Зарядка никель кадмиевых аккумуляторов своими руками – Зарядное устройство для Ni-Cd и Ni-MH аккумуляторов. Очень простое

Зарядное устройство для Ni-Cd и Ni-MH аккумуляторов. Очень простое

РадиоКот >Схемы >Питание >Зарядные устройства >

Зарядное устройство для Ni-Cd и Ni-MH аккумуляторов. Очень простое

Так, товарищи. Сейчас мы с вами будем заряжать аккумуляторы, просто, качественно, а главное – быстро. Для чего воспользуемся микросхемой MAX713 от компании MAXIM. Это специализированная микросхема, заточенная именно под зарядку указанных типов аккумуляторов.

Итак, что же она умеет – подходите ближе, сейчас увидите.
Итак MAX713 позволяет:

  • заряжать Никель-Кадмиевые и Никель-МеталлоГидридные аккумуляторы в количестве от 1 до 16 штук одновременно;
  • в режиме быстрого заряда регулировать ток заряда от С/3 до 4С, где С – емкость аккумулятора;
  • в режиме медленного заряда доводить аккумуляторы до кондиции током С/16;
  • отслеживание состояния аккумулятора и автоматический переход от быстрого заряда к медленному;
  • в отсутствии зарядного тока через микросхему “утекает” всего 5мкА от аккумуляторов;
  • возможность отключения заряда по температурным датчикам или по таймеру;

Ну и хватит – и так вон сколько получилось.
Как обычно, чтобы разговаривать предметно, смотрим на схему:

Вообще говоря, как мы помним еще со староглиняных времен, заряжать аккумуляторы рекомендовалось током 0,1С, где С – емкость аккумулятора. Однако, с тех пор утекло много пива и производители научились делать более совершенные аккумуляторы, позволяющие учинять над собой такое безобразие, как быстрый заряд (Fast Charge).
“It”s okey”, говорят они – вы можете заряжать наши аккумуляторы гораздо большим током - главное не превышать значение 4С, иначе может случиться big-bada-bum.

Разумеется, чем больший зарядный ток используется в процессе зарядки, тем меньше времени нужно на эту самую зарядку. Однако, все же, увлекаться сильно не стоит - ток током, а долговечность аккумулятора тоже не последнее дело. Поэтому, в MAX713 реализован не только быстрый, но и медленный заряд (

Trickle Charge), который включается по достижении аккумулятором полного заряда большим зарядным током.

Схема, показанная выше позволяет заряжать два аккумулятора, ёмкостью по 1000мА/ч каждый, током С/2, то есть 500мА.
Имеется индикация включения питания – HL1 и индикация быстрого заряда – HL2.
Аккумуляторы включаются последовательно.
Входное напряжение должно быть равно 6 вольтам. Вы еще тут? А ну бегом за паяльником!

Что? Вам надо заряжать четыре аккумулятора сразу? И не 1000мА/ч, а 1200?
Ну ладно, тогда не бежим за паяльником, а слушаем дальше.

Как я уже говорил, эта микросхема позволяет заряжать до 16 аккумуляторов, током до 4С. Итак, что же от нас требуется, чтобы спроектировать зарядное устройство под наши конкретные цели?

  1. Определиться с зарядным током аккумуляторов. Неплохо было бы узнать, какой максимальный зарядный ток рекомендует производитель. Ну а если не узнали, тогда уж на свой страх и риск. Для начала, я бы не стал превышать С/2.
  2. Решить сколько аккумуляторов нужно заряжать одновременно. После этого, согласно Таблице 1 определить, куда припаивать выводы PGM0 и PGM1. Разумеется, чтобы не перепаивать каждый раз микросхему, нужно предусмотреть переключатель, если нужно заряжать разное количество аккумуляторов.
  3. Подобрать входное напряжение на зарядное устройство. Оно может быть рассчитано по формуле:
    U=2+(1,9*N),
    где N – количество аккумуляторов
    Но это напряжение не может быть меньше 6 вольт.
    То есть, если вы будете заряжать даже один аккумулятор – входное напряжение должно составлять 6 вольт.
  4. Определить мощность выходного транзистора, после чего по справочнику подобрать подходящий. Мощность определяется так:
    P=(Uin – Ubatt)*Icharge,
    где:
    Uin – максимальное входное напряжение,
    Ubatt – напряжение заряжаемых аккумуляторов – суммарное, разумеется,
    Icharge – зарядный ток.
  5. Посчитать сопротивление R1. R1=(Vin-5)/5 – сопротивление получается в килоомах, чтобы получить Омы надо посчитанное значение умножить на 1000.
  6. Определить сопротивление R6. R6=0.25/Icharge Если Icharge подставляется в амперах, сопротивление мы получим в Омах, если а миллиамперах, то в килоомах. Не теряйтесь.
  7. Выбираем время заряда. Это нужно для того, чтобы в случае неисправного аккумулятора, зарядное устройство не гоняло его, бедолагу бесконечное число часов, а отключило по таймеру, даже если аккумулятор и не зарядился. Для выбора времени заряда пользуемся
    Таблицей 2
    . И прикручиваем ноги PGM2 и PGM3 согласно этой таблице.
  8. Разумеется, не забудьте учесть при этом зарядный ток, который был выбран, а то может случиться так, что устройство отключится раньше, чем зарядится аккумулятор.

Собственно говоря и все. Дальше будут таблицы.

Таблица 1. Задание количества заряжаемых аккумуляторов.

Количество аккумуляторов

Соединить PGM 1 с…

Соединить PGM 0 с…

1

V +

V+

2

Не подсоединять

V+

3

REF

V+

4

BATT-

V+

5

V+

Не подсоединять

6

Не подсоединять

Не подсоединять

7

REF

Не подсоединять

8

BATT –

Не подсоединять

9

V+

REF

10

Не подсоединять

REF

11

REF

REF

12

BATT-

REF

13

V+

BATT-

14

Не подсоединять

BATT –

15

REF

BATT-

16

BATT-

BATT-

Таблица 2. Задание максимального времени заряда.

Время заряда (мин)

Выключение по падению напряжения

Соединить PGM 3 с…

Соединить PGM 2 с…

22

Выключено

V +

Не подсоединять

22

Включено

V +

REF

33

Выключено

V +

V+

33

Включено

V +

BATT-

45

Выключено

Не подсоединять

Не подсоединять

45

Включено

Не подсоединять

REF

66

Выключено

Не подсоединять

V+

66

Включено

Не подсоединять

BATT-

90

Выключено

REF

Не подсоединять

90

Включено

REF

REF

132

Выключено

REF

V+

132

Включено

REF

BATT-

180

Выключено

BATT –

Не подсоединять

180

Включено

BATT-

REF

264

Выключено

BATT –

V+

264

Включено

BATT –

BATT-

Проверено Котом!

См. так же: Хождение под мухой или две недели с MAX713.


Как вам эта статья?

Заработало ли это устройство у вас?

www.radiokot.ru

Схема зарядного устройства для никель-металлгидридных и никель-кадмиевых аккумуляторов

Данное зарядное устройство можно применить как для заряда никель-кадмиевых, так и для никель-металлгидридных аккумуляторов. Если у вас li-ion аккумулятор, то вам скорее нужна зарядка для литий-ионных аккумуляторов.

Описание работы зарядного для никель-кадмиевых и никель-металлгидридных аккумуляторов

Схема обеспечивает не быструю но эффективную зарядку поскольку заряд осуществляется стандартным током — одной десятой емкости батареи в комбинации с временем зарядки от 10 до 14 часов, без риска чрезмерной зарядки. Если вы уверены, что батарея разряжена только на половину, то зарядить ее полностью можно примерно за 6…7 часов.

Аккумуляторы размера AA имеют емкость от 1500 до 1800 мАч (миллиампер-час), так что ток зарядки должно быть от 150 до 180 мА. Если вы хотите зарядить несколько никель-кадмиевых  аккумуляторов сразу, достаточно просто подключить их последовательно, для того же ток зарядки, который будет протекать через всю батарею аккумуляторов, заряжая их одновременно.

Вопрос теперь в том, как получить нам постоянный ток 180 мА. Самым элегантным и точным решение будет использование источника тока. В этой роли может выступить регулятора напряжения типа LM317 включенный по схеме источника тока. Микросхема LM317 достаточно известная и регулировки осуществляется путем подбора сопротивления резистора, который подключается к выводам OUT и ADJ.

В нашем случае ( для 0,18 А), сопротивление будет равно 6,94 Ом (1,25/0,18) = 6,94 Ом. Данный номинал можно набрать из несколько последовательно-параллельно соединенных резисторов, но проще взять близкое стандартное значение 6,8 Ом.

Чтобы получить ток 180 мА нужно некоторое напряжение. Максимальное напряжение во время зарядки никель-кадмиевого аккумулятора составляет 1,5 В, а источник тока требуется около 3 В. Если заряжать только один аккумулятор, напряжение питания составит 4,5 В.

Если заряжается несколько никель-кадмиевых аккумуляторов сразу, нужно 1,5 В умножить на число аккумуляторов плюс 3 В. Для четырех аккумуляторов это будет напряжение питания 9 В. Если напряжение слишком низкое, ток заряда будет слабым.

fornk.ru

Зарядка для никель кадмиевых аккумуляторов своими руками

Зарядное устройство для Ni-Cd и Ni-MH аккумуляторов. Очень простое

Так, товарищи. Сейчас мы с вами будем заряжать аккумуляторы, просто, качественно, а главное — быстро. Для чего воспользуемся микросхемой MAX713 от компании MAXIM. Это специализированная микросхема, заточенная именно под зарядку указанных типов аккумуляторов.

Итак, что же она умеет — подходите ближе, сейчас увидите.
Итак MAX713 позволяет:

  • заряжать Никель-Кадмиевые и Никель-МеталлоГидридные аккумуляторы в количестве от 1 до 16 штук одновременно;
  • в режиме быстрого заряда регулировать ток заряда от С/3 до 4С, где С — емкость аккумулятора;
  • в режиме медленного заряда доводить аккумуляторы до кондиции током С/16;
  • отслеживание состояния аккумулятора и автоматический переход от быстрого заряда к медленному;
  • в отсутствии зарядного тока через микросхему “утекает” всего 5мкА от аккумуляторов;
  • возможность отключения заряда по температурным датчикам или по таймеру;

Ну и хватит — и так вон сколько получилось.
Как обычно, чтобы разговаривать предметно, смотрим на схему:

Вообще говоря, как мы помним еще со староглиняных времен, заряжать аккумуляторы рекомендовалось током 0,1С, где С — емкость аккумулятора. Однако, с тех пор утекло много пива и производители научились делать более совершенные аккумуляторы, позволяющие учинять над собой такое безобразие, как быстрый заряд (Fast Charge).
“It”s okey”, говорят они — вы можете заряжать наши аккумуляторы гораздо большим током — главное не превышать значение 4С, иначе может случиться big-bada-bum.

Разумеется, чем больший зарядный ток используется в процессе зарядки, тем меньше времени нужно на эту самую зарядку. Однако, все же, увлекаться сильно не стоит — ток током, а долговечность аккумулятора тоже не последнее дело. Поэтому, в MAX713 реализован не только быстрый, но и медленный заряд (Trickle Charge), который включается по достижении аккумулятором полного заряда большим зарядным током.

Схема, показанная выше позволяет заряжать два аккумулятора, ёмкостью по 1000мА/ч каждый, током С/2, то есть 500мА.
Имеется индикация включения питания — HL1 и индикация быстрого заряда — HL2.
Аккумуляторы включаются последовательно.
Входное напряжение должно быть равно 6 вольтам. Вы еще тут? А ну бегом за паяльником!

Что? Вам надо заряжать четыре аккумулятора сразу? И не 1000мА/ч, а 1200?
Ну ладно, тогда не бежим за паяльником, а слушаем дальше.

Как я уже говорил, эта микросхема позволяет заряжать до 16 аккумуляторов, током до 4С. Итак, что же от нас требуется, чтобы спроектировать зарядное устройство под наши конкретные цели?

  1. Определиться с зарядным током аккумуляторов. Неплохо было бы узнать, какой максимальный зарядный ток рекомендует производитель. Ну а если не узнали, тогда уж на свой страх и риск. Для начала, я бы не стал превышать С/2.
  2. Решить сколько аккумуляторов нужно заряжать одновременно. После этого, согласно Таблице 1 определить, куда припаивать выводы PGM0 и PGM1. Разумеется, чтобы не перепаивать каждый раз микросхему, нужно предусмотреть переключатель, если нужно заряжать разное количество аккумуляторов.
  3. Подобрать входное напряжение на зарядное устройство. Оно может быть рассчитано по формуле:
    U=2+(1,9*N),
    где N — количество аккумуляторов
    Но это напряжение не может быть меньше 6 вольт.
    То есть, если вы будете заряжать даже один аккумулятор — входное напряжение должно составлять 6 вольт.
  4. Определить мощность выходного транзистора, после чего по справочнику подобрать подходящий. Мощность определяется так:
    P=(U in — U batt )*I charge ,
    где:
    U in — максимальное входное напряжение,
    U batt — напряжение заряжаемых аккумуляторов — суммарное, разумеется,
    I charge — зарядный ток.
  5. Посчитать сопротивление R1. R1=(V in -5)/5 — сопротивление получается в килоомах, чтобы получить Омы надо посчитанное значение умножить на 1000.
  6. Определить сопротивление R6. R6=0.25/I charge Если I charge подставляется в амперах, сопротивление мы получим в Омах, если а миллиамперах, то в килоомах. Не теряйтесь.
  7. Выбираем время заряда. Это нужно для того, чтобы в случае неисправного аккумулятора, зарядное устройство не гоняло его, бедолагу бесконечное число часов, а отключило по таймеру, даже если аккумулятор и не зарядился. Для выбора времени заряда пользуемся Таблицей 2. И прикручиваем ноги PGM2 и PGM3 согласно этой таблице. Разумеется, не забудьте учесть при этом зарядный ток, который был выбран, а то может случиться так, что устройство отключится раньше, чем зарядится аккумулятор.

Собственно говоря и все. Дальше будут таблицы.

Таблица 1. Задание количества заряжаемых аккумуляторов.

Количество аккумуляторов

Соединить PGM 1 с…

Соединить PGM 0 с…

На одном из радиолюбительских сайтов увидел схему для зарядки портативных Ni-Mn и Ni-Cd аккумуляторов с рабочим напряжением 1,2-1,4 В от USB-порта. С помощью этого устройства можно заряжать портативные аккумуляторные батарейки током примерно 100 мА. Схема несложная. Собрать её не составит труда даже начинающему радиолюбителю.

Конечно, можно купить готовое ЗУ. В продаже их сейчас великое множество и на любой вкус. Но их цена вряд ли удовлетворит начинающего радиолюбителя или того, кто способен сделать зарядное устройство своими руками.
Решил повторить эту схему, но сделать зарядное устройство для зарядки сразу двух аккумуляторов. Выдаваемый ток USB 2.0 составляет 500 mA. Так что можно смело подключить два аккумулятора. Доработанная схема выглядела так.

Так же хотелось, чтобы была возможность подключение внешнего источника питания напряжением 5 В .
Схема содержит всего восемь радиодеталей.

Из инструмента потребуется минимальный набор радиолюбителя: паяльник, припой, флюс, тестер, пинцет, отвёртки, нож. Перед пайкой радиодеталей их необходимо проверить на исправность. Для этого нам потребуется тестер. Резисторы проверить очень просто. Измеряем их сопротивление и сравниваем с номиналом. О том, как проверить диод и светодиод есть много статей в интернете.
Для корпуса использовал пластмассовый футляр размером 65*45*20 мм. Батарейный отсек вырезал из детской игрушки «Тетрис».

О переделке батарейного отсека расскажу подробней. Дело в том, что изначально
плюсы и минусы клемм питания батареек установлены противоположно. Но мне нужно было, что бы в верхней части отсека располагались две изолирование плюсовые клеммы, а внизу одна общая минусовая. Для этого я нижнюю плюсовую клемму перенёс наверх, а общую минусовую вырезал из жести, припаяв оставшиеся пружины.

В качестве флюса при паянии пружин применял паяльную кислоту с соблюдением всех правил техники безопасности. Место пайки обязательно промыть в проточной воде до полного удаления следов кислоты. Провода от клемм подпаял и пропустил внутрь корпуса через просверленные отверстия.

Батарейный отсек закрепил на крышке футляра тремя маленькими шурупами.
Плату выпилил из старого модулятора игровой приставки «Денди». Удалил все ненужные детали и дорожки печатного монтажа. Оставил только гнездо питания. В качестве новых дорожек использовал толстый медный провод. В нижней крышке просверлил отверстия для вентиляции.

Готовая плата плотно села в корпус, поэтому я её закреплять не стал.

После установки всех радиодеталей на свои места проверяем правильность монтажа и очищаем плату от флюса.
Теперь займёмся распайкой шнура питания и установкой тока зарядки для каждого аккумулятора.
В качестве шнура питания использовал USB шнур от старой компьютерной мышки и кусок питающего провода со штекером от «Денди».

Шнуру питания нужно уделить особое внимание. Ни в коем случае нельзя перепутать «+» и «-». У меня на штекере «+» питания подключен к центральному контакту чёрным проводом с белой полосой. А «-» питания идёт по чёрному (без полосы) проводу на наружный контакт штекера. На USB шнуре «+» идёт на красный провод а «-» на чёрный. Спаиваем плюс с плюсом и минус с минусом. Места пайки тщательно изолируем. Далее проверяем шнур на короткое замыкание, подключив тестер в режиме измерения сопротивления к клеммам штекера. Тестер должен показать бесконечное сопротивление. Все надо тщательно перепроверить, что бы ни спалить USB-порт. Если всё нормально, подключаем наш шнур к USB-порту и проверяем напряжение на штекере. Тестер должен показать 5 вольт.

Последний этап настройки это установка зарядного тока. Для этого разрываем цепь диода VD1 и «+» аккумулятора. В разрыв подключаем тестер в режиме измерения тока включенного на предел 200 mA. Плюс тестера на диод, а минус к аккумулятору.

Вставляем аккумулятор на место, соблюдая полярность, и подаём питание. При этом должен загореться светодиод. Он сигнализирует о том, что аккумулятор подключен. Далее, изменяя сопротивление R1, устанавливаем требуемый ток заряда. В нашем случае он равен примерно 100 mA . При уменьшении сопротивления резистора R1 зарядный ток увеличивается, а при увеличении уменьшается.

То же самое делаем для второго аккумулятора. После этого скручиваем наш корпус и
зарядное устройство готово к использованию.
Поскольку различные пальчиковые аккумуляторы имеют разную
емкость, потребуется разное время для зарядки этих аккумуляторов. Аккумуляторы
емкостью 1400 мА/ч с напряжением 1,2 В потребуется заряжать с помощью данной
схемы примерно 14 часов, а аккумуляторы 700 мА/ч потребуется всего 7 часов.
У меня имеются аккумуляторы емкостью 2700 мА/ч. Но заряжать их 27 часов от USB-порта не хотелось. Поэтому я и сделал гнездо питания для внешнего источника питания 5 вольт 1А, который у меня лежал без дела.

Вот ещё несколько фото готового устройства.

Наклейки рисовал программой FrontDesigner 3.0. Затем распечатал на лазерном принтере. Вырезал ножницами, наклеил лицевой стороной на тонкий скотч шириной 20 мм. Лишний скотч обрезал. В качестве клея использовал клей-карандаш, предварительно смазав им и наклейку и место, куда она клеится. Насколько это надёжно, пока не знаю.
Теперь плюсы и минусы данной схемы.
Плюс в том, что схема не содержит дефицитных и дорогостоящих деталей и собирается буквально на коленке. Так же есть возможность запитать от USB-порта, что не мало важно для начинающих радиолюбителей. Не надо ломать голову, откуда запитать схему. Не смотря на то, что схема очень простая, данный способ зарядки используется во многих промышленных зарядных устройствах.
Так же можно немного усложнив схему реализовать переключение зарядного тока.

Подбором R1,R3 и R4 можно выставить зарядный ток для разных по ёмкости аккумуляторов, тем самым обеспечив рекомендуемый зарядный ток для данного аккумулятора, который обычно равен 0,1C (C-ёмкость аккумулятора).
Теперь минусы. Самый большой, это отсутствие стабилизации зарядного тока. То есть
При изменении входного напряжения будет изменятся зарядный ток. Так же при ошибке в монтаже или коротком замыкании схемы есть большая вероятность спалить USB-порт.

Итак, у вас есть какая-либо аккумуляторная техника, оснащенная никель-кадмиевыми аккумуляторам и вы хотите узнать, как их заряжать, чтобы не испортить. Давайте я расскажу вам об этом.

Данный тип аккумуляторов считается уже устаревшим, так как на смену им полноценно пришли литий-ионные аналоги, которые и легче, и заряжаются проще, и служат дольше, да и цена на них сегодня уже не выше, чем на никель-кадмиевые, поэтому большинство производителей перешли на них.

Так вот, в чем же сложнее зарядка никель-кадмиевых аккумуляторов? А сложнее она в том, что всегда нужно помнить о такой вещи, как эффект памяти. Из-за этой штуки необходимо соблюдать такие два главных правила зарядки таких батарей:

  1. Заряжать батарею можно начинать только тогда, когда она достигла своего полного разряда. Нельзя ставить ее на зарядку при при лишь частичном разряде, так как эффект памяти сделает свою работу и батарея «запомнит», что ее начали заряжать именно на этой отметке, при которой она была еще не разряжена до конца, и впоследствии ниже этой отметки она разряжаться не будет, а это значит, что вы потеряете определенный объем емкости батареи. При этом под полным разрядом нужно понимать тот момент, когда ваш инструмент в результате разряда батареи просто начал работать не в полную мощность — то есть не надо доводить до того, когда он уже совсем перестанет подавать признаки жизни. Таким образом, ставите полностью заряженную батарею на инструмент, работаете им до тех пор, пока инструмент выдает полную мощность, а когда почувствовали, что мощность упала, снимаете аккумулятор и ставите на зарядку, но не раньше.
  2. После того, как поставили батарею заряжаться, необходимо дождаться, когда она полностью зарядится, и до этого момента ее снимать с зарядки нельзя. В противном случае батарея «запомнит» ту отметку, до которой ей дали зарядиться, и впоследствии только до нее и будет заряжаться, а вы опять же потеряете емкость. При этом нужно иметь в виду, что есть зарядные устройства с индикацией, которые показывают, зарядился уже аккумулятор или нет, а есть и без индикации — у таких зарядок нужно ориентироваться по времени заряда. Сколько этого времени требуется, указывается в инструкции к инструменту. Обычно у зарядных устройств с индикацией оно составляет не более часа, а вот те, что без индикации, заряжают за 3-5 часов. Связано это с тем, что первые устройства подают обычно ток бОльшего значения, чем вторые, поэтому и время зарядки у них меньше. Но в любом случае, лучше обратиться к инструкции.

Таким образом, если если соблюдать эти правила, ваши никель-кадмиевые батареи смогут отработать свой полный ресурс.

Стоит также сказать о том, как правильно хранить никель-кадмиевые аккумуляторы для шуруповертов. Здесь правило заключается оно в том, что при хранении менее 30 дней нужно оставлять их на это хранение с полным зарядом, то есть после использования — полностью зарядить. Если хранить предполагается более 30 дней, то заряд нужно оставить на уровне 30-50%. Если при этом срок хранения превысит 6 месяцев, то нужно снова зарядить аккумулятор и разрядить до уровня 30-50%. Проценты примерные — если будет чуть меньше или больше, то это не страшно.

В общем-то поэтому литий-ионные аккумуляторы то и удобнее гораздо. У них всех этих проблем нет.

Ну а если ваши никель-кадмиевые аккумуляторы все-таки вышли из строя, то вы можете попробовать их самостоятельно восстановить. Как это сделать, можно прочитать, например, в этой статье на нашем же сайте. Придется, правда, потрудиться, но и сэкономить можно немало.

Ну а эту статью буду заканчивать, так как на поставленный в заголовке вопрос был дан вполне исчерпывающий ответ.

crast.ru

Самодельное зарядное устройство для аккумуляторной дрели на NiCd батареях

В этой статье описываются пошаговые инструкции по созданию зарядного устройства для аккумуляторной батареи NiCd (ni-cad).

** Предупреждение **
С помощью описанного метода можно заряжать только никель-кадмиевые батареи. Тип батарей обычно пишется на батарейных блоках. Новые дрели и шуруповерты используют другие типы батарей (Li-Ion, NiMh), которые будут взрываться, если использовать ниже описанный способ зарядного устройства. Если нет уверенности, то лучше не пытайтесь использовать данную инструкцию. Неправильная конструкция или расчет компонентов, также могут привести к воспламенению или взрыву батареи.


Необходимые материалы и инструменты:

Материалы:

– деревянный брусок;
– доска, толщиной 20 – 25 мм. или фанера 10 мм.;
– саморезы 32 или 41 мм.;
– медная проволока, диаметром 6 мм.;
– диод;
– светодиод;
– несколько резисторов;
– выходной трансформатор;

Инструменты:

– шуруповерт или отвертка;
– настольная пила;
– электролобзик;
– вольтметр;
– сверло 3и 4 мм.;
– паяльник, припой, флюс;


Шаг первый: Изготовление брусков

Отрежьте два деревянных бруска, толщиной и размером с выступающую часть аккумуляторного блока. Бруски будут удерживать аккумуляторный блок на месте.


Блоки должны быть одинаковой толщины. На одном бруске сделайте v-образную канавку, чтобы в неё поместилась закругленная часть батарейного блока. На втором бруске, с помощью настольной пилы, сделайте два паза. Данные пазы могут отличаться по форме. Все зависит от формы аккумуляторного блока. С помощью небольшого куска дерева скрепите два бруска с помощью саморезов. После этого проверьте плотность подгонки деревянных деталей.

Шаг второй: Изготовление второй части держателя батареи

Из тонкой доски вырежьте деталь для второй стороны. Чем тоньше, тем лучше. Можно использовать фанеру. Для удобства дальнейшей работы, с помощью электролобзика, вырежьте фигурный рисунок. С помощью данного выреза будет понятно, где именно будут располагаться клеммы питания на аккумуляторном блоке.


Шаг третий: Установка медных контактов в держатель батареи

Для медных контактов мастер использовал одножильный медный кабель, диаметром 6 мм. Для контакта проволоки и клемм аккумуляторного блока были просверлены два отверстия. Одно отверстие для положительной клеммы и одно для отрицательной клеммы аккумулятора.
Затем необходимо снять изоляцию с проводов. После чего, зачищенную часть согнуть в U-образную форму, чтобы проволока торчала. Вставить проволоку в отверстия. Провода должны касаться клемм на аккумуляторе. Для проверки работоспособности необходимо использовать вольтметр.


Шаг четвертый: Сборка держателя батареи

Держатель батареи должен плотно подходить к батарейному блоку. Контакты должны касаться обеих клемм аккумуляторного блока.

Шаг пятый: Пайка электрической цепи


Диод, светодиод и несколько резисторов необходимы для того, чтобы аккумулятор заряжался с безопасной скоростью.
Мастер данной самоделки стремится к хорошей и медленной скорости зарядки в 1/16 С (емкость делится на 16). Поскольку у него выходной трансформатор переменного тока, то пришлось удвоить его до 1/8. Предпочтительней использовать 1/16 С для зарядных устройств постоянного тока, иначе могут разрушиться или загореться батареи.


Производительность 1,6 ампер-часа / 8 = 0,2А.
Номинальное напряжение полностью заряженного никель-кадмиевого элемента составляет 1,2 В. Так что в 12V аккумуляторе от шуруповерта, содержится 10 пальчиковых аккумуляторов. (12 В / 1,2 = 10 аккумуляторов).

Напряжение полностью разряженного никель-кадмиевого элемента составляет 0,8 В. 10 аккумуляторов * 0,8 В на 1 акк. = 8 В.
Зарядное устройство на 20 В – батарея на 8 В = разница в 12 В.
Уровень заряда 12 В / 0,2 А = 60 Ом.
12 В * 0,2 А = 2,4 Вт тепла, которое будет выделяться.
2,4 Вт / 2 (из-за трансформатора переменного тока) = 1,6 Вт.

Мастер использовал набор из 6 резисторов, чтобы приблизиться к расчетным 60 Ом. Это дало около 3,0 Вт рассеиваемой мощности при использовании резисторов 0,5 Вт. Поскольку используется зарядное устройство переменного тока, мощности 3,0 Вт более чем достаточно, поскольку резисторы отдыхают во время отрицательного полупериода переменного тока. В действительности они выдают только 1.6 Вт.

Для зарядного устройства постоянного тока на 20 В требуемая скорость зарядки составила бы 1/16 = 0,1 А и 120 Ом. 12 В * 0,1 А = 1,2 Вт. Шесть резисторов 0,5 Вт, вероятно, тоже подойдут для этого, но значения будут другими (120 Ом вместо 60).
*Обязательно делайте свои расчеты – это только пример.*

Светодиод индикации заряда должен получить около 0,02 А макс.
(Прямое падение напряжения 12В – 1,7В) = 10,3В. 10,3 В / 0,02 А = 515 Ом. Резистор 680 Ом будет в самый раз. Светодиод, чтобы не умер резистор.

Шаг шестой: Проверка зарядной цепи

Мастер смастерил крышку для закрытия электроники. Обрезал доску (можно фанеру) до размера, равного боковым сторонам держателя батареи. Протянул шнур от трансформатора через доску и подпаял к электрической цепи.
Также просверлил отверстие для светодиода. При включении вилки в розетку, светодиод должен загореться.

Шаг седьмой: Сокрытие электроники

Убедившись, что все работает, пришло время закрыть электронику. Отрежьте две прокладочные планки, чтобы крышка не сломала электронику. Автор использовал тонкий кусок древесноволокнистой плиты. Просверлите одновременно отверстия в доске (или фанере) и проставках.

Шаг восьмой: Финал

Закрутите последние саморезы и попробуйте зарядить аккумулятор.
Мастер также прикрутил деревянный брусок к стене, на котором закрепил зарядное устройство. Теперь оба аккумулятора будут готовы к работе тогда, когда они будут нужны.


Источник Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Зарядное устройство для NiMH аккумулятора

Зарядное устройство для NiMH аккумулятора
Недавно получил комплект никель-металлогидридных аккумуляторных (NiMH) батарей для шуруповерта «Bosch» 14.4V, 2.6Ah. Аккумуляторы фактически имели малую емкость, хотя эксплуатировались под нагрузкой лишь незначительное время и имели малое число циклов разряд(работа) – заряд. По этой причине решил разобрать батареи, выполнить их поэлементные замеры для определения характеристик и возможного восстановления, использования «выживших» элементов в других самоделках требующих отдачи большого тока в короткое время. Эта работа поэтапно описана в заметке «Автоматическое устройство для разряда аккумулятора».

После разборки батареи

Зарядное устройство для NiMH аккумулятора
был выполнен подготовительный разряд элементов на указанном устройстве, с контролем по минимальному остаточному напряжению 0,9…1,0 вольт, для исключения глубокого разряда. Далее потребовалось простое и надежное зарядное устройство для их полной зарядки.

Требования к зарядному устройству

Производители NiMH аккумуляторов рекомендуют выполнять заряд с величиной тока в интервале 0,75-1,0С. При этих режимах, КПД процесса зарядки, большую часть цикла, максимально высокий. Но к моменту окончания процесса зарядки, КПД резко снижается и энергия переходит в выделение тепла. Внутри элемента резко растёт температура и давление. Аккумуляторы имеют аварийный клапан, который может открыться при увеличении давления. При этом свойства аккумулятора будут безвозвратно потеряны. Да и сама высокая температура оказывает негативное влияние на структуру электродов батарейки.

По этой причине, для никель-металлогидридных аккумуляторов очень важным является контроль режимов и состояния батареи при зарядке, момента окончания процесса зарядки, для исключения перезаряда или разрушения аккумулятора.

Как указывалось, в конце процесса заряда NiMH аккумуляторной батареи её температура начинает расти. Это является основным параметром для отключения заряда. Обычно в качестве критерия прекращения заряда берётся рост температуры более чем на 1 градус за минуту. Но при небольших токах заряда (менее 0,5С), когда температура растёт достаточно медленно, это обнаружить сложно. Для этого может быть использовано абсолютное значение температуры. Таким значением принимают 45-50°C. В этом случае заряд должен быть прерван, и возобновлён (при необходимости) после остывания элемента.

Также необходимо установить ограничение по времени заряда. Его можно рассчитать по емкости батареи, величине тока зарядки и КПД процесса, плюс 5-10 процентов. В этом случае, при нормальной температуре процесса, зарядное устройство отключают по установленному времени.

При глубоком разряде NiMH аккумулятора (менее 0,8В) ток заряда, предварительно, устанавливается на уровне 0,1…0,3С. По времени этот этап ограничен и составляет около 30 минут. Если за это время аккумулятор не восстанавливает напряжения 0,9…1,0В, то элемент беспереспективен. В положительном случае, далее выполняют заряд с увеличенной величиной тока в интервале 0,5-1,0С.

И еще, о сверхбыстром заряде аккумуляторных батарей. Известно, что при заряде до 70% своей ёмкости никель-металлогидридный аккумулятор имеет КПД зарядки близкий к 100 процентам. Поэтому, на этом этапе возможно увеличить ток для ускоренного его прохождения. Токи в таких случая ограничивают значением 10С. Высокий ток легко может привести к перегреву аккумулятора и разрушению структуры его электродов. Поэтому использование сверхбыстрого заряда рекомендуется только при постоянном контроле процесса зарядки.

Процесс изготовления зарядного устройства для NiMH аккумулятора рассмотрен ниже.

1. Установление исходных данных.
– Зарядка элемента постоянной величиной тока 0,5…1,0С до номинальной емкости.
– Выходной ток (регулируемый) – 20…400 (800) ma.
– Стабилизация выходного тока.
– Выходное напряжение 1,3…1,8 В.
– Входное напряжение – 9…12 В.
– Входной ток – 400 (1000) ma.

2. В качестве источника питания для ЗУ выбираем мобильный адаптер 220/9 вольт, 400 ma. Возможна замена на более мощный (например, 220/1,6…12В, 1000 ma). Изменений в конструкции ЗУ при этом не потребуется.

Зарядное устройство для NiMH аккумулятора

3. Рассмотрим схему зарядного устройства

Зарядное устройство для NiMH аккумулятора
Вариант конструкции зарядного устройства аккумулятора представляет собой узел стабилизации и ограничения тока и выполнен на одном элементе операционного усилителя (ОУ) и мощном составном n-p-n транзисторе КТ829А. ЗУ дает возможность регулировки тока заряда. Стабилизации установленного тока происходит за счет повышения или понижения выходного напряжения.

В точке соединения резистора R1 и стабилитрона VD1 образуется стабильное опорное напряжение. Изменяя величину напряжения, снятого с потенциометра R2 резисторного делителя, на неинвертирующем входе операционного усилителя (вывод 3), изменяем величину выходного напряжения (вывод 6), а следовательно и ток через VТ1. Резистором R5 ограничиваем ток в цепи заряжаемого аккумулятора. Изменение падения напряжения на R5 при отклонении зарядного тока, через обратную связь (ООС) на инвертирующий вход ОУ (вывод 2), корректирует и стабилизирует выходной ток ЗУ. Установленный R2 ток будет стабилен до конца зарядки этого и последующих однотипных аккумуляторов.

Данная схема стабилизатора тока весьма универсальна и может применяться для ограничения тока в различных конструкциях. Схема легка в повторении, состоит из простых и доступных радиокомпонентов и при верном монтаже сразу начинают работать.

Особенностью данной схемы является возможность применить имеющиеся в наличии операционные усилители с напряжением питания на уровне 12В, например, К140УД6, К140УД608, К140УД12, К140УД1208, LM358, LM324, TL071/081. Транзистор КТ829А – основной силовой элемент и весь ток проходит по нему, поэтому обязательно устанавливается на теплоотвод. Выбор транзистора определяется необходимым зарядным током установленным для зарядки аккумулятора.

4. Выбираем корпус для зарядного устройства. Он определит форму, конструкцию, условия теплоотвода и внешний вид ЗУ. В данном случае выбран алюминиевый аэрозольный баллон. Удаляем его верхнюю часть.

Зарядное устройство для NiMH аккумулятора

5. Отрезаем от универсальной монтажной платы часть, равную по ширине внутреннему диаметру баллона. Желательно плотное, без качки, вхождение платы в баллон.

Зарядное устройство для NiMH аккумулятора

6. Комплектуем ЗУ деталями согласно схемы. Аэрозольный колпачок по размеру хорошо подходит в качестве ручки потенциометра.

Зарядное устройство для NiMH аккумулятора

7. Закрепляем транзистор на радиаторе и устанавливаем радиатор на краю платы, согласно фото.

Зарядное устройство для NiMH аккумулятора

8. Припаиваем выводы транзистора к контактным площадкам платы.

Зарядное устройство для NiMH аккумулятора

9. Распаиваем сопротивление, ограничивающее максимально возможный ток заряда аккумулятора. Так как весь ток заряда проходит через резистор R5, то для лучшего охлаждения резистора, он набран из широко распространенных (МЛТ-1) четырех паралельно соединенных резисторов по 22 ома, мощностью по 1 вт. Дополнительно, последовательно установлен резистор на 1,8 ома мощностью 5 вт. Общее сопротивление R5 составило около 7 ом ( средней мощностью 4 вт). Сопротивление и комплектация резисторов зависят от планируемого тока зарядки и наличия деталей у изготовителя.

Зарядное устройство для NiMH аккумулятора

10. Соберем управляющую часть ЗУ на макетной монтажной плате. Присоединим изготовленную силовую часть ЗУ и подключим нагрузку – заряжаемый аккумулятор. Для проверки работы и отладки режимов, подключим ЗУ к регулируемому блоку питания. Проверяем диапазон регулировки зарядного тока, при необходимости подбираем величину резисторов R2 и R3.

Зарядное устройство для NiMH аккумулятора

11. Переносим управляющую часть ЗУ на рабочую платку

Зарядное устройство для NiMH аккумулятора
и присоединяем ее к силовой части.
Зарядное устройство для NiMH аккумулятора
Зарядное устройство для NiMH аккумулятора

12. На плате, сбоку, устанавливаем гнездо для подключения блока питания ЗУ (адаптера или другого БП).

Зарядное устройство для NiMH аккумулятора

13. Устанавливаем ЗУ в корпус, расположив радиатор в его верхней (открытой) части.
Предварительно сверлим в нижней цилиндрической части корпуса ряд отверстий диаметром 6 мм. Рабочее положение корпуса ЗУ вертикальное, поэтому в нем, аналогично печной трубе, создается естественная тяга. Воздух, нагреваемый резисторами и радиатором поднимается из корпуса вверх, затягивая холодный в нижние отверстия. Такая вентиляция работает эффективно, потому что значительный нагрев радиатора при 2-х, 3-х часовой работе ЗУ, практически не ощущается нагревом корпуса.

Зарядное устройство для NiMH аккумулятора

14. Зарядное устройство собрано рабочим комплектом и испытано под нагрузкой, полной зарядкой десятка аккумуляторов. ЗУ работает стабильно. При этом периодически ведётся контроль расчетного времени зарядки, а также температуры аккумулятора для отключения ЗУ при критических значениях. Использование «крокодильчиков» для подключения аккумулятора позволяет подключить к ЗУ контрольный амперметр (мультиметр) для регулировки зарядного тока. При зарядке последующих однотипных элементов, амперметр не нужен.

Зарядное устройство для NiMH аккумулятора Зарядное устройство для NiMH аккумулятора Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

usamodelkina.ru

Зарядное устройство для никель-кадмиевых и никель-металлогидридных аккумуляторов

Андрей Шарый, с.Кувечичи,
Черниговская область, Украина.
E-mail andrij_s (at) mail.ru

В наше время существует огромное количество типов зарядных устройств для никель-кадмиевых (NiCd) и никель-металлогидридных (NiMH) аккумуляторов типоразмера АА или ААА.  Существуют различные методики зарядки. Самая древняя и она же самая щадящая по отношению к аккумулятору — это зарядка стабильным током 0,1 от емкости, выраженной в ампер-часах до достижения напряжения на элементе 1,45-1,5 В, на что обычно требуется 12-14 часов.

Способы более быстрой зарядки большими токами часто оказываются губительными для здоровья аккумулятора, потому что должны индивидуально соответствовать конкретно взятому типу аккумулятора, что далеко не всегда реализуемо в зарядном устройстве: не станет же пользователь каждый раз перестраивать зарядное устройство или закупать абсолютно одинаковые аккумуляторы во всю аппаратуру, потому без крайней надобности быструю зарядку лучше не использовать. Если аккумулятор никель-кадмиевый, то перед зарядкой его нужно разрядить до напряжения 1 В, иначе он будет терять емкость, особенно, если каждый раз его заряжать не полностью разряженным, но такие аккумуляторы уже используются очень редко, на смену им приходят NiMH элементы, обладающие большей удельной емкостью и не склонные к эффекту памяти, однако имеющие значительно меньший ресурс количества циклов заряд-разряд. Существуют конечно фирменные зарядные устройства, учитывающие все нюансы правильного заряда аккумуляторов. Они определяют степень заряженности по напряжению на аккумуляторе или (и) по небольшому спаду напряжения в конце зарядки (дельта-U чувствительные устройства), контролируют они также и температуру аккумулятора. Но такие устройства очень дороги. Кроме того, готовые зарядные устройства часто заряжают последовательно соединенные 2 или 4 аккумулятора, что есть очень неправильно, поскольку при зарядке последовательно соединенных аккумуляторов практически невозможно обеспечить одинаковую степень их заряженности. Аккумуляторы часто имеют хоть и  незначительный, но все же заметный разброс в параметрах, потому обеспечить их правильный заряд можно только контролируя процесс каждого аккумулятора отдельно.

Понятно, что изготовить в домашних условиях устройство, учитывающее все тонкости заряда практически невозможно — получится дороже готового фирменного. Таким образом, ставилась задача создать максимально простое зарядное устройство, которое будет однако абсолютно безопасным для здоровья аккумуляторов и максимально универсальным, подходящим для разных аккумуляторов, имеющихся в хозяйстве. Исходя из этого был выбран алгоритм зарядки стабильным током 200 мА для элементов типоразмера АА и 75 мА для аккумуляторов ААА. Степень заряженности определяется по напряжению на одном отдельно взятом аккумуляторе. Как показала практика, для здоровья аккумуляторов не страшно довольно значительное (-50 +100%) отклонение зарядного тока от положенных 0,1 от емкости. Намного опаснее недо- или перезаряд а также разная степень заряженности аккумуляторов, которые потом будут использоваться в одном устройстве. Исходя из таких соображений собрано зарядное устройство, схема которого приведена ниже.

Рис. 1. Схема зарядного устройства

Трансформатор Т1 понижает сетевое напряжение до 7-12 В, которое потом стабилизируется импульсным стабилизатором, реализованным на транзисторах Т1-Т4 на уровне 4,9В. При одновременной зарядке четырех аккумуляторов стабилизатор выдает ток около 1 А, но благодаря импульсному режиму работы теплоотводы транзисторам не требуются.

Делитель напряжения R8R9 создает опорное напряжение 1,4В, которое сравнивается с напряжением на аккумуляторе, который заряжается, компаратором на OP1. Резистор R7 в цепи обратной связи создает гистерезис около 0,05 В, благодаря чему после достижения напряжения на аккумуляторе 1,45В зарядка прекращается и не включается до тех пор, пока напряжение на аккумуляторе не снизится до 1,35 В. Такой режим работы очень важен при кратковременных отключениях напряжения во время зарядки аккумуляторов: если зарядка не была завершена, то после возобновления электроснабжения она продолжится. Кроме того, устраняются повторные включения-отключения в конце зарядки.

Зарядный ток стабилизируется генератором стабильного тока на Т5 Т6, зарядный ток задается резистором R13. Пока напряжение на аккумуляторе не достигнет установленного порога, напряжение на выходе операционного усилителя практически равно напряжению питания, следовательно транзистор Т5 открыт, генератор стабильного тока работает, светодиод LED1 (оранжевый) светится, индицируя нормальный режим заряда. Когда напряжение на аккумуляторе повысится до 1,45 В, напряжение на выходе операционного усилителя снизится почти до 0, Т5 закроется, светодиод погаснет, зарядка прекратится. Особенностью схемы является то, что светодиод LED1 кроме функций индикации играет роль источника опорного напряжения для генератора стабильного тока.

Импульсный стабилизатор напряжения может использоваться один на несколько аккумуляторов (до 4 без теплоотвода на Т1, и до 8 с теплоотводом, при соответствующей мощности сетевого трансформатора и диодного моста). Количество модулей, обведенных линией и обозначенных на схеме А1 должно быть равно количеству одновременно заряжаемых аккумуляторов.

Настройка.

Сразу после сборки приступают к налаживанию устройства. Сначала подбирая сопротивление R5 в пределах сотен Ом, устанавливают напряжение стабилизации 4,9В, в точке, обозначенной на схеме. Проверяют стабильность напряжения, при изменении нагрузки от 20 мА до 1 А оно не должно изменяться более чем на 0,05В. Если планируется заряжать не более 2 аккумуляторов, верхний предел тока может быть 0,5 А. Проверяют, чтобы не перегревался транзистор Т1. Его сильный нагрев более 50-60oС говорит о неправильной работе стабилизатора. Потом проверяют образцовое напряжение 1,4 В, при необходимости подбирают сопротивление R9. Далее, установив в разъем разряженный аккумулятор, подбирают сопротивление R13 для обеспечения нужного зарядного тока. При использовании оранжевых светодиодов сопротивлению 3,6 Ом соответствовал зарядный ток 200 мА, при 10 Омах ток был 75 мА. На этом настройка закончена. Если зарядный ток не превышает 200 мА, то теплоотвод на Т6 не нужен.

О деталях.

Транзистор Т1 может быть любым высокочастотным, с небольшим напряжением насыщения эмиттер-коллектор в открытом состоянии. Ток коллектора должен быть более 2 А, напряжение эмиттер-коллектор не менее 40 В. В качестве этого транзистора также неплохо применить n-канальный ключевой полевой транзистор типа IRFZ44, IRF510, но тогда надо менять полярность подключения к диодному мосту на противоположную, а транзисторы Т2 и Т3 должны быть структуры n-p-n, например, КТ815 и КТ3102 соответственно, а Т4 — p-n-p, например, КТ3107. Диод D1 должен быть обязательно высокочастотным, можно с барьером Шоттки, например, 1N5819. Дроссель L1 мотают проводом диаметром около 0,8 мм (20 витков) на ферритовой чашке Б18-Б22 из феррита 1500-2500НМ с немагнитным зазором 0,1 мм. Можно с успехом использовать тороидальный сердечник из прессованного железного порошка (используются выходных в фильтрах компьютерных блоков питания). Дроссель L2 — марки ДПМ или любой готовый около 100 мкГн, обязательно на ток более 1А. Можно также намотать самому проводом не тоньше 0,8 мм на любой подходящий сердечник. Индуктивность этого дросселя может отличаться в большую сторону в несколько раз, важно, чтобы он имел очень маленькое сопротивление постоянному току. Операционный усилитель в данной конструкции применяется счетверенный, но если устройство будет на 2 аккумулятора, то можно применить и сдвоенный. Трансформатор любой сетевой, с напряжением на вторичной обмотке от 7 до 12 В, мощность примерно 1,5-2 Вт на каждый заряжаемый аккумулятор.

Диодный мост может использоваться любой подходящий на ток 1 А и более, можно и на отдельный диодах типа 1N4001.
Вариант компоновки и печатной платы устройства на 4 аккумулятора (2 АА и 2 ААА) смотрите на фото.

Рисунок 2. Печатная плата

Рисунок 3. Компоновка внутри корпуса и внешний вид

www.qrz.ru

Изготовление зарядного устройства (ЗУ) для NiCd аккумуляторов

Изготовление зарядного устройства (ЗУ) для NiCd аккумуляторов

Зарядные устройства для NiCd аккумуляторов достаточно дешевы. Обычно изготовление внешнего зарядного устройства под популярные размеры аккумуляторов, таких как ААА, АА, C и D, не отнимет много сил и времени. Умение сконструировать подобное устройство окажется полезным и тем, кто захочет встроить ЗУ в робота. В отличие от большинства дешевых ЗУ, которые продолжают заряжать аккумулятор током порядка C/10 даже после его полной зарядки, наше устройство уменьшает зарядный ток до порядка С/30 после того, как батареи оказались полностью заряженными. Такая процедура рекомендована для NiCd аккумуляторов и поможет обеспечить их длительную работоспособность.

Следующая информация позволит вам самостоятельно изготовить ЗУ для стандартного NiCd аккумулятора.

Зарядное устройство представляет собой отдельный блок, схема его подключения приведена на рис. 3.7 в иллюстративных целях. Такую схему легко разместить в корпусе робота, при этом потребуется разъем для соединения с ЗУ. Кроме того, необходим двухполюсный двухпозиционный переключатель, помещенный между разъемом и остальной схемой. Этот переключатель соединяет источник питания (аккумулятор) либо с остальной схемой робота, либо с ЗУ. Обесточивание робота необходимо потому, что в противном случае ток заряда аккумулятора уменьшится (см. рис. 3.7).

Рис. 3.7. Двухпозиционный переключатель, управляющий зарядом АКБ

Питание зарядного устройства можно осуществлять, используя либо обычный трансформатор, либо портативный блок питания, совмещенный со штекерной вилкой (типа используемых для питания плееров). Я предпочитаю последний, поскольку он дает на выходе постоянный ток. Если вы используете трансформатор, то вам дополнительно потребуются сетевой предохранитель, диодный мост, сглаживающий конденсатор и соединительные провода.

В любом случае вы должны подобрать характеристики трансформатора или выпрямителя под тип заряжаемой батареи. Подбор выпрямителя по выходному напряжению и току снизит рассеиваемую мощность на регуляторе LM317; например, не стоит использовать трансформатор на 12 В для зарядки 6-вольтовых батарей.

На рис. 3.8 показана схема блока питания ЗУ. Выходное напряжение может равняться 6, 12, 18, 24 или 36 В в зависимости от типа используемого трансформатора, диодного моста и конденсатора.

Рис. 3.8. Сетевой трансформатор и выпрямительный блок

Схема зарядного устройства приведена на рис. 3.9. Она включает в себя регулятор напряжения LM317 и ограничивающий ток резистор. Величина сопротивления ограничительного резистора зависит от силы тока, необходимого для зарядки аккумуляторной батареи.

Рис. 3.9. Схема зарядного устройства

Ограничительный резистор

Большинство производителей NiCd аккумуляторов рекомендуют заряжать их током, равным 1/10 от их емкости, что обозначается C/10. Таким образом, батарея размера АА емкостью 0,85 Ач необходимо заряжать током C/10 или 85 мА в течение 14 часов. После полной зарядки батареи производители рекомендуют снизить ток до уровня порядка C/30 (1/30 емкости батареи) для поддержания батареи в полностью заряженном состоянии без риска перезаряда или иных повреждений.

В нашем случае рассчитаем характеристики ЗУ для зарядки аккумулятора, состоящего из 4 последовательно соединенных элементов С-типа. Емкость каждого элемента составляет 2000 мАч. Таким образом, ток C/10 составит 200 мА. Стандартное напряжение каждого элемента составляет приблизительно 1,3 В, следовательно, напряжение батареи 4 х 1,3 = 5,2 В. Следовательно, можно использовать 6-вольтовый трансформатор, поддерживающий ток не менее 200 мА.

Для расчета сопротивления ограничивающего ток резистора используется формула:

R=1,25/Icc

Где Icc необходимый ток. Подставляя в формулу 200 мА (0,2 А) получаем:

1,25/0,2=6,25 Ом

Таким образом, сопротивление ограничительного резистора должно быть порядка 6,25 Ом. На схеме (рис. 3.9) этот резистор обозначен R2. Заметим, что на схеме резистор R2 имеет номинал 5 Ом. Это ближайший стандартный номинал резистора по отношению к рассчитанному.

C/30 резистор

Чтобы уменьшить силу тока до значения C/30, мы последовательно включаем еще один резистор, номинал которого составляет 2R или около 12,5 Ом. На схеме этот резистор обозначен как R3. Также подбирается резистор ближайшего стандартного номинала. В нашем случае его значение равно 10 Ом.

Принцип работы ЗУ

В ЗУ в качестве источника постоянного тока используется регулятор напряжения LM317. Ограничительный резистор для значения тока C/10 обозначен на схеме R2 (см. рис. 3.9). Значение R2 равно 5 Ом в сравнении с расчетным значением 6,25 Ом. Использование стандартного резистора близкого номинала не нарушит правильную работу ЗУ. Резистор для значения тока C/30 обозначен как R3. Стандартный номинал этого резистора также близок к расчетному и не нарушает нормальной работы ЗУ. Позже вы увидите, что ЗУ способно осуществлять и «быструю» зарядку аккумуляторов, поскольку имеет устройство контроля выходного потенциала.

V1 представляет собой переменный резистор номиналом 5 кОм. Он предназначен для отпирания тиристора после полной зарядки NiCd батареи. Тиристор в свою очередь переключает двухпозиционное реле, имеющее две группы контактов.

При подаче напряжения на схему ток протекает через регулятор LM317, заряжая батарею током порядка C/10. Резистор R3 при этом закорочен одной из групп контактов реле. Ток также протекает через резистор R1, ограничивающий ток светодиодов D1 и D2. После включения питания загорается красный светодиод D1, который сигнализирует о том, что происходит зарядка.

В процессе зарядки напряжение на потенциометре V1 возрастает. После 14 часов напряжение оказывается достаточным для отпирания тиристора. Через открытый тиристор напряжение поступает на обмотку двухпозиционного реле. Реле включается, красный светодиод гаснет и зажигается зеленый светодиод. Зеленый светодиод показывает, что батарея полностью заряжена. Другая группа контактов реле размыкает закороченный резистор R3. Включение резистора R3 уменьшает зарядный ток до порядка C/30. Диод D3 блокирует протекание тока из аккумулятора в схему ЗУ.

Определение напряжения срабатывания V1

Для нормальной работы схемы необходимо, чтобы тиристор отпирался только после полной зарядки NiCd батареи. Наиболее просто это сделать следующим образом: вставить полностью разряженную батарею в ЗУ, заряжать ее в течение 14 часов, а потом подрегулировать V1. После завершения процесса зарядки медленно поворачивать движок потенциометра V1 до срабатывания реле. При этом должен зажечься светодиод зеленого цвета.

Особенности конструкции

При самостоятельном конструировании ЗУ обратите внимание на следующее. Наиболее критичным является подбор ограничительных резисторов для значений тока C/10 и C/30. Для расчета их номиналов воспользуйтесь приведенными формулами. Рассеиваемая мощность этих резисторов порядка 2 Вт.

Если зарядный ток достаточно велик (более 250 мА), то для отвода тепла снабдите схему LM317 радиатором. Если ЗУ включить до соединения с батареей, то моментально сработает реле, включится зеленый светодиод и зарядный ток окажется равным C/30.

Если ЗУ будет использоваться при более высоких значениях напряжений – пропорционально увеличьте сопротивление R1, ограничивающее ток, протекающий через светодиоды. Например, для напряжения 12 В сопротивление R1 будет равно 680 Ом, для напряжения 24 В – 1,2 кОм соответственно.

При больших значениях напряжения может потребоваться резистор, ограничивающий ток обмотки реле. Полезно измерить реальные значения тока C/10 и C/30, протекающего через заряжаемую батарею, что позволит судить о правильности работы устройства.

Последовательное и параллельное соединение

Способ соединения элементов в батарею определяет необходимые характеристики трансформатора по напряжению и току. Если батарея состоит из 8 элементов типа С, соединенных параллельно, то необходимо умножить необходимый для каждого элемента ток на 8. Если емкость отдельного элемента составляет 1200 мАч, то зарядный ток C/10 будет равен 120 мА. Для 8 параллельных элементов ток составит около 1 А (8х 120 мА=960 мА=0,96 А). Необходимое напряжение составит 1,5 В. Соответственно, необходим трансформатор, выдающий напряжение 1,5 В при токе 1 А. Если эти элементы соединены последовательно, то необходимое напряжение составит 12 В при токе 120 мА.

Быстрое ЗУ

Многие современные NiCd аккумуляторные батареи можно заряжать быстрее при условии, что после их полной зарядки ЗУ переключится в режим C/30. Типичным является удвоение зарядного тока при сокращении времени зарядки в два раза. Таким образом, можно заряжать батарею током C/5 в течение 7 часов.

Хотя я не пробовал использовать данную схему ЗУ для быстрой зарядки, но не вижу оснований, почему она не должна работать. Если вы хотите это сделать, необходимо сперва подстроить потенциометр под значение тока C/10, а потом уменьшить номинал резистора R2 в два раза.

Список деталей

• U1 регулятор напряжения LM317

• L1 двухпозиционное реле с двумя группами контактов

• D1 красный светодиод

• D2 зеленый светодиод

• D2 диод 1N4004

• Q1 тиристор

• V1 подстроечный резистор 5 кОм

• R1 резистор 330 Ом 0,25 Вт

• R2 резистор 5 Ом 2 Вт

• R3 резистор 10 Ом 2 Вт

• R4 резистор 220 Ом 0,25 Вт

• Понижающий трансформатор

Поделитесь на страничке

Следующая глава >

tech.wikireading.ru

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *