Стабилизатор напряжения на 18 вольт своими руками: Мощный линейный стабилизатор напряжения

Мощный линейный стабилизатор напряжения


Для питания различных электронных устройств и схем, сделанных своими руками нужен такой источник питания, напряжение на выходе которого можно регулировать в широких пределах. С его помощью можно наблюдать, как ведёт себя схема при том или ином напряжении питания. При этом он должен иметь возможность выдавать большой ток, чтобы питать мощную нагрузку, и минимальные пульсации на выходе. На роль такого источника питания отлично подойдёт линейный стабилизатор напряжения – микросхема LM338, она обеспечивает ток до 5 А, имеет защиту от перегрева и короткого замыкания на выходе. Схема её включения достаточно проста, она представлена ниже.

Схема


Микросхема LM338 имеет три вывода – вход (in), выход (out) и регулирующий (adj). На вход подаём постоянное напряжение определённой величины, а с выхода снимаем стабилизированное напряжение, величина которого задаётся переменным резистором Р2. Напряжение на выходе регулируется от 1,25 вольт до величины входного, с вычетом 1,5 вольт. Проще говоря, если на входе, например, 24 вольта, то на выходе напряжение будет меняться в пределах от 1,25 до 22,5 вольт. Подавать на вход более 30 вольт не следует, микросхема может уйти в защиту. Чем больше ёмкость конденсаторов на входе, тем лучше, ведь они сглаживают пульсации. Ёмкость конденсаторов на выходе микросхемы должна быть небольшой, иначе они будут долго сохранять заряд и напряжение на выходе будет регулироваться неверно. При этом каждый электролитический конденсатор должен быть зашунтирован плёночным или керамическим с малой ёмкостью (на схеме это С2 и С4). При использовании схемы с большими токами микросхему обязательно нужно установить на радиатор, ведь она будет рассеивать на себе всё падение напряжения. Если токи небольшие – до 100 мА, радиатор не потребуется.

moschnyj-linejnyj-stabilizator-naprjazhenija.zip [22.03 Kb] (cкачиваний: 1464)


Сборка стабилизатора

Вся схема собирается на небольшой печатной плате размерами 35 х 20 мм, изготовить которую можно методом ЛУТ. Печатная плата полностью готова к печати, отзеркаливать её не нужно. Ниже представлены несколько фотографий процесса.



Дорожки желательно залудить, это уменьшит их сопротивление и защитит от окисления. Когда печатная плата готова – начинаем запаивать детали. Микросхема запаиваться прямо на плату, спинкой в сторону края. Такое расположение позволяет закрепить на радиаторе всю плату с микросхемой. Переменный резистор выводится от платы на двух проводках. Можно использовать любой переменный резистор с линейной характеристикой. При этом средний его вывод соединяется с любым из крайних, полученные два контакта идут на плату, как видно на фото. Для подключения проводов входа и выхода удобнее всего использовать клеммник. После сборки необходимо проверить правильность монтажа.


Запуск и испытания

Когда плата собрана, можно переходить к испытаниям. Подключаем на выход маломощную нагрузку, например, светодиод с резистором и вольтметр для контроля напряжения. Подаём напряжение на вход и следим за показаниями вольтметра, напряжение должно меняться при вращении ручки от минимума до максимума. Светодиод при этом будет менять яркость. Если напряжение регулируется, значит схема собрана правильно, можно ставить микросхему на радиатор и тестировать с более мощной нагрузкой. Такой регулируемый стабилизатор идеально подойдёт для использовании в качестве лабораторного блока питания. Особое внимание стоит уделить выбору микросхемы, ведь её очень часто подделывают. Поддельные микросхемы стоят дёшево, но легко сгорают при токе уже 1 – 1,5 Ампера. Оригинальные стоят дороже, но зато честно обеспечивают заявленный ток до 5 Ампер. Удачной сборки.


Смотрите видео

На видео наглядно показана работа стабилизатора. При вращении переменного резистора напряжение плавно меняется от минимума к максимуму и наоборот, светодиод при этом меняет яркость.

Стабилизатор напряжения 220в для дома своими руками схема

Бытовые устройства чувствительны к скачкам напряжения, быстрее подлежат износу, и появляются неисправности. В электрической сети напряжение часто изменяется, снижается, либо возрастает. Это взаимосвязано с отдаленностью источника энергии и некачественной линии питания. Чтобы подключать приборы к устойчивому питанию, в жилых помещениях применяют стабилизаторы напряжения. На его выходе напряжение обладает стабильными свойствами. Стабилизатор можно приобрести в торговой сети, однако такой прибор можно изготовить своими руками. Имеются допуски на изменение напряжения не более 10% от номинального значения (220 В). Это отклонение должно быть соблюдено как в большую сторону, так и в меньшую. Но идеальной электрической сети не бывает, и величина напряжения в сети часто меняется, усугубляя тем самым работу подключенных к ней устройств. Электрические приборы отрицательно реагируют на такие капризы сети и могут быстро выйти из строя, потеряв при этом свои заложенные функции. Чтобы избежать таких последствий, люди применяют самодельные приборы под названием стабилизаторы напряжения.

Эффективным стабилизатором стал прибор, выполненный на симисторах. Как сделать стабилизатор напряжения своими руками мы и рассмотрим.

Характеристика стабилизатора

Это устройство стабилизации не будет иметь повышенную чувствительность к изменениям напряжения, подающегося по общей линии. Сглаживание напряжения будет производиться в том случае, если на входе напряжение будет находиться в пределах от 130 до 270 вольт. Включенные в сеть устройства будут питаться напряжением, имеющим величину от 205 до 230 вольт. От такого прибора можно будет питать электрические устройства, суммарная мощность которых до 6 кВт. Стабилизатор будет производить переключение нагрузки потребителя за 10 мс.

Устройство стабилизатора

Схема устройства стабилизации. Стабилизатор напряжения по указанной схеме имеет в своем составе следующие части:

  1. Питающий блок, в который входят емкости С2, С5, компаратор, трансформатор, теплоэлектрический диод.
  2. Узел, задерживающий подключение нагрузки потребителя, и состоящий из сопротивлений, транзисторов, емкости.
  3. Выпрямительного моста, измеряющего амплитуду напряжения. Выпрямитель состоит из емкости, диода, стабилитрона, нескольких делителей.
  4. Компаратора напряжения. Его составными частями являются сопротивления и компараторы.
  5. Логического контроллера на микросхемах.
  6. Усилителей, на транзисторах VТ4-12, резисторов, ограничивающих ток.
  7. Светодиодов в качестве индикаторов.
  8. Оптитронных ключей. Каждый из ник снабжается симисторами и резисторами, а также оптосимисторами.
  9. Электрического автомата, либо предохранителя.
  10. Автотрансформатора.

Принцип действия

Рассмотрим, как функционирует стабилизатор напряжения, выполненный своими руками. После подключения питания емкость С1 находится в состоянии разряда, транзистор VТ1 открытый, а VТ2 закрытый.

VТ3 транзистор также остается закрытым. Через него поступает ток на все светодиоды и оптитрон на основе симисторов. Так как этот транзистор пребывает в закрытом состоянии, то светодиоды не горят, а каждый симистор закрыт, нагрузка выключена. В этот момент ток поступает через сопротивление R1 и приходит на С1. Дальше конденсатор начинает заряжаться. Диапазон выдержки идет три секунды. За этот период производятся все процессы перехода. После их окончания срабатывает триггер Шмитта на основе транзисторов VТ1 и VТ2. После этого открывается 3-й транзистор и подключается нагрузка. Напряжение, выходящее с 3-й обмотки Т1, выравнивается диодом VD2 и емкостью С2. Далее ток поступает на делитель на сопротивлениях R13-14. Из сопротивления R14, напряжение, величина которого прямо зависит от величины напряжения, включена в каждый неинвертирующий компараторный вход. Число компараторов становится равным 8. Они все выполнены на микросхемах DА2 и DА3. В то же время на инвертируемый вход компараторов подходит постоянный ток, подающийся с помощью делителей R15-23.
Дальше вступает в действие контроллер, осуществляющий прием входного сигнала каждого компаратора.

Стабилизатор напряжения и его особенности

Когда напряжение входа становится меньше 130 вольт, то на выходах компараторов появляется логический уровень малого размера. В этот момент транзистор VТ4 находится в открытом виде, первый светодиод мигает. Эта индикация сообщает о наличии низкого напряжения, что означает невозможность выполнения регулируемым стабилизатором своих функций. Все симисторы закрытии и нагрузка отключена. Когда напряжение находится в пределах 130-150 вольт, то сигналы 1 и А имеют свойства высокого значения логического уровня. Такой уровень имеет низкое значение. В таком случае транзистор VТ5 открывается, и начинает сигнализировать второй светодиод. Оптосимистор U1.2 открывается, так же, как и симистор VS2. Через симистор будет протекать нагрузочный ток. Затем нагрузка зайдет в верхний вывод катушки автотрансформатора Т2.

Если напряжение входа 150 – 170 В, то сигналы 2, 1 и В имеют повышенное значение логического уровня. Другие сигналы имеют низкий уровень. При таком напряжении входа транзистор VТ6 открывается, 3-й светодиод включается. В этот момент 2-й симистор открывается и ток поступает на второй вывод катушки Т2, являющийся 2-м сверху. Собранный самостоятельно стабилизатор напряжения на 220 вольт будет соединять обмотки 2-го трансформатора, если уровень напряжения входа достигнет соответственно: 190, 210, 230, 250 вольт. Чтобы сделать такой стабилизатор, необходима печатная плата 115 х 90 мм, изготовленная из фольгированного стеклотекстолита. Изображение платы можно отпечатать на принтере. Затем с помощью утюга переносят это изображение на плату.

Изготовление трансформаторов

Изготовить трансформаторы Т1 и Т2 можно самостоятельно. Для Т1, мощность которого 3 кВт, необходимо применить магнитопровод с поперечным сечением 1,87 см2, и 3 провода ПЭВ – 2. 1-й провод диаметром 0,064 мм. Им наматывают первую катушку, с количеством витков 8669. Другие 2 провода применяются для образования остальных обмоток. Провода на них должны быть одного диаметра 0,185 мм, с числом витков 522. Чтобы не изготавливать самому такие трансформаторы, можно применить готовые варианты ТПК – 2 – 2 х 12 В, соединенные последовательно. Чтобы изготовить трансформатор Т2 на 6 кВт, применяют магнитопровод тороидальной формы. Обмотку наматывают проводом ПЭВ – 2 с числом витков 455. На трансформаторе необходимо вывести 7 отводов. Первые 3 из них наматываются проводом 3 мм. Остальные 4 отвода наматываются шинами сечением 18 мм

2. С таким сечением провода трансформатор не нагреется. Отводы выполняют на таких витках: 203, 232, 266, 305, 348 и 398. Витки считают с нижнего отвода. В этом случае электрический ток сети должен поступать по отводу 266 витка.

Детали и материалы

Остальные элементы и детали стабилизатора для самостоятельной сборки приобретаются в торговой сети. Перечислим их перечень:

  1. Симисторы (отптроны) МОС 3041 – 7 шт.
  2. Симисторы ВТА 41 – 800 В – 7 шт.
  3. КР 1158 ЕН 6А (DА1) стабилизатор.
  4. Компаратор LМ 339 N (для DА2 и DА3) – 2 шт.
  5. Диоды DF 005 М (для VD2 и VD1) – 2 шт.
  6. Резисторы проволочные СП 5 или СП 3 (для R13, R14 и R25) – 3 шт.
  7. Резисторы С2 – 23, с допуском 1% – 7 шт.
  8. Резисторы любого номинала с допуском 5% – 30 шт.
  9. Резисторы токоограничивающие – 7 шт, для пропускания ими тока 16 миллиампер (для R 41 – 47) – 7 шт.
  10. Конденсаторы электролитические – 4 шт (для С5 – 1).
  11. Конденсаторы пленочные (С4 – 8).
  12. Выключатель, оснащенный предохранителем.

Оптроны МОС 3041 заменяются на МОС 3061. КР 1158 ЕН 6А стабилизатор можно менять на КП 1158 ЕН 6Б. Компаратор К 1401 СА 1 можно установить в качестве аналога LM 339 N. Вместо диодов можно использовать КЦ 407 А. Микросхему КР 1158 ЕН 6А надо устанавливать на теплоотвод. Для его изготовления применяют алюминиевую пластинку 15 см

2. Также на него необходимо установить симисторы. Для симисторов допускается применять общий теплоотвод. Площадь поверхности должна превышать 1600 см2. Стабилизатор необходимо снабдить микросхемой КР 1554 ЛП 5, выступающей в качестве микроконтроллера. Девять светодиодов располагаются так, что попадают в отверстия на панели прибора спереди. Если устройство корпуса не дает установить их таким образом, как на схеме, то их размещают на другой стороне, где расположены печатные дорожки. Светодиоды необходимо устанавливать мигающего типа, но можно монтировать и немигающие диоды, при условии, что они будут светиться ярким красным светом. Для таких целей применяют АЛ 307 КМ или L 1543 SRC – Е. Можно выполнить сборку более простых исполнений приборов, но они будут иметь определенными особенностями.

Достоинства и недостатки, отличия от заводских моделей

Если перечислять достоинства стабилизаторов, изготовленных самостоятельно, то основным достоинством является низкая стоимость. Производители приборов часто завышают цены, а своя сборка в любом случае обойдется меньшей стоимостью. Другим преимуществом можно определить такой фактор, как возможность простого ремонта своими руками устройства, Ведь кто, если не вы знаете лучше устройство, собранное своими руками. В случае поломки хозяин прибора сразу найдет неисправный элемент и заменит его на новый. Простая замена деталей создается таким фактором, что все детали приобретались в магазине, поэтому их можно будет легко снова купить в любом магазине. Недостатком самостоятельно собранного стабилизатора напряжения необходимо выделить его сложную настройку.

Простейший стабилизатор напряжения своими руками

Рассмотрим, каким образом можно изготовить самостоятельно стабилизатор на 220 вольт собственными руками, имея под рукой несколько простых деталей. Если в вашей электрической сети напряжение значительно снижено, то такой прибор подойдет вам как нельзя кстати. Чтобы его изготовить, понадобится готовый трансформатор, и несколько простых деталей. Лучше взять такой пример прибора себе на заметку, так как получается неплохое устройство, обладающее достаточной мощностью, например, для микроволновки. Для холодильников и различных других бытовых устройств понижение напряжения сети очень вредно, больше чем повышение. Если поднять величину напряжения сети, применяя автотрансформатор, то во время уменьшения напряжения сети на выходе прибора напряжение будет нормальной величины. А если в сети напряжение станет в норме, то на выходе мы получим повышенное значение напряжения. Например, возьмем трансформатор на 24 В. При напряжении на линии 190 В на выходе устройства получится 210 В, при значении сети 220 В на выходе получится 244 В. Это вполне допустимо и нормально для работы бытовых устройств. Для изготовления нам понадобится основная деталь – это простой трансформатор, но не электронный. Его можно найти готовый, либо изменить данные на уже имеющемся трансформаторе, например, от сломанного телевизора. Трансформатор будем соединять по схеме автотрансформатора. Напряжение на выходе будет получаться примерно на 11% выше напряжения сети. При этом нужно соблюдать осторожность, так как во время значительного перепада напряжения в сети в большую сторону, на выходе устройства получится напряжение, которое значительно превышает допустимую величину. Автотрансформатор будет добавлять к напряжению линии сети всего 11%. Это значит, что мощность автотрансформатора берется также на 11% от мощности потребителя. Например, мощность микроволновки равна 700 Вт, значит трансформатор берем 80 Вт. Но лучше брать мощность с запасом. Регулятор SA1 дает возможность, если нужно, подсоединять нагрузку потребителя без автотрансформатора. Конечно, это не полноценный стабилизатор, но зато для его изготовления не требуется больших вложений и много времени. https://www. youtube.com/watch?v=ogZY-Ed4Bso

Сделайте эту схему стабилизатора напряжения для своего автомобиля

В этом посте мы узнаем о схеме автомобильного стабилизатора напряжения, которую можно изготовить и установить во всех автомобилях для обеспечения идеально контролируемого и стабилизированного питания соответствующей чувствительной электроники и гаджетов.

Понимание автомобильной электрики

Электрика автомобиля, вероятно, более изменчива, чем наша домашняя, просто потому, что она генерируется из источника, называемого генератором переменного тока, мощность которого значительно зависит от скорости автомобиля.

Это означает, что если вы едете на автомобиле с внезапными изменениями скорости или если вы часто нажимаете на педаль тормоза, на выходе генератора переменного тока могут возникать переменные напряжения.

Поскольку в настоящее время салоны наших автомобилей и других транспортных средств в значительной степени содержат сложные электронные устройства, нестабильное напряжение может серьезно повлиять на их работу и срок службы.

Идея схемы была запрошена г-ном Хазиком, давайте узнаем больше о создании предложенной схемы (разработанной мной для приложения).

Сегодня в нашем распоряжении есть замечательные микросхемы, специально разработанные для приложений регулирования напряжения.

LM317 и LM338 — это пара из них, которые универсальны с их функциями регулирования напряжения, я подробно обсуждал их в некоторых моих предыдущих сообщениях.

LM317 выдерживает ток до 1,5 ампер, тогда как его старший брат LM338 выдерживает не более 5 ампер.

Однако эти значения довольно мизерны по сравнению с огромными запросами в автомобилях.

При соответствующей модификации конфигурации можно настроить ИС для регулирования любых желаемых уровней тока.

В предложенную схему стабилизатора напряжения автомобиля мы включили микросхему LM317 и модифицировали ее стандартную конструкцию таким образом, чтобы она обеспечивала достаточное питание автомобиля и в то же время ограничивала его от всех возможных опасностей, таких как перегрузки, перегрузки по току, колебания напряжения и короткие замыкания, обеспечивая идеальные условия напряжения для салонов транспортных средств.

Работа схемы

На схеме показана довольно простая конфигурация, в которой IC 317 подключен в стандартном режиме регулятора напряжения.

R1 ограничивает импульсный ток, в то время как R2 определяет напряжение срабатывания для T1, если потребляемый ток превышает отметку 1,5 ампера, T1 проводит и помогает IC, распределяя через нее избыточный ток.

P1 настроен на достижение около 13 вольт на C3.

R5 отслеживает условия перегрузки и короткие замыкания, если ток превышает 12 ампер, на R5 возникает достаточный ток для срабатывания T2, который мгновенно отключает IC, так что выходное напряжение падает и ограничивает ток ниже 12 ампер.

Идеальные характеристики:
  1. Постоянное напряжение = 13 В
  2. Ограничение по току = 12 А
  3. Защита от перегрузки = свыше 12 А отсечка ВЫКЛ
  4. Тепловая защита (если транзистор и ИС установлены на одном радиаторе со слюдяной изоляцией)
  5. Защита от короткого замыкания (защита от возгорания)
Список деталей
  • R1 = 0,1 Ом, 100 Вт, изготовлен из стальной проволоки диаметром 1 мм.
  • R2 = 2 Ом, 1 Вт,
  • R3 = 120 Ом, 1/4 Вт,
  • R4 = 0,1 Ом, 20 Вт, как описано для R1 (на самом деле этот резистор не требуется, его можно заменить коротким проводом).
  • R5 = 0,05 Ом, 20 Вт, сделать как R1 на большом ребристом радиаторе
  • T2 = BC547,
  • C1 = 10 000 мкФ, 35 В
  • C2 = 1 мкФ/50 В
  • C3 = 100 мкФ/25 В
  • IC 9047 P1 = 9074 предустановка ЛМ317
  • Д1, Д2 = 20-амперный диод (3 шт. 6-амперных диода параллельно)
Упрощенная версия

Используя IC LM196, описанная выше конфигурация становится чрезвычайно простой. Вы можете обратиться к следующей схеме, которая иллюстрирует упрощенную версию предложенной схемы стабилизатора напряжения автомобильного генератора с использованием минимума компонентов.

  • R3 = 240 Ом
  • D1, D2 = 15-амперные диоды
  • P1 = 10 кОм пресет
  • C1,C2,C3, как указано выше
  • IC1 = LM196 90847 О 9004 5

    Я инженер-электронщик ( dipIETE), любитель, изобретатель, разработчик схем/печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными схемами и учебными пособиями.
    Если у вас есть какие-либо вопросы, связанные со схемой, вы можете задать их через комментарии, я буду очень рад помочь!

    Цепь бестрансформаторного стабилизатора напряжения | Самодельные схемы

    Вы здесь: Главная / Электрические схемы / Бестрансформаторная схема стабилизатора напряжения идеально стабилизированное сетевое напряжение 220 В или 120 В на подключенной нагрузке без использования реле или трансформаторов, а за счет использования точно рассчитанных и саморегулирующихся импульсов ШИМ. Идея была запрошена мистером Мэтью.

    Предупреждение. Цепи, описанные ниже, не изолированы от сети переменного тока, поэтому прикасаться к ним очень опасно, если они включены и разомкнуты. Вы должны быть предельно осторожны при построении и тестировании этих цепей и обязательно принять необходимые меры предосторожности. Автор не несет ответственности за какой-либо несчастный случай из-за какой-либо небрежности пользователя

    Технические характеристики

    Об оптимизаторе мощности (стабилизаторе) Мне нужна простая печатная плата, которую можно установить в нашу силовую защиту (блок конденсаторов) с УЗИП и ELCB для 1ф и 3ф.

    В настоящее время мы производим его без какой-либо электронной схемы. Поэтому мы планируем добавить одну печатную плату для оптимизатора мощности, чтобы сбалансировать падение напряжения или перенапряжение.

    Наш продукт пользуется хорошим спросом, поэтому мы планируем представить нашу силовую защиту со стабилизатором напряжения для наших 1-фазных и 3-фазных блоков. В этом случае нам нужна очень простая и недорогая печатная плата для наших новых моделей.

    Надеюсь, вы понимаете, что именно мне нужно. Как я уже говорил вам в своем предыдущем письме, если вы можете спроектировать печатную плату или поставить печатную плату с компонентами, это будет преимуществом, потому что в нашей стране компоненты очень трудно найти. Наша 1 фаза 220 В / 50 Гц с 12 кГц и 3 фазы / 415 В / 50 Гц 40 кГц

    Я с нетерпением жду вашего ответа в ближайшее время.

    Пожалуйста, добавьте меня в Skype для любого обсуждения или в Viber , Whatsup Спасибо Мэтью

      Конструкция

    Как и требовалось, стабилизатор сетевого напряжения должен быть компактным и предпочтительно бестрансформаторного типа. Поэтому схема на основе ШИМ выглядела как наиболее подходящий вариант для предлагаемого приложения.

    Здесь переменный ток на входе сети сначала выпрямляется в постоянный, затем преобразуется в прямоугольный переменный ток, который, наконец, настраивается на правильный среднеквадратический уровень для получения требуемого стабилизированного выходного напряжения сети. Таким образом, в основном на выходе будет прямоугольная волна, но с правильным среднеквадратичным значением.

    Соотношение Rt/Ct микросхемы IRS2453 должно быть правильно выбрано, чтобы получить частоту 50 Гц в сети H-моста.

    Представленная схема ШИМ-стабилизатора сети в основном состоит из двух изолированных каскадов. Цепь левой стороны сконфигурирована вокруг специализированной полноволновой инверторной микросхемы Н-моста и связанных с ней мощных полевых МОП-транзисторов.

    Чтобы узнать больше об этом простом, но очень сложном инверторе H-bridge, вы можете обратиться к этой статье под названием: «Схема простейшего мостового инвертора»

    Как видно из диаграммы, здесь предполагаемая нагрузка размещается между левым и правым плечами мостового мосфета.

    Правая схема, состоящая из пары каскадов 555 IC, образует каскад генератора ШИМ, в котором генерируемый ШИМ зависит от напряжения сети.

    Здесь IC1 сконфигурирован для генерации сигналов прямоугольной формы с определенной заданной последовательной скоростью и подает сигнал на IC2 для преобразования этих прямоугольных сигналов в соответствующие треугольные волны.

    Затем треугольные волны сравниваются с потенциалом на выводе № 5 микросхемы IC2, чтобы сгенерировать пропорционально соответствующий ШИМ-сигнал на выводе № 3.

    Это означает, что потенциал на контакте № 5 можно регулировать и настраивать для получения любой желаемой скорости ШИМ.

    Эта функция используется здесь путем присоединения сборки LDR/LED вместе с эмиттерным повторителем к выводу № 5 IC2.

    Внутри сборки LED/LDR светодиод связан с входным напряжением сети таким образом, что его интенсивность пропорционально изменяется в зависимости от изменения напряжения сети.

    Описанное выше действие, в свою очередь, создает пропорционально увеличивающиеся или уменьшающиеся значения сопротивления по сравнению с подключенным LDR.

    Сопротивление LDR влияет на потенциал базы эмиттерного повторителя NPN, что соответственно изменяет потенциал на выводе № 5, но в обратном отношении, то есть при увеличении потенциала сети потенциал на выводе № 5 микросхемы 2 пропорционально тянут вниз и наоборот.

    Когда это происходит, ШИМ на выводе №3 микросхемы сужается по мере увеличения сетевого потенциала и расширяется по мере уменьшения сетевого напряжения.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *