Электроника для чпу станка своими руками: Электроника ЧПУ станка

Содержание

Электроника ЧПУ станка

Mach4 STB5100 – USB контроллер для ЧПУ станка
Электроника ЧПУ станка

Обзор и отзывы на USB плату управления ЧПУ станком MACh4 STB5100

 

MACh4 контроллеры в основном были ориентированы на LPT платы, для самодельных ЧПУ станков приходилось искать ноутбуки и старые ПК с LPT, да и работать из под Windows XP.

Но, все меняется и прогресс не остановить, появились платы STB работающие через USB порт и стало возможным использовать современные ПК и ноутбуки с ЧПУ станками.

Плата STB5100 позволяет контролировать 5 осей ЧПУ станка, а так же ее прелесть в том, что к ней легко подключается MPG пульт, причем штатным образом и без плясок с бубном.

 

 
Драйвер шагового двигателя TMC2208
Электроника ЧПУ станка

Драйвер шагового двигателя TMC2208 – сравниваем со штатным.
Борьба за шума и тишины, жары и прохлады, расточительства и экономии, брутальности и комфорта.
Стоят ли изменения потраченных на них денег? Посмотрим. С графиками, осциллограммами, замерами шума, электричества и вибраций.
Да, и все модернизации выполнены ленивым человеком, с минимальными затратами труда, по принципу «воткнул — работает».

Кратко: драйвер — устройство, позволяющее управлять шаговым двигателем. На входе — команды на сколько шагов поворачивать вал и в какую сторону. На выходе — последовательность сигналов на обмотки электромотора. Всю кухню по преобразованию одного в другое выполняет драйвер. Драйвера бывают хорошие и не очень. Хорошие поддерживают большие выходные токи, мало греются и управляют двигателем так, что он не гудит, не греется и крутится плавно. У плохих все наоборот. Драйвера применяются везде, где есть шаговые двигатели: 3Д принтеры, станки с чпу, лазерные граверы, актюаторы и прочая техника.

 
Комплект электроники для ЧПУ с USB подключением
Электроника ЧПУ станка

Комплект электроники для ЧПУ с USB подключением оптимальный для 2020 года

Давайте сегодня посмотрим на набор электроники для сборки самодельного ЧПУ станка с подключением по USB.

Набор электроники + шаговые двигателя \крепления+ концевики для сборки ЧПУ под Arduino GRBL + UNO R3 плата \ RAMPS 1,4 \DRV8825 драйвера двигателя +\Nema 17 моторы

Стоимость: US $41.78 (не забываем при заказе получать купон на скидку US $1.00 с каждых US $38.00). 4.9 из 5. >380 заказов!

 
Тест драйв ЧПУ драйверов TB6560
Электроника ЧПУ станка

Пришел последний драйвер, на ось Z вместе с контролером на опторазвязке.
Последний думаю, долго мне вообще не пригодиться. Что то я погорячился с ним.
Так как все мои предыдущие драйвера и этот в том числе с опторазвязкой на самих драйверах.

В общем первый тест драйв, механический.
На почте думаю. хорошо попинали посылку, дабы проверить вложение на механическую прочность.
Дивитесь сами.

 

 
Обзор драйвера на TB6600 для ЧПУ станка
Электроника ЧПУ станка

Драйвер на TB6600. Теория и практика

Для начала кто не знает, или просто знает такие слова, как контролер, драйвер и опторазвязка. В чем их отличие?

Контролер, есть универсальный, на несколько осей, обычно под небольшие токи, на нем и опторазвязку обычно ставят, релюхи всякие и т. д. и т.п.
Универсальный стоит подороже и если что полетит, то трудней причину искать будет.

 
<< Первая < Предыдущая 1 2 3 4 Следующая > Последняя >>
Страница 1 из 4

Электроника для ЧПУ своими руками – Самодельные проекты

Думаю, что нам всем стоит друг у друга поучиться

Вот только без обид – я не думаю, что мог бы чему-то научиться у “разработчика”, который в самодельной интерфейсной плате развязывает STEP и DIR тормознутыми оптопарами PC817. Про более быстрые (на порядок) оптроны (6N135..137 и их аналоги) с несущественно большей ценой вам не доводилось слышать? PC817, TLP521 и т.п. по своему быстродействию годятся разве что на развязку концевых выключателей.

..

 

И к чему было выражение глубокого презрения к тем, кто купил готовые платы и драйверы на Алиэкспрессе и “соединил их проводками”, а не изготовил и спаял печатные платы “с нуля” своими руками? Не вижу никакого подвига в столь примитивных разработках, разве что почесать зудящее “Чувство Собственного Величия”… По деньгам экономии не выходит – те же TB6600 и детали их “обвязки” по розничным ценам примерно равны цене готового китайского драйвера. Развести простенькую плату, изготовить ее, набить деталями и спаять – тоже достижение, которым может гордиться только школьник из радиокружка в “дворце пионеров”.

К чему весь этот пафос, сильно попахивающий тем, что “создадим себе на пустом месте трудности и будем доблестно их преодолевать”, если в конечном итоге у вас получается самоделка на заведомо устаревшем уровне? Все адекватные самодельщики давно уже не стремятся изготовить электронику своими руками (в готовом виде есть любая электроника, от 3-канальных “красных плат” на TB6560 или TB6600 с опторазвязкой, до плат “Mesa” и автономных контроллеров движения) и сосредоточились на создании хорошей механики станка.

 

 

Если что, паять умею. Самодельные платы изготавливал много-много раз – и рисованием вручную, и “лазерным утюгом”, и фоторезистом. Нарисовать схему и развести плату в PCAD2000 или в Eagle тоже смогу, просто придется потратить день-два, чтобы вспомнить полузабытые навыки работы в них. Софт для микроконтроллеров – сейчас похвастаться нечем, но в свое время для PIC’ов писал всякую фигню… Программирование Arduino осваивать лень, не усматриваю её полезных практических применений в своей повседневной деятельности. Чему ещё предлагаете в этом направлении поучиться?

Сообщение отредактировал T-Rex: 25 Февраль 2018 – 03:04

ЧПУ на Ардуино | Электроника для сборки самого дешевого ЧПУ на Ардуино

Электроника, необходимая для изготовления простого самодельного станка с ЧПУ

При создании станка с CNC нам понадобятся следующие электронные компоненты:

компьютер

Для простого станка с ЧПУ понадобится обычный компьютер/ноутбук с одним свободным USB разъёмом. Для работы станка с ЧПУ потребуется ПК под управлением ОС начиная с Windows XP. Разъём USB необходим для обмена данными с платой Arduino. Компьютер выполняет обработку изображений и формирует команды перемещения двигателей, которые передаёт на Arduino.

плата ввода/вывода Arduino

Плата ввода/вывода Arduino выполняет роль контроллера станка с числовым программным управлением. Обработав полученную от компьютера команду перемещения двигателей прошивка Arduino отправляет последовательность управляющих импульсов на драйвера шаговых двигателей. В проекте использовалась Arduino Uno.

3 драйвера шаговых двигателей

Драйверы шаговых двигателей совместимые с Arduino с 4-мя управляющими контактами. Драйверы шаговых двигателей получают управляющие импульсы от Arduino и подают напряжение на соответствующие обмотки шаговых двигателей. К драйверу ШД подключается блок питания для питания шагового двигателя и сам шаговый двигатель.

В проекте использовались драйверы ШД на безе микросхемы ULN2003.

3 шаговых двигателя

На обмотки шаговых двигателей подётся напряжение, что приводит двигатели в движение и обеспечивает функциональность механической системы станка с CNC. В проекте использовались шаговые двигатели 28BYJ-48-5V. Время реакции двигателя на подачу тока на соотвтествующую обмотку – 2мс (0.002 сек).

блок питания для двигателей

Блок питания необходим для работы шаговых двигателей. В проекте использовались 3 импульсных блока питания на 5 вольт из зарядных устройств для сотовых телефонов. Чтобы не занимать 3 розетки, блоки питания были разобраны, внутренности вытащены и подключены к одному шнуру питания. Далее я упаковал все платы в одну коробочку (мыльница, купленная в Ашане) и вывел провода для питания шаговых двигателей.

провода и коннекторы

Провода и коннекторы соединяют электронные компоненты станка с ЧПУ между собой. Для подключения питания и Arduino к драйверам шаговых двигателей использовались коннекторы DuPont. Их можно выдрать из старых компьютеров, такие коннекторы используются для подключения кнопки Reset к материнской плате, а также кнопки питания и PC Speaker’а.

фрезер, гравер

Фрезер/гравер непосредственно фрезерует деталь.

Чпу станок своими руками. Инструкция по сборке станка Моделист3030 образца 2015г

Расположение осей X, Y, Z настольного фрезерно-гравировального станка ЧПУ :

Ось Z перемещает инструмент(фрезер) по вертикали(вниз-вверх)
Ось Х – перемещает каретку Z в поперечном направлении(влево-вправо).
Ось Y – перемещает подвижный стол(вперед-назад).

С устройством фрезно-гравировального станка можно ознакомиться  выбор и устройство фрезерно-гравировального станка

 

Состав набора ЧПУ станка Моделист2020 и Моделист3030

I Набор фрезерованных деталей из фанеры 12мм для самостоятельной сборки

Комплект фрезерованных деталей для сборки станка с ЧПУ с подвижным столом состоит из:

1) Стойки портала фрезерного станка с ЧПУ

2) набор фрезерованных деталей станка ЧПУ для сборки оси Z

3) набор фрезерованных деталей станка ЧПУ для сборки подвижного стола

4) набор фрезерованных деталей станка ЧПУ для сборки опор шаговых двигателей и крепления шпинделя

II Набор механики фрезерного станка включает:

1. муфта для соединения вала шагового двигателя с ходовым винтом станка – (3шт.). Размер соединительной муфты для станка Моделист2030 с шаговыми двигателями NEMA17 – 5х5мм. Для станка Моделист3030 с шаговыми двигателями Nema23 – 6,35×8мм

2. стальные направляющие линейного перемещения для ЧПУ станка Моделист3030:

– 16мм (4шт.) для осей Х и Y,

– 12мм(2шт) для оси Z

Для ЧПУ станка Моделист2020 диаметр направляющих линейного перемещения:

– 12мм(8шт) для осей Х, Y и Z.

3. линейные подшипники качения для фрезерного станка Моделист3030:

– линейные подшипники LM16UU (8шт.)  для осей Х и Y,

– линейные подшипники LM12UU для оси Z.

Для фрезерного ЧПУ станка Моделист2020

– линейные подшипники LM12UU (12шт.) для осей Х, Y и Z.

4.  ходовые винты для фрезерного станка Моделист2020 – М12 (шаг 1,75мм) – (3шт.)  c обработкой под d=5мм с одного конца и под d=8мм с другого.

Для фрезерного станка Моделист3030 – трапецеидальные винты TR12x3 (шаг 3мм) – (3шт. ) c обработкой концов под d=8мм.

5.  радиальные подшипники крепления ходовых винтов -(4шт.) один подшипник в алюминиевом блоке для оси Z.

6.  ходовые гайки из графитонаполненного капролона  для осей X, Y и Z (- 3шт.)

7.  крепеж

III Набор электроники фрезерного станка с ЧПУ:

1. Для станка с ЧПУ Моделист2020: шаговые двигатели NEMA17 17HS8401 (размер 42х48мм, крутящий момент 52N.cm, ток 1,8А, сопротивление фазы 1,8Ом, индуктивность 3,2mH, диаметр вала 5мм) – 3шт.

Для станка с ЧПУ Моделист3030: шаговые двигатели  23HS5630 (размер 57х56мм, крутящий момент 12,6кг*см, ток 3,0А, сопротивление фазы 0,8Ом, индуктивность 2,4mH, диаметр вала 6,35мм) – 3шт.

2.  контроллер шаговых двигателей ЧПУ станка на специализированных микрошаговых драйверах компании Toshiba ТВ6560 в закрытом алюминиевом корпусе

3. блок питания 24 В  6,5 A для ЧПУ станка Моделист2020 и 24В 10,5А для ЧПУ станка Моделист3030

4. комплект подсоединительных проводов

 

Последовательность сборки фрезерного станка чпу с подвижным столом.

Система линейного перемещения любого станка состоит из  двух деталей: шариковая втулка – это элемент который движется и неподвижного элемента системы – линейная направляющая или вал(линейная опора). Линейные подшипники могут быть разных видов: втулка, разрезная втулка, втулка в алюминиевом корпусе для удобства крепления, шариковая каретка, роликовая каретка, основная функция которых – нести нагрузку, обеспечивая стабильное и точное перемещение. Применение линейных подшипников(трение качения) вместо втулок скольжения позволяет значительно снизить трение и использовать всю мощность шаговых двигателей на полезную работу резки.

Рисунок 1

1 Смазать линейные подшипники системы линейного перемещения фрезерного станка  специальной смазкой (можно использовать Литол-24(продается в магазинах авто запчастей)). 

 

2 Сборка оси Z фрезерного станка с ЧПУ.

Сборка оси Z описана в инструкции “Инструкция по сборке каретки Z”

 

3 Сборка стола фрезерного ЧПУ станка, ось Y

3.1 Детали для сборки портала, рисунок 2.

1) комплект фрезерованных деталей

2) стальные направляющие линейного перемещения диаметром 16мм(2шт)

3) линейный подшипник LM16UU(4шт)

4) ходовые винты для фрезерного станка Моделист2030 – М12 (шаг 1,75мм)  c обработкой концов под d=8мм и d=5мм

Для фрезерного станка Моделист3030 – трапецеидальные винты TR12x3 (шаг 3мм) c обработкой концов под d=8мм.

5.  радиальные подшипники крепления ходовых винтов -(2шт.)

6.  ходовая гайка из графитонаполненного капролона  – (- 1шт.)

7.  крепеж

 

Рисунок 2. Детали портала фрезерного настольного ЧПУ станка

 

3.2 Запрессовать линейные подшипники и вставить держатели линейных подшипников во фрезерованные пазы, рисунок 2. Вставить линейные направляющие в линейные шарикоподшипники.

Рисунок 2 Сборка стола настольного фрезерного ЧПУ станка

 

3.3 Держатели подшипников линейного перемещения забиваются в пазы детали подвижного стола. Соединение типа шип-паз обеспечивает отличную жесткость узла, все детали этого узла изготовлены из фанеры 18мм. Дополнительно стянув детали болтовым соединением обеспечим долгий и надежный срок службы, для этого через уже имеющееся отверстие в пластине, которое служит направляющим для хода сверла, сверлим отверстие в торце держателя линейных подшипников, как показано на рисунке 3, сверло диаметром 4мм.

 

Рисунок 3 Сверление крепежных отверстий.

3.4 Накладываем сам стол и, через уже имеющиеся отверстия скрепляем, с помощью винтов М4х55 из комплекта, рисунок 4 и 5.

 

Рисунок 4. Крепление подшипников подвижного стола.

 

 

Рисунок 5. Крепление подшипников подвижного стола.

 

3.5 Запрессовать упорные подшипники в детали каркаса стола. Вставить ходовой винт с ходовой гайкой из графитонаполненного капролона, в опорные подшипники,  и линейные направляющие в пазы элементов каркаса, рисунок 6.

 

Рисунок 6. Сборка подвижного стола.

 

Скрепить элементы каркаса шурупами из комплекта. Для крепления с боков используйте шурупы 3х25мм, рисунок 7. Перед вкручиванием шурупов, обязательно засверлите сверлом диаметром 2мм, для избежания расслаивания фанеры.

Если ходовой винт не зажат деталями основания подвижного стола и имеется люфт винта вдоль оси в опорных подшипниках – используйте шайбу диаметром 8мм, рисунок 6.

 

Рисунок 7. Сборка каркаса настольного станка.


3. 6 Расположите ходовую гайку по центру между линейными подшипниками и сделайте отверстия для шурупов сверлом 2мм, рисунок 8, после чего шурупами 3х20 из комплекта закрепить ходовую гайку. При сверлении обязательно использовать упор под ходовой гайкой, чтобы не погнуть ходовой винт. 

 

Рисунок 8. Крепление ходовой гайки.

 

4 Сборка портала станка.

Для сборки понадобятся:

1) комплект фрезерованных деталей для сборки подвижного стола

 2) стальные направляющие линейного перемещения диаметром 16мм(2шт)

3) линейный подшипник LM16UU(4шт)

4) ходовые винты для фрезерного станка Моделист2030 – М12 (шаг 1,75мм)  c обработкой концов под d=8мм и d=5мм.

Для фрезерного станка Моделист3030 – трапецеидальные винты TR12x3 (шаг 3мм) c обработкой концов под d=8мм.

5.  радиальные подшипники крепления ходовых винтов -(2шт. )

6.  ходовая гайка из графитонаполненного капролона  – (- 1шт.)

7.  крепеж

 

4.1 Закрепить боковину портала, рисунок 9.

 

Рисунок 9. Сборка портала станка.

 

4.2 Вставить ходовой винт с гайкой в каркас каретки оси Z, рисунок 10.

 

Рисунок 10. Установка ходового винта.

 

4.3 Вставить линейные направляющие, рисунок 11.

 

Рисунок 19 Крепление ходового винта “в распор”.

 

4.4 Закрепить вторую боковину портала, рисунок 11.

 

Рисунок 11. Установка второй боковины портала

Если ходовой винт не зажат деталями основания подвижного стола и имеется люфт вдоль оси – используйте шайбу диаметром 8мм.

4.5 Установить и закрепить заднюю стенку каретки Z, Рисунок 12.

 

Рисунок 12. Крепление задней стенки каретки Z.

 

4.6 Закрепить капролоновую ходовую гайку шурупами 3х20 из комплекта, рисунок 13.

 

Рисунок 13. Крепление ходовой гайки оси X.

 

 4.7 Закрепить заднюю стенку портала, рисунок 14, с использованием шурупов 3х25 из комплекта.

Рисунок 14. Крепление задней стенки портала.

5 Установка шаговых двигателей.

Для установки шаговых двигателей используйте детали крепления из набора фрезерованных деталей станка ЧПУ для сборки опор шаговых двигателей Nema23 для фрезерного станка Моделист3030.

 Рисунок 15. Установка шаговых двигателей.

Установить муфты 5х8мм для соединения вала двигателя с ходовым винтом. Закрепить шаговые двигатели на станок, для крепления используйте винт М4х55 из комплекта, рисунок 15.

 

6 Закрепите контроллер на задней стенке фрезерно-гравировального станка, и подключите к нему клеммники моторов.

 

7 Установка фрезера.

Крепление фрезера осуществляется за шейку инструмента или корпус. Стандартный диаметр шейки бытовых фрезеров 43мм. Диаметр шпинделя 300Вт – 52мм, крепление за корпус. Для установки соберите крепление фрезера, детали крепления на рисунке 16. Используйте шуруп 3х30мм из комплекта.

 

Рисунок 16 Крепление шпинделя 43мм

 

Рисунок 17 Шпиндель с креплением на ЧПУ станок

При установке дремель подобных инструментов(граверов), кроме этого потребуется дополнительное крепление корпуса гравера к каретке Z хомутом, рисунок 18.

Рисунок 18 Крепление гравера на фрезерный станок.

 

Имеется возможность установка насадки для подключения пылесоса

 

Магазин чпу станков хобби класса

Можно ли сделать своими руками станок с ЧПУ? Самостоятельное производство чпу станка Изготовление чпу станка своими руками

Для изготовления объемного рисунка на деревянной поверхности применяются заводские фрезерные станки с ЧПУ по дереву. Сделать аналогичную мини-модель своими руками в домашних условиях сложно, но возможно при детальном изучении конструкции. Для этого необходимо разобраться со спецификой, правильно подобрать комплектующие и выполнить их настройку.

Принцип работы фрезерного станка

Современное деревообрабатывающее оборудование с блоком числового программного управления предназначено для формирования сложного рисунка по дереву. В конструкции должна присутствовать механическая электронная часть. В комплексе они позволят максимально автоматизировать процесс работы.

Для изготовления настольного по дереву своими руками следует ознакомиться с основными компонентами. Режущим элементом является фреза, которая устанавливается в шпиндель, расположенный на валу электродвигателя. Эта конструкция крепится на станину. Она может перемещаться по двум осям координат – x; y. Для фиксации заготовки необходимо сделать опорный столик.

Электронный блок управления соединяется с пошаговыми двигателями. Они обеспечивают смещение каретки относительно детали. По такой технологии можно сделать 3D рисунки на деревянной поверхности.

Последовательность работы мини-оборудования с ЧПУ, который можно изготовить своими руками.

  1. Написание программы, согласно которой будет выполнена последовательность перемещений режущей части. Для этого лучше всего использовать специальные программные комплексы, предназначенные для адаптации в самодельных моделях.
  2. Установка заготовки на стол.
  3. Вывод программы в ЧПУ.
  4. Включение оборудования, контроль за выполнением автоматических действий.

Для достижения максимальной автоматизации работы в 3D режиме потребуется правильно составить схему и выбрать соответствующие комплектующие. Специалисты рекомендуют изучить заводские модели, прежде чем сделать мини-фрезерный станок своими руками.

Для создания сложных рисунков и узоров на деревянной поверхности понадобится несколько видов фрез. Некоторые из них можно сделать самостоятельно, но для тонкой работы следует приобрести заводские.

Схема самодельного фрезерного станка с числовым управлением

Самым сложным этапом является выбор оптимальной схемы изготовления. Она зависит от габаритов заготовки и степени ее обработки. Для домашнего использования желательно изготовить настольный , сделанный своими руками, который будет иметь оптимальное число функций.

Оптимальным вариантом является изготовление двух кареток, которые будут двигаться по осям координат x; y. В качестве основания лучше всего использовать стальные шлифованные прутки. На них будут монтироваться каретки. Для создания трансмиссии необходимы шаговые электродвигатели и винты с подшипниками качения.

Для максимальной автоматизации процесса в конструкции мини-фрезерного станка с ЧПУ по дереву, сделанного своими руками, необходимо детально продумать электронную часть. Условно она состоит из следующих компонентов:

  • блок питания. Необходим для подачи электроэнергии на шаговые электродвигатели и микросхему контроллера. Зачастую используют модель 12в 3А;
  • контроллер. Он предназначен для подачи команд на электродвигатели. Для работы мини-фрезерного станка ЧПУ, изготовленного своими руками, достаточно простой схемы для контроля функционирования трех двигателей;
  • драйвер. Также является элементом регулирования работы подвижной части конструкции.

Преимуществом этого комплекса является возможность импортирования исполняемых файлов самых распространенных форматов. С помощью специального приложения можно составить трехмерный чертеж детали для предварительного анализа. Шаговые двигатели будут работать с определенной частотой хода. Но для этого следует внести технические параметры в программу управления.

Выбор комплектующих для фрезерного станка с ЧПУ

Следующим этапом является выбор компонентов для сборки самодельного оборудования. Оптимальным вариантом является использование подручных средств. В качестве основы для настольных моделей 3D станка можно использовать дерево, алюминий или оргстекло.

Для правильной работы всего комплекса необходимо разработать конструкцию суппортов. Во время их движения не должно возникать колебаний, это может привести к неточному фрезерованию. Поэтому перед сборкой все компоненты проверяются на совместимость друг с другом.

  • направляющие. Используются стальные шлифованные прутки диаметром 12 мм. Длина для оси x составляет 200 мм, для y — 90 мм;
  • суппорт. Оптимальным вариантом является текстолит. Обычный размер площадки — 25*100*45 мм;
  • шаговые двигатели. Специалисты рекомендуют использовать модели от принтера 24в, 5А. В отличие от приводов дисковода они имеют большую мощность;
  • блок фиксации фрезы. Его также можно сделать из текстолита. Конфигурация напрямую зависит от имеющегося инструмента.

Блок питания лучше всего собрать заводской. При самостоятельном изготовлении возможны ошибки, которые впоследствии отразятся на работе всего оборудования.

Порядок изготовления фрезерного станка с ЧПУ

После выбора всех компонентов можно сделать настольный мини фрезерный станок с ЧПУ по дереву самостоятельно своими руками. Предварительно еще раз проверяются все элементы, выполняется контроль их размеров и качества.

Для фиксации элементов оборудования необходимо использовать специальные крепежные детали. Их конфигурация и форма зависят от выбранной схемы.

Порядок действий по сборке настольного мини оборудования с ЧПУ по дереву с функцией 3D обработки.

  1. Монтаж направляющих суппорта, их фиксация на боковых частях конструкции. Эти блоки еще не устанавливаются на основание.
  2. Притирка суппортов. Их необходимо двигать по направляющим до тех пор, пока не получится плавный ход.
  3. Затяжка болтов для фиксации суппортов.
  4. Крепление компонентов на основание оборудования.
  5. Монтаж ходовых винтов вместе с муфтами.
  6. Установка ходовых двигателей. Они крепятся к винтам муфт.

Электронная часть располагается в отдельном блоке. Это способствует уменьшению вероятности сбоя в работе во время функционирования фрезера. Также важным моментом является выбор рабочей поверхности для установки оборудования. Она должна быть ровная, так как в конструкции не предусмотрены болты регулировки уровня.

После этого можно приступать к пробным испытаниям. Сначала рекомендуется задать несложную программу фрезерования по дереву. Во время работы необходимо сверять каждый проход фрезы — глубину и ширину обработки, в особенности это касается 3D режима.

В видеоматериале показан пример как собрать большой фрезерный станок с ЧПУ, изготовленный своими руками:

Примеры чертежей и самодельных конструкций

В статье описан самодельный станок с ЧПУ. Главное достоинство данного варианта станка – простой метод подключения шаговых двигателей к компьютеру через порт LPT.

Механическая часть

Станина Станина нашего станка сделана из пластмассы толщиной 11-12мм. Материал не критичен, можно использовать алюминий, органическое стекло фанеру и любой другой доступный материал. Основные детали каркаса прикрепляются с помощью саморезов, при желании можно дополнительно оформить места креплений клеем, если используете древесину, то можно использовать клей ПВА.

Суппорта и направляющие В качестве направляющих использованы стальные прутки с диаметром 12мм, длина 200мм (на ось Z 90мм), две штуки на ось. Суппорта изготавливаются из текстолита размерами 25Х100Х45. Текстолит имеет три сквозных отверстия, два из них для направляющих и одно для гайки. Направляющие части крепятся винтами М6. Суппорты Х и У в верхней части имеют 4 резьбовых отверстия для крепления стола и узла оси Z.

Суппорт Z Направляющие оси Z крепятся к суппорту Х через стальную пластину, которая является переходной, размеры пластины 45х100х4.

Шаговые двигатели устанавливаются на крепежи, которые можно изготовить из листовой стали с толщиной 2-3мм. Винт нужно соединить с осью шагового двигателя при помощи гибкого вала, в качестве которого может быть использован резиновый шланг. При использовании жесткого вала, система будет работать не точно. Гайку делают из латуни, которую вклеивают в суппорт.

Сборка Сборка самодельного ЧПУ станка, осуществляется в следующей последовательности:

  • Для начала нужно установить в суппорта все направляющие компоненты и прикрутить их к боковинам, которые вначале не установлены на основание.
  • Суппорт передвигаем по направляющим до тех пор, пока не добьемся плавного хода.
  • Затягиваем болты, фиксируя направляющие части.
  • К основанию крепим суппорт, узел направляющие и боковину, для крепления используем саморезы.
  • Собираем узел Z и вместе с переходной пластиной прикрепляем его к суппорту X.
  • Далее устанавливаем ходовые винты вместе с муфтами.
  • Устанавливаем шаговые двигатели, соединяя ротор двигателя и винт муфтой. Обращаем строгое внимание на то, чтобы ходовые винты вращались плавно.

Рекомендации по сборке станка: Гайки можно изготовить также из чугуна, использовать другие материалы не стоит, винты можно купить в любом строительном магазине и обрезать под свои нужды. При использовании винтов с резьбой М6х1, длина гайки будет 10 мм.

Чертежи станка.rar

Переходим ко второй части сборки ЧПУ станка своими руками, а именно к электронике.

Электроника

Блок питания В качестве источника питания был использован блок на 12Вольт 3А. Блок предназначен для питания шаговых двигателей. Еще один источник напряжения на 5Вольт и с током 0.3А был использован для запитки микросхем контролера. Источник питания зависит от мощности шаговых двигателей.

Приведем расчет блока питания. Расчет прост – 3х2х1=6А, где 3 – количество используемых шаговых двигателей, 2 – число запитанных обмоток, 1 – ток в Амперах.

Контролер управления Управляющий контроллер был собран всего на 3-х микросхемах серии 555TM7. Контроллер не требует прошивки и имеет достаточно простую принципиальную схему, благодаря этому, данный ЧПУ станок своими руками может сделать человек не особо разбирающийся в электронике.

Описание и назначение выводов разъема порта LPT.

Выв. Название Направление Описание
1 STROBE ввод и вывод Устанавливается PC после завершения каждой передачи данных
2..9 DO-D7 вывод Вывод
10 АСК ввод Устанавливается в «0» внешним устройством после приема байта
11 BUSY ввод Устройство показывает, что оно занято, путем установки этой линии в «1»
12 Paper out ввод Для принтеров
13 Select ввод Устройство показывает, что оно готово, путем установки на этой линии «1 »
14 Autofeed
15 Error ввод Индицирует об ошибке
16 Initialize ввод и вывод
17 Select In ввод и вывод
18. .25 Ground GND GND Общий провод

Для эксперимента был использован шаговый двигатель от старого 5,25-дюймов. В схеме 7 бит не используется т.к. применено 3 двигателя. На него можно повесить ключ включение главного двигателя (фреза или сверло).

Драйвер для шаговых двигателей Для управления шаговым двигателем используется драйвер, который из себя представляет усилитель с 4-я каналами. Конструкция реализована всего на 4-х транзисторах типа КТ917.

Применять можно и серийные микросхемы, к примеру – ULN 2004 (9 ключей) с током 0,5-0.6А.

Для управления используется программа vri-cnc. Подробное описание и инструкция по использованию программы находится на официальном сайте.

Собрав данный ЧПУ станок своими руками, вы станете обладателем машины способной выполнять механическую обработку (сверление, фрезерование) пластмасс. Гравировку по стали. Также самодельный станок с ЧПУ может использоваться как графопостроитель, на нем можно рисовать и сверлить печатные платы.

По материалам сайта: vri-cnc.ru

all-he.ru

Чпу своими руками чертежи


Зная о том, что фрезерный станок с ЧПУ является сложным техническим и электронным устройством, многие умельцы думают, что его просто невозможно изготовить своими руками. Однако такое мнение ошибочно: самостоятельно сделать подобное оборудование можно, но для этого нужно иметь не только его подробный чертеж, но и набор необходимых инструментов и соответствующих комплектующих.


Обработка дюралевой заготовки на самодельном настольном фрезерном станке

Решившись на изготовление самодельного фрезерного станка с ЧПУ, имейте в виду, что на это может уйти значительное количество времени. Кроме того, потребуются определенные финансовые затраты. Однако не побоявшись таких трудностей и правильно подойдя к решению всех вопросов, можно стать обладателем доступного по стоимости, эффективного и производительного оборудования, позволяющего выполнять обработку заготовок из различных материалов с высокой степенью точности.

Чтобы сделать фрезерный станок, оснащенный системой ЧПУ, можно воспользоваться двумя вариантами: купить готовый набор, из специально подобранных элементов которого и собирается такое оборудование, либо найти все комплектующие и своими руками собрать устройство, полностью удовлетворяющее всем вашим требованиям.

Инструкция по сборке самодельного фрезерного станка с ЧПУ

Ниже на фото можно увидеть сделанный собственными руками фрезерный станок с ЧПУ, к которому прилагается подробная инструкция по изготовлению и сборке с указанием используемых материалов и комплектующих, точными «выкройками» деталей станка и приблизительными затратами. Единственный минус – инструкция на английском языке, но разобраться в подробных чертежах вполне можно и без знания языка.

Скачать бесплатно инструкцию по изготовлению станка: Самодельный фрезерный станок с ЧПУ


Фрезерный станок с ЧПУ собран и готов к работе. Ниже несколько иллюстраций из инструкции по сборке данного станка

«Выкройки» деталей станка (уменьшенный вид) Начало сборки станка Промежуточный этап Заключительный этап сборки

Подготовительные работы

Если вы решили, что будете конструировать станок с ЧПУ своими руками, не используя готового набора, то первое, что вам необходимо будет сделать, – это остановить свой выбор на принципиальной схеме, по которой будет работать такое мини-оборудование.


Схема фрезерного станка с ЧПУ

За основу фрезерного оборудования с ЧПУ можно взять старый сверлильный станок, в котором рабочая головка со сверлом заменяется на фрезерную. Самое сложное, что придется конструировать в таком оборудовании, – это механизм, обеспечивающий передвижение инструмента в трех независимых плоскостях. Этот механизм можно собрать на основе кареток от неработающего принтера, он обеспечит перемещение инструмента в двух плоскостях.

К устройству, собранному по такой принципиальной схеме, легко подключить программное управление. Однако его основной недостаток заключается в том, что обрабатывать на таком станке с ЧПУ можно будет только заготовки из пластика, древесины и тонкого листового металла. Объясняется это тем, что каретки от старого принтера, которые будут обеспечивать перемещение режущего инструмента, не обладают достаточной степенью жесткости.


Облегченный вариант фрезерного станка с ЧПУ для работы с мягкими материалами

Чтобы ваш самодельный станок с ЧПУ был способен выполнять полноценные фрезерные операции с заготовками из различных материалов, за перемещение рабочего инструмента должен отвечать достаточно мощный шаговый двигатель. Совершенно не обязательно искать двигатель именно шагового типа, его можно изготовить из обычного электромотора, подвергнув последний небольшой доработке.

Применение шагового двигателя в вашем фрезерном станке даст возможность избежать использования винтовой передачи, а функциональные возможности и характеристики самодельного оборудования от этого не станут хуже. Если же вы все-таки решите использовать для своего мини-станка каретки от принтера, то желательно подобрать их от более крупногабаритной модели печатного устройства. Для передачи усилия на вал фрезерного оборудования лучше применять не обычные, а зубчатые ремни, которые не будут проскальзывать на шкивах.


Узел ременной передачи

Одним из наиболее важных узлов любого подобного станка является механизм фрезера. Именно его изготовлению необходимо уделить особое внимание. Чтобы правильно сделать такой механизм, вам потребуются подробные чертежи, которым необходимо будет строго следовать.

Чертежи фрезерного станка с ЧПУ


Чертеж №1 (вид сбоку)


Чертеж №2 (вид сзади)


Чертеж №3 (вид сверху)

Приступаем к сборке оборудования

Основой самодельного фрезерного оборудования с ЧПУ может стать балка прямоугольного сечения, которую надо надежно зафиксировать на направляющих.

Несущая конструкция станка должна обладать высокой жесткостью, при ее монтаже лучше не использовать сварных соединений, а соединять все элементы нужно только при помощи винтов.


Узел скрепления деталей рамы станка посредством болтового соединения

Объясняется это требование тем, что сварные швы очень плохо переносят вибрационные нагрузки, которым в обязательном порядке будет подвергаться несущая конструкция оборудования. Такие нагрузки в итоге приведут к тому, что рама станка начнет разрушаться со временем, и в ней произойдут изменения в геометрических размерах, что скажется на точности настройки оборудования и его работоспособности.

Сварные швы при монтаже рамы самодельного фрезерного станка часто провоцируют развитие люфта в его узлах, а также прогиб направляющих, образующийся при серьезных нагрузках.


Установка вертикальных стоек

Во фрезерном станке, который вы будете собирать своими руками, должен быть предусмотрен механизм, обеспечивающий перемещение рабочего инструмента в вертикальном направлении. Лучше всего использовать для этого винтовую передачу, вращение на которую будет передаваться при помощи зубчатого ремня.

Важная деталь фрезерного станка – его вертикальная ось, которую для самодельного устройства можно изготовить из алюминиевой плиты. Очень важно, чтобы размеры этой оси были точно подогнаны под габариты собираемого устройства. Если в вашем распоряжении есть муфельная печь, то изготовить вертикальную ось станка можно своими руками, отлив ее из алюминия по размерам, указанным в готовом чертеже.


Узел верхней каретки, размещенный на поперечных направляющих

После того как все комплектующие вашего самодельного фрезерного станка подготовлены, можно приступать к его сборке. Начинается данный процесс с монтажа двух шаговых электродвигателей, которые крепятся на корпус оборудования за его вертикальной осью. Один из таких электродвигателей будет отвечать за перемещение фрезерной головки в горизонтальной плоскости, а второй – за перемещение головки, соответственно, в вертикальной. После этого монтируются остальные узлы и агрегаты самодельного оборудования.


Финальная стадия сборки станка

Вращение на все узлы самодельного оборудования с ЧПУ должно передаваться только посредством ременных передач. Прежде чем подключать к собранному станку систему программного управления, следует проверить его работоспособность в ручном режиме и сразу устранить все выявленные недостатки в его работе.

Посмотреть процесс сборки фрезерного станка своими руками можно на видео, которое несложно найти в интернете.

Шаговые двигатели

В конструкции любого фрезерного станка, оснащенного ЧПУ, обязательно присутствуют шаговые двигатели, которые обеспечивают перемещение инструмента в трех плоскостях: 3D. При конструировании самодельного станка для этой цели можно использовать электромоторы, установленные в матричном принтере. Большинство старых моделей матричных печатных устройств оснащались электродвигателями, обладающими достаточно высокой мощностью. Кроме шаговых электродвигателей из старого принтера стоит взять прочные стальные стержни, которые также можно использовать в конструкции вашего самодельного станка.


Закрепление шагового двигателя на верхней каретке

Чтобы своими руками сделать фрезерный станок с ЧПУ, вам потребуются три шаговых двигателя. Поскольку в матричном принтере их всего два, необходимо будет найти и разобрать еще одно старое печатное устройство.

Окажется большим плюсом, если найденные вами двигатели будут иметь пять проводов управления: это позволит значительно увеличить функциональность вашего будущего мини-станка. Важно также выяснить следующие параметры найденных вами шаговых электродвигателей: на сколько градусов осуществляется поворот за один шаг, каково напряжение питания, а также значение сопротивления обмотки.


Для подключения каждого шагового двигателя понадобится отдельный контроллер

Конструкция привода самодельного фрезерного станка с ЧПУ собирается из гайки и шпильки, размеры которых следует предварительно подобрать по чертежу вашего оборудования. Для фиксации вала электродвигателя и для его присоединения к шпильке удобно использовать толстую резиновую обмотку от электрического кабеля. Такие элементы вашего станка с ЧПУ, как фиксаторы, можно изготовить в виде нейлоновой втулки, в которую вставлен винт. Для того чтобы сделать такие несложные конструктивные элементы, вам понадобятся обычный напильник и дрель.

Электронная начинка оборудования

Управлять вашим станком с ЧПУ, сделанным своими руками, будет программное обеспечение, а его необходимо правильно подобрать. Выбирая такое обеспечение (его можно написать и самостоятельно), важно обращать внимание на то, чтобы оно было работоспособным и позволяло станку реализовывать все свои функциональные возможности. Такое ПО должно содержать драйверы для контроллеров, которые будут установлены на ваш фрезерный мини-станок.

В самодельном станке с ЧПУ обязательным является порт LPT, через который электронная система управления и подключается к станку. Очень важно, чтобы такое подключение осуществлялось через установленные шаговые электродвигатели.

Схема подключения униполярных шаговых электродвигателей для 3-х координатного станка с ЧПУ (нажмите для увеличения)

Выбирая электронные комплектующие для своего станка, сделанного своими руками, важно обращать внимание на их качество, так как именно от этого будет зависеть точность технологических операций, которые на нем будут выполняться. После установки и подключения всех электронных компонентов системы ЧПУ нужно выполнить загрузку необходимого программного обеспечения и драйверов. Только после этого следуют пробный запуск станка, проверка правильности его работы под управлением загруженных программ, выявление недостатков и их оперативное устранение.

Все вышеописанные действия и перечисленные комплектующие подходят для изготовления своими руками фрезерного станка не только координатно-расточной группы, но и ряда других типов. На таком оборудовании можно выполнять обработку деталей со сложной конфигурацией, так как рабочий орган станка может перемещаться в трех плоскостях: 3d.

Ваше желание своими руками собрать такой станок, управляемый системой ЧПУ, должно быть подкреплено наличием определенных навыков и подробных чертежей. Очень желательно также посмотреть ряд тематических обучающих видео, некоторые из которых представлены в данной статье.

Главная › Оборудование для обработки металла › Фрезерные станки

Похожие новости:

  • Поздравления тещю с днем рождения
  • Салат кальмарами и кукурузой рецепт с фото
  • Вешалка костюмная своими руками
  • Поздравления дорогому начальнику
  • На новый хороший слова и поздравления
  • artemmian. ru

    Станок ЧПУ своими руками / Сделай сам / Коллективный блог

    Сегодня станок с ЧПУ имеет широкий спектр применения. Среди основных операций, выполняемых на нем, можно отметить изготовление мебели, обработку камня, ремонтные, строительные работы и т.д.

    Станок с ЧПУ, изготовленный в промышленных условиях, – удовольствие достаточно дорогое. Но, оказывается, сложный на первый взгляд механизм, очень прост и доступен в изготовлении в бытовых условиях своими руками.

    Для первого опыта лучше всего остановить свой выбор на станке с движущимся порталом. Связано это с тем, что в нем отличным образом совмещаются простота и функциональность.

    Для изготовления основных деталей станка возьмем МДФ плиты. Этот материал представляет собой мелкие дисперсные фракции, которые спрессованы под большим давлением и температурой в одну плиту. К основным характеристикам МДФ относится высокая плотность. Поэтому они отлично подходят для изготовления станков ЧПУ своими руками. На оборудовании из МДФ можно проводить обработку пластика, дерева, делать гравировку, но обрабатывать металлические детали с высокой точностью не получиться. Связано это с низкой стойкостью данного материала к нагрузкам.

    Для начала чертеж нашего станка распечатаем на принтере. Затем полученные шаблоны можно наклеить на МДФ. Так намного проще и удобнее вырезать детали будущего станка.

    Фурнитуру, которая будет использовать в сборке, можно приобрести в любом строительном или строительном магазине.

    Кроме фурнитуры для изготовления станка потребуются следующие инструменты: дрель, отвертка и ножовка. Если у вас есть электролобзик, тогда лучше воспользоваться им. Это значительным образом упростит процесс выпиливания деталей.

    Приступаем к изготовлению станка. Для этого распечатанные на принтере чертежи деталей наклеиваем на плиту МДФ, используя клеящий карандаш для бумаги. Выбирая его в магазине, остановите свой выбор на самом толстом. Это позволит значительным образом ускорить процесс поклейки шаблонов.

    Теперь можно заняться непосредственным выпиливанием заготовок. В данной модели все детали имеют практически прямые линии и максимально простые контуры.

    После того, как все шаблоны вырезаны, приступаем к просверливанию отверстий. Следует обратить внимание на то, что многие из них имею большой диаметр. Поэтому, чтобы поверхность этих отверстий была аккуратной и гладкой, лучше воспользоваться коронками или насадками для шлифовки. Таким образом, у вас будет возможность аккуратно растачивать отверстия до нужного диаметра.

    Теперь можно приступать к сборке ЧПУ станка согласно имеющимся у нас чертежам.

    Так как мы планируем использовать станок в домашних условиях, то обязательно необходимо установить ограждение. Это позволит избежать разлетания пыли и грязи от обрабатываемых деталей.

    Для этих целей можно использовать пенопласт, стекловолокно, тонкую фанеру и т.д. Не забудьте в ограждении сделать небольшое отверстие.

    Через него можно будет подключить вытяжку от старого пылесоса. Это обеспечит максимальное улавливание пыли и стружки. Обратным эффектом использования подобного «грязеуловителя» является сильный шум.

    Следующим важным этапом сборки станка ЧПУ своими руками является электроника. Ведь она важная, т.к. с ее помощью происходит процесс управления.

    В этом случае можно воспользоваться двумя путями решения. Первый из них – собрать необходимую схему контролера самостоятельно, купив все необходимые детали.

    Второй путь проще – купить готовый контролер в магазине или на радиорынке. Какой из предложенных путей выбрать – решать вам самим. Если вы не очень разбираетесь в радиотехнике и решите купить готовую деталь, тогда рекомендуется остановить выбор на ТВ6560.

    За выбор этого элемента говорит его возможность подбора необходимого питания в зависимости от используемых шаговых двигателей, наличие защиты от перегрузки и перегрева, использование множества программных обеспечений и т.д.

    В случае если контроллер вы будет изготавливать самостоятельно, отлично подойдет старый сканер или МФУ. Из него выбирается микросхема ULN2003, стальные стержни и шаговый двигатель. Кроме этого вам понадобиться разъем DВ-25 с проводом, гнездо для питания самого контроллера. Если хотите иметь компьютерное управления своего станка, тогда необходим будет компьютер, к которому вы подключите полученное оборудование.

    Для создания контроллера берем любую имеющуюся у нас плату. На нее аккуратно паяльником припаиваем микросхему ULN2003. При этом не забывайте о полярности.

    На приведенной схеме видно, что имеют место две шины электропитания. Поэтому вывод микросхемы с отрицательным знаком мы припаиваем к одной, а с положительным – к другой. После этого к выводу 1 ULN2003 присоединяем вывод 2 коннектора параллельного порта. К выводу 2 ULN2003 мы присоединяем вывод 3 коннектора. Соответственно вывод схему ULN2003 4 мы соединим с 5 выводом коннектора и т.д. А вот вывод нуля с 25 выводом параллельного порта мы припаяем к отрицательной шине.

    Следующий этап – припаивание шагового двигателя к управляющему устройству. Правильно сделать его можно только методом проб и ошибок, т.к. чаще всего документации на вывод имеющегося у вас электродвигателя нет. Поэтому рекомендуется провода двигателя оснастить зажимами-крокодилами. Таким образом, процесс пойдет быстрее и легче.

    Следующий наш шаг – соединение проводов с выводами 13,14,15,16 микросхемы ULN2003. Теперь паять провода мы будем к шине питания со знаком плюс. В завершении устанавливаем гнездо электропитания.

    Наш контроллер почти готов. Теперь мы устанавливаем его на стальные стержни и закрепляем в подготовленных ранее гнездах. Для того, чтобы в процессе эксплуатации не происходил облом проводов, их лучше зафиксировать с помощью термоклея.

    44kw.com

    Чертеж самодельного ЧПУ станка

    Скачать чертеж самодельного ЧПУ станка можно по ссылкам в конце статьи.

    В предлагаемом к скачиванию архиве лежит чертеж ЧПУ станка для сборки своими руками.

    Это достаточно распространенный тип ЧПУ станка с движущимся порталом.

    Данный чертеж отличается прежде всего тем, что в не только дана деталировка – когда каждая деталь станка вычерчена отдельно и имеет проставленные размеры, но и приведены сборочные чертежи каждого из узлов.

    ЧПУ станок по такому чертежу можно изготовить практически из любого материала. Это может быть и дюралюминиевые пластины и многослойная фанера. Можно использовать и прочный пластик или оргстекло в конструкции самодельного ЧПУ станка.

    Чертежи имеют векторный формат DXF и могут быть смасшабированны в любые размеры.

    В самом простом случае можно взять двигатели от матричных принтеров типа Epson FX1000 формата A3, от этих же принтером взять и стальные направляющие вместе с узлом скольжения.

    В качестве ходового винта в бюджетном варианте самодельного ЧПУ станка используется шпилька с резьбой М6 или М8. Ходовые гайки лучше заказать токарю и выточить их из бронзы. Бронзовая гайка может «ходить» 5-7 лет при ежедневном использовании ЧПУ станка по 8-10 часов.

    Ходовые винты – это расходный материал, а ходовые гайки могут прослужить еще не на одном самодельном станке.

    Впрочем, я не однократно читал о том как применяли ходовые гайки изготовленные из пластика или гетинакса.

    Изготовленный из подручных средств самодельный ЧПУ станок позволит вам обрабатывать дерево, пластики и цветные металлы.

    Для обработки металлов и стали такой станок становиться малопригодным в силу слабой жесткости конструкции.

    Впрочем он может использоваться для гравировки или как сверлильный станок с ЧПУ управлением по металлам.

    Но вот как фрезерный – маловероятно. При фрезеровке металлов возникают ударные нагрузки – например, при фрезеровании одного паза встретился другой паз и тогда возникает механический удар, который передается на конструкцию станка и ходовой винт.

    Для домашних работ, например фрезеровки наборов для сборки авиамодели из бальзы – такой станок легко оправдает затраты на его изготовление!

    Скачать чертежи самодельного ЧПУ станка можно здесь: Depositfiles или с нашего сайта

    Самодельный ЧПУ станок

    Станки, оснащенные числовым программным обеспечением (ЧПУ) представлены в виде современного оборудования для резки, точения, сверления или шлифования металла, фанеры, дерева пенопласта и других материалов.

    Встроенная электроника на базе печатных плат «Arduino» обеспечивает максимальную автоматизацию работ.

    1 Что собой представляет станок с ЧПУ?

    Станки ЧПУ на базе печатных плат «Ардуино» способны в автоматическом режиме бесступенчато менять частоту вращения шпинделей, а также скорость подачи суппортов, столов и прочих механизмов. Вспомогательные элементы станка ЧПУ автоматически принимает нужное положение, и могут использоваться для резки фанеры или алюминиевого профиля.

    В устройствах на основе печатных плат «Arduino» режущий инструмент (предварительно настроенный) также сменяется в автоматическом режиме.

    В устройствах ЧПУ на базе печатных плат «Ардуино» все команды подаются через контроллер.

    Контроллер получает сигналы от программоносителя. Для такого оборудования для резки фанеры, металлического профили или пенопласта программоносителями являются кулачки, упоры или копиры.

    Поступивший из программоносителя сигнал через контроллер подает команду на автомат, полуавтомат или копировальный станок. Если необходимо сменить лист фанеры или пенопласта для резки, то кулачки или копиры заменяются другими элементами.

    Агрегаты с программным управлением на базе плат” Ардуино” в качестве программоносителя используют перфоленты, перфокарты или магнитные ленты в которых содержится вся необходимая информация. С применением плат «Arduino» весь процесс резки фанеры, пенопласта или другого материала полностью автоматизируется, сто минимизирует затраты труда.

    Стоит отметить, что собрать станок ЧПУ для резки фанеры или пенопласта на базе плат Arduino своими руками можно без особых сложностей. Управление в агрегатах ЧПУ на основе «Ардуино» осуществляет контроллер, который передает как технологическую, так и размерную информацию.

    Применяя плазморезы с ЧПУ на базе плат «Ардуино» можно освободить большое число универсального оборудования и наряду с этим увеличить производительность труда. Основные преимущества станков на базе «Ардуино», собранных своими руками, выражаются в:

    • высокой (по сравнению с ручными станками) производительностью;
    • гибкости универсального оборудования в сочетании с точностью;
    • снижении потребности в привлечении квалифицированных специалистов к работе;
    • возможности изготовления взаимозаменяемых деталей по одной программе;
    • сокращенных сроках подготовки при изготовлении новых деталей;
    • возможности сделать станок своими руками.

    1.1 Процесс работы фрезерного станка с ЧПУ (видео)

    1.2 Разновидности ЧПУ станков

    Представленные агрегаты для резки фанеры или пенопласта, использующие для работы платы «Arduino», делятся на классы по:

    • технологическим возможностям;
    • принципу смены инструмента;
    • способу смены заготовки.

    Любой класс такого оборудования можно сделать своими руками, а электроника «Arduino» обеспечит максимальную автоматизацию рабочего процесса. Наряду с классами, станки могут быть:

    • токарными;
    • сверлильно-расточными;
    • фрезерными;
    • шлифовальными;
    • станки электрофизического ряда;
    • многоцелевые.

    Токарные агрегаты на базе «Arduino» могут подвергать обработке наружные и внутренние поверхности всевозможных деталей.

    Вращение заготовок может проводиться как в прямолинейных, так и в криволинейных контурах. Устройство также предназначается для резки наружной и внутренней резьбы. Фрезерные агрегаты на базе «Arduino» предназначаются для фрезерования простых и сложных деталей корпусного типа.

    Кроме того они могут производить сверление и расточку. Шлифовальные станки, которые также можно сделать своими руками могут применяться для финишной обработки деталей.

    В зависимости от вида обрабатываемых поверхностей агрегаты могут быть:

    • плоскошлифовальными;
    • внутришлифовальными;
    • шлицешлифовальными.

    Многоцелевые агрегаты могут применяться для резки фанеры или пенопласта, выполнять сверление, фрезерование, расточку и токарную обработку деталей. Перед тем, как сделать станок с ЧПУ своими руками, важно учитывать, что деление оборудования производится и по способу смены инструмента. Замена может производиться:

    • вручную;
    • автоматически в револьверной головке;
    • автоматически в магазине.

    Если электроника (контроллер) может обеспечивать автоматическую смену заготовок с использованием специальных накопителей, то аппарат может длительное время работать без участия оператора.

    Для того, чтобы сделать представленный агрегат для резки фанеры или пенопласта своими руками, необходимо подготовить исходное оборудование. Для этого может быть пригоден бывший в употреблении .

    В нем рабочий орган заменяется на фрезу. Кроме того сделать механизм своими руками можно из кареток старого принтера.

    Это позволит двигаться рабочей фрезе в направлении двух плоскостей. Далее к конструкции подключается электроника, ключевым элементом которой является контроллер и платы «Arduino».

    Схема сборки позволяет сделать своими руками самодельный агрегат ЧПУ автоматическим. Такое оборудование может быть предназначено для резки пластика, пенопласта, фанеры или тонкого металла. Для того, чтобы устройство смогло выполнять более сложные виды работ, необходим не только контроллер, но и шаговый двигатель.

    Он должен обладать высокими мощностными показателями – не менее 40-50 ватт. Рекомендуется использовать обычный электродвигатель, так как с его применением отпадет необходимость в создании винтовой передачи, а контроллер будет обеспечивать своевременную подачу команд.

    Нужное усилие на вал передачи в самодельном устройстве должно передаваться посредством зубчатых ремней. Если для передвижения рабочей фрезы самодельный станок с ЧПУ будет использовать каретки от принтеров, то для этой цели необходимо выбрать детали от принтеров больших размеров.

    Основой будущего агрегата может послужить прямоугольная балка, которая должна быть прочно закреплена на направляющих. Каркас должен отличаться высокой степенью жесткости, но использовать сварку не рекомендуется. Лучше применять болтовое соединение.

    Сварочные швы будут подвергаться деформации из-за постоянных нагрузок при работе станка. Элементы крепления при этом разрушаются, что приведет к сбою настроек, а контроллер будет работать некорректно.

    2.1 О шаговых двигателях суппортах и направляющих

    Агрегат с ЧПУ, собранный самостоятельно, должен быть оснащен шаговыми электродвигателями. Как уже упоминалось выше, для сборки агрегата лучше всего использовать двигатели от старых матричных принтеров.

    Для эффективного функционирования устройства понадобится три отдельных двигателя шагового типа. Рекомендуется применять двигатели с пятью отдельными проводами управления. Это позволит увеличить функциональность самодельного аппарата в несколько раз.

    При подборе двигателей для будущего станка нужно знать число градусов на один шаг, показатель рабочего напряжения и сопротивление обмотки. Впоследствии это поможет произвести корректную настройку всего программного обеспечения.

    Крепление вала шарового двигателя производится с применением резинового кабеля, покрытого толстой обмоткой. Кроме того, с помощью такого кабеля можно присоединить двигатель к ходовой шпильке. Станину можно изготовить из пластмассы с толщиной в 10-12 мм.

    Наряду с пластиком возможно применение алюминия или органического стекла.

    Ведущие детали каркаса крепятся с помощью саморезов, а при использовании древесины можно крепить элементы клеем ПВА. Направляющие представляют собой стальные прутья с сечением в 12 мм и длиной в 20 мм. На каждую ось приходится по 2 прута.

    Суппорт изготавливают из текстолита, его размеры должны составлять 30×100х40 см. Направляющие части текстолита скрепляются винтами марки М6, а суппорты «Х» и «У» в верху должны иметь 4 резьбовых отверстия для закрепления станины. Шаговые электродвигатели устанавливаются с помощью крепежей.

    Крепления можно сделать с использованием стали листового типа. Толщина листа должна составлять 2-3 мм. Далее винт соединяется с осью шагового двигателя посредством гибкого вала. С этой целью можно задействовать обычный резиновый шланг.

    Целью этого проекта является создание настольного станка с ЧПУ. Можно было купить готовый станок, но его цена и размеры меня не устроили, и я решил построить станок с ЧПУ с такими требованиями:
    – использование простых инструментов (нужен только сверлильный станок, ленточная пила и ручной инструмент)
    – низкая стоимость (я ориентировался на низкую стоимость, но всё равно купил элементов примерно на $600, можно значительно сэкономить, покупая элементы в соответствующих магазинах)
    – малая занимаемая площадь(30″х25″)
    – нормальное рабочее пространство (10″ по оси X, 14″ по оси Y, 4″ по оси Z)
    – высокая скорость резки (60″ за минуту)
    – малое количество элементов (менее 30 уникальных)
    – доступные элементы (все элементы можно купить в одном хозяйственном и трех online магазинах)
    – возможность успешной обработки фанеры

    Станки других людей

    Вот несколько фото других станков, собравших по данной статье

    Фото 1 – Chris с другом собрал станок, вырезав детали из 0,5″ акрила при помощи лазерной резки. Но все, кто работал с акрилом знают, что лазерная резка это хорошо, но акрил плохо переносит сверление, а в этом проекте есть много отверстий. Они сделали хорошую работу, больше информации можно найти в блоге Chris’a. Мне особенно понравилось изготовление 3D объекта при помощи 2D резов.

    Фото 2 – Sam McCaskill сделал действительно хороший настольный станок с ЧПУ. Меня впечатлило то, что он не стал упрощать свою работу и вырезал все элементы вручную. Я впечатлён этим проектом.

    Фото 3 – Angry Monk”s использовал детали из ДМФ, вырезанные при помощи лазерного резака и двигатели с зубчато-ремённой передачей, переделанные в двигатели с винтом.

    Фото 4 – Bret Golab”s собрал станок и настроил его для работы с Linux CNC (я тоже пытался сделать это, но не смог из-за сложности). Если вы заинтересованы его настройками, вы можете связаться с ним. Он сделал великую работу!

    Боюсь что у меня недостаточно опыта и знаний, чтобы объяснять основы ЧПУ, но на форуме сайта CNCZone. com есть обширный раздел, посвященный самодельным станкам, который очень помог мне.

    Резак: Dremel или Dremel Type Tool

    Параметры осей:

    Ось X
    Расстояние перемещения: 14″

    Скорость: 60″/мин
    Ускорение: 1″/с2
    Разрешение: 1/2000″
    Импульсов на дюйм: 2001

    Ось Y
    Расстояние перемещения: 10″
    Привод: Зубчато-ременная передача
    Скорость: 60″/мин
    Ускорение: 1″/с2
    Разрешение: 1/2000″
    Импульсов на дюйм: 2001

    Ось Z (вверх-вниз)
    Расстояние перемещения: 4 “
    Привод: Винт
    Ускорение: .2″/с2
    Скорость: 12″/мин
    Разрешение: 1/8000 “
    Импульсов на дюйм: 8000

    Необходимые инструменты

    Я стремился использовать популярные инструменты, которые можно приобрести в обычном магазине для мастеров.

    Электроинструмент:
    – ленточная пила или лобзик
    – сверлильный станок (сверла 1/4″, 5/16″, 7/16″, 5/8″, 7/8″, 8мм (около 5/16″)), также называется Q
    – принтер
    – Dremel или аналогичный инструмент (для установки в готовый станок).

    Ручной инструмент:
    – резиновый молоток (для посадки элементов на места)
    – шестигранники (5/64″, 1/16″)
    – отвертка
    – клеевой карандаш или аэрозольный клей
    – разводной ключ (или торцевой ключ с трещоткой и головкой 7/16″)

    Необходимые материалы

    В прилагаемом PDF файле (CNC-Part-Summary.pdf) предоставлены все затраты и информация о каждом элементе. Здесь предоставлена только обобщенная информация.

    Листы — $ 20
    -Кусок 48″х48″ 1/2″ МДФ (подойдет любой листовой материал толщиной 1/2″ Я планирую использовать UHMW в следующей версии станка, но сейчас это выходит слишком дорого)
    -Кусок 5″x5″ 3/4″ МДФ (этот кусок используется в качестве распорки, поэтому можете брать кусок любого материала 3/4″)

    Двигатели и контроллеры — $ 255
    -О выборе контроллеров и двигателей можно написать целую статью. Коротко говоря, необходим контроллер, способный управлять тремя двигателями и двигатели с крутящим моментом около 100 oz/in. Я купил двигатели и готовый контроллер, и всё работало хорошо.

    Аппаратная часть — $ 275
    -Я купил эти элементы в трех магазинах. Простые элементы я приобрёл в хозяйственном магазине, специализированные драйвера я купил на McMaster Carr (http://www.mcmaster.com), а подшипники, которых надо много, я купил у интернет-продавца, заплатив $40 за 100 штук (получается довольно выгодно, много подшипников остается для других проектов).

    Программное обеспечение — (бесплатно)
    -Необходима программа чтобы нарисовать вашу конструкцию (я использую CorelDraw), и сейчас я использую пробную версию Mach4, но у меня есть планы по переходу на LinuxCNC (открытый контролер станка, использующий Linux)

    Головное устройство — (дополнительно)
    -Я установил Dremel на свой станок, но если вы интересуетесь 3D печатью (например RepRap) вы можете установить свое устройство.

    Печать шаблонов

    У меня был некоторый опыт работы лобзиком, поэтому я решил приклеить шаблоны. Необходимо распечатать PDF файлы с шаблонами, размещенными на листе, наклеить лист на материал и вырезать детали.

    Имя файла и материал:
    Всё: CNC-Cut-Summary.pdf
    0,5″ МДФ (35 8.5″x11″ листов с шаблонами): CNC-0.5MDF-CutLayout-(Rev3).pdf
    0,75″ МДФ: CNC-0.75MDF-CutLayout-(Rev2).pdf
    0,75″ алюминиевая трубка: CNC-0.75Alum-CutLayout-(Rev3).pdf
    0,5 “MDF (1 48″x48” лист с шаблонами): CNC-(One 48×48 Page) 05-MDF-CutPattern.pdf

    Примечание: Я прилагаю рисунки CorelDraw в оригинальном формате (CNC-CorelDrawFormat-CutPatterns (Rev2) ZIP) для тех, кто хотел бы что то изменить.

    Примечание: Есть два варианта файлов для МДФ 0,5″. Можно скачать файл с 35 страницами 8.5″х11″ (CNC-0.5MDF-CutLayout-(Rev3), PDF), или файл (CNC-(Один 48×48 Page) 05-MDF-CutPattern.pdf) с одним листом 48″x48″для печати на широкоформатном принтере.

    Шаг за шагом:
    1. Скачайте три PDF-файла с шаблонами.
    2. Откройте каждый файл в Adobe Reader
    3. Откройте окно печати
    4. (ВАЖНО) отключите Масштабирование страниц.
    5. Проверьте, что файл случайно не масштабировался. Первый раз я не сделал это, и распечатал всё в масштабе 90%, о чем сказано ниже.

    Наклеивание и выпиливание элементов

    Приклейте распечатаные шаблоны на МДФ и на алюминиевую трубу. Далее, просто вырезайте деталь по контуру.

    Как было сказано выше, я случайно распечатал шаблоны в масштабе 90%, и не заметил этого до начала выпиливания. К сожалению, я не понимал этого до этой стадии. Я остался с шаблонами в масштабе 90% и, переехав через всю страну, я получил доступ к полноразмерному ЧПУ. Я не выдержал и вырезал элементы при помощи этого станка, но не смог просверлить их с обратной стороны. Именно поэтому все элементы на фотографиях без кусков шаблона.

    Сверление

    Я не считал сколько именно, но в этом проекте используется много отверстий. Отверстия, которые сверлятся на торцах особенно важны, но не пожалейте времени на них, и использовать резиновый молоток вам придется крайне редко.

    Места с отверстиями в накладку друг на друга это попытка сделать канавки. Возможно, у вас есть станок с ЧПУ, на котором это можно сделать лучше.

    Если вы дошли до этого шага, то я поздравляю вас! Глядя на кучу элементов, довольно сложно представить, как собрать станок, поэтому я постарался сделать подробные инструкции, похожие на инструкции к LEGO. (прилагаемый PDF CNC-Assembly-Instructions.pdf). Довольно интересно выглядят пошаговые фотографии сборки.

    Готово!

    Станок готов! Надеюсь, вы сделали и запустили его. Я надеюсь, что в статье не упущены важные детали и моменты. Вот видео, в котором показано вырезание станком узора на розовом пенопласте.

    Сложен в изготовлении, кроме технических составляющих, он имеет электронное устройство, установить которое в состоянии только специалист. Вопреки этому мнению, возможность собрать ЧПУ станок своими руками велика, если заранее подготовить необходимые чертежи, схемы и комплектующие материалы.

    Проведение подготовительных работ

    При проектировании ЧПУ своими руками в домашних условиях необходимо определиться, по какой схеме он будет работать.

    Часто в качестве основы будущего аппарата берут использованный .

    Сверлильный станок может быть использован как основа для ЧПУ станка

    В нем потребуется замена рабочей головки на фрезерную.

    Наибольшее затруднение при проектировании ЧПУ станка своими руками вызывает создание устройства, при помощи которого рабочий инструмент перемещается в трех плоскостях.

    Частично решить задачу помогут каретки, взятые из обычного принтера. Инструмент сможет двигаться в обеих плоскостях. Выбирать каретки для ЧПУ станка лучше из того принтера, который имеет большие габариты.

    Подобная схема позволяет в дальнейшем подключать к станку управление. Минус в том, что фрезерный станок с ЧПУ работает только с деревянными, пластиковыми изделиями, изделиями из тонкого металла. Это связано с тем, что каретки принтера не имеют нужной жесткости.

    Внимание необходимо уделить двигателю будущего агрегата. Его роль сводится к передвижению рабочего инструмента. От этого зависит качество работы и возможность выполнения фрезерных операций.

    Удачным вариантом для самодельного ЧПУ фрезера является шаговый двигатель.

    Альтернативой такому двигателю является электромотор, предварительно усовершенствованный и подогнанный под стандарты аппарата.

    Любой , использующий шаговый двигатель, позволяет не использовать винтовую передачу, это никак не влияет на возможности такого ЧПУ по дереву. Рекомендуется использовать для фрезерования на таком агрегате ремни зубчатого типа. В отличие от стандартных ремней они не проскальзывают на шкивах.

    Требуется правильно спроектировать фрезер будущего станка, для этого понадобятся подробные чертежи.

    Материалы и инструменты, необходимые для сборки

    Общий набор материалов для станка с ЧПУ включает в себя:

    • кабель длиной 14–19 м;
    • , обрабатывающие дерево;
    • патрон для фрезы;
    • преобразователь частот, имеющий одинаковую мощность со шпинделем;
    • подшипники;
    • плата для управления;
    • водяная помпа;
    • охлаждающий шланг;
    • три двигателя шагового типа для трех осей перемещения конструкции;
    • болты;
    • защитный кабель;
    • шурупы;
    • фанера, ДСП, плита из дерева или металлическая конструкция на выбор в качестве корпуса будущего аппарата;
    • муфта мягкого типа.

    Рекомендуется при изготовлении своими руками использовать шпиндель с охлаждающей жидкостью. Это позволит не отключать его каждые 10 минут для остужения. Для работы подойдет самодельный станок с ЧПУ, мощность его составляет не меньше 1,2 кВт. Оптимальным вариантом станет устройство мощностью 2 кВт.

    Набор инструментов, требующийся для изготовления агрегата, включает в себя:

    • молотки;
    • изоленту;
    • сборочные ключи;
    • клей;
    • отвертку;
    • паяльник, герметик;
    • болгарку, ее часто заменяют на ножовку;
    • пассатижи, агрегат для сварки, ножницы, плоскогубцы.

    Простой ЧПУ станок своими руками

    Порядок действий при сборке станка

    Самодельный ЧПУ фрезерный станок собирается по схеме:

    • изготовление чертежей и схем устройства с указанием системы электрооборудования;
    • покупка материалов, содержащих в себе будущий самодельный ЧПУ станок;
    • установка станины, на ней будут крепиться двигатели, рабочая поверхность, портал, шпиндель;
    • установка портала;
    • установка оси Z;
    • фиксация рабочей поверхности;
    • установка шпинделя;
    • установка водоохлаждающей системы;
    • установка электросистемы;
    • подключение платы, с ее помощью осуществляется управление аппаратом;
    • настройка программного обеспечения;
    • стартовый пуск агрегата.

    В качестве основы для станины берется материал, сделанный из алюминия.

    Станину нужно делать с алюминия

    Профили из этого металла выбирают с сечением 41*81 мм с толщиной пластин 11 мм. Сам корпус станины соединяют при помощи алюминиевых уголков.

    От установки портала будет зависеть, какой толщины изделие сможет обработать станок ЧПУ. Особенно если он, сделанный своими руками. Чем выше портал, тем более толстое изделие он сможет обработать. Важно не установить его слишком высоко, так как такая конструкция будет менее прочной и надежной. Портал движется по оси Х и несет шпиндель на себе.

    В качестве материала для рабочей поверхности агрегата применяют профиль из алюминия. Часто берут профиль, имеющий Т-пазы. Для домашнего использования принимают , ее толщина составляет не менее 17 мм.

    После того как каркас устройства будет готов, приступают к установке шпинделя. Важно устанавливать его вертикально, так как в дальнейшем потребуется его регулировка, это проводится для фиксации требуемого угла.

    Для установки электросистемы необходимо присутствие таких компонентов:

    • блок питания;
    • компьютер;
    • шаговый двигатель;
    • плата;
    • кнопка остановки;
    • драйверы двигателя.

    Для работы системы требуется порт LPT. Помимо этого, устанавливается , управляющая работой аппарата и позволяющая отвечать на вопрос, как сделать ту или иную операцию. Управление подключается через двигатели к самому фрезерному станку.

    После того как электроника будет установлена на станок, потребуется загрузка драйверов и необходимых для работы программ.

    Распространенные ошибки при сборке

    Часто встречающейся ошибкой при сборке станка с числовым программным управлением является отсутствие чертежа, но по нему и проводится сборка. В результате этого возникают упущения в проектировании и установке конструкций аппарата.

    Часто неправильная работа станка связана с неверно подобранными частотником и шпинделем.

    Для корректной работы станка необходимо правильно подбирать шпиндель

    Во многих случаях шаговые двигатели не получают должного питания, поэтому для них необходимо выбирать специальный отдельный блок питания.

    Необходимо учитывать то, что правильно установленная электросхема и программное обеспечение позволяет выполнять на устройстве многочисленные операции разного уровня сложности. Станок ЧПУ своими руками выполнить под силу мастеру среднего звена, конструкция агрегата имеет ряд особенностей, но с помощью чертежей собрать детали несложно.

    С ЧПУ, своими руками составленным, работать легко, необходимо изучить информативную базу, провести ряд тренировочных работ и проанализировать состояние агрегата и детали. Не стоит торопиться, дергать движущиеся детали или вскрывать ЧПУ.

    Фрезерный станок по дереву с чпу своими руками. Строим самодельный фрезерный чпу станок Фрезерный станок чпу своими руками

    Целью этого проекта является создание настольного станка с ЧПУ. Можно было купить готовый станок, но его цена и размеры меня не устроили, и я решил построить станок с ЧПУ с такими требованиями:
    – использование простых инструментов (нужен только сверлильный станок, ленточная пила и ручной инструмент)
    – низкая стоимость (я ориентировался на низкую стоимость, но всё равно купил элементов примерно на $600, можно значительно сэкономить, покупая элементы в соответствующих магазинах)
    – малая занимаемая площадь(30″х25″)
    – нормальное рабочее пространство (10″ по оси X, 14″ по оси Y, 4″ по оси Z)
    – высокая скорость резки (60″ за минуту)
    – малое количество элементов (менее 30 уникальных)
    – доступные элементы (все элементы можно купить в одном хозяйственном и трех online магазинах)
    – возможность успешной обработки фанеры

    Станки других людей

    Вот несколько фото других станков, собравших по данной статье

    Фото 1 – Chris с другом собрал станок, вырезав детали из 0,5″ акрила при помощи лазерной резки. Но все, кто работал с акрилом знают, что лазерная резка это хорошо, но акрил плохо переносит сверление, а в этом проекте есть много отверстий. Они сделали хорошую работу, больше информации можно найти в блоге Chris’a. Мне особенно понравилось изготовление 3D объекта при помощи 2D резов.

    Фото 2 – Sam McCaskill сделал действительно хороший настольный станок с ЧПУ. Меня впечатлило то, что он не стал упрощать свою работу и вырезал все элементы вручную. Я впечатлён этим проектом.

    Фото 3 – Angry Monk”s использовал детали из ДМФ, вырезанные при помощи лазерного резака и двигатели с зубчато-ремённой передачей, переделанные в двигатели с винтом.

    Фото 4 – Bret Golab”s собрал станок и настроил его для работы с Linux CNC (я тоже пытался сделать это, но не смог из-за сложности). Если вы заинтересованы его настройками, вы можете связаться с ним. Он сделал великую работу!

    Боюсь что у меня недостаточно опыта и знаний, чтобы объяснять основы ЧПУ, но на форуме сайта CNCZone. com есть обширный раздел, посвященный самодельным станкам, который очень помог мне.

    Резак: Dremel или Dremel Type Tool

    Параметры осей:

    Ось X
    Расстояние перемещения: 14″

    Скорость: 60″/мин
    Ускорение: 1″/с2
    Разрешение: 1/2000″
    Импульсов на дюйм: 2001

    Ось Y
    Расстояние перемещения: 10″
    Привод: Зубчато-ременная передача
    Скорость: 60″/мин
    Ускорение: 1″/с2
    Разрешение: 1/2000″
    Импульсов на дюйм: 2001

    Ось Z (вверх-вниз)
    Расстояние перемещения: 4 “
    Привод: Винт
    Ускорение: .2″/с2
    Скорость: 12″/мин
    Разрешение: 1/8000 “
    Импульсов на дюйм: 8000

    Необходимые инструменты

    Я стремился использовать популярные инструменты, которые можно приобрести в обычном магазине для мастеров.

    Электроинструмент:
    – ленточная пила или лобзик
    – сверлильный станок (сверла 1/4″, 5/16″, 7/16″, 5/8″, 7/8″, 8мм (около 5/16″)), также называется Q
    – принтер
    – Dremel или аналогичный инструмент (для установки в готовый станок).

    Ручной инструмент:
    – резиновый молоток (для посадки элементов на места)
    – шестигранники (5/64″, 1/16″)
    – отвертка
    – клеевой карандаш или аэрозольный клей
    – разводной ключ (или торцевой ключ с трещоткой и головкой 7/16″)

    Необходимые материалы

    В прилагаемом PDF файле (CNC-Part-Summary.pdf) предоставлены все затраты и информация о каждом элементе. Здесь предоставлена только обобщенная информация.

    Листы — $ 20
    -Кусок 48″х48″ 1/2″ МДФ (подойдет любой листовой материал толщиной 1/2″ Я планирую использовать UHMW в следующей версии станка, но сейчас это выходит слишком дорого)
    -Кусок 5″x5″ 3/4″ МДФ (этот кусок используется в качестве распорки, поэтому можете брать кусок любого материала 3/4″)

    Двигатели и контроллеры — $ 255
    -О выборе контроллеров и двигателей можно написать целую статью. Коротко говоря, необходим контроллер, способный управлять тремя двигателями и двигатели с крутящим моментом около 100 oz/in. Я купил двигатели и готовый контроллер, и всё работало хорошо.

    Аппаратная часть — $ 275
    -Я купил эти элементы в трех магазинах. Простые элементы я приобрёл в хозяйственном магазине, специализированные драйвера я купил на McMaster Carr (http://www.mcmaster.com), а подшипники, которых надо много, я купил у интернет-продавца, заплатив $40 за 100 штук (получается довольно выгодно, много подшипников остается для других проектов).

    Программное обеспечение — (бесплатно)
    -Необходима программа чтобы нарисовать вашу конструкцию (я использую CorelDraw), и сейчас я использую пробную версию Mach4, но у меня есть планы по переходу на LinuxCNC (открытый контролер станка, использующий Linux)

    Головное устройство — (дополнительно)
    -Я установил Dremel на свой станок, но если вы интересуетесь 3D печатью (например RepRap) вы можете установить свое устройство.

    Печать шаблонов

    У меня был некоторый опыт работы лобзиком, поэтому я решил приклеить шаблоны. Необходимо распечатать PDF файлы с шаблонами, размещенными на листе, наклеить лист на материал и вырезать детали.

    Имя файла и материал:
    Всё: CNC-Cut-Summary.pdf
    0,5″ МДФ (35 8.5″x11″ листов с шаблонами): CNC-0.5MDF-CutLayout-(Rev3).pdf
    0,75″ МДФ: CNC-0.75MDF-CutLayout-(Rev2).pdf
    0,75″ алюминиевая трубка: CNC-0.75Alum-CutLayout-(Rev3).pdf
    0,5 “MDF (1 48″x48” лист с шаблонами): CNC-(One 48×48 Page) 05-MDF-CutPattern.pdf

    Примечание: Я прилагаю рисунки CorelDraw в оригинальном формате (CNC-CorelDrawFormat-CutPatterns (Rev2) ZIP) для тех, кто хотел бы что то изменить.

    Примечание: Есть два варианта файлов для МДФ 0,5″. Можно скачать файл с 35 страницами 8.5″х11″ (CNC-0.5MDF-CutLayout-(Rev3), PDF), или файл (CNC-(Один 48×48 Page) 05-MDF-CutPattern.pdf) с одним листом 48″x48″для печати на широкоформатном принтере.

    Шаг за шагом:
    1. Скачайте три PDF-файла с шаблонами.
    2. Откройте каждый файл в Adobe Reader
    3. Откройте окно печати
    4. (ВАЖНО) отключите Масштабирование страниц.
    5. Проверьте, что файл случайно не масштабировался. Первый раз я не сделал это, и распечатал всё в масштабе 90%, о чем сказано ниже.

    Наклеивание и выпиливание элементов

    Приклейте распечатаные шаблоны на МДФ и на алюминиевую трубу. Далее, просто вырезайте деталь по контуру.

    Как было сказано выше, я случайно распечатал шаблоны в масштабе 90%, и не заметил этого до начала выпиливания. К сожалению, я не понимал этого до этой стадии. Я остался с шаблонами в масштабе 90% и, переехав через всю страну, я получил доступ к полноразмерному ЧПУ. Я не выдержал и вырезал элементы при помощи этого станка, но не смог просверлить их с обратной стороны. Именно поэтому все элементы на фотографиях без кусков шаблона.

    Сверление

    Я не считал сколько именно, но в этом проекте используется много отверстий. Отверстия, которые сверлятся на торцах особенно важны, но не пожалейте времени на них, и использовать резиновый молоток вам придется крайне редко.

    Места с отверстиями в накладку друг на друга это попытка сделать канавки. Возможно, у вас есть станок с ЧПУ, на котором это можно сделать лучше.

    Если вы дошли до этого шага, то я поздравляю вас! Глядя на кучу элементов, довольно сложно представить, как собрать станок, поэтому я постарался сделать подробные инструкции, похожие на инструкции к LEGO. (прилагаемый PDF CNC-Assembly-Instructions.pdf). Довольно интересно выглядят пошаговые фотографии сборки.

    Готово!

    Станок готов! Надеюсь, вы сделали и запустили его. Я надеюсь, что в статье не упущены важные детали и моменты. Вот видео, в котором показано вырезание станком узора на розовом пенопласте.

    Итак, вы решили построить самодельный ЧПУ фрезерный станок или, может быть, вы просто над этим только задумываетесь и не знаете с чего начать? Есть много преимуществ в наличии машины с ЧПУ. Домашние станки могут производить фрезерование и резать практически все материалы. Будь вы любитель или мастер, это открывает большие горизонты для творчества. Тот факт, что один из станков может оказаться в вашей мастерской, еще более соблазнителен.

    Есть много причин, по которым люди хотят построить собственный фрезерный станок ЧПУ своими руками. Как правило, это происходит потому, что мы просто не можем позволить себе купить его в магазине или от производителя, и в этом нет ничего удивительного, ведь цена на них немаленькая. Или же вы можете быть похожи на меня и получать массу удовольствия от собственной работы и создания чего-то уникального. Вы можете просто заниматься этим для получения опыта в машиностроении.

    Личный опыт

    Когда я впервые начал разрабатывать, продумывать и делать первый ЧПУ фрезер своими руками, на создание проекта ушел примерно один день. Затем, когда начал покупать части, я провел небольшое исследование. И нашел кое-какие сведения в различных источниках и форумах, что привело к появлению новых вопросов:

    • Мне действительно нужны шарико-винтовые пары, или обычные шпильки и гайки будут работать вполне нормально?
    • Какой линейный подшипник лучше, и могу ли я его себе позволить?
    • Двигатель с какими параметрами мне нужен, и лучше использовать шаговик или сервопривод?
    • Деформируется ли материал корпуса слишком сильно при большом размере станка?
    • И т. п.

    К счастью, на некоторые из вопросов я смог ответить благодаря своей инженерно-технической базе, оставшейся после учебы. Тем не менее, многие из проблем, с которыми я бы столкнулся, не могли быть рассчитаны. Мне просто нужен был кто-то с практическим опытом и информацией по этому вопросу.

    Конечно, я получил много ответов на свои вопросы от разных людей, многие из которых противоречили друг другу. Тогда мне пришлось продолжить исследования, чтобы выяснить, какие ответы стоящие, а какие – мусор.

    Каждый раз, когда у меня возникал вопрос, ответ на который я не знал, мне приходилось повторять тот же процесс. По большему счету это связано с тем, что у меня был ограниченный бюджет и хотелось взять лучшее из того, что можно купить за мои деньги. Такая же ситуация у многих людей, создающих самодельный фрезерный станок с ЧПУ.

    Комплекты и наборы для сборки фрезеров с ЧПУ своими руками

    Да, есть доступные комплекты станков для ручной сборки, но я еще не видел ни одного, который можно было бы подстроить под определенные нужды.

    Также нет возможности вносить изменения в конструкцию и тип станка, а ведь их много, и откуда вы знаете, какой из них подойдет именно вам? Независимо от того, насколько хороша инструкция, если конструкция продумана плохо, то и конечная машина будет плохой.

    Вот почему вам нужно быть осведомленным относительно того, что вы строите и понимать какую роль играет каждая деталь!

    Руководство

    Это руководство нацелено на то, чтобы не дать вам совершить те же ошибки, на которые я потратил свое драгоценное время и деньги.

    Мы рассмотрим все компоненты вплоть до болтов, глядя на преимущества и недостатки каждого типа каждой детали. Я расскажу о каждом аспекте проектирования и покажу, как создать ЧПУ фрезерный станок своими руками. Проведу вас через механику к программному обеспечению и всему промежуточному.

    Имейте в виду, что самодельные чертежи станков с ЧПУ предлагают немного способов решения некоторых проблем. Это часто приводит к «неаккуратной» конструкции или неудовлетворительному функционированию машины. Вот почему я предлагаю вам сначала прочитать это руководство.

    ДАВАЙТЕ НАЧНЕМ

    ШАГ 1: Ключевые конструктивные решения

    В первую очередь необходимо рассмотреть следующие вопросы:

    1. Определение подходящей конструкции конкретно для вас (например, если будете делать станок по дереву своими руками).
    2. Требуемая площадь обработки.
    3. Доступность рабочего пространства.
    4. Материалы.
    5. Допуски.
    6. Методы конструирования.
    7. Доступные инструменты.
    8. Бюджет.

    ШАГ 2: Основание и ось X-оси

    Тут рассматриваются следующие вопросы:

    1. Проектирование и построение основной базы или основания оси X.
    2. Жестко закрепленные детали.
    3. Частично закрепленные детали и др.

    ШАГ 3: Проектирование козловой оси Y

    1. Проектирование и строительство портальной оси Y.
    2. Разбивка различных конструкций на элементы.
    3. Силы и моменты на портале и др.

    ШАГ 4: Схема сборки оси Z

    Здесь рассматриваются следующие вопросы:

    1. Проектирование и сборка сборки оси Z.
    2. Силы и моменты на оси Z.
    3. Линейные рельсы / направляющие и расстояние между подшипниками.
    4. Выбор кабель-канала.

    ШАГ 5: Линейная система движения

    В этом пункте рассматриваются следующие вопросы:

    1. Подробное изучение систем линейного движения.
    2. Выбор правильной системы конкретно для вашего станка.
    3. Проектирование и строительство собственных направляющих при малом бюджете.
    4. Линейный вал и втулки или рельсы и блоки?

    ШАГ 6: Компоненты механического привода

    В этом пункте рассматриваются следующие аспекты:

    1. Детальный обзор частей привода.
    2. Выбор подходящих компонентов для вашего типа станка.
    3. Шаговые или серводвигатели.
    4. Винты и шарико-винтовые пары.
    5. Приводные гайки.
    6. Радиальные и упорные подшипники.
    7. Муфта и крепление двигателя.
    8. Прямой привод или редуктор.
    9. Стойки и шестерни.
    10. Калибровка винтов относительно двигателей.

    ШАГ 7: Выбор двигателей

    В этом шаге необходимо рассмотреть:

    1. Подробный обзор двигателей с ЧПУ.
    2. Типы двигателей с ЧПУ.
    3. Как работают шаговые двигатели.
    4. Типы шаговых двигателей.
    5. Как работают сервомоторы.
    6. Типы серводвигателей.
    7. Стандарты NEMA.
    8. Выбор правильного типа двигателя для вашего проекта.
    9. Измерение параметров мотора.

    ШАГ 8: Конструкция режущего стола

    1. Проектирование и строительство собственных столов при малом бюджете.
    2. Перфорированный режущий слой.
    3. Вакуумный стол.
    4. Обзор конструкций режущего стола.
    5. Стол можно вырезать при помощи фрезерного станка с ЧПУ по дереву.

    ШАГ 9: Параметры шпинделя

    В этом шаге рассматриваются следующие вопросы:

    1. Обзор шпинделей с ЧПУ.
    2. Типы и функции.
    3. Ценообразование и затраты.
    4. Варианты монтажа и охлаждения.
    5. Системы охлаждения.
    6. Создание собственного шпинделя.
    7. Расчет нагрузки стружки и силы резания.
    8. Нахождение оптимальной скорости подачи.

    ШАГ 10: Электроника

    В этом пункте рассматриваются следующие вопросы:

    1. Панель управления.
    2. Электропроводка и предохранители.
    3. Кнопки и переключатели.
    4. Круги MPG и Jog.
    5. Источники питания.

    ШАГ 11: Параметры контроллера Программного Управления

    В этом шаге рассматриваются следующие вопросы:

    1. Обзор контроллера ЧПУ.
    2. Выбор контроллера.
    3. Доступные опции.
    4. Системы с замкнутым контуром и разомкнутым контуром.
    5. Контроллеры по доступной цене.
    6. Создание собственного контроллера с нуля.

    ШАГ 12. Выбор программного обеспечения

    В этом пункте рассматриваются следующие вопросы:

    1. Обзор программного обеспечения, связанного с ЧПУ.
    2. Подбор программного обеспечения.
    3. Программное обеспечение CAM.
    4. Программное обеспечение САПР.
    5. Програмное обеспечение NC Controller.

    ——————————————————————————————————————————————————–

    В статье описан самодельный станок с ЧПУ. Главное достоинство данного варианта станка – простой метод подключения шаговых двигателей к компьютеру через порт LPT.

    Механическая часть

    Станина
    Станина нашего станка сделана из пластмассы толщиной 11-12мм. Материал не критичен, можно использовать алюминий, органическое стекло фанеру и любой другой доступный материал. Основные детали каркаса прикрепляются с помощью саморезов, при желании можно дополнительно оформить места креплений клеем, если используете древесину, то можно использовать клей ПВА.

    Суппорта и направляющие
    В качестве направляющих использованы стальные прутки с диаметром 12мм, длина 200мм (на ось Z 90мм), две штуки на ось. Суппорта изготавливаются из текстолита размерами 25Х100Х45. Текстолит имеет три сквозных отверстия, два из них для направляющих и одно для гайки. Направляющие части крепятся винтами М6. Суппорты Х и У в верхней части имеют 4 резьбовых отверстия для крепления стола и узла оси Z.


    Суппорт Z
    Направляющие оси Z крепятся к суппорту Х через стальную пластину, которая является переходной, размеры пластины 45х100х4.


    Шаговые двигатели устанавливаются на крепежи, которые можно изготовить из листовой стали с толщиной 2-3мм. Винт нужно соединить с осью шагового двигателя при помощи гибкого вала, в качестве которого может быть использован резиновый шланг. При использовании жесткого вала, система будет работать не точно. Гайку делают из латуни, которую вклеивают в суппорт.


    Сборка
    Сборка самодельного ЧПУ станка, осуществляется в следующей последовательности:

    • Для начала нужно установить в суппорта все направляющие компоненты и прикрутить их к боковинам, которые вначале не установлены на основание.
    • Суппорт передвигаем по направляющим до тех пор, пока не добьемся плавного хода.
    • Затягиваем болты, фиксируя направляющие части.
    • К основанию крепим суппорт, узел направляющие и боковину, для крепления используем саморезы.
    • Собираем узел Z и вместе с переходной пластиной прикрепляем его к суппорту X.
    • Далее устанавливаем ходовые винты вместе с муфтами.
    • Устанавливаем шаговые двигатели, соединяя ротор двигателя и винт муфтой. Обращаем строгое внимание на то, чтобы ходовые винты вращались плавно.

    Рекомендации по сборке станка:
    Гайки можно изготовить также из чугуна, использовать другие материалы не стоит, винты можно купить в любом строительном магазине и обрезать под свои нужды. При использовании винтов с резьбой М6х1, длина гайки будет 10 мм.

    Чертежи станка.rar

    Переходим ко второй части сборки ЧПУ станка своими руками, а именно к электронике.

    Электроника

    Блок питания
    В качестве источника питания был использован блок на 12Вольт 3А. Блок предназначен для питания шаговых двигателей. Еще один источник напряжения на 5Вольт и с током 0.3А был использован для запитки микросхем контролера. Источник питания зависит от мощности шаговых двигателей.

    Приведем расчет блока питания. Расчет прост — 3х2х1=6А, где 3 — количество используемых шаговых двигателей, 2 — число запитанных обмоток, 1 — ток в Амперах.


    Контролер управления
    Управляющий контроллер был собран всего на 3-х микросхемах серии 555TM7. Контроллер не требует прошивки и имеет достаточно простую принципиальную схему, благодаря этому, данный ЧПУ станок своими руками может сделать человек не особо разбирающийся в электронике.

    Описание и назначение выводов разъема порта LPT.

    Выв. Название Направление Описание
    1 STROBE ввод и вывод Устанавливается PC после завершения каждой передачи данных
    2. .9 DO-D7 вывод Вывод
    10 АСК ввод Устанавливается в «0» внешним устройством после приема байта
    11 BUSY ввод Устройство показывает, что оно занято, путем установки этой линии в «1»
    12 Paper out ввод Для принтеров
    13 Select ввод Устройство показывает, что оно готово, путем установки на этой линии «1 »
    14 Autofeed
    15 Error ввод Индицирует об ошибке
    16 Initialize ввод и вывод
    17 Select In ввод и вывод
    18..25 Ground GND GND Общий провод

    Для эксперимента был использован шаговый двигатель от старого 5,25-дюймов. В схеме 7 бит не используется т.к. применено 3 двигателя. На него можно повесить ключ включение главного двигателя (фреза или сверло).

    Драйвер для шаговых двигателей
    Для управления шаговым двигателем используется драйвер, который из себя представляет усилитель с 4-я каналами. Конструкция реализована всего на 4-х транзисторах типа КТ917.


    Применять можно и серийные микросхемы, к примеру — ULN 2004 (9 ключей) с током 0,5-0.6А.


    Для управления используется программа vri-cnc. Подробное описание и инструкция по использованию программы находится на .


    Собрав данный ЧПУ станок своими руками, вы станете обладателем машины способной выполнять механическую обработку (сверление, фрезерование) пластмасс. Гравировку по стали. Также самодельный станок с ЧПУ может использоваться как графопостроитель, на нем можно рисовать и сверлить печатные платы.

    По материалам сайта: vri-cnc.ru

    В домашней мастерской желательно иметь простейшие настольные станки — сверлильный, шлифовальный и т. д. Но если надо выполнить точные работы, то не обойтись без фрезерного агрегата. Для этого можно изготовить несложный ЧПУ своими руками. Это можно сделать двумя путями:

    Самодельный станок ЧПУ необходим для точного сверления или обрезания, а также обточки деталей.

    • купить набор для изготовления подобной конструкции;
    • сделать такой фрезер самому.

    Первый путь связан с определенными финансовыми расходами. Фирменные станки для домашнего использования имеют сравнительно высокую цену и не всем по карману.

    С ЧПУ требует определенных знаний и владение инструментом для его создания.

    С чего начать конструирование самодельного фрезера?

    Для начала надо выбрать подходящую схему агрегата. За основу можно взять обычный сверлильный станок, только вместо сверла использовать в качестве рабочего инструмента фрезу. Естественно, надо будет продумать механизм его передвижения в трех плоскостях. Обычно для маленьких агрегатов используют переработанные каретки от принтера, с помощью которых рабочий инструмент может передвигаться в двух плоскостях. Это выгодно и с точки зрения подключения программного обеспечения для работы в автоматическом режиме. Но такие конструкции имеют один недостаток — они позволяют обрабатывать дерево, пластик и тонкие листы металла (1-2 мм).

    Поэтому для более серьезных работ ЧПУ фрезер должен иметь шаговые двигатели повышенной мощности. Их можно сделать путем доработки стандартных электродвигателей этого класса, что позволит отказаться от применения винтовой передачи с сохранением всех ее достоинств. Для передачи усилия на вал лучше всего применить зубчатые ремни.

    При использовании самодельных кареток для передвижения рабочего инструмента можно использовать части от больших принтеров. Ниже будет описана одна из самодельных конструкций подобного типа.

    Вернуться к оглавлению

    Изготовление ЧПУ фрезера своими силами

    Этот станок по своей конструкции напоминает образцы промышленных агрегатов. Основой его служит низкая балка прямоугольного сечения, прямо закрепленная на направляющих. Это позволяет получить нужную жесткость конструкции и свести к минимуму сварочные работы при создании фрезера.

    В качестве основы взята металлическая квадратная труба со стороной 75-85 мм. Для крепления к направляющим надо применить подошвы прямоугольного типа 65 х 25 мм. Это позволяет отказаться от сварки на данном этапе работ и поможет при точной настройке фрезера. Это нужно и для правильного выставления углов в 90 градусов. Основная балка и подошва соединяются с помощью 4 винтов М6, которые надо затянуть до упора, чтобы получить нужную жесткость. Это исключит люфт, хотя возможен прогиб направляющих при большой нагрузке и неполадки в подшипниках скольжения (можно применить любые подходящие, даже китайские).

    Вертикальный подъем рабочего инструмента осуществляется с помощью винтовой передачи, а зубчатый ремень используется для отдачи вращения на ходовой винт. Это дает возможность избежать биений, понизить центр тяжести агрегата и сэкономить место. Сама вертикальная ось изготовляется из алюминиевой плиты. Ее надо обработать на фрезерном станке по размерам, нужным для самодельного станка. Если в домашней мастерской есть муфельная печь, то ее можно отлить из алюминия.

    За осью надо установить два шаговых двигателя: первый вращает ходовой винт вертикального смещения, а второй обеспечивает передвижение по горизонтали. Вращение передается при помощи ремней. Некоторые детали надо заказать у токаря, если нет собственного токарного станка.

    После изготовления всех элементов и сборки надо проверить ЧПУ фрезер в работе, используя ручное управление. После этого надо заняться контроллерами шаговых двигателей и программным обеспечением. Если нет соответствующих знаний, то можно обратиться в фирму, которая имеет в штате хороших программистов.

    Еще может понадобиться станина из металла или искусственного камня, которую лучше заказать по нужным размерам.

    Вернуться к оглавлению

    Какие шаговые двигатели может иметь самодельный ЧПУ?

    Это самые важные элементы будущего фрезера.

    Для того чтобы достать такие электродвигатели, надо разобрать старые матричные принтеры (например, «Эпсон»). Внутри таких аппаратов есть два шаговых двигателя и хорошие стальные стержни из закаленной стали. Для постройки фрезера надо иметь 3 электродвигателя, поэтому придется разобрать 2 принтера.

    С целью упрощения производства операций на самодельном станке лучше всего применить двигатели с 5-6 проводами управления: они имеют хороший крутящий момент, и с ними легко работать. Для правильной программной настройки надо знать число их градусов на шаг, рабочее напряжение и сопротивление обмотки.

    Для привода на самодельный ЧПУ обычно используется гайка и шпилька. Для закрепления вала шагового двигателя обычно применяют кусок толстостенного резинового кабеля, с его помощью электродвигатель присоединяют к шпильке. В качестве фиксаторов используют самодельные втулки с винтом. Их делают из нейлона, применяя дрель и напильник.

    Для многих домашних мастеров может показаться, что — это где-то на грани фантастики, так как данное оборудование представляет собой сложное в конструктивном, техническом и электронном плане устройство.

    Между тем, имея под рукой соответствующие чертежи, весь необходимый материал и инструмент, мини фрезерный самодельный станок по дереву, оснащенный ЧПУ, сделать своими руками можно.

    Конечно, для этого придется затратить определенные усилия, а том числе и финансовые, однако нет ничего невозможного, и если правильно и со знанием дела подходить к решению этого вопроса, самодельный настольно-фрезерный станок по дереву мини исполнения с блоком ЧПУ сделать своими руками сможет каждый домашний мастер.

    Как известно, такой мини агрегат по дереву отличается точностью проводимой обработки, простотой управления всеми рабочими процессами, а также высоким качеством готового изделия.

    В настоящее время реализовать самодельный настольно-фрезерный станок с ЧПУ в мини исполнении для работы по дереву и другим материалами можно несколькими способами.

    В первую очередь, можно приобрести специальный набор для сбора данного типа конструкции, а можно все необходимые работы провести своими руками, получив на выходе готовое изделие с высоким качеством обработки.

    Если принято решение всю необходимую работу по конструированию и сборке мини настольно-фрезерного станка для работы по дереву и другими материалами с ЧПУ проводить самому, своими руками, то начинать следует с выбора наиболее оптимальной схемы будущего агрегата.

    В этом случае в качестве исходного оборудования можно взять небольшой старенький сверлильный станок и заменить рабочий орган в виде сверла непосредственно на фрезу.

    Обязательно следует тщательно подумать о том, как будет устроен механизм, отвечающий за необходимое передвижение в трех независимых плоскостях.

    Собрать такой механизм можно попробовать из переработанных кареток от старого принтера, что даст возможность обеспечить движение рабочей фрезе в двух плоскостях.

    Здесь можно будет достаточно просто подключить необходимое программное обеспечение, что позволит сделать самодельный настольно фрезерный станок ЧПУ автоматическим, однако такая конструкция сможет работать только по дереву, пластику или тонкому металлу.

    Чтобы самодельный фрезерный станок, собранный своими руками, смог выполнять более серьезные операции, его необходимо оснастить шаговым двигателем с высокими показателями по мощности.

    Получить такой тип двигателя можно из стандартного варианта электродвигателя за счет небольшой доработки. Это позволит полностью исключить применение винтовой передачи, при этом все ее достоинства сохранятся в полном объеме.

    Необходимое усилие на вал в самодельном агрегате лучше всего передавать через зубчатые ремни.

    В том случае, если для обеспечения необходимого передвижения рабочей фрезы в самодельном фрезерном станке с ЧПУ принято решение использовать самодельные каретки от принтеров, то лучше для этих целей взять данные приспособления от больших моделей принтеров.

    При создании фрезерного агрегата с ЧПУ своими руками, особое внимание следует уделить изготовлению механизма фрезера, для чего потребуются соответствующие чертежи.

    Сборка фрезерного станка

    За основу самодельного фрезерного станка лучше всего взять прямоугольную балку, которую следует прочно закрепить на направляющих.

    Вся конструкция должна иметь высокую жесткость, при этом лучше, если сварочные работы будут сведены к минимуму.

    Дело в том, что в любом случае, сварочные швы подвержены разрушению и деформации при определенных нагрузках, при работе станка его станина будет подвергаться, в том числе, и вибрации, что может негативно сказаться на данных элементах крепления, что, в свою очередь, приведет к сбою в настройках.

    Балку и элементы крепления для усиления жесткости рекомендуется скреплять при помощи винтов определенных диаметров.

    Это должно полностью исключить возможный люфт при работе фрезерного станка с ЧПУ, а также прогиб направляющих при серьезных нагрузках.

    По точно такому же принципу собирается своими руками и самодельный фрезерно-гравировальный станок, оснащенный ЧПУ. О процессе сборки своими руками достаточно функционального станка фрезерного типа с ЧПУ, подробно рассказано на видео ниже.

    В конструкции агрегата необходимо в обязательном порядке предусмотреть подъем рабочего инструмента в вертикальном положении, для чего рекомендуется использовать винтовую передачу.

    В свою очередь, для необходимой отдачи вращения непосредственно на ходовой винт следует использовать зубчатый ремень.

    Вертикальную ось, которая также является обязательным элементом любого фрезерного станка с ЧПУ, делают из алюминиевой плиты.

    Ее следует точно подогнать по размерам, которые были получены еще на этапе проектирования агрегата и занесены в соответствующие чертежи.

    В домашних условиях отлить вертикальную ось можно при помощи муфельной плиты, и в этом случае следует взять алюминий.

    После этого непосредственно на корпус сразу за осью следует смонтировать два двигателя шагового типа, один из которых будет отвечать за горизонтальное перемещение, а второй, соответственно, за вертикальное.

    Все вращение должно передаваться через ремни. После того, как все элементы будут находиться на своих местах, самодельный фрезерный станок следует обязательно проверить в работе при ручном управлении, и при выявлении недочетов, устранить их на месте.

    Немного о шаговых двигателях

    Любой агрегат с ЧПУ, в том числе и гравировальный станок, в обязательном порядке оснащается электродвигателями шагового типа.

    При сборке самодельного фрезеровального оборудования с ЧПУ в качестве такого мотора можно использовать двигатели от старых матричных принтеров. В большинстве матричных принтеров установлено два таких элемента с достаточной мощностью.

    Кроме этого, в матричных принтерах имеются еще и стальные стержни, изготовленные из прочной стали, которые также можно использовать в самодельном станке.

    В этом случае следует отметить, что для сборки такого агрегата своими руками потребуется три отдельных двигателя шагового типа, а значит, придется искать и разбирать два матричных принтера.

    Лучше, если такие двигатели будут иметь порядка пяти отдельных проводов управления, так как в этом случае функциональность самодельного станка увеличится в несколько раз.

    Подбирая двигатели шагового типа для самодельного фрезерного станка с ЧПУ, необходимо выяснить число их градусов на один шаг, а также рабочее напряжение и обмоточное сопротивление.

    Это поможет впоследствии правильно настроить все программное обеспечение оборудования.

    Крепить вал двигателя шагового типа лучше всего при помощи резинового кабеля с толстой обмоткой. Он поможет и при присоединении самого двигателя непосредственно к шпильке.

    Выполнить фиксаторы можно из изготовленной своими руками втулки с винтом. Для этого следует взять нейлон, а в качестве инструмента дрель и напильник.

    О том, как сделать своими руками гравировально-фрезерный станок с блоком ЧПУ, подробно рассказано на видео ниже.

    Электронное обеспечение

    Главным элементом любого станка, оснащенного ЧПУ, является его программное обеспечение.

    В этом случае можно использовать самодельное, которое будет включать в себя все необходимые драйверы для установленных контролеров, а также шаговых двигателей, а кроме этого, стандартные питающие блоки.

    В обязательном порядке потребуется порт LPT. Также необходимо будет подумать и о рабочей программе, которая будет обеспечивать не только контроль, но и управление всеми необходимыми режимами работы.

    Непосредственно сам блок ЧПУ следует подключать к фрезерному агрегату через вышеуказанный порт обязательно через установленные двигатели.

    Подбирая для самодельного станка необходимое программное обеспечение, необходимо делать ставку на то, которое уже успело доказать свою стабильную работу и имеет огромные функциональные возможности.
    Видео:

    Следует помнить, что электроника будет, главным образом, влиять на точность и качество всех выполняемых операций на оборудовании с ЧПУ.

    После того как будет установлена вся необходимая электроника, необходимо выполнить загрузку всех необходимых для работы настольно-фрезерного станка программ и драйверов.

    Далее, непосредственно перед тем, как станок начнет эксплуатироваться по своему прямому назначению, следует проверить в работе электронное обеспечение и при необходимости устранить на месте все выявленные недочеты.

    Все вышеописанные операции по сборке своими руками фрезерного станка с ЧПУ подходят и для создания самодельного координатно-расточного агрегата, а также многого другого оборудования данного класса.

    В любом случае, если всю работу по сборке своими руками фрезерного агрегата, оснащенного ЧПУ, выполнить правильно и в соответствии с технологией, у домашнего мастера появится возможность выполнять множество сложнейших операций, как по металлу, так и по дереву.

    О том, как сделать самостоятельно фрезеровальный станок с блоком ЧПУ, подробно рассказано на видео в нашей статье.

    Сделать самому чпу фрезерный станок. Пошаговая инструкция сборки станка с чпу своими руками

    И так, в рамках этой статьи-инструкции я хочу, что бы вы вместе с автором проекта, 21 летним механиком и дизайнером, изготовили свой собственный . Повествование будет вестись от первого лица, но знайте, что к большому своему сожалению, я делюсь не своим опытом, а лишь вольно пересказываю автора сего проекта.

    В этой статье будет достаточно много чертежей , примечания к ним сделаны на английском языке, но я уверен, что настоящий технарь все поймет без лишних слов. Для удобства восприятия, я разобью повествование на «шаги».

    Предисловие от автора

    Уже в 12 лет я мечтал построить машину, которая будет способна создавать различные вещи. Машину, которая даст мне возможность изготовить любой предмет домашнего обихода. Спустя два года я наткнулся на словосочетание ЧПУ или если говорить точнее, то на фразу “Фрезерный станок с ЧПУ” . После того как я узнал, что есть люди способные сделать такой станок самостоятельно для своих нужд, в своем собственном гараже, я понял, что тоже смогу это сделать. Я должен это сделать ! В течение трех месяцев я пытался собрать подходящие детали, но не сдвинулся с места. Поэтому моя одержимость постепенно угасла.

    В августе 2013 идея построить фрезерный станок с ЧПУ вновь захватила меня. Я только что окончил бакалавриат университета промышленного дизайна, так что я был вполне уверен в своих возможностях. Теперь я четко понимал разницу между мной сегодняшним и мной пятилетней давности. Я научился работать с металлом, освоил техники работы на ручных металлообрабатывающих станках, но самое главное я научился применять инструменты для разработки. Я надеюсь, что эта инструкция вдохновит вас на создание своего станка с ЧПУ!

    Шаг 1: Дизайн и CAD модель

    Все начинается с продуманного дизайна. Я сделал несколько эскизов, чтобы лучше прочувствовать размеры и форму будущего станка. После этого я создал CAD модель используя SolidWorks. После того, как я смоделировал все детали и узлы станка, я подготовил технические чертежи. Эти чертежи я использовал для изготовления деталей на ручных металлообрабатывающих станках: и .

    Признаюсь честно, я люблю хорошие удобные инструменты. Именно поэтому я постарался сделать так, чтобы операции по техническому обслуживанию и регулировке станка осуществлялись как можно проще. Подшипники я поместил в специальные блоки для того, чтобы иметь возможность быстрой замены. Направляющие доступны для обслуживания, поэтому моя машина всегда будет чистой по окончанию работ.




    Файлы для скачивания «Шаг 1»

    Габаритные размеры

    Шаг 2: Станина

    Станина обеспечивает станку необходимую жесткость. На нее будет установлен подвижной портал, шаговые двигатели, ось Z и шпиндель, а позднее и рабочая поверхность. Для создания несущей рамы я использовал два алюминиевых профиля Maytec сечением 40х80 мм и две торцевые пластины из алюминия толщиной 10 мм. Все элементы я соединил между собой на алюминиевые уголки. Для усиления конструкции внутри основной рамы я сделал дополнительную квадратную рамку из профилей меньшего сечения.

    Для того, чтобы в дальнейшем избежать попадания пыли на направляющие, я установил защитные уголки из алюминия. Уголок смонтирован с использованием Т-образных гаек, которые установлены в один из пазов профиля.

    На обоих торцевых пластинах установлены блоки подшипников для установки приводного винта.



    Несущая рама в сборе



    Уголки для защиты направляющих

    Файлы для скачивания «Шаг 2»

    Чертежи основных элементов станины

    Шаг 3: Портал

    Подвижной портал – исполнительный орган вашего станка, он перемещается по оси X и несет на себе фрезерный шпиндель и суппорт оси Z. Чем выше портал, тем толще заготовка, которую вы можете обработать. Однако, высокий портал менее устойчив к нагрузкам которые возникают в процессе обработки. Высокие боковые стойки портала выполняют роль рычагов относительно линейных подшипников качения.

    Основная задача, которую я планировал решать на своем фрезерном станке с ЧПУ – это обработка алюминиевых деталей. Поскольку максимальная толщина подходящих мне алюминиевых заготовок 60 мм, я решил сделать просвет портала (расстояние от рабочей поверхности до верхней поперечной балки) равным 125 мм. В SolidWorks все свои измерения я преобразовал в модель и технические чертежи. В связи со сложностью деталей, я обработал их на промышленном обрабатывающем центре с ЧПУ, это дополнительно мне позволило обработать фаски, что было бы весьма затруднительно сделать на ручном фрезерном станке по металлу.





    Файлы для скачивания «Шаг 3»

    Шаг 4: Суппорт оси Z

    В конструкции оси Z я использовал переднюю панель, которая крепится к подшипникам перемещения по оси Y, две пластины для усиления узла, пластину для крепления шагового двигателя и панель для установки фрезерного шпинделя. На передней панели я установил две профильные направляющие по которым будет происходить перемещение шпинделя по оси Z. Обратите внимание на то, что винт оси Z не имеет контропоры внизу.





    Файлы для скачивания «Шаг 4»

    Шаг 5: Направляющие

    Направляющие обеспечивают возможность перемещения во всех направлениях, обеспечивают плавность и точность движений. Любой люфт в одном из направлений может стать причиной неточности в обработке ваших изделий. Я выбрал самый дорогой вариант – профилированные закаленные стальные рельсы. Это позволит конструкции выдерживать высокие нагрузки и обеспечит необходимую мне точность позиционирования. Чтобы обеспечить параллельность направляющих, я использовал специальный индикатор во время их установки. Максимальное отклонение относительно друг друга составило не более 0,01 мм.



    Шаг 6: Винты и шкивы

    Винты преобразуют вращательное движение от шаговых двигателей в линейное. При проектировании своего станка вы можете выбрать несколько вариантов этого узла: Пара винт-гайка или шарико-винтовая пара (ШВП). Винт-гайка, как правило, больше подвергается силам трения при работе, а также менее точна относительно ШВП. Если вам необходима повышенная точность, то однозначно необходимо остановить свой выбор на ШВП. Но вы должны знать, что ШВП достаточно дорогое удовольствие.

    Целью этого проекта является создание настольного станка с ЧПУ. Можно было купить готовый станок, но его цена и размеры меня не устроили, и я решил построить станок с ЧПУ с такими требованиями:
    – использование простых инструментов (нужен только сверлильный станок, ленточная пила и ручной инструмент)
    – низкая стоимость (я ориентировался на низкую стоимость, но всё равно купил элементов примерно на $600, можно значительно сэкономить, покупая элементы в соответствующих магазинах)
    – малая занимаемая площадь(30″х25″)
    – нормальное рабочее пространство (10″ по оси X, 14″ по оси Y, 4″ по оси Z)
    – высокая скорость резки (60″ за минуту)
    – малое количество элементов (менее 30 уникальных)
    – доступные элементы (все элементы можно купить в одном хозяйственном и трех online магазинах)
    – возможность успешной обработки фанеры

    Станки других людей

    Вот несколько фото других станков, собравших по данной статье

    Фото 1 – Chris с другом собрал станок, вырезав детали из 0,5″ акрила при помощи лазерной резки. Но все, кто работал с акрилом знают, что лазерная резка это хорошо, но акрил плохо переносит сверление, а в этом проекте есть много отверстий. Они сделали хорошую работу, больше информации можно найти в блоге Chris’a. Мне особенно понравилось изготовление 3D объекта при помощи 2D резов.

    Фото 2 – Sam McCaskill сделал действительно хороший настольный станок с ЧПУ. Меня впечатлило то, что он не стал упрощать свою работу и вырезал все элементы вручную. Я впечатлён этим проектом.

    Фото 3 – Angry Monk”s использовал детали из ДМФ, вырезанные при помощи лазерного резака и двигатели с зубчато-ремённой передачей, переделанные в двигатели с винтом.

    Фото 4 – Bret Golab”s собрал станок и настроил его для работы с Linux CNC (я тоже пытался сделать это, но не смог из-за сложности). Если вы заинтересованы его настройками, вы можете связаться с ним. Он сделал великую работу!

    Боюсь что у меня недостаточно опыта и знаний, чтобы объяснять основы ЧПУ, но на форуме сайта CNCZone. com есть обширный раздел, посвященный самодельным станкам, который очень помог мне.

    Резак: Dremel или Dremel Type Tool

    Параметры осей:

    Ось X
    Расстояние перемещения: 14″

    Скорость: 60″/мин
    Ускорение: 1″/с2
    Разрешение: 1/2000″
    Импульсов на дюйм: 2001

    Ось Y
    Расстояние перемещения: 10″
    Привод: Зубчато-ременная передача
    Скорость: 60″/мин
    Ускорение: 1″/с2
    Разрешение: 1/2000″
    Импульсов на дюйм: 2001

    Ось Z (вверх-вниз)
    Расстояние перемещения: 4 “
    Привод: Винт
    Ускорение: .2″/с2
    Скорость: 12″/мин
    Разрешение: 1/8000 “
    Импульсов на дюйм: 8000

    Необходимые инструменты

    Я стремился использовать популярные инструменты, которые можно приобрести в обычном магазине для мастеров.

    Электроинструмент:
    – ленточная пила или лобзик
    – сверлильный станок (сверла 1/4″, 5/16″, 7/16″, 5/8″, 7/8″, 8мм (около 5/16″)), также называется Q
    – принтер
    – Dremel или аналогичный инструмент (для установки в готовый станок).

    Ручной инструмент:
    – резиновый молоток (для посадки элементов на места)
    – шестигранники (5/64″, 1/16″)
    – отвертка
    – клеевой карандаш или аэрозольный клей
    – разводной ключ (или торцевой ключ с трещоткой и головкой 7/16″)

    Необходимые материалы

    В прилагаемом PDF файле (CNC-Part-Summary.pdf) предоставлены все затраты и информация о каждом элементе. Здесь предоставлена только обобщенная информация.

    Листы — $ 20
    -Кусок 48″х48″ 1/2″ МДФ (подойдет любой листовой материал толщиной 1/2″ Я планирую использовать UHMW в следующей версии станка, но сейчас это выходит слишком дорого)
    -Кусок 5″x5″ 3/4″ МДФ (этот кусок используется в качестве распорки, поэтому можете брать кусок любого материала 3/4″)

    Двигатели и контроллеры — $ 255
    -О выборе контроллеров и двигателей можно написать целую статью. Коротко говоря, необходим контроллер, способный управлять тремя двигателями и двигатели с крутящим моментом около 100 oz/in. Я купил двигатели и готовый контроллер, и всё работало хорошо.

    Аппаратная часть — $ 275
    -Я купил эти элементы в трех магазинах. Простые элементы я приобрёл в хозяйственном магазине, специализированные драйвера я купил на McMaster Carr (http://www.mcmaster.com), а подшипники, которых надо много, я купил у интернет-продавца, заплатив $40 за 100 штук (получается довольно выгодно, много подшипников остается для других проектов).

    Программное обеспечение — (бесплатно)
    -Необходима программа чтобы нарисовать вашу конструкцию (я использую CorelDraw), и сейчас я использую пробную версию Mach4, но у меня есть планы по переходу на LinuxCNC (открытый контролер станка, использующий Linux)

    Головное устройство — (дополнительно)
    -Я установил Dremel на свой станок, но если вы интересуетесь 3D печатью (например RepRap) вы можете установить свое устройство.

    Печать шаблонов

    У меня был некоторый опыт работы лобзиком, поэтому я решил приклеить шаблоны. Необходимо распечатать PDF файлы с шаблонами, размещенными на листе, наклеить лист на материал и вырезать детали.

    Имя файла и материал:
    Всё: CNC-Cut-Summary.pdf
    0,5″ МДФ (35 8.5″x11″ листов с шаблонами): CNC-0.5MDF-CutLayout-(Rev3).pdf
    0,75″ МДФ: CNC-0.75MDF-CutLayout-(Rev2).pdf
    0,75″ алюминиевая трубка: CNC-0.75Alum-CutLayout-(Rev3).pdf
    0,5 “MDF (1 48″x48” лист с шаблонами): CNC-(One 48×48 Page) 05-MDF-CutPattern.pdf

    Примечание: Я прилагаю рисунки CorelDraw в оригинальном формате (CNC-CorelDrawFormat-CutPatterns (Rev2) ZIP) для тех, кто хотел бы что то изменить.

    Примечание: Есть два варианта файлов для МДФ 0,5″. Можно скачать файл с 35 страницами 8.5″х11″ (CNC-0.5MDF-CutLayout-(Rev3), PDF), или файл (CNC-(Один 48×48 Page) 05-MDF-CutPattern.pdf) с одним листом 48″x48″для печати на широкоформатном принтере.

    Шаг за шагом:
    1. Скачайте три PDF-файла с шаблонами.
    2. Откройте каждый файл в Adobe Reader
    3. Откройте окно печати
    4. (ВАЖНО) отключите Масштабирование страниц.
    5. Проверьте, что файл случайно не масштабировался. Первый раз я не сделал это, и распечатал всё в масштабе 90%, о чем сказано ниже.

    Наклеивание и выпиливание элементов

    Приклейте распечатаные шаблоны на МДФ и на алюминиевую трубу. Далее, просто вырезайте деталь по контуру.

    Как было сказано выше, я случайно распечатал шаблоны в масштабе 90%, и не заметил этого до начала выпиливания. К сожалению, я не понимал этого до этой стадии. Я остался с шаблонами в масштабе 90% и, переехав через всю страну, я получил доступ к полноразмерному ЧПУ. Я не выдержал и вырезал элементы при помощи этого станка, но не смог просверлить их с обратной стороны. Именно поэтому все элементы на фотографиях без кусков шаблона.

    Сверление

    Я не считал сколько именно, но в этом проекте используется много отверстий. Отверстия, которые сверлятся на торцах особенно важны, но не пожалейте времени на них, и использовать резиновый молоток вам придется крайне редко.

    Места с отверстиями в накладку друг на друга это попытка сделать канавки. Возможно, у вас есть станок с ЧПУ, на котором это можно сделать лучше.

    Если вы дошли до этого шага, то я поздравляю вас! Глядя на кучу элементов, довольно сложно представить, как собрать станок, поэтому я постарался сделать подробные инструкции, похожие на инструкции к LEGO. (прилагаемый PDF CNC-Assembly-Instructions.pdf). Довольно интересно выглядят пошаговые фотографии сборки.

    Готово!

    Станок готов! Надеюсь, вы сделали и запустили его. Я надеюсь, что в статье не упущены важные детали и моменты. Вот видео, в котором показано вырезание станком узора на розовом пенопласте.

    Итак, вы решили построить самодельный ЧПУ фрезерный станок или, может быть, вы просто над этим только задумываетесь и не знаете с чего начать? Есть много преимуществ в наличии машины с ЧПУ. Домашние станки могут производить фрезерование и резать практически все материалы. Будь вы любитель или мастер, это открывает большие горизонты для творчества. Тот факт, что один из станков может оказаться в вашей мастерской, еще более соблазнителен.

    Есть много причин, по которым люди хотят построить собственный фрезерный станок ЧПУ своими руками. Как правило, это происходит потому, что мы просто не можем позволить себе купить его в магазине или от производителя, и в этом нет ничего удивительного, ведь цена на них немаленькая. Или же вы можете быть похожи на меня и получать массу удовольствия от собственной работы и создания чего-то уникального. Вы можете просто заниматься этим для получения опыта в машиностроении.

    Личный опыт

    Когда я впервые начал разрабатывать, продумывать и делать первый ЧПУ фрезер своими руками, на создание проекта ушел примерно один день. Затем, когда начал покупать части, я провел небольшое исследование. И нашел кое-какие сведения в различных источниках и форумах, что привело к появлению новых вопросов:

    • Мне действительно нужны шарико-винтовые пары, или обычные шпильки и гайки будут работать вполне нормально?
    • Какой линейный подшипник лучше, и могу ли я его себе позволить?
    • Двигатель с какими параметрами мне нужен, и лучше использовать шаговик или сервопривод?
    • Деформируется ли материал корпуса слишком сильно при большом размере станка?
    • И т. п.

    К счастью, на некоторые из вопросов я смог ответить благодаря своей инженерно-технической базе, оставшейся после учебы. Тем не менее, многие из проблем, с которыми я бы столкнулся, не могли быть рассчитаны. Мне просто нужен был кто-то с практическим опытом и информацией по этому вопросу.

    Конечно, я получил много ответов на свои вопросы от разных людей, многие из которых противоречили друг другу. Тогда мне пришлось продолжить исследования, чтобы выяснить, какие ответы стоящие, а какие – мусор.

    Каждый раз, когда у меня возникал вопрос, ответ на который я не знал, мне приходилось повторять тот же процесс. По большему счету это связано с тем, что у меня был ограниченный бюджет и хотелось взять лучшее из того, что можно купить за мои деньги. Такая же ситуация у многих людей, создающих самодельный фрезерный станок с ЧПУ.

    Комплекты и наборы для сборки фрезеров с ЧПУ своими руками

    Да, есть доступные комплекты станков для ручной сборки, но я еще не видел ни одного, который можно было бы подстроить под определенные нужды.

    Также нет возможности вносить изменения в конструкцию и тип станка, а ведь их много, и откуда вы знаете, какой из них подойдет именно вам? Независимо от того, насколько хороша инструкция, если конструкция продумана плохо, то и конечная машина будет плохой.

    Вот почему вам нужно быть осведомленным относительно того, что вы строите и понимать какую роль играет каждая деталь!

    Руководство

    Это руководство нацелено на то, чтобы не дать вам совершить те же ошибки, на которые я потратил свое драгоценное время и деньги.

    Мы рассмотрим все компоненты вплоть до болтов, глядя на преимущества и недостатки каждого типа каждой детали. Я расскажу о каждом аспекте проектирования и покажу, как создать ЧПУ фрезерный станок своими руками. Проведу вас через механику к программному обеспечению и всему промежуточному.

    Имейте в виду, что самодельные чертежи станков с ЧПУ предлагают немного способов решения некоторых проблем. Это часто приводит к «неаккуратной» конструкции или неудовлетворительному функционированию машины. Вот почему я предлагаю вам сначала прочитать это руководство.

    ДАВАЙТЕ НАЧНЕМ

    ШАГ 1: Ключевые конструктивные решения

    В первую очередь необходимо рассмотреть следующие вопросы:

    1. Определение подходящей конструкции конкретно для вас (например, если будете делать станок по дереву своими руками).
    2. Требуемая площадь обработки.
    3. Доступность рабочего пространства.
    4. Материалы.
    5. Допуски.
    6. Методы конструирования.
    7. Доступные инструменты.
    8. Бюджет.

    ШАГ 2: Основание и ось X-оси

    Тут рассматриваются следующие вопросы:

    1. Проектирование и построение основной базы или основания оси X.
    2. Жестко закрепленные детали.
    3. Частично закрепленные детали и др.

    ШАГ 3: Проектирование козловой оси Y

    1. Проектирование и строительство портальной оси Y.
    2. Разбивка различных конструкций на элементы.
    3. Силы и моменты на портале и др.

    ШАГ 4: Схема сборки оси Z

    Здесь рассматриваются следующие вопросы:

    1. Проектирование и сборка сборки оси Z.
    2. Силы и моменты на оси Z.
    3. Линейные рельсы / направляющие и расстояние между подшипниками.
    4. Выбор кабель-канала.

    ШАГ 5: Линейная система движения

    В этом пункте рассматриваются следующие вопросы:

    1. Подробное изучение систем линейного движения.
    2. Выбор правильной системы конкретно для вашего станка.
    3. Проектирование и строительство собственных направляющих при малом бюджете.
    4. Линейный вал и втулки или рельсы и блоки?

    ШАГ 6: Компоненты механического привода

    В этом пункте рассматриваются следующие аспекты:

    1. Детальный обзор частей привода.
    2. Выбор подходящих компонентов для вашего типа станка.
    3. Шаговые или серводвигатели.
    4. Винты и шарико-винтовые пары.
    5. Приводные гайки.
    6. Радиальные и упорные подшипники.
    7. Муфта и крепление двигателя.
    8. Прямой привод или редуктор.
    9. Стойки и шестерни.
    10. Калибровка винтов относительно двигателей.

    ШАГ 7: Выбор двигателей

    В этом шаге необходимо рассмотреть:

    1. Подробный обзор двигателей с ЧПУ.
    2. Типы двигателей с ЧПУ.
    3. Как работают шаговые двигатели.
    4. Типы шаговых двигателей.
    5. Как работают сервомоторы.
    6. Типы серводвигателей.
    7. Стандарты NEMA.
    8. Выбор правильного типа двигателя для вашего проекта.
    9. Измерение параметров мотора.

    ШАГ 8: Конструкция режущего стола

    1. Проектирование и строительство собственных столов при малом бюджете.
    2. Перфорированный режущий слой.
    3. Вакуумный стол.
    4. Обзор конструкций режущего стола.
    5. Стол можно вырезать при помощи фрезерного станка с ЧПУ по дереву.

    ШАГ 9: Параметры шпинделя

    В этом шаге рассматриваются следующие вопросы:

    1. Обзор шпинделей с ЧПУ.
    2. Типы и функции.
    3. Ценообразование и затраты.
    4. Варианты монтажа и охлаждения.
    5. Системы охлаждения.
    6. Создание собственного шпинделя.
    7. Расчет нагрузки стружки и силы резания.
    8. Нахождение оптимальной скорости подачи.

    ШАГ 10: Электроника

    В этом пункте рассматриваются следующие вопросы:

    1. Панель управления.
    2. Электропроводка и предохранители.
    3. Кнопки и переключатели.
    4. Круги MPG и Jog.
    5. Источники питания.

    ШАГ 11: Параметры контроллера Программного Управления

    В этом шаге рассматриваются следующие вопросы:

    1. Обзор контроллера ЧПУ.
    2. Выбор контроллера.
    3. Доступные опции.
    4. Системы с замкнутым контуром и разомкнутым контуром.
    5. Контроллеры по доступной цене.
    6. Создание собственного контроллера с нуля.

    ШАГ 12. Выбор программного обеспечения

    В этом пункте рассматриваются следующие вопросы:

    1. Обзор программного обеспечения, связанного с ЧПУ.
    2. Подбор программного обеспечения.
    3. Программное обеспечение CAM.
    4. Программное обеспечение САПР.
    5. Програмное обеспечение NC Controller.

    ——————————————————————————————————————————————————–

    В статье описан самодельный станок с ЧПУ. Главное достоинство данного варианта станка – простой метод подключения шаговых двигателей к компьютеру через порт LPT.

    Механическая часть

    Станина Станина нашего станка сделана из пластмассы толщиной 11-12мм. Материал не критичен, можно использовать алюминий, органическое стекло фанеру и любой другой доступный материал. Основные детали каркаса прикрепляются с помощью саморезов, при желании можно дополнительно оформить места креплений клеем, если используете древесину, то можно использовать клей ПВА.

    Суппорта и направляющие В качестве направляющих использованы стальные прутки с диаметром 12мм, длина 200мм (на ось Z 90мм), две штуки на ось. Суппорта изготавливаются из текстолита размерами 25Х100Х45. Текстолит имеет три сквозных отверстия, два из них для направляющих и одно для гайки. Направляющие части крепятся винтами М6. Суппорты Х и У в верхней части имеют 4 резьбовых отверстия для крепления стола и узла оси Z.

    Суппорт Z Направляющие оси Z крепятся к суппорту Х через стальную пластину, которая является переходной, размеры пластины 45х100х4.

    Шаговые двигатели устанавливаются на крепежи, которые можно изготовить из листовой стали с толщиной 2-3мм. Винт нужно соединить с осью шагового двигателя при помощи гибкого вала, в качестве которого может быть использован резиновый шланг. При использовании жесткого вала, система будет работать не точно. Гайку делают из латуни, которую вклеивают в суппорт.

    Сборка Сборка самодельного ЧПУ станка, осуществляется в следующей последовательности:

    • Для начала нужно установить в суппорта все направляющие компоненты и прикрутить их к боковинам, которые вначале не установлены на основание.
    • Суппорт передвигаем по направляющим до тех пор, пока не добьемся плавного хода.
    • Затягиваем болты, фиксируя направляющие части.
    • К основанию крепим суппорт, узел направляющие и боковину, для крепления используем саморезы.
    • Собираем узел Z и вместе с переходной пластиной прикрепляем его к суппорту X.
    • Далее устанавливаем ходовые винты вместе с муфтами.
    • Устанавливаем шаговые двигатели, соединяя ротор двигателя и винт муфтой. Обращаем строгое внимание на то, чтобы ходовые винты вращались плавно.

    Рекомендации по сборке станка: Гайки можно изготовить также из чугуна, использовать другие материалы не стоит, винты можно купить в любом строительном магазине и обрезать под свои нужды. При использовании винтов с резьбой М6х1, длина гайки будет 10 мм.

    Чертежи станка.rar

    Переходим ко второй части сборки ЧПУ станка своими руками, а именно к электронике.

    Электроника

    Блок питания В качестве источника питания был использован блок на 12Вольт 3А. Блок предназначен для питания шаговых двигателей. Еще один источник напряжения на 5Вольт и с током 0.3А был использован для запитки микросхем контролера. Источник питания зависит от мощности шаговых двигателей.

    Приведем расчет блока питания. Расчет прост – 3х2х1=6А, где 3 – количество используемых шаговых двигателей, 2 – число запитанных обмоток, 1 – ток в Амперах.

    Контролер управления Управляющий контроллер был собран всего на 3-х микросхемах серии 555TM7. Контроллер не требует прошивки и имеет достаточно простую принципиальную схему, благодаря этому, данный ЧПУ станок своими руками может сделать человек не особо разбирающийся в электронике.

    Описание и назначение выводов разъема порта LPT.

    Выв. Название Направление Описание
    1 STROBE ввод и вывод Устанавливается PC после завершения каждой передачи данных
    2..9 DO-D7 вывод Вывод
    10 АСК ввод Устанавливается в «0» внешним устройством после приема байта
    11 BUSY ввод Устройство показывает, что оно занято, путем установки этой линии в «1»
    12 Paper out ввод Для принтеров
    13 Select ввод Устройство показывает, что оно готово, путем установки на этой линии «1 »
    14 Autofeed
    15 Error ввод Индицирует об ошибке
    16 Initialize ввод и вывод
    17 Select In ввод и вывод
    18. .25 Ground GND GND Общий провод

    Для эксперимента был использован шаговый двигатель от старого 5,25-дюймов. В схеме 7 бит не используется т.к. применено 3 двигателя. На него можно повесить ключ включение главного двигателя (фреза или сверло).

    Драйвер для шаговых двигателей Для управления шаговым двигателем используется драйвер, который из себя представляет усилитель с 4-я каналами. Конструкция реализована всего на 4-х транзисторах типа КТ917.

    Применять можно и серийные микросхемы, к примеру – ULN 2004 (9 ключей) с током 0,5-0.6А.

    Для управления используется программа vri-cnc. Подробное описание и инструкция по использованию программы находится на официальном сайте.

    Собрав данный ЧПУ станок своими руками, вы станете обладателем машины способной выполнять механическую обработку (сверление, фрезерование) пластмасс. Гравировку по стали. Также самодельный станок с ЧПУ может использоваться как графопостроитель, на нем можно рисовать и сверлить печатные платы.

    По материалам сайта: vri-cnc.ru

    all-he.ru

    Чпу своими руками чертежи


    Зная о том, что фрезерный станок с ЧПУ является сложным техническим и электронным устройством, многие умельцы думают, что его просто невозможно изготовить своими руками. Однако такое мнение ошибочно: самостоятельно сделать подобное оборудование можно, но для этого нужно иметь не только его подробный чертеж, но и набор необходимых инструментов и соответствующих комплектующих.


    Обработка дюралевой заготовки на самодельном настольном фрезерном станке

    Решившись на изготовление самодельного фрезерного станка с ЧПУ, имейте в виду, что на это может уйти значительное количество времени. Кроме того, потребуются определенные финансовые затраты. Однако не побоявшись таких трудностей и правильно подойдя к решению всех вопросов, можно стать обладателем доступного по стоимости, эффективного и производительного оборудования, позволяющего выполнять обработку заготовок из различных материалов с высокой степенью точности.

    Чтобы сделать фрезерный станок, оснащенный системой ЧПУ, можно воспользоваться двумя вариантами: купить готовый набор, из специально подобранных элементов которого и собирается такое оборудование, либо найти все комплектующие и своими руками собрать устройство, полностью удовлетворяющее всем вашим требованиям.

    Инструкция по сборке самодельного фрезерного станка с ЧПУ

    Ниже на фото можно увидеть сделанный собственными руками фрезерный станок с ЧПУ, к которому прилагается подробная инструкция по изготовлению и сборке с указанием используемых материалов и комплектующих, точными «выкройками» деталей станка и приблизительными затратами. Единственный минус – инструкция на английском языке, но разобраться в подробных чертежах вполне можно и без знания языка.

    Скачать бесплатно инструкцию по изготовлению станка: Самодельный фрезерный станок с ЧПУ


    Фрезерный станок с ЧПУ собран и готов к работе. Ниже несколько иллюстраций из инструкции по сборке данного станка

    «Выкройки» деталей станка (уменьшенный вид) Начало сборки станка Промежуточный этап Заключительный этап сборки

    Подготовительные работы

    Если вы решили, что будете конструировать станок с ЧПУ своими руками, не используя готового набора, то первое, что вам необходимо будет сделать, – это остановить свой выбор на принципиальной схеме, по которой будет работать такое мини-оборудование.


    Схема фрезерного станка с ЧПУ

    За основу фрезерного оборудования с ЧПУ можно взять старый сверлильный станок, в котором рабочая головка со сверлом заменяется на фрезерную. Самое сложное, что придется конструировать в таком оборудовании, – это механизм, обеспечивающий передвижение инструмента в трех независимых плоскостях. Этот механизм можно собрать на основе кареток от неработающего принтера, он обеспечит перемещение инструмента в двух плоскостях.

    К устройству, собранному по такой принципиальной схеме, легко подключить программное управление. Однако его основной недостаток заключается в том, что обрабатывать на таком станке с ЧПУ можно будет только заготовки из пластика, древесины и тонкого листового металла. Объясняется это тем, что каретки от старого принтера, которые будут обеспечивать перемещение режущего инструмента, не обладают достаточной степенью жесткости.


    Облегченный вариант фрезерного станка с ЧПУ для работы с мягкими материалами

    Чтобы ваш самодельный станок с ЧПУ был способен выполнять полноценные фрезерные операции с заготовками из различных материалов, за перемещение рабочего инструмента должен отвечать достаточно мощный шаговый двигатель. Совершенно не обязательно искать двигатель именно шагового типа, его можно изготовить из обычного электромотора, подвергнув последний небольшой доработке.

    Применение шагового двигателя в вашем фрезерном станке даст возможность избежать использования винтовой передачи, а функциональные возможности и характеристики самодельного оборудования от этого не станут хуже. Если же вы все-таки решите использовать для своего мини-станка каретки от принтера, то желательно подобрать их от более крупногабаритной модели печатного устройства. Для передачи усилия на вал фрезерного оборудования лучше применять не обычные, а зубчатые ремни, которые не будут проскальзывать на шкивах.


    Узел ременной передачи

    Одним из наиболее важных узлов любого подобного станка является механизм фрезера. Именно его изготовлению необходимо уделить особое внимание. Чтобы правильно сделать такой механизм, вам потребуются подробные чертежи, которым необходимо будет строго следовать.

    Чертежи фрезерного станка с ЧПУ


    Чертеж №1 (вид сбоку)


    Чертеж №2 (вид сзади)


    Чертеж №3 (вид сверху)

    Приступаем к сборке оборудования

    Основой самодельного фрезерного оборудования с ЧПУ может стать балка прямоугольного сечения, которую надо надежно зафиксировать на направляющих.

    Несущая конструкция станка должна обладать высокой жесткостью, при ее монтаже лучше не использовать сварных соединений, а соединять все элементы нужно только при помощи винтов.


    Узел скрепления деталей рамы станка посредством болтового соединения

    Объясняется это требование тем, что сварные швы очень плохо переносят вибрационные нагрузки, которым в обязательном порядке будет подвергаться несущая конструкция оборудования. Такие нагрузки в итоге приведут к тому, что рама станка начнет разрушаться со временем, и в ней произойдут изменения в геометрических размерах, что скажется на точности настройки оборудования и его работоспособности.

    Сварные швы при монтаже рамы самодельного фрезерного станка часто провоцируют развитие люфта в его узлах, а также прогиб направляющих, образующийся при серьезных нагрузках.


    Установка вертикальных стоек

    Во фрезерном станке, который вы будете собирать своими руками, должен быть предусмотрен механизм, обеспечивающий перемещение рабочего инструмента в вертикальном направлении. Лучше всего использовать для этого винтовую передачу, вращение на которую будет передаваться при помощи зубчатого ремня.

    Важная деталь фрезерного станка – его вертикальная ось, которую для самодельного устройства можно изготовить из алюминиевой плиты. Очень важно, чтобы размеры этой оси были точно подогнаны под габариты собираемого устройства. Если в вашем распоряжении есть муфельная печь, то изготовить вертикальную ось станка можно своими руками, отлив ее из алюминия по размерам, указанным в готовом чертеже.


    Узел верхней каретки, размещенный на поперечных направляющих

    После того как все комплектующие вашего самодельного фрезерного станка подготовлены, можно приступать к его сборке. Начинается данный процесс с монтажа двух шаговых электродвигателей, которые крепятся на корпус оборудования за его вертикальной осью. Один из таких электродвигателей будет отвечать за перемещение фрезерной головки в горизонтальной плоскости, а второй – за перемещение головки, соответственно, в вертикальной. После этого монтируются остальные узлы и агрегаты самодельного оборудования.


    Финальная стадия сборки станка

    Вращение на все узлы самодельного оборудования с ЧПУ должно передаваться только посредством ременных передач. Прежде чем подключать к собранному станку систему программного управления, следует проверить его работоспособность в ручном режиме и сразу устранить все выявленные недостатки в его работе.

    Посмотреть процесс сборки фрезерного станка своими руками можно на видео, которое несложно найти в интернете.

    Шаговые двигатели

    В конструкции любого фрезерного станка, оснащенного ЧПУ, обязательно присутствуют шаговые двигатели, которые обеспечивают перемещение инструмента в трех плоскостях: 3D. При конструировании самодельного станка для этой цели можно использовать электромоторы, установленные в матричном принтере. Большинство старых моделей матричных печатных устройств оснащались электродвигателями, обладающими достаточно высокой мощностью. Кроме шаговых электродвигателей из старого принтера стоит взять прочные стальные стержни, которые также можно использовать в конструкции вашего самодельного станка.


    Закрепление шагового двигателя на верхней каретке

    Чтобы своими руками сделать фрезерный станок с ЧПУ, вам потребуются три шаговых двигателя. Поскольку в матричном принтере их всего два, необходимо будет найти и разобрать еще одно старое печатное устройство.

    Окажется большим плюсом, если найденные вами двигатели будут иметь пять проводов управления: это позволит значительно увеличить функциональность вашего будущего мини-станка. Важно также выяснить следующие параметры найденных вами шаговых электродвигателей: на сколько градусов осуществляется поворот за один шаг, каково напряжение питания, а также значение сопротивления обмотки.


    Для подключения каждого шагового двигателя понадобится отдельный контроллер

    Конструкция привода самодельного фрезерного станка с ЧПУ собирается из гайки и шпильки, размеры которых следует предварительно подобрать по чертежу вашего оборудования. Для фиксации вала электродвигателя и для его присоединения к шпильке удобно использовать толстую резиновую обмотку от электрического кабеля. Такие элементы вашего станка с ЧПУ, как фиксаторы, можно изготовить в виде нейлоновой втулки, в которую вставлен винт. Для того чтобы сделать такие несложные конструктивные элементы, вам понадобятся обычный напильник и дрель.

    Электронная начинка оборудования

    Управлять вашим станком с ЧПУ, сделанным своими руками, будет программное обеспечение, а его необходимо правильно подобрать. Выбирая такое обеспечение (его можно написать и самостоятельно), важно обращать внимание на то, чтобы оно было работоспособным и позволяло станку реализовывать все свои функциональные возможности. Такое ПО должно содержать драйверы для контроллеров, которые будут установлены на ваш фрезерный мини-станок.

    В самодельном станке с ЧПУ обязательным является порт LPT, через который электронная система управления и подключается к станку. Очень важно, чтобы такое подключение осуществлялось через установленные шаговые электродвигатели.

    Схема подключения униполярных шаговых электродвигателей для 3-х координатного станка с ЧПУ (нажмите для увеличения)

    Выбирая электронные комплектующие для своего станка, сделанного своими руками, важно обращать внимание на их качество, так как именно от этого будет зависеть точность технологических операций, которые на нем будут выполняться. После установки и подключения всех электронных компонентов системы ЧПУ нужно выполнить загрузку необходимого программного обеспечения и драйверов. Только после этого следуют пробный запуск станка, проверка правильности его работы под управлением загруженных программ, выявление недостатков и их оперативное устранение.

    Все вышеописанные действия и перечисленные комплектующие подходят для изготовления своими руками фрезерного станка не только координатно-расточной группы, но и ряда других типов. На таком оборудовании можно выполнять обработку деталей со сложной конфигурацией, так как рабочий орган станка может перемещаться в трех плоскостях: 3d.

    Ваше желание своими руками собрать такой станок, управляемый системой ЧПУ, должно быть подкреплено наличием определенных навыков и подробных чертежей. Очень желательно также посмотреть ряд тематических обучающих видео, некоторые из которых представлены в данной статье.

    Главная › Оборудование для обработки металла › Фрезерные станки

    Похожие новости:

  • Поздравления тещю с днем рождения
  • Салат кальмарами и кукурузой рецепт с фото
  • Вешалка костюмная своими руками
  • Поздравления дорогому начальнику
  • На новый хороший слова и поздравления
  • artemmian.ru

    Станок ЧПУ своими руками / Сделай сам / Коллективный блог

    Сегодня станок с ЧПУ имеет широкий спектр применения. Среди основных операций, выполняемых на нем, можно отметить изготовление мебели, обработку камня, ремонтные, строительные работы и т.д.

    Станок с ЧПУ, изготовленный в промышленных условиях, – удовольствие достаточно дорогое. Но, оказывается, сложный на первый взгляд механизм, очень прост и доступен в изготовлении в бытовых условиях своими руками.

    Для первого опыта лучше всего остановить свой выбор на станке с движущимся порталом. Связано это с тем, что в нем отличным образом совмещаются простота и функциональность.

    Для изготовления основных деталей станка возьмем МДФ плиты. Этот материал представляет собой мелкие дисперсные фракции, которые спрессованы под большим давлением и температурой в одну плиту. К основным характеристикам МДФ относится высокая плотность. Поэтому они отлично подходят для изготовления станков ЧПУ своими руками. На оборудовании из МДФ можно проводить обработку пластика, дерева, делать гравировку, но обрабатывать металлические детали с высокой точностью не получиться. Связано это с низкой стойкостью данного материала к нагрузкам.

    Для начала чертеж нашего станка распечатаем на принтере. Затем полученные шаблоны можно наклеить на МДФ. Так намного проще и удобнее вырезать детали будущего станка.

    Фурнитуру, которая будет использовать в сборке, можно приобрести в любом строительном или строительном магазине.

    Кроме фурнитуры для изготовления станка потребуются следующие инструменты: дрель, отвертка и ножовка. Если у вас есть электролобзик, тогда лучше воспользоваться им. Это значительным образом упростит процесс выпиливания деталей.

    Приступаем к изготовлению станка. Для этого распечатанные на принтере чертежи деталей наклеиваем на плиту МДФ, используя клеящий карандаш для бумаги. Выбирая его в магазине, остановите свой выбор на самом толстом. Это позволит значительным образом ускорить процесс поклейки шаблонов.

    Теперь можно заняться непосредственным выпиливанием заготовок. В данной модели все детали имеют практически прямые линии и максимально простые контуры.

    После того, как все шаблоны вырезаны, приступаем к просверливанию отверстий. Следует обратить внимание на то, что многие из них имею большой диаметр. Поэтому, чтобы поверхность этих отверстий была аккуратной и гладкой, лучше воспользоваться коронками или насадками для шлифовки. Таким образом, у вас будет возможность аккуратно растачивать отверстия до нужного диаметра.

    Теперь можно приступать к сборке ЧПУ станка согласно имеющимся у нас чертежам.

    Так как мы планируем использовать станок в домашних условиях, то обязательно необходимо установить ограждение. Это позволит избежать разлетания пыли и грязи от обрабатываемых деталей.

    Для этих целей можно использовать пенопласт, стекловолокно, тонкую фанеру и т.д. Не забудьте в ограждении сделать небольшое отверстие.

    Через него можно будет подключить вытяжку от старого пылесоса. Это обеспечит максимальное улавливание пыли и стружки. Обратным эффектом использования подобного «грязеуловителя» является сильный шум.

    Следующим важным этапом сборки станка ЧПУ своими руками является электроника. Ведь она важная, т.к. с ее помощью происходит процесс управления.

    В этом случае можно воспользоваться двумя путями решения. Первый из них – собрать необходимую схему контролера самостоятельно, купив все необходимые детали.

    Второй путь проще – купить готовый контролер в магазине или на радиорынке. Какой из предложенных путей выбрать – решать вам самим. Если вы не очень разбираетесь в радиотехнике и решите купить готовую деталь, тогда рекомендуется остановить выбор на ТВ6560.

    За выбор этого элемента говорит его возможность подбора необходимого питания в зависимости от используемых шаговых двигателей, наличие защиты от перегрузки и перегрева, использование множества программных обеспечений и т.д.

    В случае если контроллер вы будет изготавливать самостоятельно, отлично подойдет старый сканер или МФУ. Из него выбирается микросхема ULN2003, стальные стержни и шаговый двигатель. Кроме этого вам понадобиться разъем DВ-25 с проводом, гнездо для питания самого контроллера. Если хотите иметь компьютерное управления своего станка, тогда необходим будет компьютер, к которому вы подключите полученное оборудование.

    Для создания контроллера берем любую имеющуюся у нас плату. На нее аккуратно паяльником припаиваем микросхему ULN2003. При этом не забывайте о полярности.

    На приведенной схеме видно, что имеют место две шины электропитания. Поэтому вывод микросхемы с отрицательным знаком мы припаиваем к одной, а с положительным – к другой. После этого к выводу 1 ULN2003 присоединяем вывод 2 коннектора параллельного порта. К выводу 2 ULN2003 мы присоединяем вывод 3 коннектора. Соответственно вывод схему ULN2003 4 мы соединим с 5 выводом коннектора и т.д. А вот вывод нуля с 25 выводом параллельного порта мы припаяем к отрицательной шине.

    Следующий этап – припаивание шагового двигателя к управляющему устройству. Правильно сделать его можно только методом проб и ошибок, т.к. чаще всего документации на вывод имеющегося у вас электродвигателя нет. Поэтому рекомендуется провода двигателя оснастить зажимами-крокодилами. Таким образом, процесс пойдет быстрее и легче.

    Следующий наш шаг – соединение проводов с выводами 13,14,15,16 микросхемы ULN2003. Теперь паять провода мы будем к шине питания со знаком плюс. В завершении устанавливаем гнездо электропитания.

    Наш контроллер почти готов. Теперь мы устанавливаем его на стальные стержни и закрепляем в подготовленных ранее гнездах. Для того, чтобы в процессе эксплуатации не происходил облом проводов, их лучше зафиксировать с помощью термоклея.

    44kw.com

    Чертеж самодельного ЧПУ станка

    Скачать чертеж самодельного ЧПУ станка можно по ссылкам в конце статьи.

    В предлагаемом к скачиванию архиве лежит чертеж ЧПУ станка для сборки своими руками.

    Это достаточно распространенный тип ЧПУ станка с движущимся порталом.

    Данный чертеж отличается прежде всего тем, что в не только дана деталировка – когда каждая деталь станка вычерчена отдельно и имеет проставленные размеры, но и приведены сборочные чертежи каждого из узлов.

    ЧПУ станок по такому чертежу можно изготовить практически из любого материала. Это может быть и дюралюминиевые пластины и многослойная фанера. Можно использовать и прочный пластик или оргстекло в конструкции самодельного ЧПУ станка.

    Чертежи имеют векторный формат DXF и могут быть смасшабированны в любые размеры.

    В самом простом случае можно взять двигатели от матричных принтеров типа Epson FX1000 формата A3, от этих же принтером взять и стальные направляющие вместе с узлом скольжения.

    В качестве ходового винта в бюджетном варианте самодельного ЧПУ станка используется шпилька с резьбой М6 или М8. Ходовые гайки лучше заказать токарю и выточить их из бронзы. Бронзовая гайка может «ходить» 5-7 лет при ежедневном использовании ЧПУ станка по 8-10 часов.

    Ходовые винты – это расходный материал, а ходовые гайки могут прослужить еще не на одном самодельном станке.

    Впрочем, я не однократно читал о том как применяли ходовые гайки изготовленные из пластика или гетинакса.

    Изготовленный из подручных средств самодельный ЧПУ станок позволит вам обрабатывать дерево, пластики и цветные металлы.

    Для обработки металлов и стали такой станок становиться малопригодным в силу слабой жесткости конструкции.

    Впрочем он может использоваться для гравировки или как сверлильный станок с ЧПУ управлением по металлам.

    Но вот как фрезерный – маловероятно. При фрезеровке металлов возникают ударные нагрузки – например, при фрезеровании одного паза встретился другой паз и тогда возникает механический удар, который передается на конструкцию станка и ходовой винт.

    Для домашних работ, например фрезеровки наборов для сборки авиамодели из бальзы – такой станок легко оправдает затраты на его изготовление!

    Скачать чертежи самодельного ЧПУ станка можно здесь: Depositfiles или с нашего сайта

    Самодельный ЧПУ станок

    Расположение осей X, Y, Z настольного фрезерно-гравировального станка ЧПУ:

    Ось Z перемещает инструмент(фрезер) по вертикали(вниз-вверх)
    Ось Х – перемещает каретку Z в поперечном направлении(влево-вправо).
    Ось Y – перемещает подвижный стол(вперед-назад).

    С устройством фрезно-гравировального станка можно ознакомиться

    Состав набора ЧПУ станка Моделист2020 и Моделист3030

    I Набор фрезерованных деталей из фанеры 12мм для самостоятельной сборки

    Комплект фрезерованных деталей для сборки станка с ЧПУ с подвижным столом состоит из:

    1) Стойки портала фрезерного станка с ЧПУ

    2) набор фрезерованных деталей станка ЧПУ для сборки оси Z

    3) набор фрезерованных деталей станка ЧПУ для сборки подвижного стола

    4) набор фрезерованных деталей станка ЧПУ для сборки опор шаговых двигателей и крепления шпинделя

    II Набор механики фрезерного станка включает:

    1. муфта для соединения вала шагового двигателя с ходовым винтом станка – (3шт.). Размер соединительной муфты для станка Моделист2030 с шаговыми двигателями NEMA17 – 5х5мм. Для станка Моделист3030 с шаговыми двигателями Nema23 – 6,35×8мм

    2. стальные направляющие линейного перемещения для ЧПУ станка Моделист3030:

    16мм (4шт.) для осей Х и Y,

    12мм(2шт) для оси Z

    Для ЧПУ станка Моделист2020 диаметр направляющих линейного перемещения:

    12мм(8шт) для осей Х, Y и Z.

    3. линейные подшипники качения для фрезерного станка Моделист3030:

    Линейные подшипники LM16UU (8шт.) для осей Х и Y,

    Линейные подшипники LM12UU для оси Z.

    Для фрезерного ЧПУ станка Моделист2020

    Линейные подшипники LM12UU (12шт.) для осей Х, Y и Z.

    4. ходовые винты для фрезерного станка Моделист2020 – М12 (шаг 1,75мм) – (3шт.) c обработкой под d=5мм с одного конца и под d=8мм с другого.

    Для фрезерного станка Моделист3030 – трапецеидальные винты TR12x3 (шаг 3мм) – (3шт.) c обработкой концов под d=8мм.

    5. радиальные подшипники крепления ходовых винтов -(4шт.) один подшипник в алюминиевом блоке для оси Z.

    6. ходовые гайки из графитонаполненного капролона для осей X, Y и Z (- 3шт.)

    III Набор электроники фрезерного станка с ЧПУ:

    1. Для станка с ЧПУ Моделист2020: шаговые двигатели NEMA17 17HS8401 (размер 42х48мм, крутящий момент 52N.cm, ток 1,8А, сопротивление фазы 1,8Ом, индуктивность 3,2mH, диаметр вала 5мм) – 3шт.

    Для станка с ЧПУ Моделист3030: шаговые двигатели 23HS5630 (размер 57х56мм, крутящий момент 12,6кг*см, ток 3,0А, сопротивление фазы 0,8Ом, индуктивность 2,4mH, диаметр вала 6,35мм) – 3шт.

    2. контроллер шаговых двигателей ЧПУ станка на специализированных микрошаговых драйверах компании Toshiba ТВ6560 в закрытом алюминиевом корпусе

    3. блок питания 24 В 6,5 A для ЧПУ станка Моделист2020 и 24В 10,5А для ЧПУ станка Моделист3030

    4. комплект подсоединительных проводов

    Последовательность сборки фрезерного станка чпу с подвижным столом.

    Система линейного перемещения любого станка состоит из двух деталей: шариковая втулка – это элемент который движется и неподвижного элемента системы – линейная направляющая или вал(линейная опора). Линейные подшипники могут быть разных видов: втулка, разрезная втулка, втулка в алюминиевом корпусе для удобства крепления, шариковая каретка, роликовая каретка, основная функция которых – нести нагрузку, обеспечивая стабильное и точное перемещение. Применение линейных подшипников(трение качения) вместо втулок скольжения позволяет значительно снизить трение и использовать всю мощность шаговых двигателей на полезную работу резки.

    Рисунок 1

    1 Смазать линейные подшипники системы линейного перемещения фрезерного станкаспециальной смазкой (можно использовать Литол-24(продается в магазинах авто запчастей)).

    2 Сборка оси Z фрезерного станка с ЧПУ.

    Сборка оси Z описана в инструкции ” “

    3 Сборка стола фрезерного ЧПУ станка, ось Y

    3.1 Детали для сборки портала, рисунок 2.

    1) комплект фрезерованных деталей

    4) ходовые винты для фрезерного станка Моделист2030 – М12 (шаг 1,75мм) c обработкой концов под d=8мм и d=5мм

    Рисунок 2. Детали портала фрезерного настольного ЧПУ станка

    3.2 Запрессовать линейные подшипники и вставить держатели линейных подшипников во фрезерованные пазы, рисунок 2. Вставить линейные направляющие в линейные шарикоподшипники.

    Рисунок 2 Сборка стола настольного фрезерного ЧПУ станка

    3.3 Держатели подшипников линейного перемещения забиваются в пазы детали подвижного стола. Соединение типа шип-паз обеспечивает отличную жесткость узла, все детали этого узла изготовлены из фанеры 18мм. Дополнительно стянув детали болтовым соединением обеспечим долгий и надежный срок службы, для этого через уже имеющееся отверстие в пластине, которое служит направляющим для хода сверла, сверлим отверстие в торце держателя линейных подшипников, как показано на рисунке 3, сверло диаметром 4мм.

    Рисунок 3 Сверление крепежных отверстий.

    3.4 Накладываем сам стол и, через уже имеющиеся отверстия скрепляем, с помощью винтов М4х55 из комплекта, рисунок 4 и 5.

    Рисунок 4. Крепление подшипников подвижного стола.

    Рисунок 5. Крепление подшипников подвижного стола.

    3.5 Запрессовать упорные подшипники в детали каркаса стола. Вставить ходовой винт с ходовой гайкой из графитонаполненного капролона, в опорные подшипники, и линейные направляющие в пазы элементов каркаса, рисунок 6.

    Рисунок 6. Сборка подвижного стола.

    Скрепить элементы каркаса шурупами из комплекта. Для крепления с боков используйте шурупы 3х25мм, рисунок 7. Перед вкручиванием шурупов, обязательно засверлите сверлом диаметром 2мм, для избежания расслаивания фанеры.

    Если ходовой винт не зажат деталями основания подвижного стола и имеется люфт винта вдоль оси в опорных подшипниках – используйте шайбу диаметром 8мм, рисунок 6.

    Рисунок 7. Сборка каркаса настольного станка.

    3.6 Расположите ходовую гайку по центру между линейными подшипниками и сделайте отверстия для шурупов сверлом 2мм, рисунок 8, после чего шурупами 3х20 из комплекта закрепить ходовую гайку. При сверлении обязательно использовать упор под ходовой гайкой, чтобы не погнуть ходовой винт .

    Рисунок 8. Крепление ходовой гайки.

    4 Сборка портала станка.

    Для сборки понадобятся:

    1) комплект фрезерованных деталей для сборки подвижного стола

    2) стальные направляющие линейного перемещения диаметром 16мм(2шт)

    3) линейный подшипник LM16UU(4шт)

    4) ходовые винты для фрезерного станка Моделист2030 – М12 (шаг 1,75мм) c обработкой концов под d=8мм и d=5мм.

    Для фрезерного станка Моделист3030 – трапецеидальные винты TR12x3 (шаг 3мм) c обработкой концов под d=8мм.

    5. радиальные подшипники крепления ходовых винтов -(2шт.)

    6. ходовая гайка из графитонаполненного капролона – (- 1шт.)

    4.1 Закрепить боковину портала, рисунок 9.

    Рисунок 9. Сборка портала станка.

    4.2 Вставить ходовой винт с гайкой в каркас каретки оси Z, рисунок 10.

    Рисунок 10. Установка ходового винта.

    4.3 Вставить линейные направляющие, рисунок 11.

    Рисунок 19 Крепление ходового винта “в распор”.

    4.4 Закрепить вторую боковину портала, рисунок 11.

    Рисунок 11. Установка второй боковины портала

    Если ходовой винт не зажат деталями основания подвижного стола и имеется люфт вдоль оси – используйте шайбу диаметром 8мм.

    4.5 Установить и закрепить заднюю стенку каретки Z, Рисунок 12.

    Рисунок 12. Крепление задней стенки каретки Z.

    4.6 Закрепить капролоновую ходовую гайку шурупами 3х20 из комплекта, рисунок 13.

    Рисунок 13. Крепление ходовой гайки оси X.

    4.7 Закрепить заднюю стенку портала, рисунок 14, с использованием шурупов 3х25 из комплекта.

    Рисунок 14. Крепление задней стенки портала.

    5 Установка шаговых двигателей.

    Для установки шаговых двигателей используйте детали крепления из набора фрезерованных деталей станка ЧПУ для сборки опор шаговых двигателей Nema23 для фрезерного станка Моделист3030.

    Рисунок 15. Установка шаговых двигателей.

    Установить муфты 5х8мм для соединения вала двигателя с ходовым винтом. Закрепить шаговые двигатели на станок, для крепления используйте винт М4х55 из комплекта, рисунок 15.

    6 Закрепите контроллер на задней стенке фрезерно-гравировального станка , и подключите к нему клеммники моторов.

    7 Установка фрезера.

    Крепление фрезера осуществляется за шейку инструмента или корпус. Стандартный диаметр шейки бытовых фрезеров 43мм. Диаметр шпинделя 300Вт – 52мм, крепление за корпус. Для установки соберите крепление фрезера, детали крепления на рисунке 16. Используйте шуруп 3х30мм из комплекта.

    Рисунок 16 Крепление шпинделя 43мм

    Рисунок 17 Шпиндель с креплением на ЧПУ станок

    При установке дремель подобных инструментов(граверов), кроме этого потребуется дополнительное крепление корпуса гравера к каретке Z хомутом, рисунок 18.

    Рисунок 18 Крепление гравера на фрезерный станок.

    Имеется возможность установка насадки для подключения пылесоса

    DIY CNC Router – Сообщение 5: Электроника и программное обеспечение

    Привет. Этой странице больше двух лет! Информация здесь, вероятно, устарела, так что имейте это в виду. Если этот пост является частью серии, возможно, есть более свежий пост, который заменяет этот.

    Кратко о том, что я использую для управления моим зарождающимся станком с ЧПУ (во всяком случае, на этом этапе разработки). Это добавит некоторого контекста позже.

    Arduino & CNC Shield

    (с веб-сайта Protoneer) Protoneer CNC Shield v3.1 на драйверах Arduino и 3 # Polulu. У меня есть 4 драйвера, один в пустом как второй драйвер по оси x.

    У меня есть Protoneer CNC Shield (v3.00), установленный на Arduino Uno. Я боюсь сказать, что я думаю, что ЧПУ защищает драйверы шагового двигателя Pololu A4988, которые у меня есть, дешевые (э-э) китайские подделки. Не помню – купил много лет назад. Щит с ЧПУ имеет (имел, я обновил – см. Этот пост) 4 драйвера # A4988 для управления шаговыми двигателями по 3 осям. Я использую два двигателя для оси x (чтобы управлять мостом).Щит Protoneer CHC разработан для работы с Pololus, но, честно говоря, я не уверен, что вы когда-нибудь сможете создать приличный фрезерный станок с ЧПУ, используя эти драйверы, поскольку возможность запускать шаговые двигатели с любым ворчанием ограничена.

    Программное обеспечение

    Для начала я загрузил прошивку GRBL (v0.8, чтобы соответствовать моему экрану ЧПУ?) На Arduino, и я использовал Universal G-Code Sender, кроссплатформенную программу Java, для управления вещами (для проверки работы двигателей и т. Д. .) с ноутбука с Windows через USB на Arduino.

    Затем я наткнулся на эту сборку ЧПУ на Instructables – парень сказал, что искал ответ на рабочий процесс модель-> gcode-> отправитель, и наткнулся на EstlCam, это условно-бесплатное ПО, но вы получаете все функции с самого начала , просто некоторые «ноющие задержки», пока вы не сделаете правильный выбор и не купите его.Кажется, это неплохо, я подожду, чтобы опробовать его на своей готовой машине, прежде чем заплатить парню, но спасибо ему за то, что он написал это.

    EstlCam включает собственное средство для загрузки различных прошивок в / мой контроллер / Arduino, что, я полагаю, очень удобно. Я предполагаю, что разработчик только что использовал код GitHub GBRL для параметров GRBL. Не знаю: не проверял, работает ли он с кодом GitHub (который был бы лучше, поскольку он инкапсулирует все обновления и исправления ошибок).

    Будущее

    Мне вроде как понравилась идея использовать RaspPi для удаленного управления ЧПУ, с маленьким локальным сенсорным экраном для тонкой настройки, немного похожим на Octopi для RepRap.Однако на минуту подойдет старый метод ноутбука с Windows.

    Навигация серии

    << DIY Фрезерный станок с ЧПУ - Пост 4: Подключение питания шпинделя Фрезерный станок с ЧПУ DIY - Пост 6: Шаговый двигатель и обновления драйверов >>

    Связанные

    DIY Электроника для фрезерных станков с ЧПУ – CNCCookbook: Be A Better CNC’er

    Компьютер

    Shuttle SK21G Barebones PC

    Это маленький автономный компьютер очень хороших размеров, достаточно мощный, чтобы работать с Mach 3, особенно с интерфейсной картой SmoothStepper.Я унаследовал его от жены, которую я обновил до более мощного компьютера Dell.

    Корпус

    Rittal 19 ″ x 19 ″ x 12 ″ NEMA Style Box

    Я купил пару действительно хороших коробок NEMA на eBay по отличной цене. Я установлю корпус NEMA на боковой стороне тележки на колесиках, которую я получил от Sears:

    .

    В дополнение к NEMA, прикрепленному сбоку, я также установлю поворотный кронштейн, чтобы удерживать сенсорный монитор, клавиатуру и мышь.Я также могу настроить поворотный рычаг на подвесной пульт или пульт управления. Наконец, вероятно, будет доступен USB-концентратор.

    Внутри коробки NEMA будут следующие компоненты:

    – 6 x вспомогательное шасси драйвера: вспомогательное шасси драйвера устанавливает все компоненты, связанные с Geckodrive для шагового или сервопривода.

    – Блок питания постоянного тока для шаговых двигателей и сервоприводов

    – Breakout Board: Smoothstepper, так как я хочу, чтобы были доступны все 6 каналов и, возможно, некоторые другие сигналы, а также

    – Интерфейс ЧРП: ШИМ или другой интерфейс для скорости шпинделя.Сам частотно-регулируемый привод будет установлен снаружи корпуса NEMA.

    – Релейная плата: для управления охлаждающей жидкостью, включением / выключением шпинделя и направлением шпинделя.

    – Схема аварийного останова (время задержки?)

    Внешние соединения с корпусом NEMA:

    – 110 В переменного тока

    – Кнопка аварийной остановки (плюс гирляндная цепь аварийной остановки?)

    – Мастер вкл / выкл?

    – Пилотный свет?

    – USB-вход от ПК к коммутационной плате Smooth Stepper

    – 6 каналов моторного привода с подключениями энкодера для любого из каналов, которые являются сервоприводами.

    – Соединения частотно-регулируемого привода и шпинделя

    – Соединения включения / выключения охлаждающей жидкости

    Вот общий обзор компоновки корпуса с указанием основных компонентов:

    Четыре модуля главной оси установлены на передней панели через вырезы. Эти 4 предназначены для осей X, Y, Z и A. Дополнительные 2-осевые модули расположены сзади, а блок питания – прямо под ними.

    Панель управления вверху обеспечивает аварийный останов, питание главного устройства и аналогичные функции.Вспомогательная панель обеспечивает подключение USB от ПК, частотно-регулируемого привода, концевых выключателей, охлаждающей жидкости и других подобных функций.

    Я заказал у Willy Electronics небольшой вентилятор, работающий от сети переменного тока 120 В, для установки в верхней части корпуса, чтобы я мог вытягивать теплый воздух и сохранять прохладу.

    Отдельные печатные платы и большой блок питания постоянного тока смонтированы на дополнительной плите, которая входит в корпус:

    Я промаркировал доски, чтобы вы могли видеть, что к чему.Черные контуры сделаны по методу Sharpie, чтобы указать, где выступают осевые модули, поэтому я осторожно оставляю зазор. ПК

    Платы

    устанавливаются на стойки, доступные в Radio Shack.

    Это хорошая идея по целому ряду причин, не в последнюю очередь из-за того, что вы можете подключить все это красиво, установив вспомогательную пластину на стол, а затем установить все работы одним выстрелом.

    Резка Большинство вырезов в корпусе NEMA

    Мне все равно понадобятся отверстия для охлаждающего вентилятора, но я хочу убедиться, что понимаю зазоры и расположение всего остального, прежде чем пытаться установить вентилятор.В настоящее время я думаю поставить его в дверь рядом с петлей и поднять вверх, чтобы выпустить теплый воздух. Жаль, что у меня не было жалюзи!

    Вот несколько картинок:

    Панельные вставки закрывают отверстия. 4 оси спереди, с главной панелью управления вверху. Я мог бы также выпустить вентилятор с правой стороны этой панели управления…

    Три выреза в задней панели. Верхние 2 относятся к еще 2 осям. Снизу будут все вспомогательные разъемы для ограничения, управления реле охлаждающей жидкости и управления VFD…

    Вырезы делались путем просверливания отверстий в каждом углу и последующего соединения точек с помощью воздушного ножа…

    Пневматический нож имеет закаленные губки и прошел сквозь толстую стальную коробку, как масло…

    Источник питания постоянного тока

    Я заказал в Antek блок питания PS-10N70 для питания сервоприводов моей мельницы.Вот фото:

    Это было 150 долларов + 10 долларов за доставку, что кажется очень разумным. Это источник питания 70 В, что оставляет небольшой запас для ограничения 80 В на Geckodrives. Antek управляется парнем по имени Джон Анго. Я уже заказывал у него тороидальные трансформаторы, и он хороший парень, с которым можно вести дела. За эту цену я могу сэкономить немного усилий и стать намного ближе к запуску этой мельницы раньше! Этот конкретный источник питания составляет 1000 Вт, но у него также есть источники на 1500 Вт, если вам нужно больше говядины.

    Осевые модули

    Идея состоит в том, чтобы установить все компоненты, связанные с одной осью. Посетите страницу модуля оси для получения подробной информации, но вот 3D-модель модуля оси:

    Ознакомьтесь с CNC4PC и Smoothstepper Electronics

    Присоединяйтесь к более чем 100 000 ЧПУ! Получайте наши последние сообщения в блоге, которые доставляются прямо на ваш почтовый ящик один раз в неделю бесплатно. Кроме того, мы предоставим вам доступ к некоторым отличным справочным материалам по ЧПУ, включая:

    Описание станка с ЧПУ и Как построить один

    «ЧПУ» в станке с ЧПУ означает компьютерное числовое управление.Компьютер обычно преобразует файл автоматизированного проектирования (САПР) в числовой файл под названием GCode. Числа в файле GCode определяют путь резака, лазера, сопла или другого механизма, который используется для фрезерования, травления или строительства вдоль этого пути. Инструменты, которыми можно управлять в этом механизме, включают фрезерные станки, 3D-принтеры, токарные станки, шлифовальные станки и станки для захвата и размещения. После того, как GCode загружен в машину, он также должен быть переведен с помощью программного обеспечения автоматизированного производства (CAM), которое управляет машиной.Автоматизация станков с ЧПУ означает, что инструменты могут изготавливаться с высокой точностью и с меньшими усилиями.

    Один из наиболее частых вопросов, которые мы получаем от клиентов, – «Что мне нужно для создания станка с ЧПУ?» На этот вопрос сложно ответить, поскольку существует множество разновидностей станков с ЧПУ, но мы рассмотрим здесь некоторые общие детали и некоторые ресурсы. Если вы собираете какой-либо станок с ЧПУ, отличный ресурс для сборки с открытым исходным кодом – Openbuilds.com и пара наших любимых станков с ЧПУ – это OX CNC Machine (названный OX, потому что он СИЛЬНЫЙ) и разновидность OX, названная Ooznest OX. Электроника, используемая в обеих сборках, – это ЧПУ XPRO V3, которое является последним дополнением к нашему каталогу и представляет собой отличный контроллер 4-осевого шагового двигателя, который можно приобрести по этой ссылке. Это один из наших любимых контроллеров, потому что он хорошо работает с программным обеспечением с открытым исходным кодом, таким как GRBL (интерпретатор gcode), Google Sketchup и SketchUCam.Он также взаимодействует с компьютером через последовательный порт USB FTDI, что является современным улучшением по сравнению с большинством соединений RS232, которые вы найдете на других контроллерах. Этот контроллер совместим со всеми 4-проводными шаговыми двигателями с нагрузкой до 2,1 А на двигатель / ось. Показанные здесь 4-проводные двигатели NEMA 17 или 4-проводные NEMA 23 подходят для многих приложений.

    В дополнение к электронике для вашего станка с ЧПУ вам может потребоваться несколько концевых выключателей и импульсный источник питания 12 или 24 В для питания контроллера и двигателей.Надеюсь, вы нашли это руководство полезным, и если у вас есть какие-либо вопросы или вам нужна помощь в выборе продукта, не стесняйтесь обращаться к нам по адресу [электронная почта защищена]

    Как выбрать электронику контроллера для моего первого ЧПУ? – Незначительно умные роботы

    Тони спрашивает: «Как выбрать электронику контроллера для моего первого 2D DIY ЧПУ?»

    Что такое ЧПУ?

    Роботы Макеланджело, Дельта, платформы Стюарта, манипуляторы, ЧПУ CoreXY и традиционные ЧПУ в основном одинаковы.

    ЧПУ – это компьютерное числовое программное управление , машина для точного перемещения в одном или нескольких направлениях. Станку с ЧПУ требуется (как минимум) по одному двигателю для каждой оси (направления движения). Все двигатели управляются электронной схемой. Двигатели и схема используют источник питания для создания нужного вам движения. Для правильной калибровки схемы также могут потребоваться датчики. Схема также должна следовать вашим запрограммированным инструкциям. Другими словами, ваша схема должна поддерживать ваше программное обеспечение, двигатели, источник питания и датчики.

    Электроника

    Вот несколько примеров имеющихся схем.

    Arduino – действительно популярная и хорошо поддерживаемая платформа для обучения созданию роботов, включая станки с ЧПУ. Это часть машины, которую вы программируете с помощью своих инструкций.

    Adafruit Motor Shield v1 устанавливается поверх Arduino и позволяет легко управлять двумя шаговыми двигателями, двумя сервоприводами и некоторыми переключателями для самонаведения. Это отличная отправная точка по доступной цене.

    Есть еще доска RUMBA. Он управляет 6 шаговыми двигателями, одним сервоприводом и 6 переключателями. Это высокопроизводительная плата для 3D-принтера или платформы Стюарта. Он имеет встроенный Arduino. Он намного быстрее, чем AMS1.

    Шаговые двигатели

    Для вашей первой машины используйте шаговые двигатели. Шаговые двигатели поворачиваются на один шаг за раз, обычно на 1,8 градуса (200 шагов на оборот). Математика и система управления просты в изготовлении по сравнению с другими видами двигателей. Шаговые двигатели бывают разных форм, размеров и уровней мощности, например NEMA17 0.3а 12в степперы. Шаговые двигатели также могут использовать микрошаги , , чтобы разделить каждый шаг на (целых) 32 подэтапа.

    Сервоприводы

    Сервоприводы

    обычно используются в радиоуправляемых игрушках. Сервопривод вращается как шаговый двигатель, но не делает шаг за шагом. Используя систему сигнализации, называемую PWM, вы можете указать сервоприводу, какой угол вы хотите, и он перейдет на этот угол так быстро, как только сможет. Обычно сервоприводы имеют точность в пределах 5 градусов, поэтому их использование в ЧПУ во многом зависит от вашего приложения.

    [код товара = ’MOTO-0002, ELEC-0046 ′]

    Блок питания

    Ваш блок питания поддерживает все в рабочем состоянии. Все упомянутые выше платы работают на 12В. Сила тока блока питания должна быть БОЛЬШЕ, чем сила тока контроллера.

    Для AMS1 я бы посоветовал блок питания 12 В и розетку 5,5 x 2,1.

    [код товара = ’ELEC-0001, ELEC-0007, ELEC-0042 ′]

    Для платы RUMBA я бы предложил блок питания мощностью 650 Вт от ПК. Он имеет несколько линий 12 В и 5 В, чтобы дать вам много всего.

    Датчики

    Ваши концевые выключатели не позволят машине переместиться слишком далеко и пораниться. С помощью переключателей машина всегда может вернуться в то же начальное положение, даже если ее выключили. таким образом вы можете перезапустить или повторить задание. Для 2-осевого станка вам нужно от двух до четырех переключателей.

    Заключительные мысли

    Обсудите свои планы на нашем форуме, и мы будем рады помочь вам с выбором, советами по сборке и многим другим.

    Marginally Clever стремится помочь вам добиться успеха.Спросите нас о наших продуктах, мы будем рады помочь.

    См. Также

    Связанные

    Проекты ЧПУ Криса Кокрума, DIY, Электроника, Стрельба, Перезарядка, Построение гитары и Математика.

    Проекты Криса Кокрума с ЧПУ, DIY, Электроника, Стрельба, Перезарядка, Гитаростроение и Математика.

    Проекты с ЧПУ

    Ручка регулировки пороха для Reloader Dillon XL650 / RB550

    Мне надоело искать / использовать гаечный ключ для регулировки пороха, поэтому я сделал этот

    Файлы доступны здесь как SLDPRT и файлы STL.

    Модернизированный зажим для программирования плат AVR / Arduino

    Чтобы уменьшить вероятность поломки, я добавил пост для ограничения перебега.

    Файлы для обновленного программного клипа доступны здесь как SLDPRT и файлы STL.

    Программный зажим для плат AVR / Arduino

    Мы начали производить наши платы WIOT и хотели поставлять их запрограммированными, но без установлен программный заголовок (так как некоторые люди могут захотеть, чтобы плата оставалась незаметной).Мы пытались удерживать заголовок 2×6 в место затем закончилось тем, что купил несколько адаптеров pogo-pin от Тинди, но пока плата программируется, ее неудобно держать.

    Я разработал этот зажим и адаптер, чтобы помочь, и они отлично работают, поэтому я подумал, что поделюсь дизайном. Все винты изготовлены из листового металла с черной оксидной пленкой # 4 x 1/2 “. Винты.

    Файлы для программного ролика доступны здесь как SLDPRT и файлы STL.

    Файлы для адаптера доступны здесь как SLDPRT и файлы STL.

    Стойка для державок Darkon (Tormach-совместимые)

    Я искал стойку для инструментов для державок Darkon, но не нашел ничего доступного в продаже. Я наткнулся на это видео на Youtube, в котором в качестве основной части используется толстый акрил. я затем разработал свой собственный на основе этого вдохновения, но сделал его немного меньше (вмещает 10 штук) и использовал для него ножки, напечатанные на 3D-принтере

    Файлы для основной части доступны здесь как SLDPRT, Файлы DXF и STL.

    Напильники для ножек доступны здесь как SLDPRT. и файлы STL.

    8-дюймовый динамик с использованием недорогих компонентов

    Я построил этот динамик с мыслью, что для хорошего динамика не нужны дорогие компоненты. Я планирую использовать его для фоновой музыки, пока я работаю за компьютером / рабочим столом.

    Я провел некоторое тестирование, и цифры выглядят действительно хорошо, и звучит отлично

    Вот ИЗМЕРЕННАЯ частотная характеристика, которая плоская (+/- 1 дБ) в диапазоне от 50 Гц до 15 кГц.Я очень удивлен ответ такой плоский с этим дизайном. Тестирование проводилось с микрофоном на расстоянии около 4 футов в моем не звукоизоляционный офис. Измерения проводились с использованием звуковой карты Soundblaster SB0490 USB для выхода и подключен эталонный микрофон Behringer ECM8000. к Blue Icicle (аудиовход USB). Развертка проводилась с использованием Программа DFFS3 (пробный режим). Мне нравится это программное обеспечение, и обычно купить его, но я не могу оправдать цену в 330 долларов.Смотрел TrueRTA но, похоже, у него нет опции медленной развертки.

    Технические характеристики

    Внешние размеры
    24 15/16 дюйма в высоту x 14 13/16 дюйма в глубину x 10 3/16 дюйма в ширину
    Внутренние размеры 24 дюйма в высоту x 13 3/4 дюйма в глубину x 9 1/4 дюйма в ширину
    Внутренний объем 1,683 куб. футов (без вентиляционных отверстий / динамиков и т. д.)
    Порт Прямоугольная ширина 9 1/4 дюйма, высота 1 дюйм, глубина 4 дюйма
    Fb 55 Гц
    Управление мощностью 60 Вт RMS
    Импеданс 8 Ом
    Демпфирующий материал Умеренное демпфирование полиэфирным ватином

    Он был построен в двухполосной конфигурации с точкой кроссовера 3500 Гц.

    Список деталей

    и еще одно фото для Джейсона, который сказал, что порт не очень хорошо виден:

    и видео трассировки:

    Изготовление пневматического двигателя из фанеры балтийской березы

    Я видел пневматический двигатель во время серфинга на Youtube на днях и решил создать тот, который можно полностью вырезать из цельного куска фанеры Балтийская береза ​​с помощью фрезерного станка с ЧПУ.Я спроектировал и смоделировал это с нуля в Solidworks (так что что я мог разместить это, не опасаясь нарушения авторских прав). Вот файлы Solidworks, STEP и STL для этого дизайна.

    Разводка изоляции печатной платы

    Вот печатная плата PIC18F2550 размером с визитную карточку, которая была выгравирована на моей новейшей машине. Доска покрыт медью с лужением (с использованием жидкого олова). Компоновка выполнена с помощью FreePCB и разводки изоляции. было сделано с CopperCAM (CamBam теперь тоже может это делать)

    Приспособление для обработки мелких деталей с ЧПУ

    После попытки закрепить заглушку бриджа банджо несколькими способами (около.625 “x 3”) и имея несколько из них вылетели и вылетели из машины, я обнаружил, что у Sears есть маленькие тиски, которые очень хорошо подходит для удержания деталей и использует механизм кулачковой блокировки, который позволяет быстро настроить. я был используя жертвенные блоки на губках и проделав в них паз, который немного (0,025 дюйма) меньше, чем кусок.

    Вот видео установки

    Автор: Крис К. Кокрам

    DIY Станок с ЧПУ для хобби – Toli’s DIY

    Один из самых крутых инструментов, который может иметь домашний мастер, – это, без сомнения, станок с ЧПУ.В настоящее время вы даже можете купить его за относительно небольшую сумму в виде набора прямо на eBay / AliExpress. Несколько лет назад, еще будучи студентом, я решил построить его сам. Я отказался от набора по двум основным причинам. Во-первых, стоимость: в то время эти комплекты не были такими распространенными и дешевыми, как сейчас, и меня беспокоила стоимость. Второе – это желание делать что-то свое и учиться в процессе. Моей целью было построить машину, которая будет достаточна для моих нужд, что означает гравировку панелей для других моих проектов, а также некоторую работу с деревом (в основном МДФ).

    Поскольку это был учебный проект, я не стал сразу покупать все, а вместо этого делал это шаг за шагом. В качестве первого шага я пошел на одну из местных свалок и купил пару шаговых двигателей вместе с разобранным промышленным сканером. Это было очень дешево и казалось прочной базой для модификации для использования в качестве оси X станка. После того, как его разобрали для некоторой необходимой очистки и снова собрали, он действительно выглядел в хорошем состоянии. Он использует ремень для привода рамы, соединенный с Lin Eng.шаговый с коробкой передач 90 градусов. Ремень усилен стальной проволокой, так что казалось, что этого хватит для моих ограниченных потребностей.

    Рис. 1. Рама оси X (перевернутая) промышленного сканера

    Чтобы начать с другой стороны проекта, электроники, я использовал один из дополнительных шаговых двигателей, которые я купил, и собрал драйвер для Это. Драйвер был основан на комбо L297 / L298, которое к настоящему времени сильно устарело. Мой главный интерес заключался в том, чтобы самому построить один из них, научиться делать это и лучше понять, насколько быстро он может управлять двигателем и какой ток (крутящий момент) мне нужно будет достичь.В наши дни мне было бы стыдно собирать что-то столь грубое, как эта плата, но в то время это было простое и достаточно дешевое решение, и оно работало довольно хорошо.

    Рис. 2. Плата драйверов на основе L297 / 8

    . После использования их, чтобы получить представление о требованиях, я начал планировать свои следующие шаги. Что касается электроники, я разработал лучшую плату драйвера с несколькими более современными ИС. Однако, когда я начал оценивать стоимость, я пришел к выводу, что будет дешевле, но доступные китайские платы драйверов на eBay, чем сборка собственной платы с использованием аналогичных микросхем.Поэтому я выбрал более дешевый вариант и заказал 3 драйвера на базе TB6560, а также плату LPT.

    Что касается управления машиной, я изначально играл с идеей написать что-то свое и управлять им с помощью чего-то вроде Arduino Mega. Однако после поиска в Интернете я был очень впечатлен LinuxCNC (он же EMC2) и решил придерживаться этого. Очевидно, это означало получить компьютер с LPT-портом. К счастью для меня, у меня был старый ноутбук HP в хранилище, и у него был порт LPT (да, он был таким старым).Этого было более чем достаточно для игры, но джиттер был ужасным (проверено из LinuxCNC). Поэтому я продолжал искать более подходящий настольный компьютер для этой задачи. После тестирования нескольких компьютеров, в том числе нескольких брендовых ПК, более низкий джиттер был достигнут на более старом (без бренда) компьютере Pentium 4. Я удалил высокопроизводительную видеокарту, отключил гиперпоточность и смог получить очень низкие значения джиттера. Этот же компьютер до сих пор используется в качестве управляющего устройства, он просто лучше всего подходит для этого приложения.

    Далее было спланировать и начать изготовление деталей для самой машины. Некоторые детали, такие как ходовой винт или ось Z, и некоторые более мелкие детали, которые я заказал на eBay. Большинство крупных деталей мне пришлось изготавливать на месте. Спланировав все это на листе бумаги, я пошел в местную мастерскую и заказал алюминиевые детали. Я вырезал их по форме, так как у меня не было инструментов, чтобы сделать это сам. Однако сверление / нарезание резьбы / сборка – это то, что я мог сделать сам. Вы можете увидеть некоторые шаги на следующих рисунках.

    Рис. 3. Сборка боковых стенок для измерений по оси Y Рис. 4. Частичная сборка по оси Z Рис. 5. Дальнейшая сборка оси Z Рис. 6. Первая сборка – передняя Рис. 7. Первая сборка – задняя часть

    . Очевидно, что необходима рабочая платформа, на которую я мог бы установить деталь, над которой я буду работать. Чтобы минимизировать затраты, я собрал его из кусков МДФ.

    Рис. 8. Рабочий стол из МДФ с монтажными шинами

    Я решил использовать один из имеющихся у меня инструментов в качестве шпинделя, опять же, для снижения затрат.Было 2 возможных кандидата: Dremel (модель 125 Вт) или триммер Ryobi (TR-50A). Ryobi намного сильнее, поэтому может показаться лучшим кандидатом. Однако он настолько громкий, что использовать его внутри дома просто невозможно. Из-за этого был выбран Dremel. Я создал очень грубую деталь из МДФ для крепления Dremel к станку, которую я позже использую для создания крепления, которое лучше подходит для Dremel.

    Я соединил все вместе, запитал все это для лабораторного источника питания 24 В и начал экспериментировать с ним, просто чтобы проверить возможности, по крайней мере, в том, что касается разрешения.Одна из них – это знаменитая форма лошади, которую я видел, как некоторые другие люди использовали для подобных тестов.

    Рис. 9. Один из первых экспериментов со станком с ЧПУ

    Я был немного разочарован, обнаружив некоторые проблемы с недорогой электроникой, которые иногда вызывали неправильное движение. Казалось, что попытаться завершить долгую работу невозможно. Чтобы найти источник проблемы, потребовалось довольно много работы, во время которой я изменил платы драйверов, чтобы решить эту проблему.

    Первое, что меня обеспокоило, это то, что платы драйверов не следовали правильной последовательности включения / выключения.Поэтому я снял с них входящий в комплект стабилизатор 5 В и разработал небольшую печатную плату, которая обеспечит правильную работу. Сначала он создаст питание логики 5 В, а только затем включит шину более высокого напряжения. При отключении питания конденсатор большой емкости C1 будет удерживать шину 5 В в активном состоянии еще некоторое время после падения напряжения на шине 12 В. Упрощенная схема приведена ниже. Собранная плата немного модифицирована по сравнению с упрощенной схемой, чтобы ограничить пусковой ток от источника питания при включении, чтобы предотвратить его переход в режим защиты.Все источники питания 12 В могут быть связаны вместе, и на самом деле они могут быть выше 12 В, если реле выбраны соответствующим образом. E-stop – это дополнительный аварийный выключатель, который отключит высоковольтную шину, идущую к драйверам, в случае, если их нужно остановить в спешке.

    Рис. 10. Схема управления последовательностью запуска / выключения

    Это, вместе с некоторыми дополнительными развязывающими заглушками, а также несколько других небольших модификаций, похоже, помогли добиться цели, и проблемы исчезли. Я также решил заменить лабораторный блок питания, который мне был нужен в другом месте, на модифицированный блок питания для ПК, поэтому использовал шины 12 В.Этого было достаточно для моих нужд, так как я все равно не гонялся за экстремальной скоростью. Все платы были прикреплены к куску МДФ вместе с большим алюминиевым радиатором для охлаждения всех микросхем драйвера.

    Рис. 11. LPT BoB, драйверы двигателя и плата управления питанием

    В таком состоянии машина оставалась довольно долгое время, и я использовал его для создания довольно многих деталей. В том числе алюминиевые панели для моих проектов в области электроники. К ним относятся усилитель для наушников M³, о котором я поделился в блоге, а также другие проекты, такие как ЦАП γ2, показанный ниже (да, я заменил эти уродливые винты).

    Рис. 12. Алюминиевая панель, изготовленная на станке с ЧПУ

    За прошедшие годы станок претерпел несколько модификаций. Эта немного измененная электроника, такая как дополнительная плата Arduino, которая должна была позволить использовать станок с ЧПУ как 3D-принтер. Это было сделано путем добавления небольшой коммутационной платы к плате RAMPS контроллера принтера для отправки логических сигналов существующим драйверам двигателя. Я даже заменил опору оси Z на экструдер с подогревом для принтера и заменил блок питания на более мощный, чтобы поддерживать мощность дополнительных нагревателей.

    Рис. 13. Модифицированная электроника Рис. 14. Монтаж экструдера – частично собран

    В конце концов я решил не использовать эту машину в качестве 3D-принтера. Хотя мне удалось напечатать несколько основных форм, на то, чтобы правильно их откалибровать, потребовалось слишком много времени. Это было проблемой, потому что это должно было быть чем-то, что можно было быстро переключать между режимами принтера / ЧПУ, что невозможно, если калибровка требуется каждый раз. Кроме того, высокая подвижная масса ЧПУ означает, что ускорение просто не такое быстрое, как у небольших и легких принтеров, что приводит к более медленной печати.

    Помимо этих изменений, я также модифицировал часть станка с ЧПУ. Это включало замену Dremel (который вышел из строя через несколько лет) на более мощный шпиндель мощностью 500 Вт с регулируемой скоростью. Он имеет воздушное охлаждение и в настоящее время довольно дешев, поэтому он был легкой заменой сломавшемуся дремелю. Кроме того, я заменил шаговые двигатели оси Y / Z на более совершенные двигатели, продаваемые Lin Eng., Такие же, как и двигатель оси X. Это, без сомнения, улучшило скорость и крутящий момент машины.Более актуальное изображение всей машины можно увидеть ниже. В кабелях двигателя используются разъемы GX16, поэтому машину можно отделить от управляющей электроники, расположенной под ней рядом с управляющим компьютером.

    Рис. 15. Окончательное состояние DIY-станка с ЧПУ

    Я мог бы отредактировать этот пост в будущем, добавив немного больше информации о программном обеспечении, основываясь на моем ограниченном опыте проектирования и программного обеспечения для управления станком. Замечу, что управление машиной в моем случае по-прежнему осуществляется LinuxCNC.Это очень способный (и бесплатный) инструмент, который может сделать гораздо больше, чем я от него прошу. Однако его очень легко изучить и использовать, и я не вижу причин его заменять. Для тех из вас, кто не хочет использовать ПК для этой работы, есть другие варианты, такие как GRBL с использованием простой платы Arduino.

    Самодельная система ЧПУ [1/2]

    Здесь я описываю конструкцию моей собственной разработки ЧПУ для управления моим фрезерным станком (часть 1 из 2).

    Примечание:
    Этому проекту несколько лет, и с сегодняшней точки зрения в некоторых частях он нуждается в улучшении.Поэтому я бы не рекомендовал тиражировать этот контроль 1: 1. Он должен служить только возможной отправной точкой для других проектов.

    Требования

    Мои требования к электронике были:
    • 4 оси (но сначала используются только 3 оси)
    • Переключаемый шпиндель и охлаждение
    • Microstep (с электронным переключением)
    • USB-порт
    • Концевые выключатели для предотвращения дополнительный привод на аппаратной стороне (не только программным)
    • Три режима работы на выбор:
      • ПК (управление фрезерным станком с помощью программного обеспечения)
      • Внешний (управление фрезерным станком через внешний порт на возможное будущее расширение)
      • Manuelly (Ручное управление → отключение фазных токов)
    • Дисплей с выбором меню
    • Вход для датчика длины
    • Различные светодиоды

    Базовая реализация

    Немного подумав о том, как реализовать мою пожеланий, я решил по следующему принципу [немецкий]:

    ПК подключаю через USB р. ort на SmoothStepper, который преобразует команды в параллельный порт.

    Краткое примечание:

    Некоторые из вас, несомненно, сейчас подумают, почему я просто не купил стандартный USB → параллельный преобразователь за небольшие деньги. Вначале я тоже так думал, но после долгих исследований пришел к выводу, что это не сработает, потому что такой преобразователь интегрирован с USB-драйвером в Windows, но программное обеспечение для фрезерования требует прямого доступа к интерфейсу. SmoothStepper довольно дорогой, но, к сожалению, не так много альтернатив, если вы хотите иметь порт USB.Однако, насколько мне известно, SmoothStepper работает только с программным обеспечением “Mach4”.

    Позади SmoothStepper находится оптоплата для гальванического отделения ПК от контроллера. Затем оптоплата подключается к трем схемным платам моей собственной разработки, к которым могут быть подключены все элементы ввода-вывода.

    Платы управления

    Печатная плата «Switch»

    Эта печатная плата выполняет следующие основные задачи:
    • Центральный интерфейс, к которому подключаются платы «µC» и «Концевые выключатели (оси)»
    • Переключение между ПК и внешним источник сигнала
    • Аварийный останов
    • Подключение к выходным каскадам

    Здесь вы можете скачать электрическую схему в формате PDF: Принципиальная схема: плата «Переключатель» [немецкий]

    Монтажная плата «Концевые выключатели (оси)»

    Основными задачами этой печатной платы являются:
    • Подключение концевых выключателей
    • Предотвращение дальнейшего движения осей со стороны оборудования, когда концевой выключатель активен

    Здесь вы можете скачать электрическую схему в формате PDF: Схема схема: плата “Концевые выключатели (оси)” [немецкий]

    Печатная плата “µC”

    Основными задачами этой монтажной платы являются:
    • Управление выбором меню (отображение)
    • Управление реле шпинделя и охлаждения
    • Формирование сигнала для мультиплексора платы «Switch»
    • Установка количества шагов выходных каскадов

    Здесь Вы можете скачать принципиальную схему в формате PDF: Принципиальная схема: плата «µC» [немецкий]

    Выходные каскады

    Конечно, я купил микрошаговые выходные каскады, потому что сборка их на себе потребовала бы слишком много времени.

    Автор: alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *