остывает.
  • Возможность регулировать мощность (в некоторых схемах)
Импульсный и обычный паяльникиИмпульсный и обычный паяльники

Импульсный и обычный паяльники

Из негативных отличий следует отметить неприменимость такого устройства для пайки микросхем и других элементов, чувствительных к перегреву и к поражению статическими зарядами.

Делаем самодельный электропаяльник импульсного типа

Рассмотрим пошаговую инструкцию по самостоятельному изготовлению паяльника трансформаторного типа.

  1. Подобрать подходящий трансформатор. Подойдет любой силовой от блока питания старой электронной техники мощностью 50-150 ватт.
  2. Аккуратно разобрать его и снять обмотки. С вторичной можно не церемониться, а с первичной надо обойтись осторожно — она войдет в состав изделия.
  3. Изготовить и поместить поверх первичной вторичную обмотку из медной шины сечением не менее 20 мм Достаточно одного витка, надо оставить концы шины длиной не менее 15 см.
  4. Для изоляции следует использовать стеклоткань или термоусадочные трубки.
  5. К концам шин на болтовых креплениях присоединить V- образный кусок медной проволоки толщиной 1,5-2 мм (подбирается опытным путем)
  6. Из дерева или текстолита вырезать рукоятку, в ней закрепить кнопку включения. И трансформатор.
  7. Подсоединить к первичной обмотке сетевой кабель через кнопку.
Самодельный электропаяльник импульсного типаСамодельный электропаяльник импульсного типа

Самодельный электропаяльник импульсного типа

Такой импульсный паяльник, сделанный своими руками, по сравнению с заводскими образцами будет хоть и выглядеть невзрачно, зато работать — ничуть не хуже.

Паяльник на базе энергосберегающей лампы

Домашние умельцы разработали еще одну схему создания импульсного паяльника — из энергосберегающей лампы. Сама лампа в конструкцию не входит, потребуются ее комплектующие.

Схема для сборки паяльника на базе энергосберегающей лампыСхема для сборки паяльника на базе энергосберегающей лампы

Схема для сборки паяльника на базе энергосберегающей лампы

Перечень необходимых узлов и материалов:

  • Преобразователь (или балласт) от люминесцентного светильника.
  • Трансформатор с 220 вольт на любое низкое напряжение.
  • Медная проволока толщиной 2-3 миллиметра.
  • Крепеж.
  • Провода.
  • Сетевой шнур с вилкой.

В схему балласта от люминесцентного светильника вмешиваться не следует, она будет работать «как есть». Стабильность работы устройства и его безопасность обеспечивается средствами электронной схемы — терморезистор защитит от перегрева, а предохранитель — от короткого замыкания.

Первичная обмотка рабочего трансформатора подключается к выходным контактам балласта

Рабочий трасформатор следует намотать на любом доступном ферритовом кольце. Первичная обмотка содержит 10-120 витков прбода толщиной 0,5 мм.

Устройство электропаяльникаУстройство электропаяльника

Устройство электропаяльника

Вторичная- это один виток толстой медной проволоки сечением 3-3,5 мм2 К ней на болтовых или цанговых зажимах крепится жало из V- образного куска медной проволоки диаметром 1,5-2 мм.

Важно: проволока вторичной обмотки должна быть толще, чем проволока жала. Иначе будет греться не жало, а обмотка.

Рукоятка и корпус выполняется из любого доступного материала.

Два способа сделать импульсный паяльный пистолет

Паяльник является одним из основных инструментов, применяемых мастерами-электронщиками в своей работе. В процессе ремонта электронных схем собственно пайка занимает относительно небольшие промежутки времени.

При этом паяльник остаётся включенным и длительное время бесполезно излучает тепло. В таких случаях может оказаться весьма удобным простой импульсный паяльник, экономящий электроэнергию.

Отличительные качества

Импульсный паяльник имеет некоторые отличия от традиционных устройств, применяемых для пайки:

  • работа в импульсном режиме, только при нажатой кнопке;
  • быстрый разогрев до рабочей температуры, время которого не превышает нескольких секунд;
  • жало импульсного паяльника представляет собой проводник, нагреваемый протекающим по нему током.

Обычный электропаяльник является прибором, обладающим существенной инерцией. Его жало изготавливается из медного прутка. Нагрев осуществляется контактным способом, путём теплопередачи от нихромовой спирали, нагреваемой электрическим током.

Нагрев такого прибора может длиться несколько минут, что естественно доставляет неудобства. По этой причине такие паяльники не выключают.

Импульсные паяльники выполняются в форме пистолетов, имеющих кнопку включения, расположенную в районе курка. На конце «ствола» располагается петля из медной проволоки, играющая роль жала импульсного паяльника.

Для удобства осуществления пайки, возле жала обычно располагается подсветка, включающаяся при нажатии кнопки включения. Роль подсветки в старых моделях импульсных паяльников играла низковольтная лампочка накаливания, в современных моделях используются светодиоды.

Два типа блоков питания

Внутри корпуса находится блок питания устройства, обеспечивающий ток накала и питание подсветки. Конструкции блоков питания бывают двух типов.

Первый тип – это трансформаторный паяльник. Схема такого блока весьма проста. Внутри его корпуса установлен обычный понижающий трансформатор, рассчитанный на работу от сети 220 вольт.

Трансформатор имеет две вторичные обмотки. Одна из них питает лампу или светодиод подсветки. Вторая является силовой, по ней протекает ток накала жала. Силовая обмотка содержит 1-2 витка, сделаннных медной шиной или толстым проводом. В конце «ствола» пистолета эта обмотка надёжно соединяется с проволочной петлёй, служащей жалом паяльника.

Курок пистолета осуществляет импульсное подключение первичной обмотки трансформатора к сети. При этом вторичная силовая обмотка, работая в режиме короткого замыкания, производит быстрый разогрев рабочей части.

Второй тип импульсных паяльных приборов содержит преобразователь высокой частоты. Такая схема, безусловно, сложнее предыдущей, но за счёт применения высокочастотного трансформатора, позволяет существенно снизить вес и габариты изделия.

Изготовление по трансформаторной схеме

Как уже было отмечено выше, электрическая схема трансформаторного устроства очень проста. Главными задачами, которые необходимо решить при изготовлении импульсного паяльника из трансформатора, – это найти подходящий трансформатор, пистолетную рукоятку с кнопкой и всё это скомпоновать.

Что касается трансформатора – подойдёт любой мощностью 50-100 Ватт. Если под рукой ничего такого нет, можно приобрести или снять со старого светильника трансформатор, использующийся в китайских люстрах для питания галогенных ламп на 12 Вольт.

Вторичную обмотку нужно аккуратно демонтировать, не повредив первичную. Вместо неё наматывается один виток шиной достаточного сечения. Здесь важно подобрать такой проводник, который пройдёт в окно магнитопровода трансформатора. Шина должна доходить до конца «ствола», где её нужно соединить с медной петлёй – жалом.

Расположить трансформатор можно либо в рукоятке, либо на линии «ствола». По возможности следует располагать трансформатор как можно ближе к жалу, так как по вторичной обмотке будет проходить значительный ток, и этот виток лучше сделать коротким.

Схема с высокочастотным преобразователем

Для изготовления самодельного импульсного паяльника второго типа необходимо собрать схему преобразователя частоты. Эта задача представляет определённую сложность, требует некоторой квалификации, и скорее всего игра бы не стоила свеч, если бы не одно обстоятельство.

Подходящий готовый преобразователь имеется в электронном балласте, который можно извлечь из энергосберегающей лампы или люминесцентного светильника.

Переделка внутренней схемы электронного балласта минимальна. Нужно замкнуть между собой проводники, питающие газоразрядную лампу. После этого остаётся только дополнить импульсный трансформатор устройства вторичной обмоткой из одного витка толстого провода. Всё просто, но не совсем.

На штатном трансформаторе, которым снабжена электронная пускорегулирующая аппаратура люминесцентных ламп, это сделать не удастся. Дело в том, что этот трансформатор весьма мал, и никакой провод внутрь его кольца не просунуть.

Выход один. Нужно найти ферритовое кольцо большего типоразмера и намотать на неё первичную обмотку, не забывая прокладывать между слоями изоляцию из лакоткани. Через оставшееся в середине кольца отверстие нужно пропустить один виток провода, который будет служить вторичной обмоткой.

Принцип компоновки тот же, что и в предыдущей конструкции. Трансформатор (а значит, и вся плата преобразователя) должен быть расположен как можно ближе к проволочному жалу. Кнопка, как и в предыдущем случае, должна включать подачу сетевого напряжения, в данной схеме – на плату преобразователя.

Преимущества и недостатки

Несколько слов о достоинствах и недостатках этих конструкций. Итак, в активе имеем следующие положительные качества:

  • импульсный паяльник пистолет удобно держать в руке, кнопка включения находится под указательным пальцем;
  • быстрый разогрев паяльника позволяет держать его отключенным, производя включение только по необходимости, что экономит электроэнергию;
  • имеющаяся подсветка создаёт дополнительные удобства при пайке.

Имеются некоторые недостатки, проявляющиеся в работе импульсных устройств. Один из них связан с напряжённым режимом работы жал таких паяльников. Дело в том, что от величины сечения петли жала зависит скорость нагрева.

Если брать проволоку большого сечения, время разогрева, да и величина требуемого тока, увеличивается. Более тонкая проволока греется быстрее, однако и быстрее сгорает.

В отличие от обычного паяльника, жало импульсного прибора служит гораздо меньше. По этой причине в конструкциях следует предусматривать возможность лёгкой замены этого элемента.

Блок питания из энергосберегающей лампы своими руками: схема и инструкция сборки

Многие электрические устройства после поломки можно использовать повторно. Большинство из них могут стать ценным материалом, своего рода вторсырьем для вторичного использования. Можно ознакомиться на просторах интернета с разными инструкциями необычных самоделок на основе интересующих вас аппаратов. Так, народные умельцы быстро сообразили, что можно сделать блок питания (БП) из вышедшей из строя энергосберегающей лампы (ЭСЛ) своими руками.

Схемы энергосберегающих ламп можно назвать уже наполовину готовым блоком питания. Осталось сделать разделительный трансформатор, потом выпрямитель и удалить ненужные детали. Также помните, что для разработки БП следует выбирать ЭСЛ мощностью не менее чем на 20 Вт, другие лампы могут пойти на запасные части.

Выходное напряжение такого блока получится постоянным, переменное же напряжение в энергосберегающих лампах не предусмотрено. На практике встречается, что лампы от других производителей имеют разные схемы, но разница обычно не очень сильная.

Энергосберегающая лампа

Как сделать блок питания из энергосберегающей лампы

Может показаться, что это дело так называемых радиолюбителей, опытных мастеров работы со схемами, электроприборами.

Но на деле оказывается, что заниматься «оживлением» старой техники может практически любой человек, сталкивающийся в быту с электрическими устройствами. Достаточно работать по плану и иметь схему устройства перед глазами. Мы подготовили наглядную электросхему и поэтапный план работы над блоком из ЭСЛ.

Разбираем лампу

Будьте осторожны, когда разбираете ЭСЛ. Повредив целостность колбы, можно выпустить вредные пары ртути, которые быстро распространяются вокруг. Рекомендуем аккуратно, не спеша поддевать маленькой отверткой в месте шва.

Разобранная лампа

Когда вам открылась схема, соединенная с колбой четырьмя выводами питания, отрежьте их и внимательно рассмотрите состояние элементов. Внешне можно понять, что они вышли из строя, по подгоревшим местам, вздутиям; могут отпаяться концы соединений. После внешнего осмотра необходимо прозвонить электрическую цепь. По опыту радиолюбителей в ЭСЛ часто портятся конденсаторы и резисторы.

Выходят из строя чаще всего именно конденсаторы и резисторы по причине частых включений и выключений энергосберегающей лампы. Если реже «щелкать выключателем», можно сохранить жизнь ЭСЛ на чуть более долгий срок.

Запасные элементы берутся из схем других энергосберегающих ламп, отложенных вами для будущего блока питания. После того, как из нескольких схем соберете одну, можно двигаться дальше.

Вам нужно решить, блок питания какой мощности вы хотели бы собрать. Если мощность блока равна мощности энергосберегающей лампочки, то больших изменений не потребуется; если же захотите увеличить мощность блока питания, то нужно добавить вторичную обмотку, выложенную медным проводником.

Подготовительные работы

Схема

Итак, мы уже удалили контакты, идущие до колбы. Красным на схеме изображен удаленный нами узел ЭСЛ. На оставшиеся концы в схеме садим перемычку. Для повышения выдаваемой мощности нужно добавить к дросселю (на схеме L5) дополнительную (вторичную) обмотку. Появится резерв мощности блока питания за счет нее.

Помимо этого, добавляем новые детали в схему:

  • конденсаторы (на схеме C9, С10)
  • мост диодный (VD14-VD17)

Схема 2

Поместите изоляцию между обмотками. Советуем использовать политетрафторэтиленовую ленту.

Нужное количество витков для вторичной обмотки определяется в несколько этапов:

  1. Укладывается временная обмотка около десяти витков и соединяется с нагрузочным сопротивлением, имеющим характеристики в пределах 30-ти ватт и более, и собственно самим сопротивлением от 5 до 6 Ом;
  2. После подключения питания измеряется напряжение на нагрузочном сопротивлении;
  3. Полученные цифры напряжения делятся на число витков – так узнается, какое напряжение приходит на один виток;
  4. Расчет нужного количества витков для питания постоянной обмотки и подбор диаметра проводника для вторичной обмотки.

Диаметр вторичной обмотки советуем выбрать 0,5 мм.

Количество нужных витков:

X = Uвых (достигаемое напряжение БП) /Uвит (напряжение одного витка)

Кардинальные преобразования

Однако надёжней сделать импульсный блок питания с нуля, поискав трансформатор с нужными характеристиками в старой электронике. Заводские трансформаторы будут гораздо долговечней самоделки. И не нужно к тому же высчитывать количество витков по формуле, достаточно присоединить паяльником концы обмотки трансформатора к схеме.

Если вы хотите сильно увеличить мощность блока питания, в несколько раз, то нужно выпаять старый дроссель и присоединить новый (на схеме ниже обозначен как TV2). Подсоединяем к блоку два диода, составляющих выходной выпрямитель (на схеме VD14, VD15), заменяем диоды на входном выпрямителе с большей мощностью (на схеме RO) и ставим конденсатор с большей емкостью (на схеме CO). Подбирать конденсатор необходимо в пропорциях 1 Ватт выходной мощности = 1 микрофарад. На схеме изображено сто микрофарад на сто ватт.

Сто ватт

Опробовать блок питания можно на лампочке аналогичной мощности. Главное следить за тем, чтобы температура трансформатора нашего блока не превышала 60ºС, а транзисторов 80ºС. Измеряется температура ртутными либо спиртовыми термометрами. Также есть так называемые заводские термопары и термосопротивления. Опытный радиолюбитель всегда имеет такие приспособления под рукой.

Советуем посмотреть видео-инструкцию:

Что можно еще сделать из энергосберегающей лампы

Из нескольких неисправных ЭСЛ можно собрать одну работающую. Радиолюбители делают, например, такие самоделки, как усилитель низких частот, драйвер для питания и управления светодиода. Из цоколя можно сделать маломощный удлинитель для блока зарядки и мобильных устройств, ноутбуков и так далее; такой удлинитель получает питание не от розетки, а патрона, что очень пригодится в поездках за границу, где могут отличаться стандарты розеток от стандартов российских. Импульсный блок питания, сделанный из энергосберегающих ламп, используют ещё для работы шуруповерта.

Мы хотели бы рассказать о такой самоделке от народных умельцев, как импульсный паяльник.

Импульсный паяльник

Для начала перечислим его преимущества над обычным паяльником:

  • Быстрый прогрев жала и такое же быстрое остывание при отключении питания;
  • Электроэнергия используется только в момент пайки;
  • Жало легко меняется, на замену подойдет кусочек медной проволоки 3–3,5 мм2.

Импульсные паяльники приобрели широкую известность, несмотря на то, что имеют пару досадных недостатков: они тяжелей обычных паяльников и не подходят для пайки микросхем, очень чувствительных к перегреву. Но всё-таки преимущества нивелируют эти недостатки; среди знающих людей всё чаще встречаются эти типы паяльников.

Импульсный паяльник

Из деталей ЭСЛ нам понадобится только балласт (преобразователь).  Отдельно собирается трансформатор, преобразующий 220 вольт в любое низкое напряжение.

Также приготовьте:

  • Медные провода сечением 3–3,5 мм2 и 2 мм2;
  • Шнур с вилкой;
  • Рукоять с кнопкой.

Для сборки трансформатора необходимо сначала поискать парочку ферритовых колец. Первичную обмотку намотать на одно кольцо; обмотку сделать до 120 витков. Не забываем про изоляцию между обмотками, для неё можно использовать политетрафторэтиленовую ленту. Для вторичной обмотки понадобится всего один виток медной проволочки диаметром 3 – 3, 5 мм2. Вторичную обмотку тоже нужно изолировать. К ней и будет крепиться жало паяльника, сделанное из медной проволочки 2 мм.

Первичная обмотка присоединяется к выходным контактам преобразователя. Ко вторичной обмотке болтами или цангой прикрепляется жало.

Контакты внутри пистолетной рукояти соединяются с первичной обмоткой трансформатора, с другой стороны цепи – через кнопку – идет соединение со шнуром, вилка которого подключается в сеть питания на 220В.

Получиться может, например, такой самодельный аппарат:

Паяльник
Самодельный паяльник

Импульсный паяльник готов!

В заключение

Радиолюбители практически любое сломанное устройство могут использовать повторно, дать ему вторую жизнь. Прежде чем выбрасывать какой-то прибор, присмотритесь к нему, не поленитесь найти в интернете информацию о том, что можно сделать из него, какие детали использовать для будущего самодельного устройства, найдите электрическую схему.

В наше время люди часто выбрасывают отработавшую технику и электронику, которые увозятся на мусорные полигоны, там без толку гниют. Особенно это касается энергосберегающих ламп и прочих маленьких бытовых устройств.

Можно сдавать в металлолом, в пункты приема отработавших электроприборов, но правильней всего научиться использовать каждую деталь по максимуму, пока они совсем не станут непригодными для работы. Можно сделать пробу на энергосберегающей лампе, превратив её в импульсный блок питания.

Оставляйте комментарии и делитесь со статьей в социальных сетях. И помните, что любая техника может использоваться повторно!

Как сделать компактный и мощный импульсный паяльник
Импульсный паяльник отличается от обычного тем, что разогревается практически моментально. Им можно пользоваться уже через несколько секунд после включения в сеть. При этом импульсный вариант экономичен, обладает небольшими размерами и позволяет использовать напряжение от 6 до 12 Вольт. Подключать такой паяльник можно через блок питания, зарядное устройство телефона или от прикуривателя автомобиля.
Данный прибор выполнен по схеме «двухтактного автогенератора». Основным элементом паяльника является трансформатор, вторичная обмотка которого сделана из одного витка толстой проволоки. Концы витка замкнуты через тонкое жало, из-за чего, нагревается именно этот участок.
Как сделать компактный и мощный импульсный паяльник

Для изготовления импульсного паяльника нам понадобятся:


  • ферритовый сердечник;
  • 2 резистора на 470 Ом;
  • 2 резистора на 10 кОм;
  • 2 выпрямительных диода 1N4007;
  • 2 полевых транзистора IRFZ44;
  • конденсатор 22 нФ;
  • индуктивность (дроссель) 47 мкГн;
  • кнопка включения;
  • провод медный, толщиной 2 мм;
  • разъем для блока питания;
  • металлические клемники;
  • болт, гайка,2 металлические шайбы,2 шайбы из изоляционного материала;
  • скрепка.

Как сделать компактный и мощный импульсный паяльник

Приступим к сборке импульсного паяльника:


Как сделать компактный и мощный импульсный паяльник
1. Сначала изготовим трансформатор. Для этого нам понадобится ферритовый сердечник и медный провод толщиной 2 мм. Делаем 12 витков проволоки.
Как сделать компактный и мощный импульсный паяльник
Концы обмотки выводим и зачищаем.
Как сделать компактный и мощный импульсный паяльник
Как сделать компактный и мощный импульсный паяльник
2. Полевые транзисторы в данной схеме могут перегреваться.
Как сделать компактный и мощный импульсный паяльник
Поэтому их необходимо соединить с теплоотводом. В качестве радиатора можно применить какую либо металлическую деталь. Для компактности устройства, теплоотвод можно использовать как скелет схемы. Вокруг него собираем основные радиодетали. Впаиваем резисторы, диоды.
Как сделать компактный и мощный импульсный паяльник
3. К получившейся плате припаиваем концы обмотки трансформатора и конденсатор.
Как сделать компактный и мощный импульсный паяльник
4. С обратной стороны приклеиваем кнопку включения и разъем. Затем припаиваем. Кнопка включения должна быть без фиксации. То есть, паяльник будет работать, когда кнопка удерживается во включенном положении. Делается это для того, что при длительном включении будет разогреваться весь трансформатор и удержать паяльник в руках будет проблематично.
Как сделать компактный и мощный импульсный паяльник
Как сделать компактный и мощный импульсный паяльник
5. Находим центр обмотки и припаиваем дроссель.
Как сделать компактный и мощный импульсный паяльник
Как сделать компактный и мощный импульсный паяльник
Как сделать компактный и мощный импульсный паяльник
6. Собираем вторичную обмотку. Из проволоки, толщиной 2 мм, делаем два вывода.
Как сделать компактный и мощный импульсный паяльник
Концы зачищаем от лака. На одной из сторон делаем кольца под диаметр болта.
Как сделать компактный и мощный импульсный паяльник
7. На болт одеваем одну из проволок, затем металлическую шайбу, изоляцию. Просовываем болт в отверстие трансформатора. Одеваем изоляцию, шайбу, второй контакт. Зажимаем гайкой.
Как сделать компактный и мощный импульсный паяльник
Как сделать компактный и мощный импульсный паяльник
8. Скрепку обрезаем, что бы получилось удобное жало.
Как сделать компактный и мощный импульсный паяльник
И подсоединяем к выводам вторичной обмотки с помощью клемников.
Как сделать компактный и мощный импульсный паяльник
Как сделать компактный и мощный импульсный паяльник
9. Подключаем паяльник к источнику питания. Проверяем работоспособность.
Как сделать компактный и мощный импульсный паяльник
Как сделать компактный и мощный импульсный паяльник

Примечание


Подключать импульсный паяльник можно от различных блоков питания напряжением до 12 Вольт. Необходимо учитывать, что чем выше напряжение блока, тем больше будет мощность прибора и тем быстрее он разогреется.
Данный паяльник можно сделать с питанием и от аккумуляторов или батареек. Для того чтобы добиться напряжения 12 Вольт, элементы питания необходимо соединить последовательно. Паяльник — прибор очень мощный, поэтому долго от батареек он не проработает. Однако в связи с быстрым нагревом для небольших объемов работ его вполне хватит. Главное не забывать отключать.
Как сделать компактный и мощный импульсный паяльник
Как сделать компактный и мощный импульсный паяльник

Техника безопасности


  • При подключении паяльника к источнику питания соблюдайте полярность.
  • После сборки и проверки работоспособности, схему паяльника лучше спрятать в корпус.
  • Не забывайте отключать прибор от сети после использования.

Смотрите видео


простая схема самодельного прибора с быстрым нагревом

Импульсный паяльникОбойтись в электротехнике и электронике без паяльника невозможно. В магазинах таких приборов продаётся немало. Можно купить инструмент, ориентируясь на его мощность или тип нагревательного элемента. Однако сильный нагрев и большая площадь жала требуется не всегда, особенно в работе с небольшими деталями и платами, поэтому возникает необходимость приобрести или изготовить импульсный паяльник своими руками.

Виды паяльников

Нагревающийся инструмент, соединяющий специальным припоем из сплавов на основе свинца, олова или меди металлические детали, называется паяльником. Детали, составляющие устройство паяльника, просты и немногочисленны:

  • Электрический питающий провод с вилкой.
  • Рукоятка.
  • Корпусная оболочка, защищающая внутреннюю часть инструмента.
  • Нагревательный элемент.
  • Стержень.
  • Наконечник, или жало.

Для достижения максимального соединения для изготовления жала и стержня используется медь.

Одним из самых распространённых инструментов стал паяльник с нагревателем из нихромовой спирали. У некоторых моделей имеется датчик в виде термопары, отключающий инструмент при достижении рабочей температуры.

Импульсный паяльник: принцип работыБолее современными являются устройства с нагревателем в форме стержней из керамики. Они быстрее нагреваются, имеют большие возможности по настройке необходимых параметров и долгий срок эксплуатации.

Прибор с наконечником, имеющим ферромагнитное покрытие, нагревается наведёнными токами магнитного поля. Это устройство называется индукционным паяльником. Пламя от горения газа через специальную насадку нагревает жало в газовом паяльнике. Это приспособление автономно, и заправка возможна от обычного газового баллончика.

Паяльники небольшой мощности с питанием от аккумулятора также являются мобильными и применяются для ремонта небольших деталей. Ультразвуковые инструменты используются для безфлюсовой пайки на основе припоев, не содержащих свинца.

Устройство с импульсным нагревом

Для того чтобы собрать схему электронного устройства, потребуется пайка. Но компоненты, составляющие содержимое таких приборов, очень малы, и применение простых нагревательных инструментов ограничено. Для этих целей подойдёт импульсный паяльник.

Медная проволока небольшого диаметра, из которой обычно изготовлено его жало, обладает хорошей теплопроводностью, а малая толщина позволяет добраться до самых небольших элементов. Низкое напряжение, которое используется для нагрева, не требует больших затрат на электроэнергию. К тому же она расходуется исключительно в момент проведения паяльной операции.

Основными компонентами такого прибора являются:

  • Высокочастотный преобразователь, выдающий ток частоты от 18 до 40 килогерц.
  • Понижающий автотрансформатор высокой частоты, на вторичной обмотке которого находятся токоприёмники для установки жала, которое закрепляется к ним винтами для плотного контакта.
  • Управляющая схема с микропроцессором.

Импульсный паяльник: как выбратьНовейшие устройства такого типа оснащаются различными датчиками и индикаторами, могут иметь точечную подсветку области пайки и рукоятку из жаростойкого нескользящего пластика, напоминающего пистолет. С такой ручкой действовать удобнее всего.

Небольшая масса и габариты обеспечивают работу с самыми мелкими компонентами микроплат сотовых телефонов и планшетных компьютеров. А если имеется устройство корректировки уровня нагрева, то такой прибор справится и с более крупными объектами, подойдёт и для обычных домашних операций пайки.

Но некоторые меры предосторожности соблюдать необходимо: есть электронные компоненты, негативно реагирующие на напряжение высокой частоты, которое подаётся на жало.

Самодельное оборудование

Мастеров по ремонту электроники очень много, поэтому спрос на импульсные паяльники довольно стабильный. Но всё же некоторые стараются изготовить такой паяльник из электронного трансформатора своими руками. Толкают их на это подобные причины:

  • Дороговизна импортного высококачественного оборудования.
  • Некачественная продукция китайского происхождения.

Простейший высокочастотный нагреватель

Для человека, немного знакомого с электротехникой, изготовить инструмент несложно. Для этого понадобятся:

  • Трансформатор.
  • Шинка и проволока из меди.
  • Материал для изготовления ручки.

Для начала необходимо найти схему импульсного паяльника. Сделать это несложно с помощью интернета.

Первичная обмотка соединена с питающим элементом, а вторичная — с жалом и сигнальной лампой. Такая простота делает устройство надёжным и неприхотливым к качеству напряжения. Большинство недорогих изделий в своей основе имеют именно такую схему.

Импульсный паяльник: как работаетДля изготовления требуется наличие малогабаритного силового трансформатора. Его можно взять в блоке питания какой-либо ненужной или сломанной бытовой техники. Его схема будет подвергнута модернизации. Сначала необходимо осторожно вскрыть корпус трансформатора и подобраться к обмотке, которую нужно аккуратно размотать. Из смотанного провода навивается новая первичная обмотка в количестве 1300 оборотов. Это можно сделать вручную или на специальном намоточном станке.

Вторичная обмотка представляет собой один виток из медной шины, изолированной стеклотканью или термоусадочной трубкой. К ней будет винтами подсоединяться жало. Ручку можно сделать из любого диэлектрического материала. Это может быть дерево или текстолит. Возможно использование старой рукоятки от ненужного паяльника или другого устройства. Вариантов много.

Ещё один компонент — выключатель, который должен обеспечивать кратковременную подачу напряжения на вторичку. Поэтому нужно приспособление без жёсткой фиксации по принципу: пока нажато — работает. Постоянное присутствие на вторичной обмотке электрического тока ведёт к её разрушению. После того как все компоненты готовы, их нужно аккуратно собрать и закрепить. Такая конструкция позволяет периодически менять наконечник для коррекции толщины пайки.

Прибор из электронного трансформатора

Импульсный паяльник: как сделатьЕсли поиски хорошего недорогого импульсного паяльника не увенчались успехом, эти средства можно потратить на приобретение пускового двенадцативольтового устройства для энергосберегающих или галогеновых ламп. В нём есть трансформатор, который предстоит немного усовершенствовать, предварительно демонтировав из корпуса. Имеющаяся вторичная обмотка для использования в качестве силовой слабовата, поэтому её нужно аккуратно снять и изготовить новую из медной проволоки сечением 1 квадратный миллиметр.

Модернизированная обмотка будет состоять из двух или трёх витков. А также необходима рукоятка, кнопка без удержания во включённом положении и лампочка для индикации. Всё это подбирается из имеющихся под рукой компонентов. Жало такого паяльника нагревается в один момент, однако временем постоянного накаливания злоупотреблять не следует.

Изготовление жала

В этом качестве используется медная проволока, подсоединённая к держателям на вторичной обмотке. Толщину подбирают экспериментальным методом, ориентируясь на скорость нагрева. Начинают подбор с провода сечением 1−2 квадрата. Здесь важно найти золотую середину: слишком толстое жало будет медленнее нагреваться, а тонкое — быстрее изнашиваться. Оптимальное время накаливания наконечника составляет от 4 до 8 секунд.

Увеличение диаметра жала ведёт к возрастанию потребляемой электропаяльником мощности и увеличению нагрева силовой обмотки. Поэтому подбор диаметра наконечника нужно проводить тщательно, с каждым новым размером проведя несколько паек. Неправильный выбор может привести к возгоранию всей конструкции.

Различия между аппаратами

Как сделать импульсный паяльникГлавное отличие импульсного паяльника от обычного состоит в методике, по которой происходит нагревание наконечника. Если в простом приборе жало находится в наибольшей степени изоляции от электрического тока, то в импульсном оно является непосредственным его проводником. Нагрев и остывание устройства, работающего в высокочастотном токовом режиме, происходит очень быстро в отличие от традиционного паяльника. Это свойство полезно для применения пайки в холодных помещениях или на улице, где простой паяльник не сможет расплавить припой до нужной температуры.

Минусом в использовании импульсного инструмента стало постоянное нахождение жала под напряжением, что небезопасно при работе с микроэлементами, боящимися статического электричества.

Приспособление Sting

Этот паяльник задумывался ещё в советские годы, и предшественниками его стали модели Момент и Искра. Он позволяет работать на 10 уровнях мощности как с мелкими деталями, так и с большими. Нагрев до температуры пайки моментальный — полторы-две секунды. Рабочий цикл длится около 3,5 секунд. Защита от скачков напряжения обеспечивается встроенным стабилизатором. Составляющие детали:

  • Микропроцессорный контроллер.
  • Понизительный высокочастотный трансформатор.
  • Стабилизатор напряжения.

Как работает импульсный паяльникЖало закреплено к вторичке с помощью винтов. О выбранном порядке работы сообщит индикатор. Режим работы устройства — кратковременно-повторный. При взаимодействии с ним необходима осторожность: корпус в месте соединения жала подвержен нагреву. Касаться жала во время остывания запрещено.

Защита от перегрева функционирует таким образом: через 20 секунд после включения подача напряжения прекращается, для последующего начала нагрева надо убрать палец с кнопки и нажать ещё раз.

Профессиональная работа с микросхемами требует надёжного оснащения. Что выбрать, самодельное устройство или дорогой фирменный паяльник, каждый решает самостоятельно по мере необходимости и наличия финансов.

Originally posted 2018-04-18 12:17:13.

Паяльник быстрого нагрева своими руками

Всем привет, часто меня просят сделать для них такой паяльник, который нагревался бы мгновенно, то есть за пару секунд. Достаточно давно я делал всякие разные импульсные, сетевые паяльники, которые способны быстро нагреваться, имеют легкий вес и относительно компактный размер.

Еще один такой паяльник нужно было сделать для родственника, поэтому сразу перейдем к делу.

Паяльник быстрого нагрева своими руками

Такие паяльники имеют простой принцип работы, по факту это трансформатор, вторичная обмотка которого представляет из себя несколько витков толстой шины, которая обеспечивает солидный ток.

Если замкнуть выход этой обмотки более тонкой, металлической проволокой, то последняя начнет нагреваться, именно эта проволока в таких паяльниках в роли жало.

Паяльник быстрого нагрева своими руками

Первые такие паяльники имели большой вес из- за примененного в них железного сетевого трансформатора, сейчас тот же принцип можно реализовать с применением простых, импульсных источников питания, которые гораздо компактнее и имеют легкий вес.

Паяльник быстрого нагрева своими руками

В моём проекте все началось поиском соответствующего корпуса и как на зло в наличии не было корпусов от электронных трансформаторов, которые отлично подходят по размерам для такого паяльника, поэтому корпус пришлось сделать из стеклотекстолита.

Введите электронную почту и получайте письма с новыми поделками.

Нарезал лист, обработал края заготовок и склеил всё это дело супер клеем с добавлением соды, корпус вышел очень прочным.

Паяльник быстрого нагрева своими рукамиПаяльник быстрого нагрева своими руками

Далее была изготовлена печатная плата (скачать её можно вместе с общим архивом проекта по ссылке в конце статьи).

Паяльник быстрого нагрева своими руками

Большую часть компонентов можно изъять с плат балластов старых экономок, включая силовые транзисторы.

Паяльник быстрого нагрева своими руками

Сама схема полумостовая, автогенераторная по факту упрощенная схема электронного трансформатора для низковольтных, офисных галогенных ламп.

Паяльник быстрого нагрева своими руками

Силовые транзисторы можно взять из линейки MJE, отлично подходит MJE 13005, 007, 009,

Паяльник быстрого нагрева своими руками

в моём же случае использованы аналогичные высоковольтные транзисторы Д209, которые когда то выдрал из компьютерного блока питания.

Паяльник быстрого нагрева своими руками

На плате имеем всего несколько компонентов, транзисторы и ёмкости в схеме полумостового преобразователя, имеем также задающий элемент, симметричный динистор DB3 с частото-задающей цепью.

Паяльник быстрого нагрева своими руками

Трансформатор управления и трансформатор силовой.

Силовой трансформатор можно взять от компьютерного блока питания, при том от любого, смотать все заводские обмотки и намотать новую.

Паяльник быстрого нагрева своими руками

Первичная обмотка намотана проводом 0,55 миллиметра и состоит из 60 витков, намотку делают послойно, каждый слой изолирует например термостойким скотчем.

Паяльник быстрого нагрева своими рукамиПаяльник быстрого нагрева своими руками

Вторичная обмотка, один, два витка медной шины, в моём случае шина взята с обмотки статора автомобильного стартера, уложить такую шину довольно трудно, но возможно.

Паяльник быстрого нагрева своими руками

Размеры использованного мною сердечника сейчас перед вами

Паяльник быстрого нагрева своими руками

в принципе трансформатор для такого блока питания особо не критичен, плюс-минус несколько витков большой роли не играют.

Позже в своем хламе нашел трансформатор, который когда-то делался именно для такого паяльника, на нём уже имелись обмотки и цанговый держатель для жала от промышленного паяльника такого плана, поэтому в самый последний момент принял решение использовать именно этот трансформатор.

Паяльник быстрого нагрева своими рукамиПаяльник быстрого нагрева своими руками

Трансформатор кольцевой от промышленного электронного трансформатора, проницаемость две с половиной тысячи, размеры сейчас перед вами

Паяльник быстрого нагрева своими руками

сетевая обмотка намотанная проводом 0,5 миллиметров и состоит из 90 витков, вторичная обмотка два витка тройным проводом по 16 авг, провод многожильный в термостойкой силиконовой изоляции.

Паяльник быстрого нагрева своими руками

В качестве бонуса на силовом трансформаторе можно намотать дополнительную обмотку из нескольких витков, которые будут питать подсветку.

Входной диодный мост — можно использовать готовый диодный мост с током от 2 ампер и обратным напряжением не менее 400 вольт, либо собрать мост из четырех отдельных диодов.

Паяльник быстрого нагрева своими руками

Я же использовал готовые мостик KBU 1010, это 10 амперный мост с обратным напряжением один киловольт, для такого источника питания это слишком жирно, но мостики были в наличии поэтому и поставил.

Ёмкости полу моста подбираются на напряжение 400 вольт,

Паяльник быстрого нагрева своими руками

минимум 250, ну и трансформатор управления — он имеет 3 обмотки, 2 базовых для управления ключами и обмотка обратной связи по току, которая состоит всего лишь из одного витка.

Паяльник быстрого нагрева своими руками

Трансформатор намотан на ферритовом колечки, такие кольца можно найти на тех же платах балласта от экономламп, на схеме указаны начала всех обмоток, если полярность намотки не соблюдается схема работать не будет.

Готовую плату необходимо проверить, при том последовательно с одним из сетевых проводов подключают сетевую страховочную лампу накаливания с мощностью в 40-60 ватт.

Паяльник быстрого нагрева своими руками

Данная схема не запускается без выходной нагрузки, поэтому при первом включении она может не подавать признаков жизни, но стоит чем-нибудь нагрузить выход и схема запустится.

В нашем случае выход нагружен жалом,

Паяльник быстрого нагрева своими руками

жало можно сделать например из медного провода с диаметром около одного миллиметра, такое жало будет обладать высокой теплопроводностью, но менять его нужно довольно часто,

Паяльник быстрого нагрева своими руками

второй вариант жала использовать железный провод, из-за большого сопротивления железа, жало будет нагреваться быстрее, такое жало более долговечное, но не сияет высокой теплопроводностью, кстати в промышленных паяльниках очень часто применяют именно железное жало.

Паяльник быстрого нагрева своими руками

Схема работает очень спокойно, сильно будет греться только вторичная обмотка, которой передаётся нагрев от жала.

Силовые транзисторы в принципе не перегреваются, но желательно установить их на небольшие алюминиевые радиаторы, в случае использования общего радиатора, транзисторы обязательно нужно изолировать пластиковыми втулками и теплопроводящими изолирующими прокладками.

После проверки работоспособности паяльник можно включить в сеть без страховочной лампы, а после установить в корпус.

Паяльник быстрого нагрева своими руками

Важно, чтобы корпус был безопасным так, как на плате имеется высокое напряжение, для постройки корпуса лучше использовать стеклотекстолит или пластик.

Так как паяльник такого класса нагревается практически моментально, нет необходимости оставлять его включенным, поэтому сетевой выключатель представляет из себя кнопку без фиксации, которая запускает паяльник.

Паяльник быстрого нагрева своими руками

Кнопку, как правило устанавливают в рукоятке паяльника.

Архив к статье; скачать…

Автор; АКА Касьян


90000 How to Use a Soldering Iron 90001 90002 90003 Weller Soldering Basics Guide 90004 90005 90002 Soldering is a useful skill to have, whether you plan to use it professionally or for DIY projects. A quality soldering iron is one of the most important tools you'll need for your soldering projects. 90005 90002 This guide will provide a brief overview of how to use a soldering iron.It will give you the basics that apply to most soldering work, as well as tips for specific types of projects. 90005 90002 Although all soldering relies on the same principles, the techniques and tools you use may vary depending on the type of materials you're soldering and the kind of outcome you're intending. On this page, we'll cover step-by-step soldering for wiring, printed circuit boards, stained glass and jewelry. 90005 90002 Here's your introductory guide to using a soldering iron. 90005 90003 The Basics 90004 90002 The fundamentals of soldering are mostly consistent across project types.Below you'll find information about the basics of soldering, descriptions of the equipment involved and a basic step-by-step guide for how to use a soldering iron. 90005 90018 1. What Is Soldering? 90019 90002 Soldering is a technique for joining metal parts together. It involves melting a metal known as solder into the space between two metal components. When this solder cools and hardens, it forms a permanent connection between the parts. Solder acts as a sort of metallic glue that joins elements together.90005 90002 Joining electronic components may be the most common use of soldering irons. You can also use them on piping for plumbing, engine components, arts and crafts projects and more. 90005 90018 2. What Equipment Do You Need? 90019 90002 This article is about how to use a soldering iron, but the iron itself is not the only item you'll need. Here's a rundown of some of the supplies you may need to use, including a soldering iron, for a soldering project. 90005 90028 90029 90030 Soldering Iron: 90031 A soldering iron supplies the heat that melts the solder.It consists of a tip, which you apply to the metal parts you want to solder together, and an insulated handle so that you can hold the iron. There are several variations of soldering irons. Often, they are electrical and use an electrical cord or battery. Some also use the combustion of a gas such as butane or an open flame. Some irons allow you to adjust the temperature of the iron. 90032 90029 90030 Solder: 90031 Solder is the substance that melts and forms the bond between the two soldered components.It is a thin wire made of one of several tin alloys. The alloys consist of either tin and lead or tin and copper. Increasingly, lead-free solders are becoming the more popular of these two options. This trend is a response to increased safety regulations as well as the environmental and health benefits of seeking lead-free alternatives. Some types of solder also include flux, a substance that gets rid of oxide layers on metal parts to help the solder adhere better. 90032 90029 90030 Soldering Station: 90031 A soldering station acts as a control station for your soldering iron if you have an adjustable iron.The station has the controls for adjusting the temperature of the iron as well as other settings. You may plug your iron into this soldering station. 90032 90029 90030 Soldering Iron Stand: 90031 You might also use a soldering iron stand, which provides a safe, sturdy place to store your iron when you are not using it. It might also include a place to keep supplies for cleaning your iron. 90032 90029 90030 Cleaning Pad: 90031 It's essential for proper performance to keep your iron clean while you use it.You may use a cleaning pad, steel or brass wool or a damp sponge. 90032 90029 90030 Safety Glasses: 90031 Safety goggles will help protect your eyes in case of accidents and keep fumes from irritating your eyes. 90032 90029 90030 Fume Extraction Equipment: 90031 Fumes created when soldering may be toxic. Fume extraction devices pull fumes from the air to reduce health and safety risks. 90032 90057 90003 Getting Set Up 90004 90002 Before you begin using your soldering iron, you'll have to make sure that you've taken all the necessary safety measures and prepared your tools.90005 90018 1. Safety Measures 90019 90002 Health and safety should always be a priority when soldering. Soldering involves extreme heat and toxic substances. While it involves certain risks, if you take the proper precautions, soldering is a relatively safe activity. 90005 90002 Before getting started, read the instructions as well as the health and safety warnings that come with all of your equipment to ensure you're using it correctly. When soldering, wear safety glasses and keep all hair, loose clothing and jewelry secured and out of the way of your tools.You may also want to wear safety gloves. 90005 90002 Be sure that you are working in a well-ventilated area or use a fume extraction device. The fumes from flux are toxic. If the solder you are using contains lead, wash your hands after you're done working with it. 90005 90018 2. Cleaning and Tinning 90019 90002 For your soldering iron tip to work correctly, it needs to be clean and tinned. Any contaminants or oxidation will decrease the efficiency with which it conducts heat, making your job harder and reducing the quality of your solder joints.90005 90002 Before you start soldering, clean the tip of your iron by rubbing it against your cleaning pad. If your tip is badly oxidized, you may need to apply a tip reactivator. After cleaning or reactivating it, it should appear shiny rather than dull. 90005 90002 Tinning the tip of your iron involves coating it with a layer of solder. This practice protects the tip from oxidation and improves its ability to conduct heat. Tin the tip immediately before you begin soldering. 90005 90002 In addition to cleaning and tinning the tip of your iron before each soldering session, you should also do so after every two or three joints you solder and at the end of each soldering project.This will extend the life of your soldering iron tips and improve the quality of your soldering joints. 90005 90003 Joining Parts 90004 90002 Once you've completed the above steps, you're ready to solder your components together. The techniques you'll use will vary from project to project, but the basic step-by-step instructions are as follows: 90005 90084 90029 First, determine the right temperature for your project. Which temperature to use depends on the materials you're joining and the kind of solder you're using.As a general rule of thumb, the best temperature to use is the one that's as low as possible while still being high enough to get the job done. In other words, if the temperature needed to do the job is 370 degrees or above, then set the temperature to exactly 370. This will help extend the life of your tools and avoid damaging any electronic components. 90032 90029 Once your iron is heated to the appropriate temperature, pick up the iron by the handle in one hand and hold a piece of solder in the other hand.Hold the hot iron to the place where the two metal components will meet for about a second to heat them up. You want to heat the metal parts, not the solder itself. 90032 90029 Then, touch the solder to the heated components. As the solder melts, it will flow into the gaps it needs to fill. Continue to feed in solder until a sufficient amount is melted. While you need enough to form a solid connection, you do not want to have too much solder either. The right amount will vary from project to project.This typically will not take more than a few seconds. 90032 90029 Allow the solder to cool. You do not need to take any action to cause it to cool. It will do so on its own and should not take longer than a few more seconds. 90032 90029 Check the soldering joint for quality. A good connection will appear smooth, uniform and shiny. Make sure that are not any problematic gaps between the components or globs of excess solder. 90032 90095 90003 Desoldering 90004 90002 If you made a mistake in your soldering, do not worry.You can undo and fix any problem areas relatively easily. If the problem is not excess solder, you may be able to resolder over the first joint with new solder. 90005 90002 A more thorough method of correcting a soldering mistake is to reheat the solder you applied and then to use a tool such as a "solder sucker," which is a small syringe-like device that uses vacuum pressure to remove solder. You can also use a solder wick, also called a desoldering braid, which absorbs melted solder by capillary action.90005 90003 Cleaning Up 90004 90002 After you finish a soldering session, clean and tin your soldering iron tip. After allowing the iron to cool, store it in a secure location. To further prevent oxidation, especially if you will not be using the iron for a long time, place it in a sealed container. 90005 90003 Tips for Specific Soldering Projects 90004 90002 Now that we've covered the basics, let's look at how to do some specific types of soldering. 90005 90018 1. How to Use a Soldering Iron for Joining Wires 90019 90002 You can use a soldering iron to create an electrical connection between two wires.Having a tool, such as a device called a third helping hand, to hold the cables for you is very helpful. A third helping hand consists of a weighted base, metal arms and crocodile clips that hold the wires in place. You can also use a pair of pliers to a similar effect. 90005 90084 90029 First, make sure some insulation is stripped off the end of the two wires to expose the metal filaments. 90032 90029 Then, twist the filaments of each wire together so that they act more like one solid unit.90032 90029 Next, tin the wires. To do this, touch the tip of the soldering iron to each wire to heat them. Then apply solder until the wire is soaked through. There should be solder throughout all of the filaments but not so much that the cable becomes overly stiff. This will help heat spread throughout the filaments more efficiently and make soldering easier. 90032 90029 Mechanically join your wires so that the solder is not the only thing holding them together. To do this, wrap the first wire around the second, leaving enough space to wrap the second wire around the first.The turns of the cable should lay next to one another. 90032 90029 Heat the mechanically joined wires with the soldering iron and apply solder. Use enough solder to fill in all the spaces and form a reliable electrical connection. 90032 90029 Once the two wires are connected, apply a heat-shrinkable tubing to isolate the wires and keep them shielded from any outside forces. This tubing will shrink under applied heat, helping it to adhere tightly to the wires and creating a form-fitting protective coating.90032 90095 90018 2. How to Solder Printed Circuit Boards 90019 90002 Soldering parts onto printed circuit boards (PCBs) is another frequent use of soldering irons. 90005 90084 90029 Start with the tallest components, and solder interconnecting wires last. For through-hole components, place them in the correct holes in the PCB. Make sure they sit flush against the board. 90032 90029 Bend the lead of the part slightly to keep it in place. 90032 90029 Once the soldering iron has reached the desired temperature, touch it to the pad to heat the lead of the component and the pad.Make sure the temperature is correct. Too low of a temperature can create a joint that does not provide an adequate electrical connection. Too high of a temperature can damage the components and board. 90032 90029 Then, apply the solder. The solder will flow around the component liquid. Use enough to create a solid connection without gaps but not so much that you're left with excess solder. 90032 90029 Pull the iron straight up from the component. The solder joint should form a cone-like shape.90032 90029 Check your joint to make sure that it appears shiny and that there are not any gaps or too much solder 90032 90029 If the solder joint is adequate, cut the excess component lead above the joint. 90032 90095 90018 3. How to Solder Stained Glass 90019 90002 Solder is what holds the individual pieces of glass in a work of stained glass art together. Here's how you use solder on stained glass. 90005 90084 90029 Before soldering, make sure the stained glass pieces fit together well and that the glass is clean.90032 90029 Apply copper foil to the edges of the glass because solder will not adhere to glass. This foil should be smooth and even so that the solder flows evenly. You do not need gaps in between the pieces, but solder will be able to fill small gaps. 90032 90029 Apply a small amount of flux and then solder to each joint to help hold them in place. 90032 90029 Then apply a layer of flux to all seams. The coating should be even and light but enough to cover all foil. 90032 90029 Start soldering about a quarter of an inch from the edge of your piece.Touch the heated iron lightly to the copper foil and feed in the solder. Move the iron and solder along the foil seam. If the solder seam appears flat, try going slower and using more solder. If it's spilling over onto the glass, try going faster. Getting this part right takes practice. 90032 90029 Once you're done with the first side of your, flip it over carefully while holding it from the edges near the middle of the piece. Apply a small amount of flux and then solder this side. 90032 90029 To finish the outside edges, tin them by making sure all copper foil gets covered with solder.Alternatively, you can apply a U-channel came - a small, U-shaped metal piece - for a more framed look. 90032 90095 90002 Some other tips include only using solid-core solder rather than acid-core or rosin-core solder as well as not applying heat for too long in any one area as this can cause the glass to break. 90005 90018 4. How to Solder Jewelry 90019 90002 You can solder jewelry using an open-flame torch, which can provide higher temperatures, but can also do so with a soldering iron.The precise techniques vary depending on the kind of item you want to make, and there's more room for creativity with jewelry soldering. Search online for instructions on how to make specific pieces or experiment and create your own designs. 90005 90002 For example, you can bend silver, copper or other types of wire to form rings. You can solder the two ends of the bent wire to create a single ring, or solder multiple rings together to make a necklace or bracelet. Heat the wire where you want to join it and then apply solder.90005 90002 Some helpful jewelry soldering supplies include high-quality wire cutters and a third helping hand tool. 90005 90003 Explore Weller Tools for Your Soldering Needs 90004 90002 Whichever type of soldering project you're undertaking, the right tools and techniques are crucial. Weller offers some of the most high-quality yet affordable soldering tools on the market. For entry-level professionals and hobbyists, the WE 1010 is a perfect match. It provides the most power in its class, easy-to-use controls and cost-effective operation at an affordable price.Explore our soldering irons, stations and accessories on our website or by visiting a Weller distributor. 90005 .90000 Soldering Iron Cauterization | Hackaday 90001 90002 Medical hacks are not for the weak of stomach, so read further at your own risk. [Todd Harrison] shows you how to remove a stubborn skin wart using a good ol 'soldering iron, and a fair endurance for pain. After all, cauterization is a well known and documented medical procedure. If you have the stomach for this, read on, or better, check out his 9 minute video after the break. If there are kids around, turn down the volume between 1:40 to 2:20.90003 90002 [Todd] had a recurring wart on his right hand index finger, and could not get rid of it despite many attempts. Every time he thought it was gone, it would come back. He even tried some of the expensive commercial kits that claim to get rid of warts by rapidly freezing them, but he had no joy. Finally, he figured it was time to cauterize the sucker. Like any self-respecting engineer, he starts off by cleaning the problem area with some rubbing alcohol. He starts applying the iron at around the 1:48 mark and goes on till about 4:17.At which stage he even evaluates the technique that he used, which ended up causing blistering of the sensitive skin around the wart due to radiated heat, and how it may be better to hold the soldering iron at a different angle and move it around the next time he attempts this procedure. 90003 90002 From then on, it's a matter of waiting and observing for many days to see how it goes. Day two is obviously not too good, with a swollen blister which is "not the best looking thing". Around day eight (@ 5: 39), he cuts the skin while doing some yard work, but nothing a band-aid can not fix.By day fourteen (@ 6: 41), parts of the skin are dried and ready to fall off. He uses his handy and trusted diagonal cutters (naturally!) To snip off the skin with the dead wart. From then on, he's on his way to full recovery and all back to normal a mere forty days later. He say's it works for him every time, which means he's obviously tried this at least a couple of times. 90003 90002 Bonus points to him for wearing the Hackaday shirt while doing the surgery! Thanks [Morris] for tipping us off.[Todd] is no green horn and is an old Hackaday alum. We've featured a lot of his exploits earlier, like this DeWalt Radio repair, 1976 Pong Clone repair, and the Scooby-Doo Alarm Clock repair. 90003 90002 90011 90012 90003 .

Автор: admin

Отправить ответ

avatar
  Подписаться  
Уведомление о