Зарядка никель кадмиевых аккумуляторов своими руками: Изготовление зарядного устройства (ЗУ) для NiCd аккумуляторов

Содержание

Изготовление зарядного устройства (ЗУ) для NiCd аккумуляторов

Изготовление зарядного устройства (ЗУ) для NiCd аккумуляторов

Зарядные устройства для NiCd аккумуляторов достаточно дешевы. Обычно изготовление внешнего зарядного устройства под популярные размеры аккумуляторов, таких как ААА, АА, C и D, не отнимет много сил и времени. Умение сконструировать подобное устройство окажется полезным и тем, кто захочет встроить ЗУ в робота. В отличие от большинства дешевых ЗУ, которые продолжают заряжать аккумулятор током порядка C/10 даже после его полной зарядки, наше устройство уменьшает зарядный ток до порядка С/30 после того, как батареи оказались полностью заряженными. Такая процедура рекомендована для NiCd аккумуляторов и поможет обеспечить их длительную работоспособность.

Следующая информация позволит вам самостоятельно изготовить ЗУ для стандартного NiCd аккумулятора.

Зарядное устройство представляет собой отдельный блок, схема его подключения приведена на рис.

 3.7 в иллюстративных целях. Такую схему легко разместить в корпусе робота, при этом потребуется разъем для соединения с ЗУ. Кроме того, необходим двухполюсный двухпозиционный переключатель, помещенный между разъемом и остальной схемой. Этот переключатель соединяет источник питания (аккумулятор) либо с остальной схемой робота, либо с ЗУ. Обесточивание робота необходимо потому, что в противном случае ток заряда аккумулятора уменьшится (см. рис. 3.7).

Рис. 3.7. Двухпозиционный переключатель, управляющий зарядом АКБ

Питание зарядного устройства можно осуществлять, используя либо обычный трансформатор, либо портативный блок питания, совмещенный со штекерной вилкой (типа используемых для питания плееров). Я предпочитаю последний, поскольку он дает на выходе постоянный ток. Если вы используете трансформатор, то вам дополнительно потребуются сетевой предохранитель, диодный мост, сглаживающий конденсатор и соединительные провода.

В любом случае вы должны подобрать характеристики трансформатора или выпрямителя под тип заряжаемой батареи. Подбор выпрямителя по выходному напряжению и току снизит рассеиваемую мощность на регуляторе LM317; например, не стоит использовать трансформатор на 12 В для зарядки 6-вольтовых батарей.

На рис. 3.8 показана схема блока питания ЗУ. Выходное напряжение может равняться 6, 12, 18, 24 или 36 В в зависимости от типа используемого трансформатора, диодного моста и конденсатора.

Рис. 3.8. Сетевой трансформатор и выпрямительный блок

Схема зарядного устройства приведена на рис. 3.9. Она включает в себя регулятор напряжения LM317 и ограничивающий ток резистор. Величина сопротивления ограничительного резистора зависит от силы тока, необходимого для зарядки аккумуляторной батареи.

Рис. 3.9. Схема зарядного устройства

Ограничительный резистор

Большинство производителей NiCd аккумуляторов рекомендуют заряжать их током, равным 1/10 от их емкости, что обозначается C/10. Таким образом, батарея размера АА емкостью 0,85 Ач необходимо заряжать током C/10 или 85 мА в течение 14 часов. После полной зарядки батареи производители рекомендуют снизить ток до уровня порядка C/30 (1/30 емкости батареи) для поддержания батареи в полностью заряженном состоянии без риска перезаряда или иных повреждений.

В нашем случае рассчитаем характеристики ЗУ для зарядки аккумулятора, состоящего из 4 последовательно соединенных элементов С-типа. Емкость каждого элемента составляет 2000 мАч. Таким образом, ток C/10 составит 200 мА. Стандартное напряжение каждого элемента составляет приблизительно 1,3 В, следовательно, напряжение батареи 4 х 1,3 = 5,2 В. Следовательно, можно использовать 6-вольтовый трансформатор, поддерживающий ток не менее 200 мА.

Для расчета сопротивления ограничивающего ток резистора используется формула:

R=1,25/Icc

Где Icc необходимый ток. Подставляя в формулу 200 мА (0,2 А) получаем:

1,25/0,2=6,25 Ом

Таким образом, сопротивление ограничительного резистора должно быть порядка 6,25 Ом. На схеме (рис. 3. 9) этот резистор обозначен R2. Заметим, что на схеме резистор R2 имеет номинал 5 Ом. Это ближайший стандартный номинал резистора по отношению к рассчитанному.

C/30 резистор

Чтобы уменьшить силу тока до значения C/30, мы последовательно включаем еще один резистор, номинал которого составляет 2R или около 12,5 Ом. На схеме этот резистор обозначен как R3. Также подбирается резистор ближайшего стандартного номинала. В нашем случае его значение равно 10 Ом.

Принцип работы ЗУ

В ЗУ в качестве источника постоянного тока используется регулятор напряжения LM317. Ограничительный резистор для значения тока C/10 обозначен на схеме R2 (см. рис. 3.9). Значение R2 равно 5 Ом в сравнении с расчетным значением 6,25 Ом. Использование стандартного резистора близкого номинала не нарушит правильную работу ЗУ. Резистор для значения тока C/30 обозначен как R3. Стандартный номинал этого резистора также близок к расчетному и не нарушает нормальной работы ЗУ. Позже вы увидите, что ЗУ способно осуществлять и «быструю» зарядку аккумуляторов, поскольку имеет устройство контроля выходного потенциала.

V1 представляет собой переменный резистор номиналом 5 кОм. Он предназначен для отпирания тиристора после полной зарядки NiCd батареи. Тиристор в свою очередь переключает двухпозиционное реле, имеющее две группы контактов.

При подаче напряжения на схему ток протекает через регулятор LM317, заряжая батарею током порядка C/10. Резистор R3 при этом закорочен одной из групп контактов реле. Ток также протекает через резистор R1, ограничивающий ток светодиодов D1 и D2. После включения питания загорается красный светодиод D1, который сигнализирует о том, что происходит зарядка.

В процессе зарядки напряжение на потенциометре V1 возрастает. После 14 часов напряжение оказывается достаточным для отпирания тиристора. Через открытый тиристор напряжение поступает на обмотку двухпозиционного реле. Реле включается, красный светодиод гаснет и зажигается зеленый светодиод. Зеленый светодиод показывает, что батарея полностью заряжена. Другая группа контактов реле размыкает закороченный резистор R3. Включение резистора R3 уменьшает зарядный ток до порядка C/30. Диод D3 блокирует протекание тока из аккумулятора в схему ЗУ.

Определение напряжения срабатывания V1

Для нормальной работы схемы необходимо, чтобы тиристор отпирался только после полной зарядки NiCd батареи. Наиболее просто это сделать следующим образом: вставить полностью разряженную батарею в ЗУ, заряжать ее в течение 14 часов, а потом подрегулировать V1. После завершения процесса зарядки медленно поворачивать движок потенциометра V1 до срабатывания реле. При этом должен зажечься светодиод зеленого цвета.

Особенности конструкции

При самостоятельном конструировании ЗУ обратите внимание на следующее. Наиболее критичным является подбор ограничительных резисторов для значений тока C/10 и C/30. Для расчета их номиналов воспользуйтесь приведенными формулами. Рассеиваемая мощность этих резисторов порядка 2 Вт.

Если зарядный ток достаточно велик (более 250 мА), то для отвода тепла снабдите схему LM317 радиатором. Если ЗУ включить до соединения с батареей, то моментально сработает реле, включится зеленый светодиод и зарядный ток окажется равным C/30.

Если ЗУ будет использоваться при более высоких значениях напряжений – пропорционально увеличьте сопротивление R1, ограничивающее ток, протекающий через светодиоды. Например, для напряжения 12 В сопротивление R1 будет равно 680 Ом, для напряжения 24 В – 1,2 кОм соответственно.

При больших значениях напряжения может потребоваться резистор, ограничивающий ток обмотки реле. Полезно измерить реальные значения тока C/10 и C/30, протекающего через заряжаемую батарею, что позволит судить о правильности работы устройства.

Последовательное и параллельное соединение

Способ соединения элементов в батарею определяет необходимые характеристики трансформатора по напряжению и току.

Если батарея состоит из 8 элементов типа С, соединенных параллельно, то необходимо умножить необходимый для каждого элемента ток на 8. Если емкость отдельного элемента составляет 1200 мАч, то зарядный ток C/10 будет равен 120 мА. Для 8 параллельных элементов ток составит около 1 А (8х 120 мА=960 мА=0,96 А). Необходимое напряжение составит 1,5 В. Соответственно, необходим трансформатор, выдающий напряжение 1,5 В при токе 1 А. Если эти элементы соединены последовательно, то необходимое напряжение составит 12 В при токе 120 мА.

Быстрое ЗУ

Многие современные NiCd аккумуляторные батареи можно заряжать быстрее при условии, что после их полной зарядки ЗУ переключится в режим C/30. Типичным является удвоение зарядного тока при сокращении времени зарядки в два раза. Таким образом, можно заряжать батарею током C/5 в течение 7 часов.

Хотя я не пробовал использовать данную схему ЗУ для быстрой зарядки, но не вижу оснований, почему она не должна работать.

Если вы хотите это сделать, необходимо сперва подстроить потенциометр под значение тока C/10, а потом уменьшить номинал резистора R2 в два раза.

Список деталей

• U1 регулятор напряжения LM317

• L1 двухпозиционное реле с двумя группами контактов

• D1 красный светодиод

• D2 зеленый светодиод

• D2 диод 1N4004

• Q1 тиристор

• V1 подстроечный резистор 5 кОм

• R1 резистор 330 Ом 0,25 Вт

• R2 резистор 5 Ом 2 Вт

• R3 резистор 10 Ом 2 Вт

• R4 резистор 220 Ом 0,25 Вт

• Понижающий трансформатор

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Зарядное устройство для никель — кадмиевых аккумуляторов

Добавил: STR2013,Дата: 25 Фев 2021

Разработано много схем источников питания и зарядных устройств, в разной степени оригинальных. В основном это схемы специализированного назначения, но многие прекрасно подходят для широкого применения. Рассмотрим одну из них.  Начнём с зарядных устройств.   Конструкцией, ниже будет зарядное устройство для малогабаритных никель — кадмиевых  аккумуляторов.

        Зарядное устройство обеспечивает стабильный ток заряда и автоматически отключается  при достижении заданного напряжения на аккумуляторе.  Работа схемы оригинальна и автору пока не попадались подобные — дело в том, что в обычных схемах  окончание зарядки по достижении заданного напряжения  определяется во время протекания зарядного тока. Из-за наличия внутреннего сопротивления аккумуляторов напряжение полного заряда будет меняться при изменении зарядного тока, что затрудняет определение момента окончания зарядки.

Принципиальная схема зарядного устройства

Предлагаемая схема работает иначе: в течение нескольких секунд на аккумулятор подаётся зарядный ток, затем он автоматически отключается примерно на 1 сек и производится замер ЭДС на аккумуляторе.   Известно, что ЭДС полностью заряженного никель — кадмиевого аккумулятора составляет 1,35 В —  если  на аккумуляторе достигнута эта величина,  переключается компаратор и срабатывает RS триггер, отключающий зарядный  ток и включающий светодиод «Аккумулятор заряжен«.

Зарядное устройство позволяет заряжать аккумуляторные батареи  с максимальным напряжением  до 18 В.  Ток зарядки регулируется переменным резистором в пределах 10 — 200 мА, а  требуемое значение ЭДС аккумуляторной батареи, при которой зарядка прекращается  также устанавливается переменным резистором.

Во время протекания зарядного тока периодически мигает светодиод «Заряд«.

Выходной транзистор необходимо установить на небольшой радиатор, площадь которого зависит от величины требуемого тока заряда и напряжения аккумуляторной батареи.

На оси переменных резисторов желательно насадить регулировочные ручки с указателями, и, с помощью мультиметра, произвести калибровку с нанесением указательных рисок на лицевой панели устройства.

Автор: Кравцов В. (сайт:Автоматика в быту)



ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:

Популярность: 825 просм.

Собираем по схеме автоматическое зарядное устройство ni-cd и ni-mh аккумуляторов

Никель-кадмиевые и Никель-металлогидридные аккумуляторы требуют зарядного устройства, которое автоматически отключается после завершения заряда. Порог устанавливается по возросшему напряжению аккумулятора. Такая схема электричества может быть реализована по-разному.

Импульсная схема с компаратором напряжения

Работу такой схемы можно представить так:

  1. На аккумулятор поступает зарядный импульс низкого напряжения большой длительности, например 1 сек;
  2. Источник тока импульса отключается от аккумулятора и подключается измеритель напряжения;
  3. Измеритель напряжения определяет степень заряда и подключает источник импульса вновь, или отключает его в случае, если напряжение превысило заранее определенный уровень.

Лучше всего подобная схема реализована на специализированных микросхемах. Их выпускается большое число вариантов. Сборка ведется по спецификациям из даташитов. Преимущество такого решения — не требуется предварительная градуировка зарядного устройства, (точная установка уровней срабатывания напряжения). ЗУ на специализированной микросхеме работает сразу после сборки при отсутствии ошибок в монтаже.

Между тем, специализированные микросхемы не всегда есть возможность достать. Тогда есть вариант — собрать автоматическое зарядное устройство на транзисторах. При этом желательно наличие цифрового мультиметра, чтобы точно выставить порог отключения после полной зарядки.

Схема на транзисторах

Рассмотрим лучшую схему, предложенную Андреем Шарым. Схема обеспечивает щадящий режим заряда никель-кадмиевых и никель-металлогидридных аккумуляторов. Транзисторы — любые с током коллектора не ниже чем на схеме. ОУ — тоже почти любой со схожими характеристиками К140УД. Трансформатор и диодный мостик – тоже любые на напряжение 6 – 12 вольт и ток 0,5 – 2 А. Дроссель — готовый. При наличии измерителя индуктивности может быть намотан самостоятельно.

Режим работы схемы — импульсный. Обеспечивается высокий КПД. Радиаторы транзисторов во многих случаях не требуются. Схема — низкочастотная, поэтому требования к монтажу минимальны.

Настройка схемы

  1. Подобрать R5 и установить 4,9 вольт в точке указанной на схеме;
  2. Подобрать R9 и установить образцовое напряжение 1,4 вольт на выходе;
  3. Подключить разряженный аккумулятор/секцию аккумуляторов и установить ток на выходе 0,1 от емкости подбором R13.

После наладки устройство готово к работе.

Похожие радиосхемы и статьи:

Зарядное устройство для Ni-Cd и Ni-MH аккумуляторов. Очень простое

РадиоКот >Схемы >Питание >Зарядные устройства >

Зарядное устройство для Ni-Cd и Ni-MH аккумуляторов. Очень простое

Так, товарищи. Сейчас мы с вами будем заряжать аккумуляторы, просто, качественно, а главное – быстро. Для чего воспользуемся микросхемой MAX713 от компании MAXIM. Это специализированная микросхема, заточенная именно под зарядку указанных типов аккумуляторов.

Итак, что же она умеет – подходите ближе, сейчас увидите.
Итак MAX713 позволяет:

  • заряжать Никель-Кадмиевые и Никель-МеталлоГидридные аккумуляторы в количестве от 1 до 16 штук одновременно;
  • в режиме быстрого заряда регулировать ток заряда от С/3 до 4С, где С – емкость аккумулятора;
  • в режиме медленного заряда доводить аккумуляторы до кондиции током С/16;
  • отслеживание состояния аккумулятора и автоматический переход от быстрого заряда к медленному;
  • в отсутствии зарядного тока через микросхему “утекает” всего 5мкА от аккумуляторов;
  • возможность отключения заряда по температурным датчикам или по таймеру;

Ну и хватит – и так вон сколько получилось.
Как обычно, чтобы разговаривать предметно, смотрим на схему:

Вообще говоря, как мы помним еще со староглиняных времен, заряжать аккумуляторы рекомендовалось током 0,1С, где С – емкость аккумулятора. Однако, с тех пор утекло много пива и производители научились делать более совершенные аккумуляторы, позволяющие учинять над собой такое безобразие, как быстрый заряд (Fast Charge).
“It”s okey”, говорят они – вы можете заряжать наши аккумуляторы гораздо большим током - главное не превышать значение 4С, иначе может случиться big-bada-bum.

Разумеется, чем больший зарядный ток используется в процессе зарядки, тем меньше времени нужно на эту самую зарядку. Однако, все же, увлекаться сильно не стоит - ток током, а долговечность аккумулятора тоже не последнее дело. Поэтому, в MAX713 реализован не только быстрый, но и медленный заряд (Trickle Charge), который включается по достижении аккумулятором полного заряда большим зарядным током.

Схема, показанная выше позволяет заряжать два аккумулятора, ёмкостью по 1000мА/ч каждый, током С/2, то есть 500мА.
Имеется индикация включения питания – HL1 и индикация быстрого заряда – HL2.
Аккумуляторы включаются последовательно.
Входное напряжение должно быть равно 6 вольтам. Вы еще тут? А ну бегом за паяльником!

Что? Вам надо заряжать четыре аккумулятора сразу? И не 1000мА/ч, а 1200?
Ну ладно, тогда не бежим за паяльником, а слушаем дальше.

Как я уже говорил, эта микросхема позволяет заряжать до 16 аккумуляторов, током до 4С. Итак, что же от нас требуется, чтобы спроектировать зарядное устройство под наши конкретные цели?

  1. Определиться с зарядным током аккумуляторов. Неплохо было бы узнать, какой максимальный зарядный ток рекомендует производитель. Ну а если не узнали, тогда уж на свой страх и риск. Для начала, я бы не стал превышать С/2.
  2. Решить сколько аккумуляторов нужно заряжать одновременно. После этого, согласно Таблице 1 определить, куда припаивать выводы PGM0 и PGM1. Разумеется, чтобы не перепаивать каждый раз микросхему, нужно предусмотреть переключатель, если нужно заряжать разное количество аккумуляторов.
  3. Подобрать входное напряжение на зарядное устройство. Оно может быть рассчитано по формуле:
    U=2+(1,9*N),
    где N – количество аккумуляторов
    Но это напряжение не может быть меньше 6 вольт.
    То есть, если вы будете заряжать даже один аккумулятор – входное напряжение должно составлять 6 вольт.
  4. Определить мощность выходного транзистора, после чего по справочнику подобрать подходящий. Мощность определяется так:
    P=(Uin – Ubatt)*Icharge,
    где:
    Uin – максимальное входное напряжение,
    Ubatt – напряжение заряжаемых аккумуляторов – суммарное, разумеется,
    Icharge – зарядный ток.
  5. Посчитать сопротивление R1. R1=(Vin-5)/5 – сопротивление получается в килоомах, чтобы получить Омы надо посчитанное значение умножить на 1000.
  6. Определить сопротивление R6. R6=0.25/Icharge Если Icharge подставляется в амперах, сопротивление мы получим в Омах, если а миллиамперах, то в килоомах. Не теряйтесь.
  7. Выбираем время заряда. Это нужно для того, чтобы в случае неисправного аккумулятора, зарядное устройство не гоняло его, бедолагу бесконечное число часов, а отключило по таймеру, даже если аккумулятор и не зарядился. Для выбора времени заряда пользуемся Таблицей 2. И прикручиваем ноги PGM2 и PGM3 согласно этой таблице.
  8. Разумеется, не забудьте учесть при этом зарядный ток, который был выбран, а то может случиться так, что устройство отключится раньше, чем зарядится аккумулятор.

Собственно говоря и все. Дальше будут таблицы.

Таблица 1. Задание количества заряжаемых аккумуляторов.

Количество аккумуляторов

Соединить PGM 1 с…

Соединить PGM 0 с…

1

V +

V+

2

Не подсоединять

V+

3

REF

V+

4

BATT-

V+

5

V+

Не подсоединять

6

Не подсоединять

Не подсоединять

7

REF

Не подсоединять

8

BATT –

Не подсоединять

9

V+

REF

10

Не подсоединять

REF

11

REF

REF

12

BATT-

REF

13

V+

BATT-

14

Не подсоединять

BATT –

15

REF

BATT-

16

BATT-

BATT-

Таблица 2. Задание максимального времени заряда.

Время заряда (мин)

Выключение по падению напряжения

Соединить PGM 3 с…

Соединить PGM 2 с…

22

Выключено

V +

Не подсоединять

22

Включено

V +

REF

33

Выключено

V +

V+

33

Включено

V +

BATT-

45

Выключено

Не подсоединять

Не подсоединять

45

Включено

Не подсоединять

REF

66

Выключено

Не подсоединять

V+

66

Включено

Не подсоединять

BATT-

90

Выключено

REF

Не подсоединять

90

Включено

REF

REF

132

Выключено

REF

V+

132

Включено

REF

BATT-

180

Выключено

BATT –

Не подсоединять

180

Включено

BATT-

REF

264

Выключено

BATT –

V+

264

Включено

BATT –

BATT-

См. так же: Хождение под мухой или две недели с MAX713.


Как вам эта статья?

Заработало ли это устройство у вас?

Что нужно знать про никель-кадмиевые аккумуляторы

Распространённый метод восстановления Ni─Cd аккумуляторов?

На тему восстановления Ni─Cd аккумуляторов есть достаточно много статей и видеороликов в интернете. Большинство из них касается восстановления аккумуляторов от шуруповёртов и другого портативного инструмента. Это неудивительно, поскольку такие батареи стоят достаточно дорого и зачастую их ещё нужно поискать. В основном при восстановлении никель─кадмиевых аккумуляторов используется одна методика, которую мы сейчас опишем.

На изображении ниже представлен аккумулятор от шуруповёрта в сборе и его начинка.

Аккумулятор от шуруповёрта

Одна Ni-Cd батарейка из аккумулятора

Если сказать коротко, то метод восстановления заключается Ni─Cd аккумулятора высоким током короткими импульсами в течение нескольких секунд. При этом ток должен быть гораздо больше ёмкости батареи (в десятки раз).

Методика восстановления пригодна для никель─кадмиевых аккумуляторов. Не путать с никель─металлогидридными. Опробована она была на моделях рулонного типа. В принципе подходит для батареек любого возраста и даже потёкших. Конечно, чем старше будет аккумулятор, тем меньше шансов будет его восстановить.
Что понадобиться при проведении процедуры восстановления:

  • другая рабочая аккумуляторная батарея с сильным током. Это может быть аккумулятор от источника бесперебойного питания, автомобильный аккумулятор и т. п.;
  • крокодилы, куски провода. Куски провода должны иметь длину около 10 сантиметров и сечение не менее 1,5 мм2;
  • мультиметр для контроля напряжения;
  • средства защиты (перчатки, очки).

В идеале следует проводить процедуру на каждой батарейке (1,2 вольта) по отдельности, а не на все сборке сразу. В этом случае процедура восстановления будет проходить эффективнее и вторую батарею можно будет использовать меньшей мощности (вполне хватит стандартной автомобильной АКБ или аккумулятора из источника бесперебойного питания).

Итак, по порядку, что нужно делать:

Находите у восстанавливаемой батарейки (или у всего блока шуруповёрта, если восстанавливаете целиком) плюс и минус;
Затем при помощи куска провода и крокодилов соединяете минусы;
Потом к одному из плюсовых контактов крепится второй кусок провода;
После этого нужно свободным концом провода быстро касаться оставшегося свободным плюсового контакта

Здесь важно делать касания быстро и кратковременно (2─3 касания в секунду). Эта процедура продолжается 3─4 секунды

Важно не допускать приварки провода в месте касания.

Перезапуск аккумулятора

Вообще, рекомендуется касаться проводом не самого вывода батареи, а сначала прикрепить к нему крокодил или пластину. И уже касаться их.

После проведения одного цикла таких касаний делается замер напряжения на восстанавливаемой батарее. Если не появилось, то делаете ещё один цикл. После того, как на батарейке появится напряжение, она ставится на зарядку до набора своей ёмкости. Скорее всего, она будет меньше номинала. Рекомендуется ещё сделать несколько циклов заряд-разряд для тренировки аккумулятора. Подробно о том, как заряжать Ni-Cd аккумуляторы читайте по указанной ссылке.

Почитав отзывы об этом методе восстановления, стало ясно, что он дает лишь кратковременное улучшение состояния батареи. Аккумулятор действительно начинал работать, заряжаться, разряжаться, набирать ёмкость, но впадал некоторое время, «что в кому». Я так понимаю, что это происходит по причине того, что не устранялся источник проблемы. В результате прожига устранялись дендриты, вызывавшие микрозамыкания, и батарейка оживала. Но поскольку состав и объём электролита нарушены, всё возвращалось в исходное состояние.

После поисков в интернете был найден ещё один, более совершенный метод восстановления Ni─Cd аккумуляторных батарей. Советуем также прочитать материал про то, как восстановить Ni─MH аккумуляторы.
 

Распространенный способ восстановления ni cd аккумуляторов

Установка новой батареи в шуроповерт обычно происходит только, если попытки восстановить ее работоспособность не дали положительного результата. Популярным методом восстановления кадмиевых батарей для шуруповерта считается подача высокого тока небольшими импульсами. Это происходит очень быстро, ориентировочно 1–3 секунды. Причем величина тока должна быть выше емкости изделия в 10–20 раз.

Такая восстанавливающая технология, была испытана на аппаратах рулонного типа. Эта технология восстановления cd аккумулятора шуруповерта может применяться для батареек любого типа, даже потекших. Безусловно, чем батарея старше, тем сложнее выполнить ее восстановление. Для работы требуется заранее подготовить:

  • Рабочий аккумулятор с большим током. Подойдет автомобильная батарея.
  • Провод, сечением 1,5 кв. мм.
  • Крокодилы.
  • Прибор, контролирующий напряжение (мультиметр).
  • Защитные средства (очки, перчатки).

Технологический процесс ремонта кадмиевых батарей проходит в конкретной последовательности:

Определяются полюса у восстанавливаемого изделия (плюсовой и минусовой контакт).
Отрезком кабеля соединяются минусы. Для усиления контакта в места соединения устанавливают крокодилы.
К положительному контакту присоединяют второй отрезок провода.
Когда все кабели надежно зафиксированы, свободным концом нужно быстро дотронуться до плюсового контакта

Очень важно чтобы касание проходило быстро и не занимало много времени (1–3 секунды).
Операция продолжается примерно 3–4 секунды. Причем нельзя допустить, чтобы произошло приваривание провода в точке касания.
Когда один цикл касаний закончен, проверяется напряжение

В случае его отсутствия, цикл повторяется. После появления напряжения, никелевую батарею ставят на полную зарядку, для получения максимального значения емкости.

Как правильно разряжать батарею

Независимо от того, используется ли медленная или быстрая зарядка, необходимо следить за тем, чтобы ни один из элементов NiCd не перезаряжался. Поэтому необходимо уметь определять конец заряда. Есть несколько методов достижения этого.

  • Базовое зарядное устройство: некоторые базовые зарядные устройства NiCd, которые можно купить, просто заряжают около C / 10. Они не включают в себя таймер и предполагают, что пользователь снимает зарядку, когда заряжается элемент. Этот режим не совсем удовлетворителен, так как ячейки будут перегружены, если пользователь забудет и в результате получит повреждение. Также нет возможности узнать точное состояние зарядки перед началом зарядки.
  • Истекшее время / таймер: некоторые из самых основных зарядных устройств предполагают, что элементам потребуется полная зарядка, и, зная их емкость, им можно дать заряд в течение заданного времени. Это простой способ зарядки никель-кадмиевых элементов и аккумуляторов. Одним из основных недостатков этой формы прекращения зарядки является то, что предполагается, что все батареи полностью разряжены до того, как их зарядить. Чтобы обеспечить разрядку аккумуляторов, зарядное устройство может поместить элемент в цикл разрядки.Это не особенно точный метод перезарядки батарей и элементов, потому что количество заряда, которое они могут удерживать, изменяется в течение их полезного срока службы. Однако это лучше, чем отсутствие какой-либо формы прекращения заряда.
  • Подпись напряжения: Подпись напряжения Зарядные устройства NiCd используют подпись напряжения никель-кадмиевого элемента, чтобы определить, где он находится в пределах своего цикла зарядки.Обнаружено, что, когда никель-кадмиевая батарея полностью заряжена, наблюдается небольшое падение напряжения на клеммах. Микропроцессорные зарядные устройства способны контролировать напряжение и определять точку полной зарядки, когда они прекращают процесс зарядки.Эту форму прекращения заряда NiCd часто называют отрицательным дельта-напряжением, NDV. Он обеспечивает наилучшую производительность при быстрой зарядке, поскольку отрицательная точка дельта-напряжения более очевидна при использовании быстрой зарядки.
  • Повышение температуры. Метод определения времени окончания быстрой зарядки – это метод измерения температуры. Проблема в том, что это неточно, потому что ядро ячейки будет иметь гораздо более высокую температуру, чем периферия. Для нормальных скоростей зарядки скорость повышения температуры может быть недостаточной для точного определения.

Особенности использования

Эффективность кулонометрической зарядки никель-кадмия составляет около 83% для быстрой зарядки (от C / 1 до C / 0,24) и 63% для зарядки C / 5. Это означает, что в C / 1 вы должны использовать 120 ампер-часов на каждые 100 ампер-часов, которые вы получаете. Чем медленнее вы заряжаете, тем хуже становится. В С / 10 это 55%, в С / 20 он может получить менее 50%. (Эти цифры только для того, чтобы дать вам представление, производители батарей отличаются).

Когда заряд завершен, кислород начинает генерироваться на никелевом электроде. Этот кислород диффундирует через сепаратор и реагирует с кадмиевым электродом с образованием гидроксида кадмия. Это вызывает снижение напряжения элемента, которое можно использовать для определения конца заряда. Этот так называемый минус дельта V / дельта t удар, который указывает на конец заряда, гораздо менее выражен в NiMH, чем NiCad, и очень сильно зависит от температуры. Многие из перечисленных здесь зарядных устройств используют сложный алгоритм, который использует -deltaV для точной зарядки пакетов NiMH и NiCad.

Новый аккумулятор в старом корпусе.

Если вам не удалось восстановить старую батарею, то можно на дому изготовить аккумулятор для шуруповерта. Для этой цели вам придется подобрать новую батарею (или комплект элементов), есть вариант классом повыше не зарядное устройство к ней. Только для никель-кадмиевых (nicd) аккумуляторов! С полгода как аккумуляторы в моем шуруповёрте отказали: сколько бы не стояли на зарядке. Главное – уложиться в габариты корпуса АКБ.

Если общий номинал батареи не нового зарядного устройства совпадает – достаточно изготовить переходник с помощью старого зарядника, тем более что он вам безразлично не понадобится.

Если у вас будет зарядное устройство для отдельных элементов – придется кто раз для заряда извлекать их из корпуса. Существуют не более экстремальные способы – крапива, прикрепить к шуруповерту батарею, не подходящую по форм-фактору.

Увы это скорее временное решение, лучше все-таки использовать старый корпус не подобрать новые батареи подходящего размера.

Некоторые используют «гаражный вариант» — использование старого стартерного аккумулятора от автомобиля. Этот расхожий слух способ вполне применим, увы имеются некоторые ограничения. Некоторые шуруповерты имеют рабочее напряжение электродвигателя восемнадцать вольт. Как же устроен аккумулятор для шуруповерта? Можно ли спаять аккумуляторы обычным. Это соответствует пятнадцать баночной аккумуляторной батарее.

Полностью заряженная автомобильная батарея выдает двенадцать вольт, шуруповерт работать не будет. Если ваш электроприбор имеет напряжение 14,5 вольт – то есть АКБ состоит из двенадцать элементов, двигатель заработает. Здесь это ваше решение проблемы.

Как теперь мы понимаем, поломка АКБ шуруповерта – еще не повод покупать новую батарею. Всё для переделки аккумуляторов шуруповерта на литий в уфе, оригинальные высокотоковые аккумуляторы 18650, bms платы защиты, pcm, pcb платы защиты, платы балансировки, платы контроля с. При наличии терпения не элементарных навыков в электротехнике, производят ремонт аккумулятора на дому. Иначе говоря поручить эту процедуру сервисному центру. Получится несколько затратнее – увы и дальше дешевле покупки новой АКБ.

Пропуская разговоры о пользе шуруповертов можно перейти прямо к теме. Батарея или аккумулятор у владельцев шуруповертов — самый большой предмет для беспокойства. Лучше обращаться с ними строго по инструкции. В случае поломки решение одно – покупать новую батарею. Но временно можно попытаться использовать проблемную батарею, для чего здесь предлагается ряд советов. Подчеркнем – ремонт аккумулятора это временное решение, но сначала нужно точно расследовать причины неисправности.

Особенности эксплуатации

Во время постоянной эксплуатации Ni-Cd батарей постепенно снижается разрядная емкость и напряжение. Существуют основные причины, которые объясняют эти процессы:

  • снижение активной массы и ее последующее распределение по электролитам;
  • истончение основной поверхности отрицательных и положительных электролитов;
  • изменение размера и консистенции электролита;
  • процессы, вследствие которых начинает происходить потеря кислорода и воды;
  • появление утечек напряжения по причине появления дендритов в Cd.

Также эти процессы отмечаются, если эксплуатируются Ni-MH аккумуляторы. Отличие заключается лишь в применяемом материале электролита.

Все эти процессы снижают емкость и ухудшают проводимость. В некоторых случаях происходит разрыв контакта отрицательного и положительного электролита. Вследствие этого батарея больше просто не подает никаких признаков жизни.

Параметры

  • Теоретическая энергоёмкость: 237 Вт·ч/кг
  • Удельная энергоёмкость: 45–65 Вт·ч/кг
  • Удельная энергоплотность: 50–150 Вт·ч/дм³
  • Удельная мощность: 150…500 Вт/кг
  • ЭДС = 1,37 В
  • Рабочее напряжение = 1,35…1,0 В
  • Нормальный ток зарядки = 0,1…1 C, где С — ёмкость
  • Срок службы: около 100—900 циклов заряда/разряда.
  • Саморазряд: 10% в месяц
  • Рабочая температура: −50…+40 °C

В настоящее время использование никель-кадмиевых аккумуляторов сильно ограничено по экологическим соображениям, поэтому они применяются только там, где использование других систем невозможно, а именно — в устройствах, характеризующихся большими разрядными и зарядными токами. Типичный аккумулятор для летающей модели можно зарядить за полчаса, а разрядить за пять минут. Благодаря очень низкому внутреннему сопротивлению аккумулятор не нагревается даже при зарядке большим током. Только когда аккумулятор полностью зарядится, начинается заметный разогрев, что и используется большинством зарядных устройств как сигнал окончания зарядки.
Конструктивно все никель-кадмиевые аккумуляторы оснащены прочным герметичным корпусом, который выдерживает внутреннее давление газов в тяжёлых условиях эксплуатации.

Цикл разряда начинается с 1,35 В и заканчивается на 1,0 В (соответственно 100% ёмкости и 1% оставшейся ёмкости)

Электроды никель-кадмиевых аккумуляторов изготавливаются как штамповкой из листа, так и прессованием из порошка. Прессованные электроды более технологичны, дешевле в производстве и обладают более высокими показателями рабочей ёмкости, в связи с чем все аккумуляторы бытового назначения имеют прессованные электроды. Однако прессованные системы подвержены так называемому «эффекту памяти». Эффект памяти проявляется, когда аккумулятор подвергают зарядке раньше, чем он реально разрядится. В электрохимической системе аккумулятора появляется «лишний» двойной электрический слой и его напряжение снижается на 0,1 В. Типичный контроллер устройства, использующего аккумулятор, интерпретирует это снижение напряжения как полный разряд батареи и сообщает, что батарея «плохая». Реального снижения энергоёмкости при этом не происходит, и хороший контроллер может обеспечить полное использование ёмкости аккумулятора. Тем не менее, в типичном случае контроллер побуждает пользователя выполнять всё новые и новые циклы зарядки. А это и приводит к тому, что пользователь своими руками, из лучших побуждений, «убивает» батарею. То есть можно сказать, что батарея выходит из строя не столько от «эффекта памяти» прессованных электродов, сколько от «эффекта беспамятства» недорогих контроллеров.

Бытовой никель-кадмиевый аккумулятор, разряжаемый и заряжаемый слабыми токами (например, в пульте дистанционного управления телевизора), быстро теряет ёмкость, и пользователь считает его вышедшим из строя. Так же и аккумулятор, длительное время стоявший на подзарядке (например, в системе бесперебойного питания) потеряет ёмкость, хотя его напряжение будет правильным. То есть использовать никель-кадмиевый аккумулятор в буферном режиме нельзя. Тем не менее, один цикл глубокой разрядки и последующая зарядка полностью восстановят ёмкость аккумулятора.

При хранении NiCd-аккумуляторы также теряют ёмкость, хотя и сохраняют выходное напряжение. Чтобы избежать неверной разбраковки при снятии аккумуляторов с хранения, рекомендуется хранить их в разряженном виде — тогда после первой же зарядки аккумуляторы будут полностью готовы к использованию.
Для полной разрядки батареи и выравнивания напряжений на каждом разряжаемом элементе можно подключить цепочку из двух кремниевых диодов и резистора на каждый элемент, тем самым ограничив напряжение на уровне 1-1.1 В на элемент. При этом падение напряжения на каждом кремниевом диоде составляет 0,5–0,7 В, поэтому выбирать диоды для цепочки необходимо вручную, используя, например, мультиметр.
После длительного хранения батареи необходимо провести два-три цикла заряд/разряд током, численно равным номинальной ёмкости (1C), чтобы она вошла в рабочий режим и работала с полной отдачей.

3 Меняем элементы – самый надежный способ

Понадобятся либо банки из старого аккумулятора, в котором остались исправные элементы, либо придется купить новые, стоят они недорого

При покупке обращаем внимание на размеры и емкость – они должны совпадать с имеющимися элементами. Негодные банки выбрасываем, на их место впаиваем новые

Соединять желательно, используя родные пластины или медные, подходящие по размерам.   Соблюдение сечения важно – при зарядке через контакты проходит большой ток

Если площадь недостаточна, они греются, срабатывает защита

Соединять желательно, используя родные пластины или медные, подходящие по размерам.  Соблюдение сечения важно – при зарядке через контакты проходит большой ток. Если площадь недостаточна, они греются, срабатывает защита. Замена питательных элементов аккумулятора

Замена питательных элементов аккумулятора

На собранной батарее выравниваем потенциалы, так как они разные. Ставим на зарядку на целую ночь, сутки аккумулятор пусть отдохнет, затем измеряем величину напряжения. В идеале на всех элементах должен быть одинаковый показатель. Переходим к разряду аккумулятора до его полного истощения. Процедуру повторяем еще дважды. Следует сказать, что такая тренировка необходима не только при ремонте, ее следует проводить каждые три месяца, чтобы продлить срок службы аккумулятора.

Распространённый метод восстановления Ni─Cd аккумуляторов?

На тему восстановления Ni─Cd аккумуляторов есть достаточно много статей и видеороликов в интернете. Большинство из них касается восстановления аккумуляторов от шуруповёртов и другого портативного инструмента. Это неудивительно, поскольку такие батареи стоят достаточно дорого и зачастую их ещё нужно поискать. В основном при восстановлении никель─кадмиевых аккумуляторов используется одна методика, которую мы сейчас опишем.

На изображении ниже представлен аккумулятор от шуруповёрта в сборе и его начинка.

Аккумулятор от шуруповёрта

Одна Ni-Cd батарейка из аккумулятора

Если сказать коротко, то метод восстановления заключается Ni─Cd аккумулятора высоким током короткими импульсами в течение нескольких секунд. При этом ток должен быть гораздо больше ёмкости батареи (в десятки раз).

Методика восстановления пригодна для никель─кадмиевых аккумуляторов. Не путать с никель─металлогидридными. Опробована она была на моделях рулонного типа. В принципе подходит для батареек любого возраста и даже потёкших. Конечно, чем старше будет аккумулятор, тем меньше шансов будет его восстановить. Что понадобиться при проведении процедуры восстановления:

  • другая рабочая аккумуляторная батарея с сильным током. Это может быть аккумулятор от источника бесперебойного питания, автомобильный аккумулятор и т. п.;
  • крокодилы, куски провода. Куски провода должны иметь длину около 10 сантиметров и сечение не менее 1,5 мм 2 ;
  • мультиметр для контроля напряжения;
  • средства защиты (перчатки, очки).

В идеале следует проводить процедуру на каждой батарейке (1,2 вольта) по отдельности, а не на все сборке сразу. В этом случае процедура восстановления будет проходить эффективнее и вторую батарею можно будет использовать меньшей мощности (вполне хватит стандартной автомобильной АКБ или аккумулятора из источника бесперебойного питания).

Итак, по порядку, что нужно делать:

Находите у восстанавливаемой батарейки (или у всего блока шуруповёрта, если восстанавливаете целиком) плюс и минус;
Затем при помощи куска провода и крокодилов соединяете минусы;
Потом к одному из плюсовых контактов крепится второй кусок провода;
После этого нужно свободным концом провода быстро касаться оставшегося свободным плюсового контакта

Здесь важно делать касания быстро и кратковременно (2─3 касания в секунду). Эта процедура продолжается 3─4 секунды

Важно не допускать приварки провода в месте касания.

После проведения одного цикла таких касаний делается замер напряжения на восстанавливаемой батарее. Если не появилось, то делаете ещё один цикл. После того, как на батарейке появится напряжение, она ставится на зарядку до набора своей ёмкости. Скорее всего, она будет меньше номинала. Рекомендуется ещё сделать несколько циклов заряд-разряд для тренировки аккумулятора. Подробно о том, как заряжать Ni-Cd аккумуляторы читайте по указанной ссылке.

Почитав отзывы об этом методе восстановления, стало ясно, что он дает лишь кратковременное улучшение состояния батареи. Аккумулятор действительно начинал работать, заряжаться, разряжаться, набирать ёмкость, но впадал некоторое время, «что в кому». Я так понимаю, что это происходит по причине того, что не устранялся источник проблемы. В результате прожига устранялись дендриты, вызывавшие микрозамыкания, и батарейка оживала. Но поскольку состав и объём электролита нарушены, всё возвращалось в исходное состояние.

После поисков в интернете был найден ещё один, более совершенный метод восстановления Ni─Cd аккумуляторных батарей. Советуем также прочитать материал про то, как восстановить Ni─MH аккумуляторы. Вернуться к содержанию

Виды АКБ для шуруповертов и их особенности

В современных аккумуляторных шуруповертах и дрелях используются три типа батарей:

  1. Никель-кадмиевые (NiCd, Ni-Cd).
  2. Никель-металлогидридные (Ni-MH или NiMH).
  3. Литий-ионные (Li-ion).

Рассмотрим особенности каждого из типов аккумуляторов подробно.

Никель-кадмиевые

Этот тип источников энергии, пожалуй, самый старый. Появились кадмиевые аккумуляторы в 70-х годах, и это был настоящий прорыв. По сравнению с кислотно-свинцовыми и щелочными батареями никелевые оказались намного компактнее при той же электрической емкости и имели умеренную цену.

Как и свинцово-кислотные, Ni-Cd элементы могут отдавать довольно большой ток в нагрузку и выдерживать до 1 000 циклов заряд/разряд. Причем такое количество циклов – всего лишь гарантия производителя. Фактически батарея продолжает служить и по достижении этой цифры.

Время зарядки Ni-Cd батареи в среднем составляет 6-8 часов, что, к сожалению, многовато, но все же меньше, чем у его кислотных и щелочных собратьев. Отличаются никелевые АКБ и своей «морозоустойчивостью» — они отлично работают при температурах до -20 градусов Цельсия. Дополнительно кадмиевая технология допускает глубокую разрядку, а срок службы батареи зависит в основном от количества циклов заряд/разряд. Храниться же такая батарейка может долго – до 7-8 лет.

Но есть у этого типа аккумуляторов и недостатки, причем существенные. Один из них – большой саморазряд, который может достигать 10% в месяц. Таким образом, если шуруповерт пролежал без дела, скажем, полгода, то перед использованием его придется зарядить.

Еще один недостаток – так называемый «эффект памяти». Если батарею постоянно подзаряжать, не разряжая в ноль, то она «запомнит», до какого уровня ее разряжали и по достижении этого порога просто откажется работать, «сказав», что разряжена. Именно поэтому аккумуляторы данного типа нужно периодически «гонять» — полностью разряжать и тут же заряжать до 100%.

Никель-металлогидридные

Этот тип аккумуляторов появился чуть позже – в начале 90-х годов прошлого века. Ni-MH элементы обладают сходными с кадмиевыми характеристиками, но эффект памяти проявляется у них намного слабее (но все же проявляется) и, главное, в таких аккумуляторах отсутствует кадмий.


Ni-MH батарея аккумуляторов для шуруповерта

Никель-металлогидридная батарея способна отдавать приличный ток, хорошо работает на морозе, а ее саморазряд составляет те же 7-10% в месяц. Что касается стоимости, аккумуляторы этого типа несколько дороже кадмиевых, количество же циклов заряд/разряд, от которого зависит срок службы, составляет всего 300-500 раз, что является существенным минусом. Срок хранения таких элементов – 6-7 лет. Соотношение габариты/емкость, как и время заряда — до 8 часов, сходны с кадмиевыми. Металлогидридные элементы, как и кадмиевые, хорошо переносят глубокий разряд.

Литий-ионные

Li-Ion технология на сегодняшний день является передовой. Литиевые элементы намного компактнее и легче предыдущих при той же электрической емкости и, что очень удобно, могут заряжаться повышенным током. При этом время полной зарядки литий-ионных АКБ может быть сокращено до 1-2 часов.


Li-Ion батарея аккумуляторов для шуруповерта

Большим преимуществом батареек этого типа является и практически полное отсутствие эффекта памяти – инструмент можно подзаряжать когда угодно и до любого уровня. Саморазряд Li-Ion батарейки относительно невелик и составляет примерно 2-3% емкости в месяц.

Что касается недостатков, то до относительно недавнего времени это были высокие степени пожаро- и взрывоопасности. При неправильной эксплуатации батарея могла загореться, а то и взорваться. Причем горящий элемент практически невозможно потушить водой – это только усиливает горение.

Еще один серьезный недостаток элементов этого типа – они не терпят глубокого разряда и перезаряда. В первом случае АКБ тут же выходит из строя, во втором — может загореться. Но эту проблему тоже легко решили все тем же контроллером, который отключает элемент питания от нагрузки при критическом разряде и от зарядного устройства, если АКБ зарядилась.

Обычный ресурс Li-Ion батареек составляет 600 циклов заряд/разряд, но он также сильно зависит и от «возраста». Храниться литий-ионная АКБ может не более 2-3 лет независимо от того, работает она или просто лежит в столе.

Выбирая инструмент с такими элементами питания, следует учитывать, что они будут плохо вести себя на морозе (сильное снижение емкости, которая, впрочем, восстановится в тепле). В дополнение они не смогут отдать большой ток при любой температуре, а значит, не обеспечат большой крутящий момент, необходимый для работы с плотными материалами. И стоимость Li-Ion элементов намного выше, чем у никелевых собратьев.

Завершение стерилизации

По истечении необходимого времени плавно снизьте давление, постепенно уменьшая нагрев до полного выключения источника тепла. Дайте установке остыть до температуры не больше 30°С , после чего ниппелем медленно сбросьте давление. Не допускайте резких нагревов и охлаждений, резкого сброса и возрастания давления – банки могут вскрыться.

Перед открытием крышки проверните контрольный раз клапан сброса давления, чтобы удостовериться, что давление в автоклаве и снаружи выровнялось. Если ничего не произошло, можете смело открывать крышку.

Откройте крышку и извлеките банки. Одна закладка и доведение консервов до приготовления занимает 3-3,5 часа. Как правило, опытные люди делают это во второй половине дня и к вечеру уже отключают автоклав и затем оставляют его остывать в таком положении до самого утра.

С восходом солнца можно вынимать готовые баночки, которые потом будут прекрасным деликатесом к вашему столу!

После того, как вы изучили инструкцию по применению автоклава, можно приступать к приготовлению блюд, среди которых: рыбные и мясные тушенки, овощные заготовки, домашние соленья, джемы и варенья.

Металлогидридные аккумуляторы как правильно заряжать. Держатели элементов АА

Nimh аккумуляторы – источники питания, которые относят к щелочным АКБ. Они схожи с никель-водородными аккумуляторными батареями. Но уровень их энергетической емкости больше.

Внутренний состав аккумуляторов ni mh схож с составом никель-кадмиевых источников питания. Для подготовки плюсового вывода используют такой химический элемент, никель, минусового – сплав, который включает водородные металлы поглощающего типа.

Выделяют несколько типовых конструкций никель металл гидридных АКБ:

  • Цилиндр. Для разделения токопроводящих выводов использован сепаратор, которому задана форма цилиндра. На крышке сосредоточен аварийный клапан, который приоткрывается при существенном повышении давления.
  • Призма. В таком никель металл гидридном аккумуляторе электроды сосредоточены поочередно. Для их разделения применен сепаратор. Для размещения основных элементов используется корпус, подготовленный из пластика или специального сплава. Для контроля давления в состав крышки вводят клапан либо датчик.

Среди достоинств такого источника питания выделяют:

  • Удельные энергетические параметры источника питания возрастают в процессе эксплуатации.
  • При подготовке токопроводящих элементов не используется кадмий. Поэтому проблем с утилизацией АКБ не возникает.
  • Отсутствие своеобразного «эффекта памяти». Поэтому необходимости в увеличении емкости нет.
  • Дабы справиться с разрядным напряжением (снизить его), специалисты выполняют разрядку агрегата до 1 В 1–2 раза в месяц.

Среди ограничений, которые имеют отношение к аккумуляторам никель металлгидридным, выделяют:

  • Соблюдение установленного интервала рабочих токов. Превышение этих показателей приводит к стремительному разряду.
  • Эксплуатация источник питания этого типа в сильные морозы не допускается.
  • В состав АКБ вводят термические предохранители, с помощью которых определяют перегрев агрегата, повышение уровня температуры до критического показателя.
  • Склонность к саморазряду.

Зарядка аккумулятора никель металлгидридного

Процесс зарядки никель металлогидридных аккумуляторов связан с определенными химическими реакциями. Для их нормального протекания требуется часть энергии, которая подается зарядником, от сети.

КПД зарядного процесса представляет собой часть получаемой источником питания энергии, которая запасается. Величина этого показателя может разниться. Но при этом получить 100-процентное КПД невозможно.

Перед тем как заряжать металлогидридные аккумуляторы, изучают основные виды, которые зависят от величины тока.

Капельный тип зарядки

Применять этот вид зарядки для аккумуляторов необходимо осторожно, поскольку он приводит к уменьшению периода эксплуатации. Так как отключение зарядника этого типа осуществляется вручную, процесс нуждается в постоянном контроле, регулировании. В этом случае устанавливается минимальный показатель тока (0,1 от общей емкости).

Поскольку при такой зарядке ni mh аккумуляторов максимальное напряжение не устанавливается, ориентируются только на временной показатель. Для оценки временного промежутка используют параметры емкости, которые имеет разряженный источник питания.

КПД заряженного таким способом источника питания составляет около 65–70 процентов. Поэтому компании-изготовители не советуют пользоваться такими зарядниками, поскольку они влияют на эксплуатационные параметры аккумуляторной батареи.

Быстрая подзарядка

Определяя, каким током можно заряжать ni mh батарейки в быстром режиме, учитываются рекомендации производителей. Величина тока – от 0,75 до 1 от общей емкости. Превышать установленный интервал не рекомендуется, так как аварийные клапана включаются.

Для заряда nimh аккумуляторов в быстром режиме устанавливается напряжение от 0,8 до 8 вольт.

КПД быстрой зарядки ni mh источников питания достигает 90 процентов. Но этот параметр уменьшается, как только время зарядки заканчивается. Если своевременно не отключить зарядник, то внутри батарейки начнет увеличиваться давление, возрастет температурный показатель.

Дабы зарядить ni mh акб, выполняют такие действия:

  • Предварительная зарядка

Этот режим вводят в том случае, если батарейка полностью разряжена. На этом этапе ток составляет от 0,1 до 0,3 от емкости. Пользоваться большими токами запрещено. Временной промежуток – около получаса. Как только параметр напряжения достигает 0,8 вольт, то процесс прекращается.

  • Переход на ускоренный режим

Процесс наращивания тока осуществляется в течение 3–5 минут. В течение всего временного промежутка контролируется температура. Если этот параметр достигает критического значения, то зарядник отключается.

При быстрой зарядке никель металлогидридные батареек ток устанавливается на уровне 1 от общей емкости. При этом очень важно быстро отключить заряжающее устройство, дабы не нанести вред аккумулятору.

Для контроля напряжения используют мультиметр или вольтметр. Это способствует исключению ложных срабатываний, которые пагубно влияют на работоспособность устройства.

Часть зарядных устройств для ni mh аккумуляторов работают не при постоянном, а при импульсном токе. Подача тока осуществляется с установленной периодичностью. Подача импульсного тока способствует равномерному распределению электролитического состава, активных веществ.

  • Дополнительная и поддерживающая зарядка

Для восполнения полного заряда ni mh аккумулятора на последнем этапе показатель тока снижается до 0,3 от емкости. Продолжительность – около 25–30 минут. Увеличивать этот временной промежуток запрещено, поскольку это способствует минимизации периода эксплуатации АКБ.

Ускоренная зарядка

Некоторые модели зарядных устройств для никель кадмиевых аккумуляторов оснащены режимом ускоренной зарядки. Для этого ток зарядки ограничивают, устанавливая параметры на уровне 9–10 от емкости. Снижать ток заряда нужно, как только батарея будет заряжена до 70 процентов.

Если аккумуляторная батарея заряжается в ускоренном режиме более получаса, то структура токопроводящих выводов постепенно разрушается. Специалисты рекомендуют пользоваться такой зарядкой, если вы обладаете определенным опытом.

Как правильно заряжать источники питания, а также исключить вероятность перезарядки? Для этого следует соблюдать такие правила:

  1. Контроль температурного режима ni mh аккумуляторов. Прекращать зарядку nimh аккумуляторов необходимо, как только уровень температуры стремительно повышается.
  2. Для nimh источников питания установлены временные ограничения, которые позволяют контролировать процесс.
  3. Разряжать ni mh аккумуляторные батареи и заряжать их необходимо при напряжении, которое равно 0,98. Если этот параметр существенно снижается, то выполняется отключение зарядников.

Восстановление никель металлогидридных источников питания

Процесс восстановления ni mh аккумуляторов заключается в ликвидации последствий «эффекта памяти», которые связаны с потерей емкости. Вероятность возникновения такого эффекта увеличивается, если часто осуществлять неполную зарядку агрегата. Аппаратом фиксируется нижняя граница, после чего емкость снижается.

Перед тем как восстановить источник питания, подготавливаются такие предметы:

  • Лампочка требуемой мощности.
  • Зарядник. Перед применением важно уточнить, можно ли использовать зарядник для разрядки.
  • Вольтметр или мультиметр для установления напряжения.

К аккумуляторной батареи своими руками подводят лампочку либо же зарядник, который оснащен соответствующим режимом, дабы полностью ее разрядить. После этого включается режим зарядки. Численность циклов восстановления зависит от того, в течение какого срока не эксплуатировалась АКБ. Процесс тренировки рекомендуют повторять 1–2 раза в течение месяца. Кстати, восстанавливаю таким способом те источники, которые потеряли 5–10 процентов от общей емкости.

Для вычисления утраченной емкости используют достаточно простой способ. Так, аккумуляторную батарею полностью заряжают, после чего его разряжают и измеряют емкость.

Этот процесс существенно упроститься, если пользоваться зарядным устройством, с помощью которого можно контролировать и уровень напряжения. Такие агрегаты выгодно использовать еще и потому, что вероятность глубокого разряда сокращается.

Если степень заряженности никелевых металлогидридных батарей не установлена, то подводить лампочку необходимо осторожно. С помощью мультиметра контролируется уровень напряжения. Только так предотвращается вероятность полного разряда.

Опытные специалисты проводят, как восстановление одного элемента, так и целого блока. В период зарядки проводят выравнивание имеющегося заряда.

Восстановление источника питания, который эксплуатировался в течение 2–3 лет, при полном заряде, разряде не всегда приносит ожидаемый результат. Все потому, что электролитический состав и токопроводящие выводы постепенно меняются. Перед применением таких устройств выполняется восстановление электролитического состава.

Просмотрите видео про восстановление такого аккумулятора.

Правила использования никель-металлогидридных аккумуляторных батарей

Продолжительность эксплуатации ni mh аккумуляторов во многом зависит от того, не допускается ли перегрев или существенный перезаряд источника питания. Дополнительно мастера советуют учитывать следующие правила:

  • Вне зависимости от того, сколько будут храниться источники питания, их обязательно заряжают. Процент заряда должен составлять не менее 50 от общей емкости. Только в этом случае проблем во время хранения и обслуживания не будет.
  • Аккумуляторные батареи такого типа отличаются чувствительностью к перезарядке, к чрезмерному нагреву. Эти показатели пагубно сказываются на продолжительности использования, величине токоотдачи. Для этих источников питания требуются специальные зарядники.
  • Проводить тренировочные циклы для никель-металлогидридных источников питания необязательно. При помощи проверенного зарядника потерянная емкость восстанавливается. Численность восстановительных циклов во многом зависит от того, в каком состоянии агрегат.
  • Между циклами восстановления обязательно делают перерывы, а также изучают, как зарядить АКБ эксплуатируемое. Этот временной промежуток требуется, дабы агрегат остыл, уровень температуры опустился до требуемого показателя.
  • Процедура подзарядки или тренировочного цикла проводится только в приемлемом температурном режиме: +5-+50 градусов. Если превышать этот показатель, то вероятность стремительного выхода из строя повышается.
  • При подзарядке следят за тем, чтобы напряжение не опускалось ниже, чем 0,9 вольта. Ведь некоторые зарядники не осуществляют зарядку, если это значение минимальное. В таких случаях допускается подведение внешнего источника для восстановления питания.
  • Циклическое восстановление проводят при условии, что есть определенный опыт. Ведь не все зарядные устройства можно использовать для разрядки аккумулятора.
  • Процедура хранения включает ряд простых правил. Не допускается хранение источника питания на открытом воздухе или в помещениях, в которых уровень температуры снижается до 0 градусов. Это провоцирует застывание электролитического состава.

Если единовременно осуществляется зарядка не одного, а нескольких источников питания, то степень заряженности поддерживается на установленном уровне. Поэтому неопытные потребители осуществляют восстановление АКБ отдельно.

Nimh аккумуляторы – эффективные источники питания, которыми активно пользуются для комплектации различных устройств и агрегатов. Они выделяются определенными преимуществами, особенности. Перед их эксплуатацией обязателен учет основных правил использования.

Видео про Nimh аккумуляторы

В современных устройствах – вспышках, фотоаппаратах и пр. широко применяются аккумуляторы формата АА. Они чаще всего бывают никель-металгидридные (Ni-MH), реже никель-кадмиевые (Ni-Cd, Ni-Cad).
У каждого из этих типов есть свои плюсы и минусы:

  • Ni-MH – довольно ёмкие и стабильные, лучше всего подходят для фотоаппаратов, для вспышек же подходят, когда не требуется быстрая зарядка
  • Ni-Cd – менее ёмкие из всех, но зато способные выдавать больший ток, даже при сильном разряде – лучше всего подходящие для вспышек, так как обеспечивают быстрый заряд. Крайне токсичны – кадмий из одного аккумулятора способен отравить огромное количество воды, поэтому сейчас такие аккумуляторы крайне мало производят

Аккумуляторы даже одного типа, например, Ni-MH, даже производимые одной и той же фирмой – очень разные. Например, большая ёмкость практически всегда подразумевает меньшую силу тока.
Зарядить никель-металгидридные и никель-кадмиевые(наиболее распространенные пальчиковые аккумуляторы типоразмера AA) оказывается не так уж и просто:

  • Например, зарядный ток может быть большим или малым. Малый зарядный ток означает очень долгую зарядку, но аккумулятор заряжен будет лучше.

    Большой зарядный ток означает очень быструю зарядку (с сильным нагревом аккумулятора, посему быстрые зарядные устройства обязательно оборудованы вентиляторами), но неполную зарядку и более быстрый износ аккумулятора. Древнее правило гласит “хорошую зарядку обеспечивает зарядка током равным 0.1 от емкости аккумулятора”. Быстрые зарядки это правило нарушают.

  • Есть ещё и такое плохое явление как “эффект памяти аккумулятора”: неполный разряд аккумулятора с последующим зарядом означает что в следующий раз аккумулятор будет работать до того состояния когда его в прошлый раз не полностью разрядили – то есть теряет ёмкость.

    Никель-кадмиевые подвержены этому эффекту больше, чем никель-металгидридные. Вот почему так важно полностью разряжать аккумулятор до его следующего заряда (но и тут важно не переусердствовать – ибо разряд аккумулятора до 1 вольта способен безвозвратно испортить аккумулятор).

    Проблема с потерей ёмкости возникает и при обычной работе аккумулятора – при эксплуатации аккумуляторов долго. Впрочем, “эффект памяти” можно побороть “тренировками” аккумуляторов, то есть многократными полными разрядами и последующим зарядами.

Лично у меня было 2 зарядных устройства – быстрое получасовое зарядной устройство (кстати, есть и ещё более быстрые зарядные устройства, например, пятнадцатиминутные, и стоят недорого и торговая марка, вроде, неплохая – Duracell) и медленное восьмичасовое зарядное устройство. Оба зарядных устройства – неплохих производителей (Duracell и Annsman).

Аккумуляторы, заряженные этими разными зарядными устройствами, вели себя по разному – явное преимущество 8-часовой зарядки ыо хорошо заметно, ибо после зарядки восьмичасовой аккумуляторов хватало заметно на дольше. Посему большую часть времени я пользовался восьмичасовой, оставляя получасовую зарядку на крайний случай.

Хотя реклама и говорит, что современные аккумуляторы хороших моделей этой проблемы с “потерей ёмкости из-за эффекта памяти аккумулятора” не имеют, но мой опыт (порядка 15 комплектов по 4 штуки аккумуляторов в каждом комплекте, все комплекты самых разных марок – специально разные покупал, как дешёвые так и очень дорогие) говорит об обратном. То есть у разных моделей действительно в процессе эксплуатации происходит разная потеря ёмкости – у кого то больше, у кого то меньше, но реклама врет – от проблем с “эффектом памяти” современные аккумуляторы полностью не избавлены.

Самое неприятное, что плохие аккумуляторы подводят именно на фотосъёмке. Проявляется это так – полностью заряженные аккумуляторы издыхают после нескольких десятков кадров (а бывает и после нескольких кадров, даже о десятках речь не идёт). Иногда срабатывает “закон подлости” – чем меньше у тебя времени на съёмке – тем большее количество негодных комплектов аккумуляторов у тебя обнаруживается.

Когда такое со мной приключилось на репортажной съёмке – моменты которой повторить невозможно – после съёмки, я купил несколько новых комплектов аккумуляторов. Но когда спустя месяца три эксплуатации при умеренных нагрузках (разрядах-зарядах примерно раз в 2 недели на каждый комплект) на неспешной предметной съёмке после нескольких вспышек отказали подряд несколько комплектов, в том числе и новых – я потратил некоторое количество времени на поиск информации о нормальных зарядных устройствах.

Выяснил ещё интересную вещь – идеальный зарядный ток, при котором аккумуляторы заряжаются по максимуму и идеальное время зарядки, зависит от ёмкости аккумулятора. А, значит, лучше всего заряжающего полностью автоматического зарядного устройства быть не может. Ведь аккумуляторы типоразмера AA не оснащены механизмом обратной связи, который мог бы передать какую-либо информацию (например, хотя бы информацию о номинальной ёмкости) зарядному устройству. Из наиболее распространенных аккумуляторов подобным приспособлением оснащаются только литий-ионные и литий-полимерные аккумуляторы, но не типоразмера AA.

Получается, что правильно заряжать аккумуляторы без механизма обратной связи совсем не просто. Более того, даже новые аккумуляторы следует перед началом экслуатации “тренировать”. С аккумуляторами лежавшими более 3 месяцев также следует делать “тренировку”. Легкую “тренировку” следует делать и с полежавшими небольшое время (более 2 недель и менее 3 месяцев) аккумуляторами.

Поскольку вручную “тренировать” аккумуляторы очень утомительно выпускаются и умные зарядные устройства. А поскольку зарядный ток и время и дополнительно необходимые операции по “тренировке” аккумулятора зависит от самого аккумулятора – от его ёмкости номинальной, ёмкости фактической, времени бездействия (времени хранения), особенностей внутренней химии аккумулятора, – то есть очень и очень умные зарядные устройства.

Применение очень умных зарядных устройств позволяет не оказаться на ответственной съёмке с полной сумкой полностью заряженных, но очень быстро разряжающихся аккумулятором, как это несколько раз случалось со мной. Ну и в целом работа с аккумуляторами станет удобнее – их будет намного дольше хватать, реже понадобится покупать новые.
В настоящее время мне известны следующие очень умные зарядные устройства:

  • Maha Energy PowerEx MH-C9000 WizardOne Charger-Analyzer for 4 AA / AAA
  • La Crosse Technology BC-900 AlphaPower Battery Charger (известная также под названиями Techno Line BC900, Techno Line iCharger)
  • La Crosse Technology BC-700 (отличается от BC-900 уменьшенным током заряда, но и этого хватает за глаза)

Еще немного информации об аккумуляторах для фотографов (AA Ni-MH, Ni-Cd) и как правильно их заряжать.

Каждый раз при покупке батареек у меня возникало много вопросов:

Насколько дорогие батарейки лучше дешёвых?
Какие из батареек, стоящих одинаково, лучше покупать?
Насколько ёмкость литиевых батареек больше обычных?
Насколько ёмкость солевых батареек меньше, чем у щелочных?
Отличаются ли батарейки для цифровых устройств от обычных?

Чтобы получить ответы на эти вопросы я решил протестировать все “пальчиковые” (АА) и “мизинчиковые” (AAA) батарейки, которые удастся найти в Москве. Я собрал 58 видов батареек АА и 35 видов ААА. Всего было протестировано 255 батареек – 170 АА и 85 ААА.

Для повышения точности измерений анализатор батареек не использует ШИМ – он создаёт постоянную резистивную нагрузку на батарейку. Прибор может работать в разных режимах. Для тестирования батареек АА использовались три основных режима:

Разряд постоянным током 200 mA. Такая нагрузка свойственна для электронных игрушек;
. Разряд импульсами 1000 mA (10 секунд нагрузка, 10 секунд пауза). Такая нагрузка свойственна для цифровых устройств;
. Разряд импульсами 2500 mA (10 секунд нагрузка, 20 секунд пауза). Такая нагрузка свойственна для мощных цифровых устройств – фотоаппаратов, вспышек.

Кроме того по четыре батарейки были разряжены маленькими токами 50 и 100 mA.

Измерение делались при разряде батареек до напряжения 0.7 V.

Все данные тестирования сведены в таблицу.
По графику разряда отлично видно, как ведут себя батарейки разных типов.

Разряд батареек АА током 200 mA

Первые пять линий – солевые батарейки. Хорошо видно, насколько меньше их ёмкость.
Последние три линии – литиевые батарейки. Они не только имеют большую ёмкость, но и разряжаются по-другому: напряжение на них не снижается почти до самого конца, а затем резко падает. Особенно ярко это выражено у батарейки GP Lithium. Кроме того литиевые батарейки могут работать на морозе.
Среди множества похожих щелочных батареек хорошо видны два аутсайдера – Sony Platinum и Panasonic Alkaline и два лидера – Duracell Turbo Max и Ansmann X-Power. Остальные батарейки отличаются между собой по ёмкости всего на 15%.

На первой диаграмме батарейки АА отсортированы по ёмкости при токе разряда 200 mA.

Батарейки Duracell Turbo Max действительно имеют ёмкость, немного большую, чем у всех остальных щелочных батареек, однако мне попалась одна упаковка Duracell Turbo Max, которые были значительно хуже других. По ёмкости они соответствовали обычным дешёвым батарейкам. В таблице и на графиках они помечены “Duracell Turbo Max BAD”.

Из диаграммы хорошо видно, что разные батарейки по-разному проявляют себя при разряде большими и малыми токами. Например Camelion Plus Alkaline даёт больше энергии, чем Camelion Digi Alkaline на маленьком токе. А на большом всё наоборот. Как правило на батарейках, рассчитанных на большие токи указывают, что они предназначены для цифровых устройств. При этом есть множество универсальных батареек, отлично работающих с любыми токами.

Я усреднил количество энергии, которое батарейки выдают на больших и малых токах и на основе результатов и цены батареек (которая в некоторых случаях только приблизительна) составил диаграмму стоимости одного ватт-часа для всех батареек АА.

Все типы батареек ААА были разряжены постоянным током 200 mA. Некоторые типы батареек ААА были подвергнуты второму тесту – разряду током 1000 mA в режиме “постоянное cопротивление” (ток при этом снижался по мере разряда). Этот режим эмулирует работу батареек в фонаре.

В формате AAA Duracell Turbo Max оказался далеко не лучшей щелочной батарейкой. У многих дешёвых батареек (например Ikea, Navigator, aro, FlexPower) ёмкость была больше.

Технические выводы:

Большинство щелочных батареек отличается между собой по ёмкости всего на 15%;
. Литиевые батарейки имеют в 1.5-3 раза (в зависимости от тока нагрузки) большую ёмкость, чем щелочные;
. В отличие от щелочных, напряжение на литиевых батарейках почти не снижается в процессе разряда;
. Солевые батарейки в 3.5 раза хуже щелочных на малых токах и совсем не могут работать на больших;
. Существуют три вида щелочных батареек: универсальные, рассчитанные на малые токи нагрузки и рассчитанные на большие токи нагрузки. При этом универсальные лучше двух других на всех токах.

Потребительские выводы:

Солевые батарейки покупать нецелесообразно. Даже в устройствах с самым малым потреблением щелочные (Alkaline) прослужат гораздо дольше за счёт своего большого срока годности;
. Выгоднее всего покупать батарейки, продающиеся под брендами магазинов Ашан и Ikea;
. В других магазинах можно смело покупать самые дешёвые щелочные батарейки;
. Из того, что продаётся в продуктовых магазинах, лучший выбор – GP Super;
. Литиевые батарейки дорогие, зато они лёгкие, ёмкие и могут работать на морозе.

Многие просили провести такие же основательные тесты NiMh-аккумуляторов. За четыре месяца я протестировал 198 аккумуляторов (44 модели AA и 35 моделей AAA).


Обычно в блоге Lamptest.ru я рассказываю о тестировании светодиодных ламп, которые потребляют в 6-10 раз меньше традиционных и позволяют существенно сэкономить на оплате электроэнергии. Сегодня я хочу затронуть другой аспект экономии — использование аккумуляторов вместо батареек.

Аккумуляторы заряжались с помощью La Crosse BC-700 b Japcell BC-4001 зарядных устройств. Аккумуляторы с ёмкостью выше 1500 mAh заряжались током 700-800 mA, аккумуляторы меньшей ёмкости током 500-600 mA.

Для определения ёмкости аккумуляторы разряжались анализатором Олега Артамонова. Аккумуляторы с ёмкостью выше 1500 mAh разряжались токами 500 mA и 2500 mA, аккумуляторы меньшей ёмкости — токами 200 mA и 1000 mA.

В основном тестировалось по два экземпляра аккумуляторов каждой модели. Для сравнения я использовал результаты худшего аккумулятора из пары, если же тестировалось четыре аккумулятора, для сравнения я брал предпоследний по ёмкости.

Начнём с самого простого — ёмкости аккумуляторов на средних токах 500/200 mA. Конечно, правельней учитывать ёмкость в ватт-часах, но на всех аккумуляторах указана ёмкость в миллиампер-часах, поэтому я буду использовать их.

Как видно из результатов тестирования, максимальная ёмкость аккумуляторов АА составляет 2550 mAh. Все аккумуляторы с красивыми числами 2600, 2700, 2800 и 2850 mAh лишь плод деятельности маркетологов. Их реальная ёмкость иногда даже меньше, чем у аккумуляторов тех же производителей с более скромными числами. На некоторых аккумуляторах с указанными большими значениями ёмкости мелким шрифтом указана минимальная ёмкость (например у Ansmann 2700, Panasonic 2700, Maha Powerex 2700 указаны значения минимальной ёмкости 2500 mAh и их реальная ёмкость близка к этому значению).
А вот у AAA всё по-честному. Максимальная указанная ёмкость 1100 mAh и фактическая ёмкость близка к этому значению.

Аккумуляторы Duracell 1300 после первого цикла заряд-разряд показали очень низкие результаты, но после нескольких циклов заряд-разряд показали те результаты, которые я учитываю.
Один из четырёх аккумуляторов Turnigy 2400 LSD имел ёмкость, на 30% меньшую, чем остальные. Предполагаю, что это брак. Его результат не учитывается.
Два аккумулятора Camelion 2800 имели ёмкость 2270 mAh и 2610 mAh (разница 13%). Хоть лучший из пары и оказался самым ёмким из всех аккумуляторов АА, я вынужден использовать данные худшего экземпляра, ведь никто не знает, какие экземпляры могут ещё попасться при покупке.
Китайские аккумуляторы BTY AA 3000 и BTY AAA 1350 имеют настолько низкую ёмкость, что место им только в помойке и в дальнейших тестах я их упоминать не буду.

В отличие от батареек, аккумуляторы нельзя относить к категории хороший/плохой просто по ёмкости, ведь в продаже есть аккумуляторы разных номинальных ёмкостей. Давайте посмотрим, насколько ёмкость протестированных аккумуляторов соответствует заявленной. Если на аккумуляторе указана не только номинальная, но и минимальная ёмкость, я буду исходить из неё. Для сравнения используются данные, полученные при разряде средним током 500/200 mA.

О качестве аккумуляторов можно судить по тому, как отличаются между собой экземпляры.

У большинства аккумуляторов экземпляры отличаются не более, чем на 5%.

В отличие от батареек, аккумуляторы почти не теряют ёмкость при больших токах разряда. Я сравнил ёмкость при токах разряда 2500 mA и 500 ma для аккумуляторов AA, имеющих ёмкость от 1500 mAh и 1000/200 mA для аккумуляторов AAA и аккумуляторов АА, имеющих ёмкость менее 1500 mAh.

Некоторые аккумуляторы на больших токах способны отдавать даже большее количество энергии, чем на малых (у таких аккумуляторов разница между ёмкостью на большом и малом токе больше 100%).

Половина из всех протестированных аккумуляторов изготовлена по технологии LSD (Low Self-Discharge — низкий саморазряд). Эти аккумуляторы продаются уже заряженными. Я измерил их ёмкость сразу после распаковки без предварительной зарядки.

В среднем LSD-аккумуляторы оказались заряжены на 70%. Конечно уровень их заряда зависел не только от качества аккумуляторов, но и от времени и условий их хранения, а дата изготовления есть лишь на некоторых аккумуляторах.

Я протестировал все аккумуляторы через неделю и месяц после зарядки. Результаты через неделю можно посмотреть в общей таблице, а вот результаты через месяц.

Удивительно, но одними из лучших по сохранению заряда в течение месяца оказались не-LSD аккумуляторы Navigator 2100 AA и GP 1000 AAA. Большинство аккумуляторов (как LSD, так и не-LSD) через месяц сохраняют 90% заряда.

Приведу цены на аккумуляторы на 1.11.2015. Опт — оптовая цена в «Источник Бэттэрис», РРЦ — рекомендованная розничная цена, Маг — минимальные цены в магазинах и интернет-магазинах (в основном это остатки, закупленные при более низком курсе валют), $ и € — цены в долларах и евро в зарубежных интернет-магазинах, руб — цены в пересчёте по текущему курсу ($1=64 руб, 1€=70.5 руб). В магазинах hobbyking.com и ru.nkon.nl доставка платная, стоимость самой дешёвой доставки при покупке 12 аккумуляторов включена в цену в таблице.

Первое сравнение — по стоимости 1000 mAh на основе РРЦ и цен в интернет-магазинах, если аккумуляторы не продаются в обычных магазинах.

Лидируют аккумуляторы IKEA, вслед за ними идут аккумуляторы из зарубежных интернет-магазинов PKCELL и Turnigy. Самыми дорогими на основе рекомендованных цен оказались Panasonic Eneloop.

Многие покупают аккумуляторы в зарубежных интернет-магазинах, поэтому второе сравнение я сделал по ценам зарубежных интернет магазинов и минимальным ценам, которые удалось найти в российских магазинах.

IKEA и тут опережает всех, Panasonic Eneloop оказываются совсем не такими дорогими, если их покупать через интернет, а Fujitsu, производящиеся на том же заводе по той же технологии, ещё дешевле.

Для большинства аккумуляторов производители указывают 1000 циклов заряд-разряд, некоторые производители вообще не указывают число циклов (Camelion, Turnigy, GP, Varta). Некоторые аккумуляторы имеют только 500 гарантированных циклов (IKEA LADDA 2000 LSD, Energizer PreCharged 2400, Panasonic Eneloop Pro 2450 LSD, Fujitsu 2550 LSD, IKEA LADDA 750 LSD, Energizer PreCharged 800, Panasonic 750 LSD, Fujitsu 900 LSD, Panasonic Eneloop Pro 900 LSD).
Для AA Panasonic Eneloop 1900 LSD, AAA Panasonic Eneloop 750 LSD, AA Fujitsu 1900 LSD, AAA Fujitsu 800 LSD производители гарантирует 2100 циклов.
Максимальное количество циклов — 3000 гарантируется для аккумуляторов низкой ёмкости AA Panasonic Eneloop Lite 950 LSD и AAA Panasonic Eneloop Lite 550 LSD.

1. Максимальная достижимая ёмкость для NiMh аккумуляторов AA — 2550 mAh, для AAA — 1060 mAh. Все аккумуляторы, на которых написано 2600, 2700, 2800 mAh и более в реальности имеют меньшую ёмкость.
2. Все аккумуляторы AA известных производителей от 950 mAh до 2450 mAh имеют реальную ёмкость не менее 97% от указанной, все аккумуляторы AAА известных производителей от 550 mAh до 1100 mAh имеют реальную ёмкость не менее 94% от указанной.
3. NiMh аккумуляторы в отличие от батареек почти не снижают количество отдаваемой энергии при больших токах разряда.
4. За месяц хранения как обычные, так и LSD аккумуляторы теряют 4-20% заряда.
5. Новые LSD аккумуляторы обычно оказываются заряжены на 70%.

Я потратил четыре месяца на тестирование и три дня на написание этой статьи. Надеюсь, вам это пригодится.

2015, Алексей Надёжин

После приобретения зарядного устройства определенного типа многие сталкиваются с проблемой, как правильно осуществлять его подзарядку? Одним из основных видов являются никель-металлгидридные (NiMh) аккумуляторы. Они имеют свои особенности того, как их заряжать.

Как правильно заряжать NiMh аккумулятор?

Особенностью NiMh аккумуляторов считается их чувствительность к нагреву и перегрузке. Это может привести к отрицательным последствиям, которые сказываются на способности устройства держать и выдавать заряд.

Практически все батареи такого типа используют метод «дельта пик» (определение пика напряжения зарядки). Он позволяет обозначить момент окончания заряда. Свойство никелевых зарядных устройств состоит в том, что напряжение заряженного NiMh аккумулятора начинает снижаться на некоторую незначительную величину.

Каким током заряжать NiMh аккумулятор?

Метод «дельта пик» способен хорошо работать при токах заряда, составляющих от 0,3С и выше. Величина С применяется для обозначения номинальной емкости заряжаемого аа ni NiMh аккумулятора.

Так, для зарядного устройства с емкостью 1500 мАч метод «дельта пик» будет уверенно работать при минимальном токе заряда, равном 0,3х1500=450 мА (0,5 А). Если ток будет с меньшим значением, велика опасность того, что в конце заряда напряжение на батарее не начнет снижаться, а произойдет его зависание на определенном уровне. Это приведет к тому, что зарядное устройство не определит момент окончания заряда. Как следствие, не произойдет его отключение и продолжится перезаряд. Емкость аккумулятора будет уменьшаться, что отрицательно скажется на его работе.

В настоящее время практически все могут заряжаться током до 1С. При этом условием, которое должно соблюдаться, является нормальное воздушное охлаждение. Оптимальной считается комнатная температура (около 20⁰С). Осуществление заряда при температуре меньше 5⁰С и больше 50⁰С в значительной степени уменьшит срок работы аккумулятора.

Для продления срока эксплуатации никель-металлгидридного зарядного устройства можно порекомендовать хранить его с незначительным количеством заряда (30-50 %).

Таким образом, правильное проведение подзарядки никель-металлгидридного аккумулятора благоприятно отразится на его работе и поможет ему нормально функционировать.

Купил на Али кучку держателей для аккумуляторов (или просто батареек) формата АА… Вещь бывает нужна в хозяйстве, тем более, если собираешь или ремонтируешь какие-либо электронные приборы или гаджеты. Собственно больше то и писать о них было бы нечего (ну только оценить сопротивление контактов, померить длину проводков и оценить на зуб и глаз пластмассу – что будет в обзоре), но наткнулся на одну статью в интернете и родилась идея проверить, можно ли восстановить емкость отработавших свой срок NiCd и NiMh аккумуляторов, которых накопилось в хозяйстве, и выбросить их просто на свалку рука не поднимается, т.к такие элементы нужно сдавать на утилизацию… Что из этого получилось, и вообще получилось ли… Можно узнать прочитав обзор…
Внимание – много фото, трафик!!!

Вот собственно, сама статья, которую я упоминал в оглавлении обзора…


Начал искать еще информацию про восстановление утративших емкость NiCd и NiMh АКБ и поиск привел меня на занимательную статью на английском, которую вы сможете прочитать пройдя по ссылке: Не знающие английский могут воспользоваться возможностями автоматического перевода на русский системой Google. Из статьи я вынес главное, что элементы NiCd и NiMh имеют память (у NiCd это очень выражено, у NiMh менее выражено, но все же эффект имеет место), и что бы продлить жизнь им, необходимо разряжать, до определенного напряжения перед зарядкой.


Наверное многие знают об этом, что производитель рекомендует разряжать аккумуляторы до остаточного напряжения 0.9-1В, а только потом ставить на зарядку. Но часто это игнорируется и со временем элементы теряют емкость, в них образуются кристаллы солей кадмия и никеля. И что бы их, хотя бы частично, разбить, нужно разряжать аккумуляторы небольшим током до остаточного напряжения 0.4-0.5В…

Кстати, немного о том, как устроен аккумулятор: Основу любого аккумулятора составляют положительный и отрицательный электроды. Разберем на основе NiCd аккумулятора. Положительный электрод (катод) содержит гидрооксид никеля NiOOH с графитовым порошком (5-8%), а отрицательный (анод) – металлический кадмий Cd в виде порошка.


Аккумуляторы этого типа часто называют рулонными, так как электроды скатаны в цилиндр (рулон) вместе с разделяющим слоем, помещены в металлический корпус и залиты электролитом. Разделитель (сепаратор), увлажненный электролитом, изолирует пластины друг от друга. Он изготавливается из нетканого материала, который должен быть устойчив к воздействию щелочи. Электролитом чаще всего выступает гидрооксид калия KOH с добавкой гидроксида лития LiOH, способствующего образованию никелатов лития и увеличения емкости на 20%.

Никель-металлогидридные аккумуляторы по своей конструкции являются аналогами никель-кадмиевых аккумуляторов, а по электрохимическим процессам – никель-водородных аккумуляторов. Удельная энергия Ni-MH-аккумулятора значительно выше удельной энергии Ni-Cd- и Ni-Н2-аккумуляторов
Аккумулятор NiMh (Никель-металлогидридный), устроен почти так же как NiCd:


Положительный и отрицательный электроды, разделенные сепаратором, свернуты в виде рулона, который вставлен в корпус и закрыт герметизирующей крышкой с прокладкой. Крышка имеет предохранительный клапан, срабатывающий при давлении 2-4 МПа в случае сбоя при эксплуатации аккумулятора.

Вооружившись знаниями, я решил попробовать собрать нечто подобное как в статье «Автоматическая разряжалка», и на практике проверить поможет это или нет, восстановить, хотя бы частично, утратившие емкость аккумуляторы… Собрал такое тестовое устройство по схеме приведенной в статье. В статье в качестве индикации была применена лампочка на 1В 75мА, уж не знаю где автор нашел такую. Так же в статье было предложено использовать светодиод, но эта идея не пройдет, поскольку все светодиоды при 1-1.5В не светят… Потому в качестве индикатора был применен амперметр…

Начальный ток разрядки свежезаряженной АКБ составляет 250мА, и постепенно падает. При остаточном напряжении в 1В, ток разряда снижается до 30-40мА, как раз примерно такой ток и нужен, что бы попытаться разбить кристаллы «шлака» в аккумуляторе…
Провел небольшое тестирования «убитого» радиотелефоном Ni-Mh аккумулятора формата ААА, всего было проведено 4 цикла заряда-разряда. Тестирование проводилось таким образом: Аккумулятор был разряжен до рекомендуемого производителем напряжения в 1В и был полностью заряжен при помощи автоматического Зарядного устройства Soshine (спасибо китайцам)

Зарядное устройство считает количество «закаченного» в АКБ заряда, конечно это неправильный способ оценки емкости, т.к нужно измерять емкость АКБ при разряде, а не заряде (в дальнейшем будем измерять емкость правильно), но косвенно можно судить, изменяется или нет емкость «убитого» аккумулятора…

Лирическое отступление

Кстати, на Муське, многие авторы этим «грешат», измеряя емкость аккумуляторов при помощи всеми любимого, «белого доктора»… Измерив «вдуваемый» в аккумулятор заряд, с важным видом рассуждают о емкости батареи, не учитывая, что не всё «вдутое» можно «выдуть» назад, а так же многочисленные потери энергии на саморазряд, нагрев батареи и т.п. Любой обзор девайса имеющего USB порт, считается не полным, если в нем нет фотографии «белого доктора». Китайцы вероятно обогатились на продажах этих супер-устройств для тестирования…))))


Полностью заряженный аккумулятор взял 480мА/ч «заряда» и был поставлен на разрядку в изготовленное разрядное устройство… Отсечка разрядки произошла при остаточном напряжении АКБ при 0.5В… Это значение зависит от параметров транзисторов, использованных в разрядном устройстве… Цикл Заряда-Разряда повторяли 4 раза… Результаты предварительного тестирования привожу ниже:

1- заряд – 680мА/ч

2- заряд – 726мА/ч

3- заряд – 737мА/ч

4- заряд – 814мА/ч

Что ж мы видим положительную динамику… По крайней мере, в аккумулятор входит все больше «заряда», но к сожалению это только косвенная оценка емкости, а что бы оценить точно, нужно разряжать аккумулятор измеряя емкость…
Чем мы и займемся далее))))
Для правильной оценки емкости аккумуляторов было заказано новое Зарядно-разрядное устройство ВМ200 в у китайцев… Оно способно разряжать АКБ и измерять емкость, это будет намного точнее…

Поскольку можно сразу же тестировать 4 АКБ, было решено переделать разряжалку, и сделать её тоже 4-х канальной. Зарядно-разрядное устройство ВМ200 конечно способно самостоятельно разряжать АКБ, но делает она это до остаточного напряжения 0.9В, а это мало, мне необходимо разрядить каждый элемент до 0.4В, потому была найдена схема другого разряжающего устройства в интернете

Я перевел эту схему на современные элементы и размножил до 4-х каналов…
Получилось вот такое разрядное устройство:


Поскольку во всех 4-х каналах, я выставляю одинаковое напряжение отсечки компараторов, то обошелся одним стабилитроном и одним построечным резистором на все четыре канала…
Для желающих повторить, даю ссылку на печатную плату, на ней все элементы подписаны

Вот тут-то мы и дошли до наших держателей для АКБ или батареек… Мне нужно было 4 шт, остальные уйдут «про запас»… Как обычно ссылка уже идет в «никуда», потому я поставил в заголовке аналогичный товар у другого продавца. Под спойлером прикладываю скриншот заказа, а то не поверят, что я заказываю запчасти у китайцев…))))

Скрин заказа


Пока ко мне на всех парáх, на рикшах китайцы, в поте лица, везут мои 2 посылки, позволю себе короткое лирическое отступление… Обязательно найдутся пару читателей «муськи», которые скажут, что я занимаюсь фигней, тем более изготавливая печатные платы, и вообще надо не париться, а просто выкидывать отслужившие аккумуляторы… Возможно, это и правильно, но у каждого свой путь, кто-то водку пьет, кто-то в баню ходит, ну а мне нравится что-то созидать, пусть даже это кажется кому-то бессмысленным… Главное, что мне это нравится, ну а вам я желаю просто хорошо отдохнуть, читая мой обзор, может быть узнать что-то новое и обсудить это в комментариях, только не доводите споры до «холивара»…)))
Пока ждал посылку, сделал модуль индикации, вместо вольтметра для первого варианта платы, что на двух транзисторах…

развлекаюсь под спойлером

Это все сделано на микросхеме LM3914, практически по типовой схеме с даташита. Питание 5В от какой-то зарядки сотового телефона… На плате есть перемычка, которой можно переключать микросхему из режима «Точка», в режим «Столбик» и обратно…

обратная сторона


Когда горит один красный светодиод, напряжение на АКБ, равно 0.2В, когда горит весь столбик – значит на АКБ 1.2В. Каждый потухший светодиод сообщает, что напряжение на АКБ упало еще на 0.1В… Удобно использовать эту плату в виде вольтметра индикатора с довольно высокой точностью…

Наконец то обе посылки пришли, я не буду описывать распаковку, взвешивание, измерение размеров, ибо и так понятно, что держатели батареек формата АА, чуть больше самих батареек… Вот общий вид держателя.


Пластмасса упругая, держит аккумулятор хорошо, более того, довольно сложно пальцами вытащить батарейку, приходится поддевать каким-либо тонким предметом, отверткой, например.
Проверим сопротивление пружинного контакта. 2 миллиОма…


Длина проводов (красного и черного) около 15 см.

Настроим теперь напряжение отсечки компараторов, это можно сделать на любом канале из четырех. И проверим ток которым будут разряжаться наши аккумуляторы… Подаем на разрядное устройство 5В с какого то источника питания от сотового телефона. Видим что все светодиоды горят. Зеленый сигнализирует, что подключено питание, а красные 4 светодиода нам сообщают, что все компараторы находятся в закрытом состоянии, и разряд не происходит.

Описание процесса настройки и фотографии под спойлером

Присоединяем к первому каналу лабораторный блок питания и даем 1.2В – это напряжение полностью заряженного аккумулятора… Видим, что началась разрядка током 70мА (справа точный амперметр имеющий 4 разряда после запятой)


Обратите внимание, что светодиод первого канала потух, сигнализируя, что началась разрядка в этом канале…


При напряжении на аккумуляторе в 0.5В ток разряда составляет 40мА, в принципе как раз примерно такой ток нам и нужен для успешного разбиения образовавшихся кристаллов…


При напряжении 0.4В компаратор закрывается и разрядка на этом окончена. Обратите внимание, что ток на амперметре стал нулевой


При помощи кримпера (не дешевый, профессиональный, куплен на Али), обжимаем провода в специальные наконечники для разъемов


Получается вот такой обжатый наконечник… Приятно работать профессиональным инструментом, хотя он и не дешев, но удобство и результат стоят того.

Ну что же… все готово, отбираем кандидатов на восстановление емкости. Под номерами 1 и 2 идут NiMh аккумуляторы от электробритвы «Panasonic» изначальная емкость не известна. После 3 лет работы в электробритве полностью заряженных аккумуляторов не стало хватать на один сеанс бритья. Под номерами 3 и 4 NiCd аккумуляторы, изначальная емкость 600мА, отработали свое в электрокардиографе…
Поскольку аккумуляторы долго лежали без использования, сначало необходимо их «взбодрить», это можно сделать на Зарядном устройстве ВМ200 выбрав режим Gharge-Refresh – зарядное устройство проведет 3 цикла разрядки до 0.9В, а затем полная зарядка и так 3 раза. При этом емкость незначительно повышается. Таким образом мы исключим погрешность, незначительного повышения емкости, которая добавится после нескольких циклов «тренировки» долго лежащих без работы аккумуляторов. Тренировка была проведена, по времени заняло примерно 36 часов

Теперь можно приступить к процессу восстановления…


Вставляем все аккумуляторы в зарядное устройство, выбираем режим «Зарядка-Тест»… и ждем… После полной зарядки током 200мА, ЗУ разрядит аккумуляторы до 0.9В током 100мА и посчитает отданную емкость. Будем оперировать ей, как начальной емкостью до восстановления.


Вот под утро зарядное устройство выдало посчитанную емкость аккумуляторов, её будем использовать как начальные значения, Никель-Кадмиевые аккумуляторы потеряли половину своей начальной емкости, Никель-металлогидридные, не известно сколько имели емкости изначально, подозреваю, где-то 1200мАч, но это не важно, нам главное динамика и восстановление емкости.


Ставим все аккумуляторы в разрядное устройство, видим, что все красные светодиоды потухли, во всех четырех каналах началась разрядка аккумуляторов. При постижении остаточного напряжения 0.4В на каждом аккумуляторе, компараторы закроются, и красные светодиоды зажгутся, сигнализируя об окончании разрядки. Это может занять много времени…


Пришел с работы, на разрядном устройстве горят все 4 красных светодиода. На всякий случай замерил вольтметром остаточное напряжение на всех аккумуляторах. Примерно 0.4В на каждом…

Ну что же, начинаем повторять цикл разрядки-зарядки. Долго-нудно, день-ночь. Все тестирование заняло 4 суток. На дисплее ЗУ ВМ200 видна положительная динамика, все больше и больше заряда «входит» в аккумуляторы… Видно что метод работает…)))))


Но точки над i расставит заключительное тестирование емкости аккумуляторов при разряде.
5 циклов зарядки-разрядки прошли… Ставим аккумуляторы на определение емкости, это режим «Gharge-Test»… Ну и вот окончательный результат – вердикт…


Как мы видим, емкость какой была, такой и осталась… Чуда не произошло, хотя все говорило, что аккумуляторы восстанавливаются, т.к. растет «закачиваемая» емкость… Но увы…
На этом месте Муськовчане, имеющие гуманитарное образование, опечалено закрыли обзор и поставили мне жирный минус… Муськовчане, имеющие инженерное образование, похихикали и подумали, что законы физики, химии, старость и старуху с косой никто еще не обманул… И они об этом заранее знали… Но… Есть одно небольшое НО…
Как вы помните, я ранее писал про восстановление аккумуляторов формата ААА от радио телефона, в начале статьи… Аккумуляторы отработали 2 года, и перестали держать заряд. Если снять телефон с зарядки, через 10-15 минут на экране мигал значок разряженной батарейки, и требовал поставить телефон на зарядку. Если его требование игнорировалось, то телефон просто отключался. Это было примерно год назад. После 4-х циклов разряда-заряда, я опять поставил аккумуляторы в телефон, и они уже год как работают в нем, пусть ставить на зарядку телефон приходится немного чаще, чем с новыми аккумуляторами, НО!!! Телефон нормально работает год с восстановленными аккумуляторами!!! Почему и как, я не знаю… Но факт остается фактом…
Теперь вернем заряженные аккумуляторы в бритву «Panasonic»… До восстановления аккумуляторов хватало примерно на 4-5 минут после полной зарядки… Потом бритва неизбежно «умирала»… Ну что же, проверим, поставил аккумуляторы на место… Я побрился… потом еще 25 минут держал бритву включенной… Жужжит, как имеющая новые аккумуляторы… Дальше не стал мучить двигатель… выключил… Чувствую, что мне еще хватит этих аккумуляторов на некоторое время…
Выводы я делать не буду, каждый может сделать их самостоятельно… Спасибо всем, кто дочитал мой обзор до конца…
В завершение обзора, по традиции животное… Животному понравилась пластмасса и сопротивление пружинного контакта, но крайне не понравилась длина проводков… Длинее надо… и шуршун должен быть на конце проводков…

Не секрет, что в любой момент можно оказаться в таких условиях, когда возникнет необходимость подзарядки «севших» батареек. К примеру, широко используемые в быту и на производстве Ni-MH аккумуляторы – как заряжать их правильно? Безусловно, можно воспользоваться простейшим зарядным устройством, входящим в комплектацию к предмету любой бытовой техники. Однако сила у них весьма невысока, поэтому такой заряд будет «держаться» очень недолго. Использование более сложных по типу подзарядников помогает добиться того, чтобы АКБ не только работала «на полную мощность», но и использовала при этом все свои возможные ресурсы. К тому же, батареи бывают разные. Их названия и напрямую зависят от того, из какого состава они сделаны.

Распространенные виды никелевых АКБ, их сходства и различия

Существует много , в состав которых входят различные химические соединения. В бытовом потреблении оптимально использовать никель-металлогидридные, кадмиевые и никель-цинковые элементы. Безусловно, любой батарее нужен определенный уход, поэтому всегда важно соблюдать правила эксплуатации и зарядки.

Ni-MH

Никель-металлогидридные аккумуляторы – это вторичные химические источники тока с гораздо большей емкостью, чем их предшественники – , однако срок службы их меньше. Одна из популярных сфер применения никелевых элементов – моделестроение (кроме авиации, по причине того, что батарея довольно тяжела по весу).

Первые разработки этих элементов начались в 70-х годах ХХ века с целью усовершенствовать Сd аккумуляторы. Спустя 10 лет, в конце 80-х, удалось добиться того, что химические соединения, используемые при создании Ni-MH аккумуляторов, стали более стабильными. К тому же, они гораздо меньше подвержены «эффекту памяти», чем Ni-Cd: не сразу «запоминают» ток заряда, оставшийся внутри в случае, если элемент до использования не был разряжен полностью. Поэтому полный разряд им требуется не так часто.

Ni-Cd

Несмотря на то, что Ni-MH имеют ряд очевидных преимуществ перед Ni-Cd, стоит отметить, что последние не теряют своей популярности. Главным образом потому, что не так сильно нагреваются при зарядке засчет большего сохранения энергии внутри элемента. Как известно, есть различные типы химических процессов, протекающих между веществами.

Если заряжать Ni-MH, реакции будут экзотермическими, а если кадмиевые аккумуляторы – эндотермическими, что и обеспечивает более высокий коэффициент полезного действия. Таким образом, Cd можно зарядить более высоким током, не опасаясь перегрева.

Ni-Zn

В последнее время большое внимание обсуждению в Интернете уделяется батарейкам, в состав которых входит цинк. Они не настолько известны потребителям, как предыдущие, но идеально подходят для использования в качестве элементов питания к цифровым фотоаппаратам.

Главная их особенность – это высокое напряжение и сопротивление, благодаря чему даже к концу цикла «заряд-разряд» не наблюдается резкого падения напряжения, как у заряда Ni. Если в фотоаппарате находятся металлогидридные аккумуляторы, он будет выключаться даже в том случае, если батарея не разряжена до конца, а у Ni-Zn такого нет даже в конце разряда.

В связи со спецификой этих батареек, для них может потребоваться индивидуальное зарядное устройство, либо их можно заряжать на любом универсальном «умном» подзаряднике, например, ImaxB6. Ni-Zn аккумуляторы также прекрасно подходят для применения в электрических детских игрушках и тонометрах.

Быстрая зарядка никель-металлогидридных аккумуляторов и других источников питания

Лучше проводить зарядку АКБ с помощью более сложных моделей соответствующих устройств. Их алгоритмы токов имеют более сложную последовательность. Конечно, сделать это немного сложнее, чем просто вставить батарею в базовый подзарядник, входящий в комплектацию. Но и качество зарядки при использовании «умного» устройства будет на порядок выше. Итак, как заряжать Ni-MH аккумуляторы?

Вначале включается ток и осуществляется проверка напряжения на выводах батареи (параметры тока – 0,1 емкости аккумулятора, или С). Если напряжение превышает 1,8 В, это означает либо отсутствие аккумулятора, либо его повреждение. В данном случае, процесс начинать нельзя. Нужно либо сменить поврежденный элемент на целый, либо вставить в устройство новый.

После проверки напряжения оценивается начальный разряд АКБ. Если U у нее меньше 0,8 В, то нельзя сразу переходить к быстрой зарядке, а если U=0,8 В или больше, то можно. Это так называемая «фаза предзарядки», используемая для подготовки элементов, которые очень сильно разряжены. Значение тока здесь 0,1-0,3 С, а длительность по времени – полчаса, не меньше. Сразу следует отметить, что на всех этапах важно постоянно контролировать температуру . Особенно, если речь идет о том, каким током и как правильно заряжать Ni-MH АКБ. Такие аккумуляторы нагреваются гораздо быстрее, особенно, ближе к концу процесса. Их температура не должна превышать 50°С.

Быстрая зарядка проводится только в том случае, если предыдущие проверки были выполнены правильно. Как зарядить батарею правильно? Итак, изначальное напряжение – 0,8 В или чуть больше. Начинается подача тока. Она осуществляется плавно и осторожно в течение 2-4 минут – до достижения нужного уровня. Оптимальный уровень тока для Ni-MH и Ni-Cd аккумуляторов – 0,5-1,0 С, но иногда рекомендуется не превышать больше 0,75.

Важно определить вовремя момент окончания быстрой фазы во избежание выведения батареи из строя. Самым надежным, в данном случае, является dv-метод, который применяется по-разному при заряде никель-кадмиевых и Ni-MH аккумуляторов. У Ni-Cd напряжение становится все больше и падает к концу зарядки, поэтому сигналом для ее окончания служит момент, когда U снижается до уровня 30 мВ.

Поскольку у Ni-MH падение U заряжаемых элементов гораздо менее выражено, в данном случае, применяется метод dv=0. Засекается период времени в 10 минут, в течение которого U батареи остается стабильным – то есть, с установленным нулевым порогом колебаний напряжения.

В заключении следует небольшая фаза дозарядки. Ток – в пределах 0,1-0,3 С, длительность – до получаса. Это необходимо для того, чтобы батарея зарядилась полностью, а также для выравнивая потенциала заряда в ней.

Важный момент (к нему относится и зарядка Ni-Cd аккумуляторов): если она проводится сразу после быстрой, следует обязательно остудить аккумулятор в течение нескольких минут: нагретый элемент неспособен принимать заряд должным образом.

Кроме быстрой, существует еще и капельная зарядка, которая производится токами малой величины. Некоторые считают, что она «продлевает жизнь» элементам питания, но это не так. По сути, капельная зарядка ничем не отличается от эффекта стандартного зарядного устройства без «серьезной» регулировки показателей тока. Любой элемент питания, если он не используется, рано или поздно теряет накопившуюся энергию, и ему все равно понадобится полноценный процесс зарядки, невзирая на его длительность и «трудоемкость». Такой процесс зарядки для многих привлекателен еще и тем, что показатели тока здесь можно не фиксировать ввиду их малости. Однако «продлить жизнь» элементам питания может только серьезный подход к использованию «умных» зарядных устройств. А также правильное их хранение, с учетом особенностей того или иного вида АКБ.

Температурный фактор и условия хранения

Современные зарядные устройства бывают снабжены специальной системой «оценивания» условий окружающей среды, в том числе и температурных факторов. Такой «зарядник» может сам определить, проводить зарядку в тех или иных условиях, или нет. Уже упоминалось о том, что уровень КПД внутри батареи бывает самым высоким именно в начале процесса, когда аккумуляторы гидридного плана нагреваются не так сильно. В конце процесса зарядки либо ближе к нему КПД резко падает, и вся энергия, превращаясь в тепло вследствие экзотермических химических реакций, выделяется наружу. Важно вовремя прекратить заряжать Ni-MH батарею. И, если есть возможность, обзавестись самым новым зарядным устройством, которое будет точно контролировать этот процесс.

В настоящее время все зарядные устройства, в том числе и Сd аккумуляторы, могут заряжаться током до 1С с установлением норм воздушного охлаждения. Оптимальная температура помещения, в котором проводится зарядка – 20°С. Не рекомендуется начинать процесс при температуре меньше +5 и больше 50°С.

Уникальность Ni-Cd состоит в том, что это единственный вид элементов, которые не пострадают в случае, если их хранить полностью разряженными, в отличие от Ni-MH. Для лучшей отдачи тока заряд никель-кадмиевых аккумуляторов рекомендуется проводить непосредственно перед использованием. Также после длительного хранения им требуется «раскачка»: следует полностью зарядить и разрядить Ni-Cd АКБ за сутки для оптимальной работы.

Никель-металлогидридные элементы, в отличие от своих предшественников, могут легко выйти из строя при глубоком разряде. Поэтому хранить их нужно только заряженными. При этом раз в два месяца следует регулярно проверять напряжение. Минимальный его уровень должен всегда оставаться 1 В, а если оно падает, необходима подзарядка.

Новый Ni-MH аккумулятор нужно перед применением полностью зарядить и разрядить три раза, затем сразу поставить на «базу» в течение 8-12 часов. Позже не будет необходимости долго держать его на зарядке – снимать сразу после указания специального индикатора на зарядном устройстве.

Хотя на смену всем этим элементам питания уже давно пришли более емкие, на основе лития, они активно используются и сейчас. Это и привычнее, и намного дешевле. К тому же, литиевые батареи при низких температурах работают намного хуже.

Никель-кадмиевые аккумуляторы

– обзор

2.3.3.2 Безопасность никель-кадмиевых аккумуляторов

На рынках промышленных аккумуляторов никель-кадмиевые аккумуляторы по-прежнему используются для различных целей. Подобно свинцово-кислотным аккумуляторам, существуют вентилируемые, не требующие обслуживания и герметичные системы [1,2,7,8,22]. В системах большей емкости используется вентилируемая призматическая конструкция с уложенными друг на друга электродами. Корпуса ячеек изготавливаются из пластика или стали. Вентилируемые элементы работают с чрезмерным количеством электролита. Потери воды можно компенсировать доливом.Ячейки меньшего размера, особенно цилиндрической формы, имеют герметичную конструкцию с внутренним механизмом рекомбинации газа.

Основная реакция никель-кадмиевой системы может быть описана следующим образом:

2NiOOH + Cd + 2h30↔ ← Заряд Разряд → 2Ni (OH) 2 + Cd (OH) 2E ° = 1,30 В

В NiCd-батареях используются сильнощелочные электролит (около 30 мас.%), в основном состоящий из КОН с небольшими долями NaOH и LiOH.

Общей особенностью герметичных никель-кадмиевых ячеек является увеличенная емкость отрицательного электрода.Это сделано для предотвращения образования водорода на отрицательном электроде, когда ячейка достигает своего полного состояния заряда (SOC), а также для предотвращения выделения кислорода на отрицательном электроде при перевороте ячейки (рис. 2.4A). В отличие от вентилируемой конструкции элемента, используемой для промышленных аккумуляторов, герметичные системы работают с недостатком электролита, абсорбированным в листе из полимерного волокна, проницаемом для миграции кислорода, который генерируется на положительном электроде, когда элемент приближается к своему полностью заряженному состоянию или находится в процессе зарядки. завышена [3,7,18,22].Газовый канал важен для цикла внутренней рекомбинации кислорода, как описано следующими уравнениями:

Рисунок 2.4. Электрохимический баланс положительного и отрицательного электрода в (A) герметичных NiCd и (B) герметичных NiMH элементах.

O2 + 2Cd + 2h3O → 2Cd (OH) 2 (химическая рекомбинация) O2 + 2h3O + 4e− → 4OH− (электрохимическая рекомбинация)

Равновесное давление кислорода внутри ячейки при непрерывной перезарядке зависит от величины зарядного тока и особые условия внутри камеры.По понятным причинам процесс экзотермический. Рекомбинация кислорода на отрицательном противоэлектроде и вызванное таким образом повышение температуры вызывают деполяризацию отрицательного электрода, приводящую к зарядовой характеристике с типичным максимумом напряжения, как показано на рис. 2.5.

Рисунок 2.5. Характеристики напряжения, температура элемента, внутреннее давление герметичного никель-кадмиевого элемента при зарядке / перезарядке 0,3 C (эффект деполяризации при SOC> 100%).

Короткое замыкание : В случае сильного короткого замыкания с большим выделением энергии внутри аккумуляторных элементов, вентилируемые элементы будут поглощать большое количество выделяемой энергии, пока они не достигнут точки кипения щелочного электролита при прибл.120 ° С. После достижения точки кипения ячейки будут вентилировать и выделять водяной пар, который также может содержать едкий аэрозоль. Высокое количество электролита в сочетании с высокой удельной энтальпией испарения воды (> 628 Вт · ч кг -1 ) обычно способно поглощать тепло от вышедшего из строя пакета электродов. Герметичные элементы с недостатком электролита значительно более чувствительны к коротким замыканиям. Удельная энергия этих ячеек выше, а их теплоемкость ниже.Еще более важным является тот факт, что количество свободного электролита, доступного для поглощения тепла и преобразования тепла за счет испарения воды, значительно ниже, чем в вентилируемых элементах.

Обычно до уровня температуры около 120 ° C (точка кипения электролита) механическая стабильность компонентов элемента не нарушается. Но достижение точки кипения электролита примерно при 120 ° C следует рассматривать как опасное событие из-за выброса горячих парообразных аэрозолей из едкого электролита.

Механическое повреждение : Механическое повреждение никель-кадмиевых батарей может иметь различные критические последствия для безопасности в зависимости от характера механического воздействия и степени вызванного им разрушения. Инциденты могут варьироваться от небольших трещин, вызывающих незначительную утечку электролита, до полного разрушения. К наиболее серьезным событиям относится разрушение внутреннего пакета электродов, той части системы, в которой накапливается химическая энергия. Наиболее серьезным событием считается сочетание сильного механического повреждения с потерей герметичности и коротким замыканием в электродной батарее.Выделение тепла при выделении энергии, утечке и испарении электролита может привести к растеканию электролита и внутренней части ячейки. Выбросы паров едких аэрозолей и частиц кадмия представляют собой опасный риск из-за их токсичности [18,21].

Термическое нарушение : При постоянном воздействии температур выше указанных значений электрохимическая часть батареи будет терять производительность. Использование химически и механически стабильных компонентов делает никель-кадмиевые батареи некритичными до температуры кипения электролита при 120 ° C.

При открытом огне возможны температуры выше 120 ° C. Батареи в пластмассовых корпусах считаются особенно чувствительными, поскольку они могут потерять свою механическую целостность намного раньше, чем батареи в стальных корпусах. Наибольшую опасность представляет испарение кадмия, которое начинается при температуре 765 ° C [7,8].

Подобно тому, что было описано для батарей VRLA в разделе 2.3.3.1, зарядка постоянным напряжением необслуживаемых никель-кадмиевых элементов создает риск теплового разгона [18,20].За пределами максимума напряжения (см. Рис. 2.5) дальнейшая зарядка увеличивает температуру и снижает напряжение элемента, тем самым повышая ток до более высоких значений. Продолжающаяся зарядка при постоянном напряжении обычно заканчивается тепловым разгоном, быстрым повышением давления в ячейке, вентилированием и высыханием ячейки. Из-за параллельного образования газов водорода и кислорода существует даже высокий риск взрыва.

Перегрузка, переразряд и реверс : В вентилируемых системах перезарядка и реверс всегда сопряжены с риском кислородных и водородных газов [3,7,18,22].Взрывоопасный характер этих смесей хорошо известен и требует принятия адекватных контрмер (например, вентиляции). Повторяющиеся периоды перезарядки или даже непрерывная перезарядка, а также реверсирование батарей без пополнения резервуара электролита для компенсации потерь воды могут привести к крайнему голоданию и окончательному высыханию электролита в элементах. Вызванный таким образом перегрев всей системы разрушителен с точки зрения мощности и безопасности.

Герметичные никель-кадмиевые ячейки обеспечивают механизм внутренней рекомбинации газа. Как уже было описано выше (рис. 2.4A), кислород, выделяющийся на положительном электроде, расходуется в результате экзотермической реакции превращения на отрицательном противоэлектроде. Однако этот механизм работает только в определенных для продукта ограничениях по электрическому току и температуре. При превышении этих пределов происходит нагнетание давления в корпусах ячеек, что в конечном итоге приводит к срабатыванию клапанов сброса давления.Однако такое событие необратимо влияет на баланс клеток.

Благодаря так называемому запасу переразряда на отрицательном электроде, герметичные никель-кадмиевые элементы предотвращают одновременное образование водорода и кислорода при глубоком разряде в течение ограниченного периода времени. Водороду, генерируемому на положительном электроде при реверсировании, требуется определенное время, прежде чем он рекомбинируется с водой внутри ячейки. Даже если суммы H 2 обычно довольно низкие, их следует рассматривать как потенциальный риск.За счет использования добавки Cd (OH) 2 к положительному электроду (так называемой Anti-Polar-Mass) можно подавить образование газообразного водорода при реверсировании ячейки. Однако эта мера применялась в основном для небольших герметичных ячеек [7].

Лучшее зарядное устройство для аккумуляторов (для батарей AA и AAA)

Аккумуляторы AA и AAA намного эффективнее и надежнее, чем вы могли помнить из прошлых лет. Если вы переходите на аккумуляторные батареи или уже сделали это, вам понадобится зарядное устройство, чтобы поддерживать их в рабочем состоянии.Мы потратили 7 часов на исследование и 20 часов на тестирование зарядных устройств AA и AAA и пришли к выводу, что Panasonic BQ-CC55 – лучший выбор для большинства людей. Он компактен, имеет откидную вилку переменного тока, заряжает до четырех батарей за раз и имеет световые индикаторы, которые сообщают вам, когда каждая батарея разряжена, заряжена наполовину или полностью.

Наш выбор

Panasonic BQ-CC55

Это зарядное устройство, которое мы бы купили. Он имеет раскладывающуюся вилку, поэтому он устанавливается заподлицо с сетевой розеткой, индикаторы уведомлений над каждым слотом для батарей и возможность заряжать до четырех аккумуляторов за раз.

Варианты покупки

* На момент публикации цена составляла 24 доллара.

Panasonic BQ-CC55 чрезвычайно прост в использовании: вы вставляете батарейки – подойдут любые марки аккумуляторов типа AA или AAA – открываете вилку переменного тока, вставляете зарядное устройство в розетку и ждете статуса светится, показывая, что каждая батарея полностью заряжена. Функция автоматического отключения автоматически определяет уровень заряда аккумуляторов и отключает питание после завершения зарядки. BQ-CC55 производится компанией, которой мы доверяем, имеет приличную гарантию и хорошо зарекомендовал себя при тестировании емкости и времени утечки.Он также имеет нейтральный ненавязчивый вид, который гармонирует с фоном большинства комнат.

Также отлично

EBL 6201

Это зарядное устройство питается от USB-C или Micro-USB, что дает вам два удобных способа зарядки аккумуляторов от уже имеющегося зарядного устройства USB.

EBL 6201 предлагает многие из тех же функций, что и Panasonic – он заряжает до четырех батарей одновременно, имеет функцию автоматического отключения, имеет индикаторы уведомлений над каждым отсеком для батарей, а также довольно маленький и компактный.Но вместо розетки переменного тока у EBL есть входные USB-порты сбоку, которые позволяют заряжать батареи AA или AAA, используя любую комбинацию разъема (кабель USB-C или Micro-USB) и источника питания (ноутбук, настенное зарядное устройство). , или power bank) вы выбираете. Поэтому, если у вас уже есть настенное зарядное устройство USB в месте, где вы хотите заряжать аккумуляторы – например, у прикроватной тумбочки или стола, – вы можете подключить к нему EBL вместо того, чтобы занимать всю розетку.

Также отлично

La Crosse Technology BC1000 Зарядное устройство Alpha Power

Это зарядное устройство предлагает некоторые дополнительные возможности, которые могут помочь вам более внимательно следить за зарядкой и продлить срок службы ваших аккумуляторов, хотя это и более дорогая сторона.

Варианты покупки

* На момент публикации цена составляла 50 долларов.

La Crosse Technology BC1000 Alpha Power более сложен в использовании, чем другие наши медиаторы, и стоит дороже, но он уникален тем, что позволяет выжать из батарей до последней капли. Он предоставляет дополнительные возможности, которых нет у других зарядных устройств, например различные уровни зарядки, программу, которая обновляет (заряжает и разряжает) батареи, которые вы не использовали какое-то время, тест емкости батареи и многое другое.Мы объясняем, как эти функции могут помочь улучшить производительность ваших аккумуляторов и общее состояние в разделе ухода и обслуживания. Alpha Power требует гораздо большего нажатия кнопок, чем Panasonic (который в значительной степени «установил и забыл»), но если вы склонны приложить немного дополнительных усилий для некоторых долгосрочных преимуществ, это то, что вам нужно. зарядное устройство для вас.

Что такое никелевые батареи – База знаний BatteryGuy.com

Этот электромобиль 1912 года до сих пор питается от оригинальной никелевой батареи.Изображение: nickel-iron-battery.com

Батареи на основе никеля были впервые изобретены более 100 лет назад, когда единственной альтернативой была свинцово-кислотная, они называются так из-за использования никелевых металлов в электродах (см. Базовая структура никелевой батареи. ниже). В 20 веке они зарекомендовали себя как прочные, надежные и функциональные – от небольших портативных устройств до стартеров самолетов.

Никелевые батареи отличаются долгим сроком службы и использовались в начале двадцатого века для питания автомобилей, когда многие думали, что электромобили станут нормой, а бензин – преходящей модой.Некоторые из этих автомобилей остаются в музеях, а некоторые до сих пор оснащены оригинальными батареями… которые работают!

В последние годы эта химия проиграла литиевым батареям, которые предлагают большую эффективность и большую мощность при аналогичной или более низкой стоимости. Однако они не были полностью заменены, поскольку они все еще намного более стабильны (см. Проблемы безопасности с литиевыми батареями), воспринимаются многими как более жесткие, имеют более длительный срок службы и могут выдерживать более высокие экстремальные температуры.

Базовая конструкция никелевой батареи

Ядро никелевой батареи состоит из:

  • Отрицательный электрод.
  • Положительный электрод.
  • Сепаратор, гарантирующий, что пластины не соприкасаются, но достаточно пористый, чтобы позволить химические реакции между ними через раствор электролита, который обычно пропитывается материалом сепаратора.

Эти три элемента намотаны в цилиндрическую форму, которую часто называют структурой рулона с желе или швейцарского рулона .

Базовая конструкция батареи с никелевым элементом

В нижней части батареи металлический язычок соединяет отрицательный электрод с отрицательной клеммой , отсюда и название «коллектор отрицательного электрода » .Отрицательная клемма обычно находится в прямом контакте с корпусом батареи, поэтому изоляционное кольцо наверху обеспечивает изоляцию положительной клеммы от корпуса.

Также в верхней части батареи находится другой металлический язычок (известный как соединитель положительного электрода ), который соединяет положительный электрод с уплотнительной пластиной . Он находится в прямом контакте с положительной клеммой и уплотняет коррозионный электрод , но имеет самоуплотняющееся вентиляционное отверстие , которое позволяет газам выходить из строя в случае неисправности аккумулятора или неправильного использования в результате таких действий, как чрезмерная или неправильная зарядка.


(Видео о том, как делается батарея на основе никеля с расшифровкой)


Размеры никелевых батарей

Наиболее распространенные коммерчески доступные батареи на основе никеля:

  • Ячейки D
  • Ячейки C
  • Элементы AA
  • Элементы AAA
  • Ячейки Sub-C (также известные как SC)
  • 9 Вольт
  • Кнопка
Обычные размеры никелевых батарей: D, C, AA, AAA, Sub-C (aka SC), 9V, Button

Типы никелевых батарей

Батареи на основе никеля бывают разного химического состава:

  • Никель-железо (NiFe)
  • Никель-цинк (NiZn)
  • Никель-кадмий (NiCd)
  • Никель-металлогидрид

Эти различные химические составы были разработаны в течение последнего столетия, но новые технологии не всегда означают, что тип батареи «лучше» во всех аспектах.Все химические вещества, разработанные на сегодняшний день, все еще используются в различных отраслях промышленности или в коммерческих целях.

Никель-железо (NiFe)

Первой коммерчески доступной батареей на основе никеля была никель-железная батарея. Запатентованный Томасом Эдисоном в 1902 году, он служит в четыре раза дольше, чем свинцово-кислотный, и на рубеже веков был предпочтительным аккумулятором для электромобилей. Хотя обычно считается, что срок эксплуатации составляет 50 лет, некоторые электромобили, выпущенные до Первой мировой войны, все же имеют оригинальные батареи!

Преимущества

  • Хорошо справляется с перезарядкой и разрядкой
  • Устойчивый к вибрации – часто используется в горнодобывающей промышленности, а также в системах метро, ​​таких как Лондонское метро и Нью-Йоркское метро
  • Длительный срок службы – некоторые агрегаты старше 100 лет все еще работают

Недостатки

  • Низкая удельная энергия (50 Втч / кг) – одно из худших соотношений в мире аккумуляторов наряду со свинцово-кислотными
  • Плохая работа при низких температурах

Никель Цинк (NiZn)

Когда бензиновая энергия захватила автомобильную промышленность и свинцово-кислотная батарея была выбрана в качестве батареи для запуска двигателя (из-за ее более низкой цены), никелевые батареи оказались в относительной безвестности, за исключением некоторых промышленных применений, таких как горнодобывающая промышленность и железные дороги, где они справляется с вибрацией лучше, чем другие альтернативы.

Однако Томас Эдисон не закончил работу с никелем и в 1901 году запатентовал никель-цинковую батарею. С напряжением элемента 1,65 и удельной энергией 100 Втч / кг она предлагала большую мощность с большей эффективностью в широком диапазоне температур, но была слабой из-за короткого замыкания. Срок службы и высокая скорость саморазряда.

Были достигнуты успехи в устранении этих недостатков, и в настоящее время производятся некоторые потребительские блоки AA, в которых используется этот химический состав, но они редки по сравнению с другими версиями на основе никеля.

Никель-кадмий (NiCd)

Настоящий прорыв произошел в середине 20 века, когда технический прогресс привел к появлению никель-кадмиевых батарей. Он был достаточно мал, чтобы питать портативные устройства, такие как радиоприемники, и первый широко доступный аккумулятор в мире, в котором преобладали одноразовые цинк-кобальтовые батареи.

Более крупные версии также стали популярными в таких приложениях, как стартеры самолетов, из-за их безопасной устойчивости и прочности.

Однако известно, что высокотоксичный кадмий, используемый в батареях, вытекает из выброшенных батарей, особенно на свалках, и эта опасность для окружающей среды оставалась облаком над другим эффективным и популярным устройством.

Преимущества

  • Большой срок службы – до 2000 циклов разрядки / перезарядки
  • Вибростойкость – популярна в таких приложениях, как электроинструменты
  • Длительный срок службы – до 20 лет
  • Подходит для низких температур – может работать при -40F (-40C)
  • Низкая стоимость – сопоставима с никель-металлогидридом и немного дороже, чем литий
  • Хорошо справляется с скачками напряжения – для таких приложений, как фотосъемка со вспышкой
  • Легко перевозить и транспортировать – по сравнению с литием

Недостатки

  • Низкая удельная энергия (до 80 Втч / кг) – по сравнению с более современными альтернативами на основе никель-металлогидрида и лития.
  • Содержит токсичный материал – распространение и утилизация строго регулируются во многих странах
  • Высокий саморазряд (10% в месяц) – по сравнению с литиевым, щелочным и свинцово-кислотным
  • Миф об эффекте памяти вызывает беспокойство – больше восприятие, чем реальность (см. Никель-кадмиевый эффект памяти – факт или вымысел)

В 1980-х годах технология никеля была усовершенствована с появлением никель-металлогидридных батарей, которые обеспечивали лучшую удельную энергию (Втч / кг) и больший срок службы, хотя они не такие жесткие и имеют более высокую скорость саморазряда.

Его главным преимуществом, однако, было удаление токсичного содержимого, и, предлагая новый химический состав, он также смог избавиться от мифа об эффекте памяти (см. Выше).

Преимущества

  • Перерабатываемый – дорогое содержание никеля делает его жизнеспособным
  • Высокая удельная энергия – до 140 Втч / кг по состоянию на 2015 год, только некоторые литий-ионные типы работают лучше.
  • Низкая стоимость – изначально дороже, чем никель-кадмий, теперь в целом аналогичен
  • Легко транспортировать – по сравнению с литиевым
  • Длительный срок службы – до 3000 циклов
  • Срок службы – сопоставим с литиевым, но короче щелочного
  • Миф об отсутствии эффекта памяти

Недостатки

  • Высокий саморазряд – 20% в первые 24 часа и 10% в месяц после этого
  • Требуется специальное зарядное устройство
  • Напряжение – при 1.2 вольта на элемент, он обеспечивает меньшую мощность, чем щелочные или литиевые альтернативы.

Никель водород

Этот химический состав используется только в очень специализированных областях из-за высокой стоимости производства и низкой удельной энергии (до 70 Втч / кг). Никелевый водород часто используется в спутниках, поскольку он может выдерживать экстремальные температуры и полную разрядку, обеспечивая при этом длительный срок службы.

Никель-цинковые батарейки

Несмотря на то, что они не пользуются большой популярностью, существуют неперезаряжаемые (первичные) кнопочные батареи на основе никеля, и многие из них производятся известными брендами, такими как Varta.Предлагая напряжение 1,65 В, они обладают большей мощностью, чем 1,55 В из оксида серебра, и часто используются в часах, медицинских устройствах, калькуляторах, пультах дистанционного управления, лазерных указках, фотографическом оборудовании и т. Д.

Никель против щелочи

Преимущества

  • Более широкий диапазон рабочих температур
  • Значительно более длительный срок службы
  • Намного более длительный срок службы

Недостатки

  • Нижняя удельная энергия (Втч / кг)
  • Нижнее напряжение элемента
  • Саморазряд высший

Более высокое напряжение щелочных элементов по-прежнему делает его более привлекательным в приложениях, где требуется быстрое питание, например, при быстрой фотосъемке со вспышкой, но здесь литий оказался намного лучше, поскольку большинство типов элементов имеют напряжение 3.

Таким образом, щелочи обычно используются там, где они все еще остаются лидерами – низкий саморазряд и длительный срок службы. Это делает его идеальным для резервных приложений, таких как дымовая сигнализация или дистанционное управление.

Никель против лития

Преимущества

  • Стабильность
  • Более широкий диапазон рабочих температур

Недостатки

  • Высший саморазряд
  • Нижняя удельная энергия (Втч / кг)
  • Нижнее напряжение элемента

Позиция никеля как «лучшего» варианта по сравнению с литием со временем постепенно подрывалась, поскольку затраты на производство лития упали, а технологические достижения увеличили срок его службы.Однако никелевые батареи по-прежнему считаются более прочными и безопасными.

Графит для литий-ионных батарей – Desktop SEM

Выберите страну / регион *

Выберите страну / regionUnited StatesCanadaAfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийский океан TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCape VerdeCayman IslandsCentral африканских RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongoCongo, Демократическая Республика ofCook IslandsCosta RicaCote Д’ИвуарХорватияКубаКипрЧешская РеспубликаДанияДжибутиДоминикаДоминиканская РеспубликаВосточный ТиморЭквадорЭгипетЭль-СальвадорЭкваториальная ГвинеяЭритреяЭстонияЭфиопияФолклендские острова (Мальвинские острова) Фарерские островаФиджиФинляндияФинляндияФермания ЮгославияФранция ФранцияГерманияГерманияГермания raltarGreeceGreenlandGrenadaGuadeloupeGuamGuatemalaGuineaGuinea-BissauGuyanaHaitiHeard и McDonald IslandsHoly Престол (Ватикан) HondurasHong KongHungaryIcelandIndiaIndonesiaIran (Исламская Республика) IraqIrelandIsraelItalyJamaicaJapanJordanKazakstanKenyaKiribatiKorea, Корейские Народно-Демократической RepKorea, Республика ofKuwaitKyrgyzstanLao Народный Демократической RepLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacauMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesia, Федеративные StatesMoldova, Республика ofMonacoMongoliaMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorthern Mariana IslandsNorwayOmanPakistanPalauPanamaPapua Нового GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarReunionRomaniaRussian FederationRwandaSaint HelenaSaint Китс и НевисСент-ЛюсияСент-Пьер и МикелонСамоаСан-Ма rinoSao Томе и PrincipeSaudi ArabiaSenegalSeychellesSierra LeoneSingaporeSlovakiaSloveniaSolomon IslandsSomaliaSouth AfricaSpainSri LankaSth Georgia & Sth Sandwich Институт социальных Винсент и GrenadinesSudanSurinameSvalbard и Ян MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwan, провинция ChinaTajikistanTanzania, Объединенная Республика ofThailandTogoTokelauTongaTrinidad и TobagoTunisiaTurkeyTurkmenistanTurks и Кайкос IslandsTuvaluUgandaUkraineUnited Арабские EmiratesUnited KingdomUruguayUS Малые отдаленные IslandsUzbekistanVanuatuVenezuelaVietnamVirgin острова (Британские) Виргинские острова (U .S.) Острова Уоллис и ФутунаЗападная СахараЙеменЮгославияЗамбияЗимбабве

Батарея, изобретенная за 120 лет до своего времени

Малдер назвал их творение «баттолизером», и они надеются, что их открытие поможет решить две основные проблемы для возобновляемых источников энергии: накопление энергии и, когда аккумуляторы полные, выработка чистого топлива.

«Вы услышите все эти дискуссии о батареях, с одной стороны, и водороде, с другой», – говорит Малдер. «Между этими двумя направлениями всегда было своего рода соревнование, но в основном вам нужны оба.«

Возобновляемая стоимость

Одна из самых больших проблем, связанных с возобновляемыми источниками энергии, такими как ветер и солнце, заключается в том, насколько они могут быть непредсказуемыми и непостоянными. Например, с солнечной батареей у вас есть избыток энергии, производимой в дневное и летнее время, но ночью и в зимние месяцы ее запасы сокращаются.

Обычные батареи, например, на основе лития, могут накапливать энергию в течение короткого времени, но когда они полностью заряжены, они должны высвободить излишки, иначе они могут перегреться и выйти из строя.С другой стороны, никель-железный баттолизер остается стабильным при полной зарядке, и в этот момент он может перейти на производство водорода.

«[Никель-железные батареи] устойчивы и способны выдерживать недозаряд и перезарядку лучше, чем другие батареи», – говорит Джон Бартон, научный сотрудник Школы механики, электротехники и производственной инженерии Университета Лафборо в Великобритании, который также исследует баттолизеры. «С производством водорода баттолизер добавляет многодневное и даже межсезонное хранение энергии.«

Помимо производства водорода, никель-железные батареи обладают и другими полезными свойствами, в первую очередь неприхотливостью в обслуживании. Они чрезвычайно долговечны, как доказал Эдисон в своем первом электромобиле, а некоторые прослужили более 40 лет. Металлы, необходимые для изготовления батареи – никель и железо – также более распространены, чем, скажем, кобальт, который используется для изготовления обычных батарей.

Это означает, что баттолизер может иметь еще одну возможную роль для возобновляемых источников энергии: помогая ей стать более прибыльной.

Как и в любой другой отрасли, цены на возобновляемые источники энергии колеблются в зависимости от спроса и предложения. В яркий солнечный день может быть много энергии от солнечной энергии, что может привести к перенасыщению и падению цены, по которой энергия может быть продана. Однако баттолизер может помочь сгладить эти пики и впадины.

«Когда цены на электроэнергию высоки, вы можете разрядить эту батарею, но когда цена на электроэнергию низкая, вы можете заряжать батарею и производить водород», – говорит Малдер.

Зарядка литий-ионных аккумуляторов и преимущества – PowerTech Systems

Отличия лития

Свинцово-кислотные батареи сделаны из (что неудивительно) смеси свинцовых пластин и серной кислоты. Это был первый тип аккумуляторной батареи, изобретенный еще в 1859 году.

С другой стороны, ионно-литиевые батареи

являются гораздо более новым изобретением и существуют в коммерчески жизнеспособной форме только с 1980-х годов.

Литиевая технология

хорошо зарекомендовала себя и хорошо изучена для питания небольшой электроники, такой как ноутбуки или аккумуляторные инструменты, и становится все более распространенной в этих приложениях, вытесняя старые никель-кадмиевые (никель-кадмиевые) аккумуляторные батареи благодаря многочисленным преимуществам лития.

Но, как вы, возможно, помните из множества новостей несколько лет назад о возгорании неисправных аккумуляторов портативных компьютеров, литий-ионные аккумуляторы также заработали репутацию очень драматичных источников возгорания.

Обычно используемый литий-ионный аккумулятор представляет собой оксид лития-кобальта (LiCoO2), и этот химический состав аккумулятора склонен к тепловому разгоне, если аккумулятор случайно перезарядится. Это может привести к возгоранию батареи – и литиевый огонь горит быстро и горячо.

Это одна из причин того, что до недавнего времени литий редко использовался для создания больших батарейных блоков.

Но в 1996 году была разработана новая формула смешивания литий-ионных аккумуляторов – литий-железный фосфат e. Эти батареи, известные как LiFePO4 или LFP, имеют немного более низкую плотность энергии, но по своей природе негорючие и, следовательно, намного безопаснее, чем литий-кобальто-оксидные. А если учесть преимущества, то литий-ионные батареи становятся чрезвычайно заманчивыми.

1 / Высшая «полезная» емкость

В отличие от свинцово-кислотных аккумуляторов, считается практичным регулярно использовать 90% или более номинальной емкости банка литиевых аккумуляторов, а иногда и больше. Рассмотрим батарею на 100 ампер-часов – если бы это была свинцово-кислотная батарея, было бы разумно использовать от 30 до 50 ампер-часов сока, но с литиевым вы могли бы использовать 90 ампер-часов или даже 100 Ач (100% DoD).

Свинцово-кислотная полезная емкость AGM Полезная емкость литий-ионных аккумуляторов
2 / Увеличенный срок службы

Производители и лаборатории сообщают, что от высококачественной батареи LiFePo4 можно ожидать десятков тысяч циклов.Однако это теоретические значения, которые нелегко проверить.
С практической точки зрения и при реальном использовании батареи LiFePo4 стандартного качества могут обеспечить не менее 2000 циклов заряда / разряда при 80% степени разряда и степени разряда 1С, а оставшаяся емкость остается выше 80%. Эти значения зависят от скорости заряда, глубины разряда, но, что более важно, от качества используемых элементов.

Эти результаты жизненного цикла намного лучше, чем химические составы NMC или NCA, широко используемые в индустрии электромобилей.Напротив, даже самые лучшие свинцово-кислотные батареи глубокого разряда обычно рассчитаны только на 500-1000 циклов.

Для батарей , таких как произведенные PowerTech Systems , с использованием высококачественных элементов, отсортированных и согласованных, от 4000 до 5000 циклов может быть доставлен при 1С и 80% DoD. Это количество циклов можно значительно увеличить за счет уменьшения глубины разряда (DoD).

На диаграмме ниже показано количество циклов в зависимости от глубины разряда для продуктов PowerBrick, PowerRack и PowerModule:

Количество циклов в зависимости от глубины разряда для продуктов PowerBrick, PowerRack и PowerModule
3 / Потери Пойкерта и провал напряжения практически отсутствуют

Кривая разряда литиевых батарей (особенно свинцово-кислотных) практически плоская – это означает, что батарея, заряженная на 20%, будет обеспечивать почти такое же выходное напряжение, как и батарея, заряженная на 80%.

Это предотвращает любые проблемы, вызванные «провалом напряжения», обычным для свинцово-кислотных аккумуляторов при их разряде, но означает, что любой монитор батареи или автоматический запуск генератора, зависящий от уровней напряжения, скорее всего, не будут работать должным образом при мониторинге литиевого банка.

Кривые литий-ионного разряда

Еще одно огромное преимущество литиевых батарей состоит в том, что потери Пойкерта практически отсутствуют. . Это означает, что литий-ионные батареи могут работать на полную номинальную емкость даже при высоких токах.В то время как свинцово-кислотная может привести к потере мощности до 40% при высоких нагрузках.

На практике это означает, что литий-ионные аккумуляторные батареи очень хорошо подходят для питания сильноточных нагрузок, таких как кондиционер, микроволновая печь или индукционная плита.

Кривые разряда литий-железо-фосфатных соединений при различных уровнях C
4 / Преимущества по размеру и весу

Чтобы подчеркнуть уникальные характеристики литий-ионных аккумуляторов с точки зрения веса и размера, рассмотрим важный пример: свинцово-кислотные и литиевые аккумуляторы.

5 / Быстрая и эффективная зарядка
Литий-ионные аккумуляторы

можно «быстро» зарядить до 100% емкости. В отличие от свинцово-кислотной, нет необходимости в фазе абсорбции для хранения оставшихся 20%. И, если ваше зарядное устройство достаточно мощное, литиевые батареи также можно заряжать безумно быстро. Если вы можете обеспечить достаточное количество зарядных усилителей, вы сможете полностью зарядить литий-ионный аккумулятор всего за 30 минут.

Но даже если вам не удается полностью зарядить аккумулятор до 100%, не беспокойтесь – в отличие от свинцово-кислотных аккумуляторов, регулярная полная зарядка литий-ионных аккумуляторов не приводит к их повреждению.

Это дает вам большую гибкость при подключении к источникам энергии всякий раз, когда вы можете их получить, не беспокоясь о необходимости регулярно выполнять полную зарядку. Несколько дней с небольшой облачностью в вашей солнечной системе? Нет проблем в том, что вы не можете долить до заката, пока вы учитываете свои потребности. С литием вы можете заряжать все, что можете, и не беспокоиться о том, что ваш аккумулятор постоянно недозаряжен.

6 / Очень мало потраченной энергии

Свинцово-кислотные батареи менее эффективны в хранении энергии, чем литий-ионные батареи.Литиевые батареи заряжаются с КПД почти 100% по сравнению с КПД большинства свинцово-кислотных аккумуляторов 85%.

Это может быть особенно важно при зарядке от солнечной батареи, когда вы пытаетесь выжать из каждого усилителя как можно больше эффективности до того, как солнце сядет или не закроется облаками.

Теоретически, с литием почти каждая собранная вами капля солнца идет в ваши батареи. Учитывая ограниченность крыши и места для хранения панелей, это становится очень важным для оптимизации каждого квадратного дюйма мощности, которую вы можете установить.

7 / Климатостойкость

Свинцово-кислотные батареи и литиевые теряют свою емкость в холодных условиях. Как видно на диаграмме ниже, литий-ионные батареи намного эффективнее при низких температурах. Кроме того, скорость разряда влияет на производительность свинцово-кислотных аккумуляторов. При -20 ° C литиевая батарея, которая выдает ток 1С (в один раз больше своей емкости), может отдавать более 80% своей энергии, когда батарея AGM обеспечивает 30% своей емкости.

Для суровых условий окружающей среды (горячей и холодной) литий-ионный аккумулятор является технологическим выбором.

Емкость в зависимости от температуры
8 / Меньше проблем с размещением
Литий-ионные батареи

не нужно хранить в вертикальном положении или в вентилируемом батарейном отсеке. Их также довольно легко собрать в необычные формы – преимущество, если вы пытаетесь втиснуть как можно больше энергии в небольшой отсек.

Это особенно полезно, если у вас есть батарейный отсек ограниченного размера, но вы хотите или нуждаетесь в большей емкости, чем может обеспечить свинцово-кислотная батарея в настоящее время.

9 / Отсутствие необходимости в обслуживании
Литий-ионные батареи

практически не требуют обслуживания. BMS (система управления батареями) автоматически выполняет процесс «балансировки», чтобы гарантировать, что все элементы в блоке батарей одинаково заряжены. Просто зарядите аккумулятор, и все готово.

Этот товар является исключительной собственностью PowerTech Systems.
Воспроизведение без разрешения запрещено.

Как заряжать батареи дистанционного управления

Зарядка аккумулятора звучит достаточно просто, но может оказаться сложной задачей для новичков.Всегда существует некоторая потенциальная опасность из-за энергии, которая может храниться в некоторых из этих ячеек. Эта статья предназначена в качестве учебника для зарядки батарей RC, знакомит с аппаратным обеспечением , которое вам понадобится, некоторыми процессами , задействованными , и некоторыми передовыми методиками , которые помогут сделать это правильно, избегая при этом излишнего технического жаргона.

Заявление об отказе от ответственности : RC Geeks не может нести ответственности за любой ущерб, нанесенный вашему оборудованию или человеку в результате выполнения действий, описанных в этой статье.Мы настоятельно рекомендуем прочитать руководство, прилагаемое к зарядному устройству, проверить физическое состояние ваших батарей и проявлять осторожность при зарядке элементов.

Идентификация аккумулятора

Если вы плохо знакомы с аккумуляторными технологиями и разъемами, мы предлагаем вам прочитать наш автомобильный аккумулятор с дистанционным управлением : введение , артикул . Не повторяя содержание этой статьи, наиболее важные детали, которые нужно знать, когда дело доходит до зарядки, – это , какой химический состав, используют ваши батареи, и , какой разъем у них есть.В то время как многие из них доступны, мы собираемся сосредоточиться на двух наиболее распространенных типах, используемых в автомобилях с дистанционным управлением.

NiMH батареи

NiMH батареи прочные, недорогие и часто идут в комплекте с бюджетными радиоуправляемыми автомобилями. Они бывают разных форм и размеров, но чаще всего они представлены в упаковке , показанной ниже. Большинство из них оканчиваются полупрозрачным пластиковым розеточным разъемом белого цвета «Tamiya» (крайний слева), но некоторые поставляются с разъемами mini-Tamiya (крайний справа) или даже штекерами XT60.

LiPo батареи

LiPo батареи обычно представляют собой более мощные батареи , способные производить всплески большой мощности. Они предлагают на более высокую производительность , чем NiMH, но требуют на большей осторожности при зарядке, использовании и хранении. Они тоже бывают разных размеров, некоторые в жестких случаях, но в основном стопки слоев герметизированы под вакуумом. Они также доступны в различных типах вилок, таких как XT, T / deans, HXT, EC и многих других, которые поддерживают проводку толстого сечения.

Какое зарядное устройство мне купить?

Какое зарядное устройство следует использовать / купить после того, как вы узнали, с какими химическими соединениями и разъемами вы имеете дело?

Базовый вариант

Если у вас с бюджетным , обычное зарядное устройство, вероятно, будет единственным вариантом. Базовые зарядные устройства, которые обычно стоят менее 20 фунтов стерлингов, доступны как для никель-металл-гидридных, так и для литий-полимерных аккумуляторов, и медленно и безопасно заряжают элемент (максимум 2 ампера) через разъем (или в случае литий-полимерных аккумуляторов) через разъем. балансирная пробка.

Обратите внимание, что большинство никель-металлгидридных зарядных устройств заканчиваются разъемом Tamiya (как показано выше), поэтому убедитесь, что вы приобрели адаптер , если он не подходит для вашей батареи. Большинство зарядных устройств с балансирной вилкой поддерживают только 2-элементные или 3-элементные батареи (как показано ниже), но для уверенности обратитесь к руководству.

Эти типы зарядных устройств – наша рекомендация всем, кто ищет безопасное простое (если не быстрое) зарядное устройство на дешевом . Их стиль работы в стиле «подключил и забыл» обеспечивает беспроблемную зарядку.

Расширенная универсальная зарядка

Любой, кто хочет заняться хобби, должен рассмотреть умное зарядное устройство . Доступны двухканальные модели, идеально подходящие, если вы хотите вернуться к вождению как можно скорее или если ваша модель требует две батареи одновременно . Премиум-модели оснащены вентиляторами для собственного охлаждения и совместимы с датчиками температуры для контроля нагрева ячеек. Некоторые из них могут работать от автомобильных аккумуляторов или включать адаптеры для прикуривателя.

RC-D100 от

Overlander – отличный пример с входами переменного и постоянного тока, двухканальными выходами для зарядки, датчиками температуры и даже USB-выходом для зарядки.Более свежие модели также включают интеграцию приложений для мониторинга с помощью вашего мобильного телефона или изготовление наклеек с QR-кодом для создания предустановок зарядки для ваших аккумуляторов!

Обратите внимание при покупке такого устройства, что большинство современных зарядных устройств не включают в себя провода, необходимые для подключения аккумуляторов к зарядному устройству.

Расширенная зарядка для Traxxas

Однако, если у вас есть какие-либо батареи Traxxas iD , вам понадобится зарядное устройство Traxxas iD из-за проприетарной балансировки соединений их батарей.В то время как более дорогие , чем универсальные зарядные устройства, эти современные устройства часто представляют собой интеллектуальные зарядные устройства типа “напечатал и забыл”, не требующие дополнительных кабелей.

Зарядное устройство EZ-Peak Live Dual iD с высокой выходной мощностью может работать как с NiMH, так и с LiPo-элементами, параллельно заряжая до двух 4S LiPo-аккумуляторов! Его подход «подключил и забыл» означает, что вы никогда случайно не попробуете зарядить никель-металлгидридный аккумулятор в качестве LiPo, он оснащен двумя вентиляторами, звуковыми предупреждениями и ошеломляющей выходной мощностью 200 Вт. Его функция максимальной зарядки может вместить до 16 ампер в двух- или трехэлементную батарею для самого быстрого времени зарядки .

Благодаря каналу Bluetooth вы можете использовать приложение на своем смартфоне для удаленного мониторинга процесса зарядки с предупреждениями , когда зарядка завершена . Это действительно невероятно мощное, полнофункциональное, защищенное от идиотов быстрое зарядное устройство, которое рекомендуется. Если все это звучит для вас излишне, более базовые зарядные устройства мощностью 40 Вт, совместимые с Traxxas iD, начинаются примерно с 40 фунтов стерлингов.

Покупка подходящего переходного кабеля

Как уже упоминалось, зарядные устройства обычно поставляются без проводов , что позволяет энтузиастам покупать проводку, необходимую для подключения батарей.Для большинства этот кабель с несколькими выводами для зарядки будет охватывать почти все базы, обратите внимание, что они предназначены для использования только одной из вилок за раз, , а не для параллельной зарядки.

Для некоторых типов батарей вы можете выбрать адаптер , который будет увеличиваться / уменьшаться (как показано на первой фотографии ниже) или даже менять пол. Более редкие разъемы, такие как XT90, HXT и XT150, доступны в виде отдельных выводов с банановыми разъемами 4 мм, готовыми для подключения к зарядному устройству.

Если вы особенно удобны, доступны штекеры неизолированного разъема, позволяющие припаять собственный провод адаптера .

Advanced RC battery charge: пошаговое руководство

В нашем примере мы будем использовать зарядное устройство Overlander, но многие концепции (например, нажатие и удерживание для начала) были приняты разными производителями и применимы к другим четырехкнопочным зарядным устройствам . Несмотря на это, вы всегда должны обращаться к руководству , прежде чем вставлять какие-либо батареи.

1. Осмотрите аккумулятор

Выберите правильный переходной кабель для своей батареи, наша батарея Absima имеет разъем deans / t.Для LiPo батарей определите количество ячеек, прочитав этикетку и сравнив ее с количеством проводов на балансировочной вилке (в нашем случае три провода = 2 элемента ).

2. Включите зарядное устройство

Многие современные зарядные устройства не имеют переключателей питания и включаются, как только на них подается питание. RC-D100 использует трехконтактную вилку типа «клеверный лист» C5, но также принимает вход постоянного тока, от 3 до 5 ячеек с разъемом XT60.

3.Подключите аккумулятор

Подключите аккумулятор, используя правильный провод, соблюдая полярность . (красный положительный полюс на красный положительный и т. Д.) Вставьте балансировочный провод. Будьте особенно осторожны с оголенными разъемами типа deans. При использовании многожильного кабеля с оголенным штекером (например, вилка Deans) всегда защищайте его колпачком или лентой, чтобы избежать короткого замыкания.

Многоэлементные LiPo батареи почти всегда включают в себя многожильный разъем JST-XH , балансирный штекер .Его нужно будет подключить к зарядному устройству, чтобы оно могло контролировать напряжение в каждой ячейке индивидуально. У большинства зарядных устройств порт находится сбоку, но у RC-100, который мы используем, есть отрывная плата, показанная справа на фотографии выше.

Если вы забудете подключить балансный провод, большинство зарядных устройств выдаст вам ошибку при попытке начать процесс зарядки, как показано ниже.

4. Настройте режим зарядки

Зарядные устройства

Modern Traxxas iD часто автоматически определяют, какой тип батареи вы подключаете, но имеют кнопку для переключения режима, если это необходимо.Выбор режима заряда между магазином / быстрым / балансом также осуществляется простым переключателем.

Для усовершенствованных зарядных устройств есть еще много возможностей. Наша конфигурация RC-100 для нашей батареи Absima выглядит следующим образом:

  1. Выберите канал (с какой стороны вставлена ​​батарея) в этом случае A.
  2. Выберите программу. Мы прокручиваем вправо, пока не отобразится LiPo BATT, и нажимаем , вводим для подтверждения.
  3. Скорость зарядки : Мы будем заряжать при 3,0 А, , что соответствует емкости 3000 мАч (зарядка 1С). Мы используем левую и правую кнопки, чтобы прокачать число до 3,0 и нажимаем , вводим .
  4. Количество ячеек : Наша батарея 2S, поэтому прокручиваем вправо, пока на дисплее не появится 7,4V (2S).

5. Начать зарядку

После настройки нажмите и удерживайте кнопку ввода / запуска в течение 3 секунд. Зарядное устройство, скорее всего, проверит аккумулятор, прежде чем попросить вас подтвердить количество ячеек в аккумуляторе.Он отобразит R , зарегистрированный (или обнаруженный) по сравнению с выбранным S (конфигурация, которую вы ему предоставили), если они совпадают, нажмите Start , чтобы начать заряд, или отменить, чтобы вернуться и изменить настройки.

Во время работы зарядное устройство обычно показывает тип батареи, входной ток под напряжением, входное напряжение под напряжением, режим зарядки, прошедшее время и заряженную емкость. Нажатие влево и вправо часто показывает текущее напряжение баланса ячеек, процент заряженного блока и многое другое.

По мере того, как процесс подходит к завершению, обычно наблюдается значительное падение выходной амперметрии, при этом последние 20% или около того заряжаются зарядным устройством. Процесс можно остановить в любой момент кнопкой остановки. По завершении многие зарядные устройства издадут звуковой сигнал или мигают, подтверждая, что процесс завершен . Выключите зарядное устройство, а затем отключите аккумулятор.

Должен ли я использовать

charge , fast charge или balance ?

Балансовая зарядка относится к процессу «наполнения» батареи при одновременном обеспечении соответствия напряжения в каждой из ячеек.Сбалансированная батарея обеспечивает наилучшую производительность, снижая при этом риск выхода элемента из строя ниже рабочих допусков. Мы рекомендуем всегда использовать режим баланса при зарядке.

Как зарядка, так и методы быстрой зарядки зависят от зарядного устройства, и мы рекомендуем вам обратиться к руководству, чтобы точно узнать, что они означают. В нашем примере RC-D100 fast charge предназначен для быстрой зарядки аккумулятора, но (не всегда) до полной емкости.

Что такое безопасный тариф

?

Мы рекомендуем заряжать аккумуляторы на 1C .В нашем примере батарея 3000mAh , это 3.0A . Для большой батареи Overlander емкостью 5000 мАч это будет 5.0A . Дорогие современные батареи действительно поддерживают зарядку с более высокой скоростью заряда, что сокращает время зарядки , но часто , что приводит к повышению температуры и, в конечном итоге, сокращению срока службы батареи . Вы также можете обнаружить, что некоторые более дешевые зарядные устройства не могут выводить запросы ampage для зарядки 2C +. Скажем, для упомянутой батареи емкостью 5000 мАч скорость заряда должна быть 10.0А!

Если возможно, следуйте инструкциям производителя по зарядке. Пожалуйста, не путайте максимальную импульсную (или даже непрерывную) скорость разряда с потенциальной скоростью заряда.

Когда следует использовать накопитель

?

Если вы не собираетесь использовать свой радиоуправляемый автомобиль в течение недели (или дольше, с приближением зимы), важно зарядить / разрядить аккумуляторы до уровня хранения (3,8 В на элемент). Если оставить батареи полностью заряженными, это может привести к их неравномерной разрядке (дисбалансу) или, что еще хуже, к разрядке ниже безопасного диапазона, что сделает их бесполезными.

Большинство современных зарядных устройств имеют режим «хранения» для правильного кондиционирования аккумулятора. На уровне хранения батареи должны быть помещены в прохладное сухое место , в идеале – в безопасный пакет из LiPo.

Используете LiPo батареи? Купите себе сотовый чекер!

Менее чем за 10 фунтов стерлингов на всеобщем любимом аукционе вы можете приобрести устройство для проверки сотовой связи, подобное изображенным ниже. Эти карманные устройства подключаются к вилке баланса (и питаются от нее), а отображают состояние вашей батареи.

Часто с циклическим (или выбираемым) считыванием они обычно отображают оставшуюся емкость батареи (%), напряжения отдельных ячеек, общие напряжения, минимальное / максимальное напряжения элементов (для контроля баланса), а иногда и намного больше.

В то время как многие современные зарядные устройства имеют эти встроенные функции, его идеально подходят для использования «в полевых условиях» , где вы можете проверить, какие батареи вы использовали (скажем, если у вас есть несколько, которые выглядят одинаково), и диагностировать работу вопросы.Они экономят заряд батареи, если ваша модель не имеет отсека для LiPo, так как регулярные проверки гарантируют, что не разряжает слишком сильно батареи .

Безопасность прежде всего

После недавних инцидентов с продуктами Samsung и Apple литиевые батареи стали восприниматься многими как «бомбы». Хотя это правда, что они обладают взрывоопасным потенциалом при неправильном обращении, соблюдение некоторых правил техники безопасности минимизирует риск .

Не оставляйте «быструю» зарядку аккумулятора без присмотра.Если у вас есть возможность использовать термозонд для передачи данных в зарядное устройство, используйте его. По возможности используйте LiPo сейф или сумку из LiPo сейфа (как указано выше). Наконец, всегда отключайте аккумуляторы после завершения зарядки.

RC Компьютерщики: Радиоуправляемые энтузиасты

Ищете купить новое зарядное устройство или аккумулятор? Тогда наш интернет-магазин – это то, с чего можно начать! У нас есть целый ряд аккумуляторов, подходящих для каждой продаваемой нами машины, а также адаптеры для некоторых из них.Если вы ищете конкретный разъем, аккумулятор или провод, который вы не можете найти на сайте, напишите нам, и мы постараемся помочь.

В настоящее время мы производим серию коротких статей-справочников, предназначенных для новичков в RC-сцене. Посетите наш сайт, чтобы узнать больше. В качестве альтернативы, если у вас есть тема, которую вы хотите, чтобы мы рассмотрели или объяснили, или вы заметили какие-либо ошибки или выбросы, оставьте предложение в разделе комментариев ниже .

.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *