Щеточный узел генератора – Как заменить щётки генератора

Содержание

Как заменить щётки генератора

Автомобильный генератор предназначен для преобразования механической энергии вращения коленчатого вала двигателя в электрическую. Он выполняет две основные функции: подзарядки аккумулятора и питания выработанной электроэнергией систем электроснабжения автомобиля. В корпусе генератора переменного тока наряду с ротором и статором также размещены щеточный узел, регулятор напряжения и выпрямительный блок.

Щетки – наиболее уязвимый элемент генератора. В момент их контакта с токосъемными кольцами скорость вращения вала генератора достигает 12-14 тыс. об/мин, из-за чего возникает ускоренный износ контактирующих поверхностей. Своевременная замена щеток генератора позволяет предупредить поломку щеточного узла и обеспечить бесперебойное электроснабжение автомобиля в процессе движения.

Щётки генератора: какую функцию выполняют?

При контакте с расположенными на валу вращающегося ротора токосъемными кольцами щетки генератора передают ток от аккумуляторной батареи на обмотки возбуждения ротора. Так создаётся электромагнитное поле.

Под воздействием переменного магнитного поля вращающегося ротора в катушках обмоток статора наводится электродвижущая силаи создается переменный электрический ток. Ток, проходя через диодный мост (выпрямительный блок генератора) преобразуется в постоянный. Именно такой необходим для подпитки аккумулятора и обеспечения функциональности электрооборудования автомобиля.

Когда нужно менять щётки: основные признаки

Замену рекомендуется выполнять по мере их износа, но не реже 1 раза в 4 года (или по достижении пробега в 50 тыс. км). Однако в сложных условиях эксплуатации критический износ щеточных стержней, изготовленных из графита или его соединений с медью (бронзой, алюминием), может наступить раньше названного срока. Щётки должны выступать не менее чем на 5 мм (норма – 8-10 мм). Именно этот показатель является самым важным – замерив длину, можно понять, есть ли проблема.

На то, что нужна замена щеток, может указывать появление некоторых симптомов, в том числе:

  • отсутствие реакции стартера при повороте ключа зажигания в положение ON – это может произойти, если стержни перекошены, отсутствует их достаточное прилегание к поверхности токосъемных колец;
  • медленное вращение маховика двигателя стартером;
  • снижение мощности освещения салона, слабый или мигающий свет фар, габаритных огней;
  • внезапное отключение электроприборов;
  • быстрая разрядка аккумуляторной батареи, после которой зарядить ее становится практически невозможно.

Чтобы определить причину нарушений в работе генератора, необходимо провести точную диагностику неисправностей генератора и, в частности, щеточного узла.

Как проверить щётки генератора?

Щеточный узел, как правило, объединен с регулятором напряжения. Контакт с токосъемными кольцами ротора осуществляется за счет усилия пружин. Неисправность щеток генератора легко определить при визуальном осмотре (признак – длина выступающих концов менее 5 мм). Также нужно проверить диаметр токосъемных колец (норма – 14,2-14,4 мм, минимум – 12,8 мм). Не допускается наличие выработок на контактных поверхностях. Изношенные токосъемные кольца нужно менять.

ddcar.ru

Автомобильный генератор: устройство и принцип работы

Введение

Автомобильный генератор, непременно входящий в состав оборудования любого транспортного средства, можно сравнить с ролью электростанции в снабжении энергией потребностей народного хозяйства.

Он является основным (при работающем двигателе) источником электроэнергии в машине и предназначен через электрические провода, опутывающие весь автомобиль изнутри, поддерживать заданное и стабилизированное напряжение электросети автомашины. Принцип работы автомобильного генератора основан на теоретическом представлении работы классического электрического генератора, трансформирующего неэлектрические виды энергии в электрическую.

В конкретном случае автомобильного генератора выработка электрической энергии происходит посредством трансформации механического вращательного движения коленчатого вала моторного агрегата.

Общий принцип работы

Теоретические предпосылки, лежащие в основе схемы функционирования электрогенераторов, базируются на широко известном случае электромагнитной индукции, трансформирующей один вид энергии (механический) в другой (электрический). Действие этого эффекта проявляется при помещении медных проводов, уложенных в виде катушки, и помещённых в магнитное поле переменной величины.

Это способствует появлению в проводах электродвижущей силы, которая приводит в движение электроны. Это движение электрических частиц порождает в проводах ток, а на оконечных контактах проводов возникает электрическое напряжение, по уровню напрямую зависящее от того, с какой скоростью изменяется магнитное поле. Выработанное таким образом переменное напряжение необходимо подавать во внешнюю сеть.

В автомобильном генераторе для создания магнитного явления используются обмотки статора, в котором под воздействием поля вращается якорь ротора. На валу якоря размещены токопроводящие обмотки, подключенные к специальным контактам в виде колец. Эти кольцевые контакты также закреплены на валу и вращаются вместе с ним. С колец с помощью токопроводящих щёток и происходит съём электрического напряжения и подача выработанной энергии электропотребителям транспортного средства.

Запуск генератора осуществляется посредством приводного ремня от фрикционного колеса коленчатого вала моторного агрегата, который для начала работы запускается от аккумуляторного источника. Для обеспечения эффективной трансформации производимой энергии диаметр шкива генератора должен заметно уступать в диаметре фрикционному колесу коленвала. Это обеспечивает более высокие обороты вала генераторного агрегата. В этих условиях он функционирует с повышением своего КПД и обеспечивает повышенные токовые характеристики.

Требования

Чтобы обеспечить безопасную работу в заданном диапазоне характеристик всего комплекса электроустройств работа автомобильного генератора должна удовлетворять высоким техническим параметрам и гарантировать выработку стабильного во времени уровня напряжения.

Основным требованием к автомобильным генераторам является стабильная выработка тока с требуемыми мощностными характеристиками. Эти параметры призваны обеспечивать:

  • подзарядку аккумуляторной батареи;
  • одновременное функционирование всего задействованного электрооборудования;
  • стабильное напряжение электросети в широком диапазоне изменения частот вращения вала ротора и динамически подключаемых нагрузок;

Кроме вышеперечисленных параметров, генератор конструируется с учётом его работы в условиях критических нагрузок и должен обладать прочным корпусом, иметь при этом малую массу и приемлемые габаритные размеры, обладать невысокими шумовыми параметрами и приемлемым уровнем производимых промышленных радиопомех.

Устройство и конструкция автомобильного генератора

Крепление

Генератор автомобиля можно легко обнаружить в моторном отсеке, подняв крышку капота. Там он закреплён болтами и специальными уголками к фронтальной части двигателя. На корпусе генератора размещены крепёжные лапы и натяжная проушина устройства.

Корпус

В корпусной коробке генератора установлены почти все блоки агрегата. Он производится с применением металлов лёгких сплавов на основе алюминия, который превосходно подходит для выполнения задачи по отводу тепла. Конструкция корпуса представляет собой соединение двух основных частей:

  • фронтальной крышки со стороны контактных колец;
  • торцевой заглушки со стороны привода;

На фронтальной крышке закреплены щётки, регулятор напряжения и выпрямительный мост. Объединение крышек в единую конструкцию корпуса происходит посредством специальных болтов.

Внутренние поверхности крышек фиксируют внешнюю поверхность статора, закрепляя его положение. Также важными конструктивными узлами корпусной конструкции являются фронтальный и тыловой подшипники, которые обеспечивают должные условия функционирования ротора и закрепляют его на крышке.

Ротор

Конструкция роторного узла состоит из схемы электромагнита с обмоткой возбуждения, смонтированной на несущем валу. Сам вал изготавливается из легированной стали дополненной свинцовыми присадками.

На вал ротора также закреплены медные контактные кольца и специальные подпружиненные щёточные контакты. Контактные кольца отвечают за подачу тока на ротор.

Статор

Статорный узел — это конструкция, состоящая из сердечника с многочисленными пазами (в большинстве используемых случаев их количество равно 36), в которые уложены витки трёх обмоток, имеющих между собой электрический контакт или по схеме «звезда», или по схеме «треугольник». Сердечник, именуемый также магнитопроводом, изготовлен в виде полой сферической окружности из металлических пластин, стянутых между собой заклёпками или заваренных в единый монолитный блок.

Для повышения на статорных обмотках уровня напряжённости магнитного поля в процессе производства этих пластин используется трансформаторное железо с усиленными магнитными параметрами.

Регулятор напряжения

Этот электронный узел разработан для компенсации нестабильности вращения роторного вала, который соединён с коленвалом силового агрегата автомобиля, функционирующего в широком интервале изменения числа оборотов. Регулятор напряжения подключен к графитовым токосъёмникам и способствует стабилизации заданного постоянного выходного напряжения, поступающего в электросеть машины. Этим он гарантирует бесперебойную эксплуатацию электрооборудования.

По своему конструкторскому решению регуляторы подразделяются на две группы:

  • дискретные;
  • интегральные;

К первому типу относятся электронные блоки, на конструктивной плате которых смонтированы радиоэлементы, разработанные с применением дискретной (корпусной) технологии, отличающейся неоптимальной плотностью компоновки элементов.

Ко второму типу относится большинство современных электронных блоков регулировки напряжения, разработанных с учётом интегрального способа компоновки радиоэлементов, изготовленных на основе тонкоплёночной микроэлектронной технологии.

Выпрямитель

Ввиду того что для правильного функционирования бортовых приборов требуется постоянное напряжение, выход генератора запитывает сеть автомашины через электронный узел, собранный на мощных выпрямительных диодах.

Этот 3-фазный выпрямитель, состоящий из шести полупроводниковых диодов, три из которых подключены на минусовый вывод («массу»), а три других подсоединены к плюсовому контакту генератора, предназначен для трансформации переменного напряжения в постоянное. Физически блок выпрямителя состоит из подковообразного металлического теплоотвода с размещёнными на нём выпрямительными диодами.

Щёточный узел

Этот узел имеет вид пластмассовой конструкции и сконструирован для передачи напряжения на контактные кольца. Содержит внутри корпуса несколько элементов, главные из которых — подпружиненные щёточные скользящие контакты. Они бывают двух модификаций:

  • электрографитные;
  • меднографитные (более износостойкие).

Конструктивно щёточный узел зачастую изготавливается в одном блоке с регулятором напряжения.

Система охлаждения

Отвод избыточного тепла, которое образуется внутри корпуса генератора, обеспечивают вентиляторы, закреплённые на его валу ротора. Генераторы, у которых щётки, регулятор напряжения и выпрямительный блок вынесены наружу, за пределы его корпуса и защищённые специальным кожухом, забирают свежий воздух через специальные охлаждающие щели в нём.

Крыльчатка внешнего охлаждения генератора

Устройство классической конструкции, с размещением вышеупомянутых узлов внутри генераторного корпуса, обеспечивают поступление свежего воздушного потока со стороны контактных колец.

Режимы работы

Для уяснения принципа работы автомобильного генератора необходимо представлять и режимы его эксплуатации.

  • начальный период запуска двигателя;
  • рабочий режим двигателя.

В первоначальный момент запуска двигателя основным и единственным потребителем, расходующим электрическую энергию, является стартёр. Генератор ещё не участвует в процессе выработки энергии, и поступление электроэнергии в этот момент предоставляет только аккумулятор. Ввиду того что сила потребляемого тока при этой схеме очень велика и может достигать сотен ампер, АКБ приходится интенсивно расходовать запасённую ранее электрическую энергию.

После окончания процесса запуска двигатель выходит на рабочий режим, а генератор при этом становится полноправным поставщиком электропитания. Он вырабатывает ток, необходимый для функционирования различного электрооборудования, подключающегося в работу. Вместе с этой функцией генератор производит заряд аккумулятора при работающем двигателе.

После набора аккумулятором необходимого резервного заряда, необходимость в процессе подзарядки уменьшается, потребление тока заметно падает, а генератор продолжает поддерживать работу только электрооборудования. По мере подключения в работу других ресурсоёмких потребителей электроэнергии, мощности генератора в отдельные моменты времени может не хватать для обеспечения суммарной нагрузки и тогда в общую работу включается аккумулятор, работа которого в этом режиме характеризуется при этом быстрой потерей заряда.

Заключение

Автомобильный генератор сконструирован и рассчитан на электропитание штатных электроприборов и подзарядку аккумулятора трансформацией механической энергии коленвала силового агрегата в электрическую.

Генератор располагается под капотом на фронтальной части двигателя. Конструкция генератора содержит в себе основные узлы — корпус, статор, ротор, подшипники, регулятор напряжения, выпрямительный мост, щёточный узел и вентиляторы.

carextra.ru

Техническая информация о стартере и генераторе. О ремонте стартера и ремонте генератора.

Генератор предназначен для обеспечения питанием электропотребителей, входящих в систему электрооборудования, и зарядки аккумулятора при работающем двигателе автомобиля. Выходные параметры генератора должны быть таковы, чтобы в любых режимах движения автомобиля не происходил прогрессивный разряд аккумулятора. Кроме того, напряжение в бортовой сети автомобиля, питаемой генератором, должно быть стабильно в широком диапазоне частот вращения и нагрузок. Последнее требование вызвано тем, что аккумуляторная батарея весьма чувствительна к степени стабильности напряжения. Слишком низкое напряжение вызывает недозаряд батареи и, как следствие, затруднения с пуском двигателя, слишком высокое напряжение приводит к перезаряду батареи, и ее ускоренному выходу из строя. Не менее чувствительны к величине напряжения лампы освещения и сигнализация, акустическое оборудование.

Генератор – достаточно надежное устройство, способное выдержать повышенные вибрации двигателя, высокую подкапотную температуру, воздействие влажной среды, грязи и других факторов. Принцип работы электрогенератора и его принципиальное конструктивное устройство одинаковы у всех автомобильных генераторов, независимо от того, где они выпускаются.

Принцип действия генератора

В основе работы генератора лежит эффект электромагнитной индукции. Если катушку, например, из медного провода, пронизывает магнитный поток, то при его изменении на выводах катушки появляется переменное электрическое напряжение. И наоборот, для образования магнитного потока достаточно пропустить через катушку электрический ток. Таким образом, для получения переменного электрического тока требуются катушка, по которой протекает постоянный электрический ток, образуя магнитный поток, называемая обмоткой возбуждения и стальная полюсная система, назначение которой – подвести магнитный поток к катушкам, называемым обмоткой статора, в которых наводится переменное напряжение. Эти катушки помещены в пазы стальной конструкции, магнитопровода (пакета железа) статора. Обмотка статора с его магнитопроводом образует собственно статор генератора, его важнейшую неподвижную часть, в которой образуется электрический ток, а обмотка возбуждения с полюсной системой и некоторыми другими деталями (валом, контактными кольцами) ротор, его важнейшую вращающуюся часть. Питание обмотки возбуждения может осуществляться от самого генератора. В этом случае генератор работает на самовозбуждении. При этом остаточный магнитный поток в генераторе, т.е. поток, который образуют стальные части магнитопровода при отсутствии тока в обмотке возбуждения, невелик и обеспечивает самовозбуждение генератора только на слишком высоких частотах вращения. Поэтому в схему генератора, там где обмотки возбуждения не соединены с аккумуляторной батареей, вводят такое внешнее соединение (обычно через контрольную лампу  состояния генераторной установки). Ток, поступающий через эту лампу в обмотку возбуждения после включения выключателя зажигания и обеспечивает первоначальное возбуждение генератора. Сила этого тока не должна быть слишком большой, чтобы не разряжать аккумуляторную батарею, но и не слишком малой, т.к. в этом случае генератор возбуждается при слишком высоких частотах вращения, поэтому фирмы-изготовители оговаривают необходимую мощность контрольной лампы – обычно 2…3 Вт.

При вращении ротора напротив катушек обмотки статора появляются попеременно “северный”, и “южный” полюсы ротора, т.е. направление магнитного потока, пронизывающего катушку, меняется, что и вызывает появление в ней переменного напряжения.

За редким исключением генераторы зарубежных фирм, также как и отечественные, имеют шесть “южных” и шесть “северных” полюсов в магнитной системе ротора. В этом случае частота f в 10 раз меньше частоты вращения  ротора генератора. Поскольку свое вращение ротор генератора получает от коленчатого вала двигателя, то по частоте переменного напряжения генератора можно измерять частоту вращения коленчатого вала двигателя. Для этого у генератора делается вывод обмотки статора, к которому и подключается тахометр. При этом напряжение на входе тахометра имеет пульсирующий характер, т.к. он оказывается включенным параллельно диоду силового выпрямителя генератора.

Обмотка статора генераторов зарубежных и отечественных фирм – трехфазная. Она состоит из трех 3 частей, называемых обмотками фаз или просто фазами, напряжение и токи в которых смещены друг относительно друга на треть периода, т.е. на 120 электрических градусов. Фазы могут соединяться в “звезду” или “треугольник”. При этом различают фазные и линейные напряжения и токи. Фазные напряжения  действуют между концами обмоток фаз, а токи  протекают в этих обмотках, линейные же напряжения  действуют между проводами, соединяющими обмотку статора с выпрямителем. В этих проводах протекают линейные токи . Естественно, выпрямитель выпрямляет те величины, которые к нему подводятся, т. е. линейные. При соединении в “треугольник” фазные токи меньше линейных, в то время как у “звезды” линейные и фазные токи равны. Это значит, что при том же отдаваемом генератором токе, ток в обмотках фаз, при соединении в “треугольник”, значительно меньше, чем у “звезды”. Поэтому в генераторах большой мощности довольно часто применяют соединение в “треугольник”, т.к. при меньших токах обмотки можно наматывать более тонким проводом, что технологичнее. Однако линейные напряжения у “звезды” больше фазного, в то время как у “треугольника” они равны и для получения такого же выходного напряжения, при тех же частотах вращения “треугольник” требует соответствующего увеличения числа витков его фаз по сравнению со “звездой”.

Более тонкий провод можно применять и при соединении типа “звезда”. В этом случае обмотку выполняют из двух параллельных обмоток, каждая из которых соединена в “звезду”, т.е. получается “двойная звезда”. Выпрямитель для трехфазной системы содержит шесть силовых полупроводниковых диодов, три из которых соединены с выводом “+” генератора, а другие три с выводом “—” (“массой”). При необходимости форсирования мощности генератора применяется дополнительное плечо выпрямителя. Такая схема выпрямителя может иметь место только при соединении обмоток статора в “звезду”, т. к. дополнительное плечо запитывается от “нулевой” точки “звезды”.

У многих  генераторов зарубежных фирм обмотка возбуждения подключается к собственному выпрямителю. Такое подключение обмотки возбуждения препятствует протеканию через нее тока разряда аккумуляторной батареи при неработающем двигателе автомобиля. Полупроводниковые диоды находятся в открытом состоянии и не оказывают существенного сопротивления прохождению тока при приложении к ним напряжения в прямом направлении и практически не пропускают ток при обратном напряжении.  Следует обратить внимание на то, что под термином “выпрямительный диод”, не всегда скрывается привычная конструкция, имеющая корпус, выводы и т.д. Иногда это просто полупроводниковый кремниевый переход, герметизированный на теплоотводе

Применение в регуляторе напряжения электроники и особенно, микроэлектроники, т.е. применение полевых транзисторов или выполнение всей схемы регулятора напряжения на монокристалле кремния, потребовало введения в генератор элементов ее защиты от скачков высокого напряжения, возникающих, например, при внезапном отключении аккумуляторной батареи, сбросе нагрузки. Такая защита обеспечивается тем, что диоды силового моста заменены стабилитронами. Отличие стабилитрона от выпрямительного диода состоит в том, что при воздействии на него напряжения в обратном направлении, он не пропускает ток лишь до определенной величины этого напряжения (напряжением стабилизации).

Обычно в силовых стабилитронах напряжение стабилизации составляет 25… 30 В. При достижении этого напряжения стабилитроны “пробиваются “, т.е. начинают пропускать ток в обратном направлении, причем в определенных пределах изменения силы этого тока напряжение на стабилитроне, а, следовательно, и на выводе “+” генератора остается неизменным, не достигающем опасных для электронных узлов значений. Свойство стабилитрона поддерживать на своих выводах постоянство напряжения после “пробоя” используется и в регуляторах напряжения.

Принцип действия регулятора напряжения (реле регулятора)

В настоящее время все генераторы оснащаются полупроводниковыми электронными регуляторами напряжения, как правило, встроенными внутрь генератора. Схемы их исполнения и конструктивное оформление могут быть различны, но принцип работы у всех регуляторов одинаков. Напряжение генератора без регулятора зависит от частоты вращения его ротора, магнитного потока, создаваемого обмоткой возбуждения, а, следовательно, от силы тока в этой обмотке и величины тока, отдаваемого генератором потребителям. Чем больше частота вращения и сила тока возбуждения, тем больше напряжение генератора, чем больше сила тока его нагрузки – тем меньше это напряжение.

Функцией регулятора напряжения является стабилизация напряжения при изменении частоты вращения и нагрузки за счет воздействия на ток возбуждения. Конечно, можно изменять ток в цепи возбуждения введением в эту цепь дополнительного резистора, как это делалось в прежних вибрационных регуляторах напряжения, но этот способ связан с потерей мощности в этом резисторе и в электронных регуляторах не применяется. Электронные регуляторы изменяют ток возбуждения путем включения и отключения обмотки возбуждения от питающей сети, при этом меняется относительная продолжительность времени включения обмотки возбуждения.

Если для стабилизации напряжения требуется уменьшить силу тока возбуждения, время включения обмотки возбуждения уменьшается, если нужно увеличить – увеличивается.

Конструктивное исполнение генераторов

По своему конструктивному исполнению генераторные установки можно разделить на две группы – генераторы традиционной конструкции с вентилятором у приводного шкива и генераторы так называемой «компактной» конструкции с двумя вентиляторами во внутренней полости генератора. Обычно «компактные» генераторы оснащаются приводом с повышенным передаточным отношением через поликлиновый ремень и поэтому, по принятой у некоторых фирм терминологии, называются высокоскоростными генераторами. При этом внутри этих групп можно выделить генераторы, у которых щеточный узел расположен во внутренней полости генератора между полюсной системой ротора и задней крышкой (Mitsubishi, Hitachi), и генераторы, где контактные кольца и щетки расположены вне внутренней полости (Bosch, Valeo). В этом случае генератор имеет кожух, под которым располагается щеточный узел, выпрямитель и, как правило, регулятор напряжения.

Любой генератор содержит статор с обмоткой, зажатый между двумя крышками –передней, со стороны привода, и задней, со стороны контактных колец. Крышки, отлитые из алюминиевых сплавов, имеют вентиляционные окна, через которые воздух продувается вентилятором сквозь генератор.

Генераторы традиционной конструкции снабжены вентиляционными окнами только в торцевой части, генераторы «компактной» конструкции еще и на цилиндрической части –  над лобовыми сторонами обмотки статора. «Компактную» конструкцию отличает также сильно развитое оребрение, особенно в цилиндрической части крышек. На крышке со стороны контактных колец крепятся щеточный узел, который часто объединен с регулятором напряжения, и выпрямительный узел. Крышки обычно стянуты между собой тремя или четырьмя винтами, причем статор оказывается зажат между крышками, посадочные поверхности которых охватывают статор по наружной поверхности. Иногда статор полностью утоплен в передней крышке и не упирается в заднюю крышку (Denso). Существуют конструкции, у которых средние листы пакета статора выступают над остальными, и они являются посадочным местом для крышек. Крепежные лапы и натяжное ухо генератора отливаются заодно с крышками, причем, если крепление двухлапное, то лапы имеют обе крышки, если однолапное – только передняя. Впрочем, встречаются конструкции, у которых однолапное крепление осуществляется стыковкой приливов задней и передней крышек, а также двухлапные крепления, при котором одна из лап, выполненная штамповкой из стали, привертывается к задней крышке, как, например, у некоторых генераторов фирмы Paris-Rhone прежних выпусков. При двухлапном креплении в отверстии задней лапы обычно располагается дистанционная втулка, позволяющая при установке генератора выбирать зазор между кронштейном двигателя и посадочным местом лап. Отверстие в натяжном ухе может быть одно с резьбой или без, но встречается и несколько отверстий, чем достигается возможность установки этого генератора на разные марки двигателей. Для этой же цели применяют два натяжных уха на одном генераторе.

Особенностью автомобильных генераторов является вид полюсной системы ротора. Она содержит две полюсные половины с выступами – полюсами клювообразной формы по шесть на каждой половине. Полюсные половины выполняются штамповкой и могут иметь выступы – полувтулки. В случае отсутствия выступов при напрессовке на вал между полюсными половинами устанавливается втулка с обмоткой возбуждения, намотанной на каркас, при этом намотка осуществляется после установки втулки внутрь каркаса. Обмотка возбуждения в сборе с ротором пропитывается лаком. Клювы полюсов по краям обычно имеют скосы с одной или двух сторон для уменьшения магнитного шума генераторов. В некоторых конструкциях для той же цели под острыми конусами клювов размещается антишумовое немагнитное кольцо, расположенное над обмоткой возбуждения. Это кольцо предотвращает возможность колебания клювов при изменении магнитного потока и, следовательно, излучения ими магнитного шума. После сборки производится динамическая балансировка ротора, которая осуществляется высверливанием излишка материала у полюсных половин. На валу ротора располагаются также контактные кольца, выполняемые чаще всего из меди, с опрессовкой их пластмассой. К кольцам припаиваются или привариваются выводы обмотки возбуждения. Иногда кольца выполняются из латуни или нержавеющей стали, что снижает их износ и окисление, особенно при работе во влажной среде. Диаметр колец при расположении щеточно-контактного узла вне внутренней полости генератора не может превышать внутренний диаметр подшипника, устанавливаемого в крышку со стороны контактных колец, т.к. при сборке подшипник проходит над кольцами. Малый диаметр колец способствует кроме того уменьшению износа щеток. Именно по условиям монтажа некоторые фирмы применяют в качестве задней опоры ротора роликовые подшипники, т.к. шариковые того же диаметра имеют меньший ресурс.

Валы роторов выполняются, как правило, из мягкой автоматной стали, однако, при применении роликового подшипника, ролики которого работают непосредственно по концу вала со стороны контактных колец, вал выполняется из легированной стали, а цапфа вала цементируется и закаливается. На конце вала, снабженном резьбой, прорезается паз под шпонку для крепления шкива. Однако, во многих современных конструкциях шпонка отсутствует. В этом случае торцевая часть вала имеет углубление или выступ под ключ в виде шестигранника. Это позволяет удерживать вал от проворота при затяжке гайки крепления шкива, или при разборке, когда необходимо снять шкив и вентилятор.

Щеточный узел – это пластмассовая конструкция, в которой размещаются щетки т.е. скользящие контакты.

В автомобильных генераторах применяются щетки двух типов – меднографитные и электрографитные. Последние имеют повышенное падение напряжения в контакте с кольцом по сравнению с меднографитными, что неблагоприятно сказывается на выходных характеристиках генератора, однако они обеспечивают значительно меньший износ контактных колец. Щетки прижимаются к кольцам усилием пружин. Обычно щетки устанавливаются по радиусу контактных колец, но встречаются и так называемые реактивные щеткодержатели, где ось щеток образует угол с радиусом кольца в месте контакта щетки. Это уменьшает трение щетки в направляющих щеткодержателя, и тем обеспечивается более надежный контакт щетки с кольцом. Часто щеткодержатель и регулятор напряжения образуют неразборный единый узел.

Выпрямительные узлы применяются двух типов – либо это пластины-теплоотводы, в которые запрессовываются (или припаиваются) диоды силового выпрямителя или на которых распаиваются и герметизируются кремниевые переходы этих диодов, либо это конструкции с сильно развитым оребрением, в которых диоды, обычно таблеточного типа, припаиваются к теплоотводам. Диоды дополнительного выпрямителя имеют обычно пластмассовый корпус цилиндрической формы, либо в виде горошины или выполняются в виде отдельного герметизированного блока, включение в схему которого осуществляется шинками. Включение выпрямительных блоков в схему генератора осуществляется распайкой или сваркой выводов фаз на специальных монтажных площадках выпрямителя или винтами. Наиболее опасным для генератора и особенно для проводки автомобильной бортовой сети является перемыкание пластин-теплоотводов, соединенных с “массой” и выводом “+” генератора, случайно попавшими между ними металлическими предметами или проводящими мостиками, образованными загрязнением, т.к. при этом происходит короткое замыкание по цепи аккумуляторной батареи, что может привести к возгоранию. Во избежание этого пластины и другие части выпрямителя генераторов некоторых фирм частично или полностью покрывают изоляционным слоем. В монолитную конструкцию выпрямительного блока теплоотводы объединяются в основном монтажными платами из изоляционного материала, армированными соединительными шинками.

Подшипниковые узлы генераторов это, как правило, радиальные шариковые подшипники с одноразовой закладкой пластичной смазки на весь срок службы и одно или двухсторонними уплотнениями, встроенными в подшипник. Роликовые подшипники применяются только со стороны контактных колец и достаточно редко, в основном, американскими фирмами (Delco Remy, Motorcraft). Посадка шариковых подшипников на вал со стороны контактных колец обычно плотная, со стороны привода – скользящая, в посадочное место крышки наоборот – со стороны контактных колеи – скользящая, со стороны привода – плотная. Так как наружная обойма подшипника со стороны контактных колец имеет возможность проворачиваться в посадочном месте крышки, то подшипник и крышка могут вскоре выйти из строя, возникнет задевание ротора за статор. Для предотвращения проворачивания подшипника в посадочное место крышки помещают различные устройства – резиновые кольца, пластмассовые проставки, гофрированные стальные пружины и т.п. Конструкцию регуляторов напряжения в значительной мере определяет технология их изготовления. При изготовлении схемы на дискретных элементах, регулятор обычно имеет печатную плату, на которой располагаются эти элементы. При этом некоторые элементы, например, настроечные резисторы могут выполняться по толстопленочной технологии. Гибридная технология предполагает, что резисторы выполняются на керамической пластине и соединяются с полупроводниковыми элементами – диодами, стабилитронами, транзисторами, которые в бескорпусном или корпусном исполнении распаиваются на металлической подложке. В регуляторе, выполненном на монокристалле кремния, вся схема регулятора размещена в этом кристалле.

Охлаждение генератора осуществляется одним или двумя вентиляторами, закрепленными на его валу. При этом у традиционной конструкции генераторов (воздух засасывается центробежным вентилятором в крышку со стороны контактных колец.
У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель вне внутренней полости и защищенных кожухом, воздух засасывается через прорези этого кожуха, направляющие воздух в наиболее нагретые места – к выпрямителю и регулятору напряжения. На автомобилях с плотной компоновкой подкапотного пространства, в котором температура воздуха слишком велика, применяют генераторы со специальным кожухом закрепленным на задней крышке и снабженным патрубком со шлангом, через который в генератор поступает холодный и чистый забортный воздух. Такие конструкции применяются, например, на автомобилях BMW. У генераторов «компактной» конструкции охлаждающий воздух забирается со стороны как задней, так и передней крышек.

Генераторы большой мощности, устанавливаемые на спецавтомобили, грузовики и автобусы имеют некоторые отличия. В частности, в них встречаются две полюсные системы ротора, насаженные на один вал и, следовательно, две обмотки возбуждения, 72 паза на статоре и т. п. Однако принципиальных отличий в конструктивном исполнении этих генераторов от рассмотренных конструкций нет.

Привод генераторов и крепление их на двигателе

Привод генераторов всех типов автомобилей осуществляется от коленчатого вала ременной или зубчатой передачей. При этом возможны два варианта – клиновым или поликлиновым ремнем. Приводной шкив генератора выполняется с одним или двумя ручьями для клинового ремня и с профилированной рабочей дорожкой для поликлинового. Вентилятор, выполненный, как правило, штамповкой из листовой стали, в традиционной конструкции генератора крепится на валу рядом со шкивом. Шкив может выполняться сборным из двух штампованных дисков, литым из чугуна или стали, а также полученным методом штамповки или точеным из стали.

Качество обеспечения питанием потребителей электроэнергии, в том числе зарядка аккумуляторной батареи, зависит от передаточного числа ременной передачи, равного отношению диаметров ручьев приводного шкива генератора к шкиву коленчатого вала. Для повышения качества питания электропотребителей это число должно быть как можно больше, т.к. при этом частота вращения генератора повышается, и он способен отдать потребителям больший ток. Однако при слишком больших передаточных числах происходит ускоренный износ приводного ремня, поэтому передаточные числа передачи двигатель-генератор для клиновых ремней лежат в пределах 1,8…2,5, для поликлиновых до 3. Более высокое передаточное число возможно потому, что поликлиновые ремни допускают применение на генераторах приводных шкивов малых диаметров и меньший угол охвата шкива ремнем. Наилучшей конструкцией для генератора является индивидуальный привод. При таком приводе подшипники генератора оказываются менее нагруженными, чем в «коллективном» приводе, при котором обычно генератор приводится во вращение одним ремнем с другими агрегатами, чаще всего водяным насосом, и где шкив генератора служит натяжным роликом. Поликлиновым ремнем обычно приводится во вращение сразу несколько агрегатов. Например, на автомобилях Mercedes один поликлиновой ремень приводит во вращение одновременно генератор, водяной насос, насос гидроусилителя руля, гидромуфту вентилятора и компрессор кондиционера. В этом случае натяжение ремня осуществляется и регулируется одним или несколькими натяжными роликами при фиксированном положении генератора. Крепление генераторов на двигателе выполнено на одной или двух крепежных лапах, сочленяемых с кронштейном двигателя. Натяжение ремня производится поворотом генератора на кронштейне, при этом натяжная планка, соединяющая двигатель с натяжным ухом, может быть выполнена в виде винта, по которому перемещается резьбовая муфта, сочленяемая с ухом.

Встречаются конструкции, у которых прорезь в натяжной планке имеет зубчатую нарезку, по которой перемещается натяжное устройство, соединенное с натяжным ухом. Такие конструкции позволяют обеспечивать натяжение ремня очень точно и надежно.

К сожалению, на данный момент не существует международных нормативных документов, определяющих габаритные и присоединительные размеры генераторов легковых автомобилей, поэтому генераторы различных фирм существенно отличаются друг от друга, разумеется, кроме изделий, специально предназначенных в качестве запчастей для замены генераторов других фирм.

Бесщеточные генераторы

Бесщеточные генераторы применяются там, где возникают требования повышенной надежности и долговечности, главным образом на магистральных тягачах, междугородных автобусах и т.п. Повышенная надежность этих генераторов обеспечивается тем, что у них отсутствует щеточно-контактный узел, подверженный износу и загрязнению, а обмотка возбуждения неподвижна. Недостатком генераторов этого типа являются увеличенные габариты и масса. Бесщеточные генераторы выполняются с максимальным использованием конструктивной преемственности со щеточными. На выпуске генераторов такого типа специализируется американская фирма Delco-Remy, являющаяся отделением General Motors. Отличие этой конструкции состоит в том, что одна клювообразная полюсная половина посажена на вал, как у обычного щеточного генератора, а другая в урезанном виде приваривается к ней по клювам немагнитным материалом.

eksin-retail.ru

Как провести диагностику щеточного узла генератора — RUUD

Содержание статьи:

Часто в стенах автосервиса мы слышим одну и ту же проблему – не работает щеточный узел генератора. Или же вовсе не работает реле-регулятор генератора в машине. Давайте попробуем разобраться, что это за проблема и как с ней бороться, как самостоятельно провести диагностику и определить, что именно не работает и какая причина поломки.

Ремонт

Первое, что приходит на ум при такой проблеме, это, конечно же, ремонт щеточного узла генератора. Это достаточно сложная деталь автомобиля, для ее ремонта можно использовать два способа:

  • Частичный.
  • Полный.
  • Вам будет интересно:Премьера новой Toyota RAV4: обзор и видео

    В случае частичного ремонта имеется в виду частичная разборка генератора. Этот способ стоит применить, если нужно заменить одну деталь.

    Полный способ – снятие генератора с автомобиля и полная его разборка на запчасти. Старайтесь ремонтировать щеточный узел генератора вовремя, чтоб предупредить плохие последствия для мотора машин.

    Инструменты для ремонта

    • Ключи на 17 и 19.
    • Головки на 19, 17, 10.
    • Воротки.
    • Трещоточные рукоятки.
    • Удлинитель (с карандашным шариком).

    Помните, ремонт и снятие щеточного узла абсолютно разные для каждой марки автомобиля.

    Замена

    Прибегнуть к замене стоит в том случае, если вы или ваш мастер уверены, что поломку не исправить простой заменой детали, тогда необходима замена щеточного узла генератора. Чтобы заменить нужную деталь, необходимо сначала ее снять с автомобиля, для этого вам потребуются определенные инструменты, указанные выше.

    Какие же инструменты понадобятся для разборки самого генератора?

    Вам необходимы:

    • молоток;
    • головки 8 и 10;
    • удлиненная трещотка;
    • накидной ключ на 19.

    Как провести проверку, не снимая с автомобиля

    Так называемый правильный метод. В него входит проверка схем аккумулятора. Используя вольтметр, проводить манипуляцию стоит с запущенным двигателем. Стоит напомнить, что если двигатель не заведен, показатель на вольтметре должен составлять – 12,7 Вольта, если другой показатель, обязательно подзарядите ваш аккумулятор. Запустите мотор машины, на мультиметре выставьте отметку до 20 Вольт.

    Щупы прикладываем к клеммам, если показывает напряжение от 13 до 14 Вольт, это нормальное значение. Допускается значение не больше 14,5 Вольта. Если при проведении такой проверки у вас показатели мультиметра ниже 12 или же выше 14,5, это укажет на неисправность реле-регулятора генератора в машине. Но будет справедливо отметить, что не в каждом случае сломано именно реле, часто проблема в самом генераторе. Щеточный узел генератора может быть скрыт в задней части механизма. Если на вашей машине реле стоит отдельно от самой основы, обратите внимание на его замену, и только если это не принесет результатов, стоит приступать к замене или ремонту самого генератора.

    Проверка совмещенного генератора

    Первым делом будем проводить диагностику по совмещенной схеме реле и обязательно со щеточным узлом. Такой вид генераторов сегодня очень популярен, особенно среди современных автомобилей нового поколения. В нашем случае стоит снять деталь с машины и разобрать ее, так как нужный нам узел прикреплен сзади, сразу возле вала генератора.

    • Найдите на генераторе щетки.
    • Открутите крепеж.
    • Снимите щеточный узел.
    • Отмойте, очень часто они все запылены графитовой крошкой, так как сами щетки изготовлены из графита с добавлением особого угля.

    Если вы задаетесь вопросом, как проверить щеточный узел генератора, то для его проверки применяем специальную схему, используя блок питания с возможностью регулировки нагрузки и обязательно зарядное устройство. Еще понадобится автомобильная лампа на 12 Вольт и обычные провода для системной сборки.

    Обратите внимание на свое зарядное устройство, в основном они не будут работать без аккумулятора.

    Подключаем провода от реле-регулятора генератора к аккумулятору, а также к их щеткам подключаем лампочку на 12 Вольт. Проводя такие манипуляции, старайтесь быть очень осторожными, так как графитовые щетки довольно хрупкие и вы можете их покрошить или сильно повредить.

    Если подключение происходит в нормальном состоянии, то лампочка загорится и будет равномерно и спокойно гореть, ведь щеточный узел – это проводник вала. Помните, в спокойном режиме напряжение должно составлять 12,7 Вольта. Теперь поднимите напряжение до 14,7 Вольта, лампа должна погаснуть. 14,5 Вольта является точкой осечки нормального горения лампочки. Попробуйте снова понизить напряжение, в норме лампочка снова загорится, если это произошло, то реле-регулятор генератора работает исправно. Если же что-то из нормы отклонилось, следует подумать о ремонте или замене механизма.

    Обратите внимание!

    Практика показала, что чрезвычайно часто основные проблемы с генератором кроются в самих клеммах на аккумуляторе. По своей природе они часто окисляются, вследствие чего плохо проходит напряжение, затрудняя процесс зарядки, отсюда главные проблемы с генератором. Поэтому рекомендуется для начала хорошо промыть клеммы и только потом проводить дальнейшую диагностику.

    Источник

    ruud.ru

    Устройство и принцип действия генератора со щеточным узлом

    В щеточном вентильном ге­нераторе магнитный поток создается обмоткой возбуждения 4 при протекании по ней электрического тока и системой полюсов 3. В автомобильных генераторах их, как правило, двена­дцать. Полюса с обмоткой возбуждения, кольца, через которые ток подводится к обмотке возбуждения, вал и некоторые другие конст­руктивные элементы образуют вращающийся ротор.

    Рис. Схема вентильного генератора:
    1 – магнитопровод статора; 2 – обмотка статора; 3 – полюсы ротора; 4 –обмотка возбуждения; 5 – кольца и щетки; 6 – выпрямитель; 7 – направле­ние магнитного потока

    Обмотка 2, в которой вырабатывается электрический ток, уло­жена в пазы неподвижного магнитопровода 1. Вместе с магнитопроводом она представляет собой статор (якорь). Обмотка 2 ста­тора состоит из трех независимых обмоток фаз. Наиболее распро­страненные автомобильные генераторы имеют 36 пазов. В каждой обмотке фаз имеется по шесть катушек, включенных последова­тельно. Если обмотка фазы образована из двух параллельных ветвей, то в каждой ветви расположено по шесть катушек. Обмотки могут быть соединены между собой в звезду или треугольник.

    Полюса ротора и магнитопровод статора изготовлены из стали, которая не оказывает существенного сопротивления прохождению основного магнитного потока. При вращении ротора у катушек об­моток фаз статора последовательно находятся то северный N, то южный S полюса ротора, а магнитный поток изменяется по вели­чине, что по закону Фарадея достаточно для появления на выводах обмоток фаз переменного электрического напряжения. Частота f напряжения связана с частотой пр вращения ротора и числом р пар полюсов ротора простым соотношением: f = рпр/60.

    ustroistvo-avtomobilya.ru

    Устройство генератора – как он работает?

    Устройство генератора В результате деятельности любого транспортного средства производится энергия, вот только по большей части, она относится к механическому виду, а для эффективной работы многих систем автомобиля (в частности и подзарядки аккумуляторной батареи) требуется электроэнергия. Получается, что вырабатываемый механический вид, нужно как-то трансформировать. Решение данной задачи положено на генератор – неотъемлемую часть электрооборудования любой машины. Именно он преобразовывает механическую энергию полученную от двигателя, в электрическую, что и обеспечивает выполнение указанных требований. Давайте рассмотрим устройство данного механизма более детально.

    1. Основные составляющие части генератора

    Для начала выясним, какие именно функции возлагаются на автомобильный генератор и каким требованиям он должен соответствовать. Во-первых, основной задачей любого автогенератора есть обеспечение бесперебойной подачи тока, при чем, его мощность должна быть такой, что бы вместе с подачей электроэнергии на рабочие потребители, энергии хватало и на зарядку аккумуляторной батареи. Во-вторых, устройство должно «уметь» предотвращать сильный разряд аккумуляторной батареи, при включении на малых оборотах всех штатных потребителей.

    Генератор

    В третьих, генератор обязан контролировать напряжение бортовой сети и следить за тем, что бы оно находилось в заданных пределах, несмотря на диапазон электрических нагрузок и частоты вращения ротора. В этом случае, такая необходимость обусловлена чувствительностью аккумуляторной батареи к уровню стабильности напряжения. Если он слишком низкий – значит АКБ не сможет полностью зарядится и, возможно, возникнут проблемы с запуском двигателя. В случае высокого напряжения, батарея будет перезаряжаться, что вызовет ее ускоренный выход из строя.

    И на конец, устройство генератора должно иметь достаточную прочность, большой рабочий ресурс, небольшую массу (с такими же габаритами), обладать низким уровнем шума и радиопомех. Согласитесь, довольно существенный список требований, но современные автомобильные генераторы, зачастую, с ним справляются, в чем им помогают следующие составляющие.

    Шкив – своеобразное место входа (с использованием ремня) механической энергии во внутрь генератора.

    Корпус устройства – представлен в виде двух крышек (передней и задней), к которым крепяться практически все остальные элементы указанной детали. Крышки изготавливаются из алюминиевых сплавов и оборудованные вентиляционными окнами, с помощью которых воздух проходит сквозь генератор. В традиционных (стандартных) конструкциях генераторов, такие окна имеются только в торцевой части корпуса, в то время как «компактные» устройства предусматривают их наличие еще и на цилиндрической части, расположенной над лобовыми сторонами обмотки статора.

    Ротор – прикреплен к передней корпусной крышке. Особенностью автомобильных генераторов есть полюсная система ротора, содержащая две полюсных половины с имеющимися на них выступами клювообразной формы (по 6 на каждой). Если выступы отсутствуют, то при напрессовке на вал, между половинками ставится втулка с намотанной на каркас обмоткой возбуждения, при чем, намотка выполняется после монтажа втулки во внутреннею часть каркаса.

    Генератор Валы роторов изготавливают из мягкой стали, но при использовании роликового подшипника, ролики которого работают по концу вала, со стороны контактных колец, вместо автоматной стали применяют легированную. На конце вала, с имеющейся резьбой, под шпонку для крепления шкива, прорезают паз. Правда, многие современные конструкции вообще не имеют шпонки, вместо того в торцевой части вала присутствует углубление (выступ), предназначенный для шестигранного ключа. Такая особенность, позволяет удерживать вал от поворота, в случае необходимости затяжки гайки крепления или при разборке генератора.

    Статор – элемент, отвечающий за мощность генератора. В его конструкцию входит металлический сердечник с обмоткой и 36 пазами. Статор с обмоткой размещается между двумя крышками – со стороны привода (передняя крышка) и со стороны контактных колец (задняя крышка).

    Выпрямительные узлы. Могут быть двух типов: либо в виде пластин-теплоотводов, с запрессованными диодами силового выпрямителя (или с распаянными и герметизированными кремниевыми переходами таких диодов), либо в виде ребристой конструкции, где диоды (в большинстве таблеточного типа) припаяны к теплоотводам. Корпус диодов дополнительного выпрямителя, как правило, изготавливают из пластмассы, предавая ему цилиндрическую форму, вид горошины или же отдельного герметизированного блока, включение в схему которого выполняется при помощи шинок. Выпрямительные узлы занимаются преобразованием напряжения, создающегося статором, в напряжение постоянного тока бортовой сети.

    Щеточный узел – конструкция с размещенными внутри щетками (скользящими контактами).

    Устройство генератора Автомобильные генераторы могут использовать один из двух возможных видов данных элементов: меднографитные или электрографитные щетки. В последнем случае, по сравнению с предыдущим, в контакте с кольцом отмечается повышенное падение напряжения, что хоть и отрицательно сказывается на выходных характеристиках устройства генератора, однако сами контактные кольца подвергаются намного меньшему износу. К щеткам, кольца прижимаются благодаря усилию пружин.

    Подшипниковые узлы. Как правило, представлены в виде радиальных шариковых подшипников, имеющих одноразовую закладку пластичной смазки, предназначенную для обслуживания деталей в течении всего срока службы и одно- или двухсторонние уплотнения, вмонтированные в подшипник. Роликовые подшипники устанавливаются только со стороны контактных колец, но и в этом случае встретить их можно не часто и в большинстве случаев только на изделиях американских фирм. Посадка шариковых подшипников на вал, с разных сторон выполняется по разному: со стороны контактных колец они плотно прилегают, а со стороны привода находятся в скользящем режиме. Установка в посадочное место крышки, происходит наоборот – со стороны колец она скользящая, а со стороны привода – плотная.

    Учитывая способность обоймы подшипника (со стороны колец) поворачиваться в посадочном месте крышки, то обе детали (и подшипник, и крышка) довольно быстро могут выйти из строя, что приведет к задеванию ротора за статор. Что бы как-то предотвратить прокручивание подшипника, в его посадочное место помещаются различные дополнительные устройства представленные в виде резиновых колец, пластмассовых стаканчиков, гофрированных стальных пружин и т.д.

    Генератор Так как, в ходе своей деятельности, генератор имеет свойство нагреваться, то вполне логично, что должна существовать система его охлаждения. В автомобильных генераторах, роль охладителей выполняют два вентилятора, закрепленных на его валу, при чем, у представителей стандартного (традиционного) типа, с аналогичной конструкцией, воздух всасывается в крышку со стороны контактных колец при помощи центробежного вентилятора. У генераторов, имеющих щеточный узел, регулятор напряжения и выпрямитель расположены вне внутренней полости и защищены специальным кожухом, сквозь прорези которого и происходит всасывание воздуха. Кроме того, именно они (прорези), направляют воздушные потоки в самые нагретые места – к регулятору напряжения и к выпрямителю.

    Задачей регулятора напряжения есть отслеживание (регулирование) напряжения борт сети транспортного средства с целью его соответствия заданному пределу, не зависимо от нагрузки, работы ротора или температурных показателей окружающей среды. На всех современных автомобилях устанавливаются электронные регуляторы напряжения полупроводникового типа, обычно, вмонтированные во внутрь генератора. Конструктивное исполнение у таких деталей может отличаться, но рабочий принцип у всех регуляторов одинаковый.

    Одним из основных свойств регуляторов напряжения, есть способность к термокомпенсации – изменению напряжения, поступающего к аккумулятору, в соответствии с температурой воздуха в подкапотном пространстве. С точки зрения обеспечения оптимального заряда аккумуляторной батареи – это весьма ценная особенность. Чем температура воздуха ниже, тем больше напряжения должно подаваться на батарею и наоборот. Величина термокомпенсации может доходить до 0,01 В на 1°С. Отдельные модели выносных регуляторов оборудованы «ручными» переключателями подаваемого напряжения («зима» или «лето»).

    2. Принцип действия генератора

    Генератор Работа автомобильного генератора базируется на эффекте электромагнитной индукции. Это значит, что если, к примеру, медную катушку будет пронизывать магнитный поток, то в результате его изменения, на выводах катушки появится электрическое напряжение, значение которого окажется пропорциональным скорости изменения потока, и наоборот: что бы образовался магнитный поток, достаточно провести электроток через катушку. Исходя из этого, для получения электрического тока переменного значения, необходимо иметь катушку (с нее будет сниматься соответствующее напряжение) и источник нужного магнитного поля.

    Когда автомобильный мотор начинает свою работу, основным потребителем электроэнергии есть стартер, при чем, сила тока может достигать сотни ампер, что способствует существенному падению напряжения аккумуляторной батареи. В таком режиме, питание всех потребителей электроэнергии исходит только от аккумулятора, который активно принимает зарядку. Тоесть, начиная от запуска двигателя, генератор выполняет роль основного источника электроснабжения, попутно являясь и главным источником подзарядки АКБ в ходе работы силового агрегата. Если в деятельности данного устройства возникают сбои, то и аккумулятор очень быстро разряжается.

    Если говорить кратко, то принцип действия генератора транспортного средства состоит в следующем: когда зажигание включается, происходит перемещение тока по контактным кольцам по направлению к щелочному узлу, а затем и к перемотке возбуждения, в результате чего, возникает магнитное поле. Вместе с коленвалом, в работу включается ротор, создающий волны, которые и проходят через обмотку статора. Переменный ток начинает возникать на выходе перемотки. Другими словами, рабочий принцип генератора основывается на изменении скорости вращения коленчатого вала, либо на изменении нагрузки, при которой активизируется деятельность регулятора напряжения (управляет временем при включении перемотки возбуждения).

    Генераторы В момент увеличения частоты вращения ротора или уменьшения внешних нагрузок, период включения обмотки существенно сокращается. Если ток увеличивается до такой степени, что генератор уже не может с ним справиться, то в игру вступает аккумуляторная батарея. Современные автомобили оборудованы световым индикатором (лампочкой), сообщая водителю о возможных неисправностях в работе генератора.

    Когда генератор работает в режиме самовозбуждения, частота вращения возрастает до определенного значения, после чего в выпрямительном блоке напряжение начинает меняться с переменного на постоянное. В конечном счете, устройство обеспечивает потребителей нужным электричеством, а аккумуляторную батарею – током.

    3. Неисправности генератора

    Существует довольно приличное количество неисправностей в работе устройства генератора. Сейчас мы рассмотрим основные из них, а также выясним, что может послужить причиной их возникновения и как можно устранить поломку собственными силами. Если стрелка вольтметра пребывает в красной зоне начала шкалы, значит, причину стоит искать в следующем:

    – проскальзывает ремень привода генератора.

    Решение проблемы: регулировка ремня;

    – произошел обрыв в цепи питания обмотки возбуждения.

    Решение проблемы: восстановить соединение;

    – был поврежден регулятор напряжения.

    Решение проблемы: замена детали;

    – щетки генератора износились или зависли, контактные кольца окислились.

    Решение проблемы: замена щеткодержателя (вместе со щетками), очищение колец при помощи тряпки, смоченной в бензине;

    – произошел обрыв или замыкание на массу обмотки возбуждения.

    Решение проблемы: замена ротора;

    – произошел обрыв в одном (нескольких) диодах выпрямительного блока.

    Решение проблемы: замена блока;

    – произошел обрыв или появилось межвитковое замыкание в обмотке статора.

    Решение проблемы: замена генераторного статора.

    Генераторы Если стрелка вольтметра находится в красной зоне конца шкалы, то возможно, произошло повреждение регулятора напряжения. Решением проблемы, в данном случае, есть замена регулятора. Повышенный уровень шума от работающего генератора может объясняться ослаблением гайки шкива генератора, повреждением подшипников, межвитковым замыканием (вызывает вой генератора) или скрипом щеток. Для устранения проблемы следует подтянуть гайку, заменить подшипники, статор или протереть щетки и контактные кольца (обычно используют смоченную в бензине хлопчатобумажную салфетку).

    Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

    auto.today

    Как провести диагностику щеточного узла генератора

    Часто в стенах автосервиса мы слышим одну и ту же проблему – не работает щеточный узел генератора. Или же вовсе не работает реле-регулятор генератора в машине. Давайте попробуем разобраться, что это за проблема и как с ней бороться, как самостоятельно провести диагностику и определить, что именно не работает и какая причина поломки.

    Ремонт

    Первое, что приходит на ум при такой проблеме, это, конечно же, ремонт щеточного узла генератора. Это достаточно сложная деталь автомобиля, для ее ремонта можно использовать два способа:

    1. Частичный.
    2. Полный.

    В случае частичного ремонта имеется в виду частичная разборка генератора. Этот способ стоит применить, если нужно заменить одну деталь.

    Полный способ – снятие генератора с автомобиля и полная его разборка на запчасти. Старайтесь ремонтировать щеточный узел генератора вовремя, чтоб предупредить плохие последствия для мотора машин.

    Инструменты для ремонта

    • Ключи на 17 и 19.
    • Головки на 19, 17, 10.
    • Воротки.
    • Трещоточные рукоятки.
    • Удлинитель (с карандашным шариком).

    Помните, ремонт и снятие щеточного узла абсолютно разные для каждой марки автомобиля.

    Замена

    Прибегнуть к замене стоит в том случае, если вы или ваш мастер уверены, что поломку не исправить простой заменой детали, тогда необходима замена щеточного узла генератора. Чтобы заменить нужную деталь, необходимо сначала ее снять с автомобиля, для этого вам потребуются определенные инструменты, указанные выше.

    Какие же инструменты понадобятся для разборки самого генератора?

    Вам необходимы:

    • молоток;
    • головки 8 и 10;
    • удлиненная трещотка;
    • накидной ключ на 19.

    Как провести проверку, не снимая с автомобиля

    Так называемый правильный метод. В него входит проверка схем аккумулятора. Используя вольтметр, проводить манипуляцию стоит с запущенным двигателем. Стоит напомнить, что если двигатель не заведен, показатель на вольтметре должен составлять – 12,7 Вольта, если другой показатель, обязательно подзарядите ваш аккумулятор. Запустите мотор машины, на мультиметре выставьте отметку до 20 Вольт.

    Щупы прикладываем к клеммам, если показывает напряжение от 13 до 14 Вольт, это нормальное значение. Допускается значение не больше 14,5 Вольта. Если при проведении такой проверки у вас показатели мультиметра ниже 12 или же выше 14,5, это укажет на неисправность реле-регулятора генератора в машине. Но будет справедливо отметить, что не в каждом случае сломано именно реле, часто проблема в самом генераторе. Щеточный узел генератора может быть скрыт в задней части механизма. Если на вашей машине реле стоит отдельно от самой основы, обратите внимание на его замену, и только если это не принесет результатов, стоит приступать к замене или ремонту самого генератора.

    Проверка совмещенного генератора

    Первым делом будем проводить диагностику по совмещенной схеме реле и обязательно со щеточным узлом. Такой вид генераторов сегодня очень популярен, особенно среди современных автомобилей нового поколения. В нашем случае стоит снять деталь с машины и разобрать ее, так как нужный нам узел прикреплен сзади, сразу возле вала генератора.

    • Найдите на генераторе щетки.
    • Открутите крепеж.
    • Снимите щеточный узел.
    • Отмойте, очень часто они все запылены графитовой крошкой, так как сами щетки изготовлены из графита с добавлением особого угля.

    Если вы задаетесь вопросом, как проверить щеточный узел генератора, то для его проверки применяем специальную схему, используя блок питания с возможностью регулировки нагрузки и обязательно зарядное устройство. Еще понадобится автомобильная лампа на 12 Вольт и обычные провода для системной сборки.

    Обратите внимание на свое зарядное устройство, в основном они не будут работать без аккумулятора.

    Подключаем провода от реле-регулятора генератора к аккумулятору, а также к их щеткам подключаем лампочку на 12 Вольт. Проводя такие манипуляции, старайтесь быть очень осторожными, так как графитовые щетки довольно хрупкие и вы можете их покрошить или сильно повредить.

    Если подключение происходит в нормальном состоянии, то лампочка загорится и будет равномерно и спокойно гореть, ведь щеточный узел – это проводник вала. Помните, в спокойном режиме напряжение должно составлять 12,7 Вольта. Теперь поднимите напряжение до 14,7 Вольта, лампа должна погаснуть. 14,5 Вольта является точкой осечки нормального горения лампочки. Попробуйте снова понизить напряжение, в норме лампочка снова загорится, если это произошло, то реле-регулятор генератора работает исправно. Если же что-то из нормы отклонилось, следует подумать о ремонте или замене механизма.

    Обратите внимание!

    Практика показала, что чрезвычайно часто основные проблемы с генератором кроются в самих клеммах на аккумуляторе. По своей природе они часто окисляются, вследствие чего плохо проходит напряжение, затрудняя процесс зарядки, отсюда главные проблемы с генератором. Поэтому рекомендуется для начала хорошо промыть клеммы и только потом проводить дальнейшую диагностику.

    fb.ru

    Автор: alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *