Зерядка для литиевых аккумуляторов – как правильно и сколько заряжать Li-ion АКБ
Литиевые аккумуляторы представляют гальваническую пару, в которой катодом служат соли лития. Независимо, литий-ионный, литий-полимерный сухой или гибридный аккумулятор, зарядное устройство подходит всем. Изделия могут иметь форму цилиндра, или герметичную мягкую упаковку, способ зарядки для них общий, отвечающий особенностям электрохимической реакции. Как зарядить Li-ion АКБ?
Как правильно заряжать литиевые аккумуляторы
Существует несколько схем зарядки литиевых аккумуляторов. Чаще используется двухэтапная зарядка, разработанная компанией SONY. Не применяются устройства с применением импульсного заряда и ступенчатой зарядки, как для кислотных АКБ.
Зарядка любых разновидностей ионно-литиевых или литий-полимерных аккумуляторов требует строгое соблюдение напряжения. На одном элементе заряженного литиевого аккумулятора должно быть не больше 4,2 В. Номинальным напряжением для них считается 3,7 В.
Литиевые аккумуляторы можно ли заряжать быстро, не полностью? Да. Их всегда можно дозарядить. Работа батареи на 40-80 % емкости удлинняет АКБ срок годности.
Двухступенчатая схема зарядки батареи литиевых аккумуляторов
Принцип схемы CC/CV – постоянная сила зарядного тока/ постоянное напряжение. Как зарядить по этой схеме литиевый аккумулятор?
На схеме до 1 этапа зарядки изображен предэтап, для восстановления глубоко севшего литиевого аккумулятора, с напряжением на клеммах не менее 2,0 В. Первый этап должен восстановить 70-80 % емкости. Ток зарядки выбирают 0,2-0,5 С. Ускоренно заряжать можно, током 0,5-1,0 С. (С – емкость литиевых аккумуляторов, цифровое значение). Каким должно быть напряжение зарядки на первом этапе? Стабильным, 5 В. Когда достигнуто напряжение на клеммах аккумулятора 4,2 – это сигнал перехода на второй этап.
Теперь ЗУ поддерживает стабильное напряжение на клеммах, а зарядный ток по мере поднятия емкости снижается. При уменьшении его значения до 0,05-0,01 С зарядка закончится, устройство отключится, не допуская перезарядки. Общее время восстановления емкости для литиевого аккумулятора не превышает 3 часов.
Если литий-ионная батарея разряжена глубже 3,0 В, потребуется провести «толчок». Это заключается в зарядке малым током до тех пор, пока на клеммах не будет 3,1 В. Потом используется обычная схема.
Как контролируют параметры зарядки
Так как литиевые аккумуляторы работают в узком диапазоне изменения напряжения на клеммах, их нельзя перезаряжать выше 4,2 В и допускать разрядку ниже 3 В. Контроллер заряда установлен в ЗУ. Но каждый аккумулятор или батарея имеют собственные прерыватели, РСВ плату или РСМ модули защиты. В аккумуляторах установлена именно защита от того или иного фактора. В случае нарушения параметра, она должна отключить банку, разорвать цепь.
Контроллер – устройство, которое должно реализовать функции управления – переводить режимы CC/CV, контролировать количество энергии в банках, отключать зарядку. При этом сборка работает, нагревается.
Самодельные схемы зарядки, применяемые для литиевых аккумуляторов
- LM317 – схема простого зарядного устройства с индикатором заряда. От USB порта не запитывается.
- MAX1555, MAX1551- специально для Li Аккумуляторов, устанавливаются в адаптер питания от телефона в USB. Есть функция предварительного заряда.
- LP2951- стабилизатор ограничивает ток, формирует стабильное напряжение 4,08-4,26В.
- MCP73831- одна из простейших схем, подходит для зарядки ионных и полимерных устройств.
Если батарея состоит из нескольких банок, разряжаются они не всегда равномерно. При зарядке необходим балансир, распределяющий заряд и обеспечивающий равномерный заряд всех банок в батарее. Балансир может быть отдельным или встроенным в схему подключения АКБ. Устройство защиты батареи называется BMS. Зная как заряжать приборы, разбираясь в схемах, можно своими руками собрать схему защитного устройства для литиевого аккумулятора.
Как зарядить литиевый аккумулятор 12 вольт
Каждый литиевый аккумулятор представляет герметичное изделие цилиндрической, призматической формы, для Li-pol в мягкой упаковке. Все они имеют напряжение 3,6- 4,2 В и разную емкость, измеряемую в мА/ч. Если собрать последовательно 3 банки получится батарея с напряжением на клеммах 10,8 — 12,6 В. Емкость при последовательной зарядке, измеряется по самому слабому литиевому аккумулятору в связке.
Как правильно заряжать литиевый аккумулятор 18650 или Pol на 12 вольт, нужно знать. Для возвращения прибору емкости необходимо использовать ЗУ с контроллером. Важно иметь в сборке РСМ для каждой банки, защиту от недо- и перезаряда. Другая схема незащищенных литиево-ионных аккумуляторов – установка РСВ – управляющей платы, лучше с балансирами, для равномерной зарядки банок.
На зарядном устройстве необходимо задать напряжение, под которым работает батарея, 12,6 В. На приборной доске устанавливается количество банок и ток зарядки, равный 0,2- 0,5 С.
Как заряжать, предлагаем посмотреть видео, способ зарядки для 2, 3 литиевых аккумуляторов 18650, соединенных последовательно. Используется бюджетное зарядное устройство.
Варианты зарядки литий-ионных литиево-полимерных аккумуляторов:
- Зарядное устройство приобретаемое в комплекте с прибором.
- Использовать разъем USB от электронной техники – компьютера. Здесь можно получить ток 0,5 А, зарядка будет долгой.
- От прикуривателя, купив переходник с набором портов. Выбрать тот, что соответствует параметрам батареи на 12 В.
- Универсальное зарядное устройство «лягушка» с доком для установки гаджета. Как заряжать? Есть панель индикации заряда.
Специалисты советуют использовать для зарядки литиевых аккумуляторов штатное зарядное, остальные – только в форс-мажорных обстоятельствах. Однако, как зарядить литиевый аккумулятор без штатного зарядного устройства, нужно знать.
Как заряжать литиевые аккумуляторы шуруповерта
Шуруповерт на литиевых аккумуляторах почти всегда апгрейд. Если с Ni-Cd элементами были одни требования к зарядке, теперь они стали противоположными. В первую очередь нужно приобрести или собрать зарядник, именно для энергоемких литиевых аккумуляторов шуруповерта с форм фактором 18650. Схема зарядки применяется из двух этапов CC/CV.
Зарядка литиевого аккумулятора шуруповерта оптимальна, когда остается 20-50 % емкости – одна палочка на индикаторе. Чем чаще заряжать, тем стабильнее напряжение на клеммах и длиннее жизнь источника энергии. Чем ровнее напряжение на клеммах, тем больше циклов выдержит литиевый аккумулятор шуруповерта.
Глубина разряда, % | Количество циклов заряда |
100 | 500 |
50 | 1500 |
25 | 2500 |
10 | 4 700 |
Если в шуруповерте 2 аккумулятора, один снимите, зарядите на 50-60 % и держите в резерве. Но второй заряжайте всегда по окончании работы, даже на 10 %. Лучшая температура для заряда +15-25 0 С. При минусе батарея шуруповерта не зарядится, но работать до -10 0 может.
Как заряжать литиевый аккумулятор шуруповерта зарядным устройством, зависит от схемы сбора батареи из банок. В любом случае, напряжение на ЗУ должно быть равно заявленному для прибора, а сила тока 0,5 С на первом этапе. На втором, напряжение клеммное стабильно, а сила тока падает, вплоть до окончания процесса.
Сколько заряжать литиевый аккумулятор
Время зарядки аккумуляторов определяется процессом восстановления емкости. Различают полный и частичный заряд.
Емкость измеряется в ампер-часах. Это значит, если подать заряд, численно равный емкости, то за час на клеммах создастся нужное напряжение, а запас энергии будет 70-80 %. Если емкость измеряется в единицах С, при быстрой зарядке следует подавать ток 1С-2С. Время быстрой зарядки около часа.
Для полного цикла зарядки батарей из нескольких элементов, соединенных последовательно, используют 2 этапа – CC/CV. Этап СС длится, пока на клеммах не появится напряжение , равное рабочему, в вольтах. Второй этап: при стабильном напряжении подается в банку ток, но с увеличением емкости, он стремится к нулю. Время заряда занимает около 3 часов, независимо от емкости.
Можно ли заряжать литиевый аккумулятор обычной зарядкой
Две разных системы аккумуляторов – литиевые и свинцовые требуют разного подхода к восстановлению емкости. Свинцовый АКБ не настолько требовательны к параметрам зарядки, как литиевые. Да и критерии заряда другие.
Для зарядки на первом этапе Li-ion, Li-pol требуется постоянный ток, на втором этапе постоянное напряжение. Если не контролировать параметры на первом этапе, возможен перезаряд. Но если в батарее есть встроенная защита – BMS – она справится. Поэтому несколько добавить энергии можно даже зарядником от телефона.
В зарядном устройстве для свинцовых АКБ главный показатель – стабильное напряжение. Для литиевых зарядников на первом этапе важен стабильный ток.
Правда, появились универсальные ЗУ, которые можно перенастроить на тот или иной режим зарядки. Перед вами российская разработка «Кулон».
batts.pro
Адаптер в качестве зарядного устройства для литий-ионных аккумуляторов шуруповерта.
В прошлый раз я рассматривал вопрос о замене никель-кадмиевых NiСd аккумуляторов шуруповерта на литий-ионные. Теперь остался вопрос зарядки этих аккумуляторов. Литий ионные аккумуляторы формата 18650 обычно могут заряжаться до напряжения 4,20 В на ячейку с допустимым отклонением не больше 50 милливольт потому, что увеличение напряжения может привести повреждению структуры батареи. Ток заряда аккумулятора может находится в пределах от 0,1С до 1С(С-емкость аккумулятора). Лучше выбрать это значение согласно даташиту на конкректный аккумулятор. Я применил в переделке шуруповерта аккумуляторы марки Samsung INR18650-30Q 3000mAh 15A. Смотрим даташит-ток зарядки -1,5А.Наиболее правильным будет провести заряд литиевых аккумуляторов в два этапа по методу CC/CV (constant current, constant voltage-постоянный ток, постоянное напряжение). Первый этап- должен обеспечен постоянный ток заряда. Величина тока составляет 0.2-0.5С. Для аккумулятора с емкостью 3000 мА/ч, номинальный ток заряда на первом этапе равен 600-1500 мА.. Второй этап — зарядка аккумулятора постоянным напряжением, ток постоянно снижается. Поддерживается напряжение на аккумуляторе в пределах 4.15-4.25 В. Процесс заряда будет законченным когда току падет до 0.05-0.01С.
Принимая во внимание вышесказанное применил готовые электронные модули с Алиэкспресс. Понижающая плата CC/CV с ограничением по току на микросхеме XL4015E1 или на LM2596. Предпочтительней плата на XL4015E1 так, как она более удобна в настройках.
Характеристики платы на XL4015E1.
Максимальный выходной ток до 5 Ампер.
Напряжение на выходе: 0.8 В-30 Вольт.
Напряжение на входе: 5 В-32 Вольт.
Плата на LM2596 имеет аналогичные параметры, только ток чуть меньше — до 3 Ампер.
Плату для управление зарядом литий-ионной батареи выбрана ранее. В качестве источника питания можно применить любой со следующими параметрами-выходное напряжение не ниже 18 Вольт (для схемы 4S), ток не ниже 2-3 Ампер. В качестве первого примера построения зарядного устройства для литий-ионных аккумуляторов шуруповерта я использовал адаптер 220\12 Вольт, 3 Ампера.
Предварительно я проверил какой ток он может выдать пир номинальной нагрузке. Подключил к выходу автолампу и выждал полчаса. Выдает свободно без прегруза 1,9 Ампер. Также измерил температуру на радиаторе транзистора-40 градусов Цельсия. Вполне неплохо-нормальный режим.
Но в этом случае не хватает напряжения. Это легко исправимо, с помощью всего одной копеечной радиодетали-переменного резистора (потенциометр) на 10-20 кОм. Рассмотрим типовую схему адаптера.
На схеме есть управляемый стабилитрон TL431, он находится в цепи обратной связи. Его задача поддерживать стабильное выходное напряжение в соответствие с нагрузкой. Через делитель из двух резисторов он подключен к плюсовому выходу адаптера. Нам нужно припаять к резистору(или выпаять его совсем и на его место припаять, тогда напряжение будет регулироваться и в меньшую сторону) который подключен к выводу 1 стабилитрона TL431 и к минусовой шине переменный резистор. Вращаем ось потенциометра и выставляем нужное напряжение. В моем случае я задал 18 Вольт(небольшой запас от 16,8 В для падения на плате CCCV). Если у вас напряжение указанное на корпусах электролитических конденсаторах стоящих на выходе схемы будет больше нового напряжения они могут взорваться. Тогда надо заменить их с запасом 30% по напряжению.
Далее подключаем к адаптеру плату для управление зарядом. Выставляем подстроечным резистором на плате напряжение 16,8 Вольт. Другим подстроечным резистором выставляем ток 1,5 Ампера, предварительно подключаем тестер в режиме амперметра к выходу платы. Теперь можно подсоединить литий-ионной сборку шуруповерта. Зарядка прошла нормально, ток к концу заряда упал до минимума, батарея зарядилась. Температура на адаптере была в пределах 40-43 градусов Цельсия, что вполне нормально. В перспективе можно в корпусе адаптера для улучшения вентиляции (особенно в летнее время) насверлить отверстия.
Окончание заряда батареи можно увидеть по включению светодиода на плате на XL4015E1. В данном примере я использовал другую плату на LM2596 так, как случайно в ходе экспериментов сжег XL4015E1. Советую делать зарядку лучше на плате XL4015E1.
У меня есть еще штатное зарядное от другого шуруповерта. Оно рассчитано на зарядку никель-кадмиевых аккумуляторов. Хотелось использовать это штатное зарядное чтобы заряжать и никель-кадмиевых аккумуляторы и литий-ионные.
Это решилось просто- припаял к выходным проводам (красный плюс, черный минус) провода к плате CCCV.
Напряжение холостого хода на выходе штатное зарядного было 27 Вольт, это вполне подходит для нашей зарядной платы. После подключил так же как и варианте с адаптером.
Окончание зарядки здесь мы видим по изменению цвета свечения светодиода(переключился с красного на зеленый).
Саму плату CCCV я поместил в подходящую пластмассовую коробку, выведя провода наружу.
Если у вас штатное зарядное на трансформаторе то можно подключить плату CCCV после диодного мостика выпрямителя.
Способ переделки адаптера под силу начинающим и может пригодиться в других целях, в результате получим бюджетный блок для питания различных устройств.
Всем желаю здоровья и успехов в покупках и жизни.
Подробнее процесс работы с зарядным устройством для переделанного шуруповерта можно посмотреть в видео
Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.
mysku.ru
Недорогое зарядное устройство 12.6 Вольта 3 Ампера
Буквально совсем недавно я выкладывал пару обзоров зарядных устройств, но так получилось, что случайно ко мне попало еще одно. К сожалению оно также на 12.6 Вольт (3S сборка литиевых аккумуляторов), но я решил, что обзор может быть полезен из-за низкой цены. Увы, не все так, как хотелось бы, но об этом уже в обзоре.Было заказано 10 штук зарядных устройств, на момент заказа цена была $8.13, то ли акция была, то ли продавец цену сейчас поднял, не знаю. Чтобы не было проблем с таможней, заказал двумя заказами.
Любопытно что упаковки были разные, видно коробки были те, что попались под руку, но упаковано было плотно.
В любом случае пришло все, каждое зарядное упаковано в отдельную картонную коробку, кабели лежали отдельно.
В комплект входит собственно зарядное устройство и кабель питания.
Из десяти кабелей один попался с вилкой у которой плоские штыри, хотя в заказе было указано – EU. Не критично, но неприятно.
А вот второй нюанс куда интереснее. В описании лота указано – Liitokala 12.6 В 3A зарядное устройство. Если насчет 12.6 и 3 все понятно, то вот насчет Литокала возникли некоторые вопросы. В принципе, насколько мне известно, Литокала не производит подобных зарядных устройств. Но на зарядных устройствах присутствует наклейка Liitokala, причем оригинально, в одной коробке были, в другой нет. Хотя если смотреть на фото, то можно понять, что разницы между ними никакой нет, вернее разница только в наклейке.
Корпус – привычный “брусок” черного цвета, на одной стороне расположен разъем подключения кабеля питания, на другой кабель для подключения к потребителю. Разъем 5.5/2.1мм.
Со стороны кабеля находится светодиод индикации режима работы.
Но меня интересовало это зарядное не только само по себе, а и в сравнении с тем, что я обозревал ранее.
Напомню, зарядное устройство с теми же заявленными характеристиками, 12.6 Вольта 3 Ампера, на вид также почти такое же, корпус чуть больше. Ссылка на обзор, чтобы понимать о чем идет речь.
Справа обозреваемое, слева то, что я разбирал ранее. Даже здесь видны некоторые отличия.
Зарядные устройства я покупал не себе, потому перед разборкой пришлось спросить товарища, не против ли он, если я его разберу для обзора, так как половинки корпуса склеены. Возражений не последовало, потому разобрал.
Внутри отличий гораздо больше. Как минимум у предыдущего трансформатор имеет магнитопровод большего размера, на фото это не так заметно, мешает скотч. Хуже изоляция радиаторов, вернее она есть в небольшом количестве только на радиаторе транзистора.
Ну а входной фильтр. Справа обозреваемый экземпляр, диодный мост попроще, дросселя нет, предохранитель обычный.
На выходе ситуация немного лучше. Хотя нет, точнее сказать – не сильно отличается от предыдущего, также два конденсатора и также нет дросселя по выходу. И кстати, как и у предыдущего есть место под вторую диодную сборку.
Вынимаем плату из корпуса для более тщательного осмотра, так как еще при первом взгляде мне показалось, что отличий больше.
1. Входные диоды 1N4007, фильтр отсутствует, зато конденсатор емкостью 82мкФ. Даже с учетом что реальная емкость китайских конденсаторов обычно занижена, все равно нормально для зарядного мощностью 35-40 Ватт.
2. Транзистор 8N65, вполне нормально для такой мощности.
3. Помехоподавляющий конденсатор правильный, потому безопасность в основном упирается упирается в отсутствие изоляции радиаторов и защитных прорезей в плате.
4. Выходная диодная сборка 10 Ампер 100 Вольт, нормально как по напряжению, так и по току. Конденсаторы 1000мкФ 25 Вольт, также вопросов особо нет, за исключением их “безродности”.
На удивление плата спаяна даже аккуратно, конечно ей далеко до фирменных устройств, но в целом нормально.
Защитных прорезей нет, но расстояние между “горячей” и “холодной” сторонами довольно неплохое.
Первичная сторона блока питания. На всякий случай, если кому-то придется ремонтировать подобное зарядное.
А вот и первый косяк. Хотя по большому счету я даже не знаю как корректно назвать то, что я увидел.
Сверху на плате виден желтый помехоподавляющий конденсатор Х класса, так вот он не участвует в процессе. Не, ну бывает что паяют перемычки вместо дросселя, я уже к этому давно привык, но впаять конденсатор и не использовать его.
На фото я обозначил как запаян термистор и предохранитель, видно что конденсатор (справа) ни с чем не соединен. Странное решение 🙂
Как и в прошлый раз меня куда больше интересует вторичная сторона, так как первичная обычно имеет настолько маленькие отличия от других, что ее уже можно по памяти рисовать.
Как и предыдущие зарядные устройства, схема основана на операционном усилителе LM358, никаких “умных” контроллеров и в помине нет.
Вся электроника это ШИМ контроллер 6853K09, его подключение идентично контроллерам – 63D39, 63D12, и все они очень похожи на FAN6862. А также ОУ LM358, классика дешевых зарядных устройств.
Перечертил схему, хотя в данном случае по сути это компиляция из схемы блока питания, и предыдущего зарядного устройства 12.6 Вольта 1 Ампер, которые я описывал ранее, но с некоторыми отличиями.
Позиционные номера компонентов совпадают со схемой, по крайней мере в большинстве случаев 🙂
Сходство выходной части ну очень большое со схемой этого зарядного, а в какой то мере схема даже проще. Но в любом случае обе схемы гораздо проще, чем у предыдущего варианта 3 Ампера зарядного. Там было двойное питание и при желании можно было получить почти нулевое потребление когда зарядное не подключено к сети.
Схемотехника выходной части также примитивна, синий – стабилизация напряжения, красный – тока, синий – индикация, зеленый – опорное напряжение.
Это один из самых простых вариантов зарядных устройств, проще только на базе LM317 или резистора, но второй вариант не используется с литиевыми батареями (по крайней мере попадается крайне редко).
Первые тесты по моей методике тестирования зарядных устройств.
1. Выходное напряжение на холостом ходу заметно завышено, примерно по 40мВ на элемент. Это означает, что каждый элемент будет заряжаться до 4.24, а не до 4.20 Вольта. В таком варианте больше шансов получить срабатывание платы защиты аккумуляторной сборки. У предыдущего варианта было 20мВ превышение.
2. Собственный ток потребления без сети составляет 11мА, у предыдущего 7мА, а у 1А версии 14мА. Но у предыдущей версии 3 Ампера можно этот ток заметно снизить, у обозреваемого это сделать заметно сложнее, хотя и реально.
3. Ток заряда 3.23 Ампера, что почти на 10% больше заявленного. По большому счету ничего страшного в этом нет, просто аккумуляторы зарядятся чуть быстрее, но в моем случае повышенный ток “вылез боком”.
4. Переключение индикации с красного на зеленый происходит при 359мА, что немного больше чем стандартная 1/10 от исходного тока. Не критично.
5, 6. Ток заряда через 5 и через 10 минут после срабатывания индикации. Как и следовало из схемы, данное зарядное не умет отключать аккумуляторы по завершении процесса, продолжая оставлять их под током. Для типичного сценария зарядил/отключил это неважно, но на неделю я бы не стал оставлять.
Следующий тест под нагрузкой, как всегда проверяем две вещи:
1. Нагрев.
2. Уход напряжения после прогрева.
Электронная нагрузка в таком тесте подключается до шунта чтобы зарядное не переходило в режим стабилизации тока (хотя в итоге все равно светил красный индикатор), и ток нагрузки выбирается таким, какой был измерен в предыдущем тесте.
Напряжение после получасового прогрева заметно убежало от исходного. Конечно по завершении заряда падает и нагрев, но сначала зарядное доведет напряжение батареи до 12.7 Вольта, а после остывания снизит до 12.68. Хотя стоп, почему снизит, без нагрузки на выходе было 12.72, потому даже скорее повысит. Жаль нет подстроечного резистора для коррекции.
На графике виден уход напряжения при нагреве. У предыдущего 3 Ампера зарядного уход был 0.005 Вольта! Как говорится – почувствуйте разницу.
С нагревом также картина не очень веселая. Сначала температура корпуса и компонентов после получасового прогрева.
А теперь через 1 час 14 минут. Самая высокая температура зарегистрирована в районе обмотки трансформатора, более 100 градусов.
Я бы не сказал что все так уж плохо, так как зарядное работает обычно час-два, максимум три, дальше обычно аккумулятор заряжается и нагрев падает. Кроме того, на начальном этапе нагрев будет немного меньше, так как выходная мощность зарядного меньше. Например на каждом аккумуляторе 3.8 Вольта, в сумме выходит 3.8х3х3.2=36,5 Ватта, а почти в самом конце заряда (в этом режиме я проводил тест) – 4,2х3х3,2=40,3, на 10 процентов больше.
Температура отдельных компонентов в конце теста –
Входной диодный мост – 74.5
Высоковольтный транзистор – 86.3
Трансформатор – 94.8
Обмотка трансформатора – 102.8
Выходная диодная сборка – 99.9
Выходные конденсаторы – 82.4
Термограмма с двух ракурсов.
На мой взгляд проблема перегрева кроется в нескольких вещах и первая – малый запас по мощности трансформатора. Вторая – завышенный выходной ток, почти 10% это немало. Я считаю, что стоит снизить его хотя бы до заявленного значения, а в идеале опустить до 2.8 Ампера. В таком варианте работать должно нормально.
Как и в прошлый раз (в обзоре 1 А зарядного) я советую изменить номиналы делителя. В данном случае либо увеличить R20, либо уменьшить R22. Так как уменьшить проще чем увеличить, то лучше сделать именно так, например припаяв параллельно резистор номиналом 8.2-10кОм. Чем меньше сопротивление резистора, тем меньше будет выходной ток.
Выводы просты. Главное преимущество данного зарядного – цена, дешевле мне пока не попадалось. Как вы понимаете, цена определяется обычно качеством сборки и работы. А в данном случае производитель явно экономил почти на всем. Но даже в таком варианте зарядное работает, но я бы советовал его немного доработать. Сама по себе доработка проста, самая большая сложность это аккуратное вскрытие.
Но в любом случае к Литокале данные изделия имеют примерно такое же отношение как я к балету 🙂
Вот и все. Надеюсь что обзор был полезен, как всегда жду комментариев и вопросов.
www.kirich.blog
Переделка шуруповерта на литий, часть вторая, заряжаем правильно
В прошлый раз я рассказал как правильно переделать батарею для аккумуляторного инструмента. Также я писал, что расскажу об особенностях заряда, а предметом обзора на этот раз выступит плата DC-DC преобразователя.Кому интересно, прошу в гости.
Изначально я планировал ограничиться двумя частями, переделкой батареи и зарядного. Но пока готовил обзор, в голове созрела идея для третьей части обзора, более сложной.
А в этой части я расскажу как можно переделать родное трансформаторное зарядное, если оно еще работает, ну или если еще жив силовой трансформатор.
Платка преобразователя была заказана довольно давно в количестве нескольких штук (про запас), заказывалась специально для этой переделки, потому как имеет некоторые особенности, впрочем не буду забегать далеко, бем последовательны.
Для начала я разделю зарядные устройства не три основных типа:
1. Самые простые — трансформатор, диодный мост и несколько деталей. Такими зарядными комплектуют ультрабюджетный инструмент.
2. Фирменные. По сути то же самое, но в состав уже входят простенькие «мозги», автоматические отключающие заряд в конце.
3. «Продвинутые» — импульсный блок питания, контроллер заряда, иногда заряд нескльких батарей одновременно.
Инструмент из первой категории редко попадает под переделку, так как часто проще (и дешевле) купить новый, а третья категория обычно имеет свои сложности по переделке. В принципе можно переделать и устройства третьей группы, но не в рамках статьи, так как типов таких зарядных очень много и к каждой нужен индивидуальный подход.
В этот раз я буду переделывать зарядное устройство из второй группы, фирменное, хотя и простое. Но при этот переделка имеет много общего и с первой группой, потому будет полезна большему количеству читателей.
Для того, чтобы зарядить аккумулятор надо не просто подключить его к блоку питания, такой эксперимент обычно заканчивается не очень хорошо. Надо подключить его к зарядному устройству. И здесь наступает небольшое непонимание, так как довольно много людей привыкло называть зарядными устройствами небольшие блоки питания от которых они заряжают свои смартфоны, планшеты и ноутбуки. Это не зарядные устройства, а блоки питания.
Чем же отличается зарядное устройство от блока питания.
Блок питания предназначен выдавать стабилизированное напряжение в диапазоне заявленных токов нагрузки.
Зарядное устройство обычно сложнее, так как выходное напряжение у него зависит от тока нагрузки, который в свою очередь ограничен. При этом в зарядном устройстве находится узел прекращающий заряд в конце, а также иногда и защита от подключения аккумулятора в неправильной полярности.
Самое простое зарядное устройство это просто блок питания и резистор (иногда лампа накаливания, что даже лучше) последовательно с аккумулятором. Такая схема ограничивает тока заряда, но как вы понимаете ничего больше она сделать не может.
Чуть сложнее, когда ставят еще и таймер, отключающий заряд после определенного времени, но такой принцип быстро «убивает» аккумуляторы.
Например так сделано в одном из недорогих зарядных для шуруповертов (фото не мое).
Следующим классом идут более «умные » зарядные устройства, хотя по сути они не на много лучше предыдущего.
Например вот фото фирменного зарядного устройства Bosch, предназначенного для заряда NiCd аккумуляторов.
Но все эти зарядные устройства кажутся очень простыми после взгляда на современные варианты для заряда литиевых аккумуляторов.
Конечно последний вариант не совсем вписывается в нашу концепцию переделки, так как на желательно чтобы наше зарядное не только заряжало правильно, а и стоило при этом минимальных денег.
Зарядные устройства китайских шуруповертов выглядят конечно не в пример проще, но опять же, делать с нуля такое устройство вряд ли кто то захочет, хотя именно это я и планирую сделать в третьей части, правда корректнее.
И так, для начала предположим что у нас на руках имеется зарядное устройство которое просто не подходит под новый тип аккумуляторов, но является исправным. Ну или по крайней мере у него исправен трансформатор.
Как я писал выше, можно даже использовать просто резистор или лампочку, но это «не наш метод».
Условная схема типичного недорогого зарядного устройства выглядит примерно так:
Трансформатор, диодный мост, тиристор и схема управления. Правда иногда вместо тиристора стоит реле, ток никак не ограничивается и может присутствовать схема термоконтроля от перегрева (хотя и она не всегда спасает.
Но нам от этой схемы нужно только трансформатор и диодный мост, правда придется добавить еще конденсатор, так мы получим некую исходную неизменную часть, она отмечена красным и дальше меняться не будет.
Диодный мост обычно находится на плате и при необходимости его можно использовать (если он исправен). Т.е. по большому счету можно выпаять из платы все радиоэлементы, оставив только четыре диода и клеммы для подключения батареи, а саму плату использовать как основу.
Катод у диодов помечен полоской, точка, где соединяются два вывода помеченные полоской — плюс, соответственно точка соединения «не меченных» выводов — минус. К двум другим точкам соединения подключается трансформатор.
Правда открыв зарядное устройство вы можете увидеть и такую картину (не обращайте внимание на отсутствие трансформатора):
В этом случае придется выпаивать все.
Диоды на плате удобно заменить на готовый диодный мост, к выводам АС подключается трансформатор, + и — соответственно идут дальше в схему.
Можно конечно сказать как подобрать конденсатор, но я советую не заморачиваться и поставить такой как на фото, емкость 1000мкФ, напряжение 35 Вольт. Емкость можно и больше, например 2200, а напряжение 50 или 63 Вольта, большая емкость и напряжение смысла не имеют, а только увеличат габарит конденсатора.
Конденсатор можно любой, подойдет даже «нонейм». Да, ставить его надо в любом случае, независимо от исправности диодного моста.
Теперь переходим к самому зарядному, а точнее к его вариантам, этот узел помечен на последней схеме прямоугольником.
Самый простой и при этом относительно правильный способ, поставить микросхему стабилизатора напряжения LM317.
Но как я писал выше, ток заряда надо ограничивать. Да, многие схемы могут не только ограничивать, а и стабилизировать его, но по большому счету аккумуляторам неважно, будет ток заряда 1, 2 или 3 Ампера, неважно будет ли он стабилен в процессе заряда или «плавать», важно чтобы ток заряда не превышал установленный для аккумуляторов. Хотя для аккумуляторов, которые ставят в шуруповерты превысить его тяжело, так как они могут работать не только при больших токах разряда, но и заряда.
Простейшее решение, перевести микросхему LM317 из режима стабилизации напряжения в режим стабилизации тока, а если говорить точнее, то добавить режим стабилизации тока.
Достигается это добавлением одного резистора, как показано на схеме.
Номинал резистора рассчитать очень просто: 1.25/I (ток в Амперах) = R (номинал резистора в Омах).
Например нужен ток 1.5 Ампера, тогда будет 1.25/1.5= 0.83 Ома.
Номиналы резисторов делителя напряжения также рассчитать довольно просто, но я бы советовал последовательно с верхним резистором поставить подстроечный, чтобы точно выставить напряжение, так как в отличии от тока здесь точность важна.
Можно воспользоваться специальным калькулятором, но он не очень удобен, потому предложу номиналы без него, для напряжения 12.6 Вольта (3 последовательных аккумулятора 3.7 Вольта) верхний резистор нужен 1.5кОм, последовательно с ним подстроечный 200 Ом, а нижний резистор 13кОм.
Я специально указал, что подстроечный резистор ставится последовательно с верхним резистором. В случае обрыва на выходе будет минимальное напряжение. Если оборвать нижний резистор, то на выходе будет максимальное напряжение. Кстати, в распространенных платах DC-DC преобразователей сделано наоборот, в случае обрыва подстроечного резистора они дадут на выход максимальное напряжение.
Все хорошо в вышеприведенной схеме, простота, цена, но большая выделяемая мощность сводит на нет все преимущества, так как радиатор будет нужен весьма внушительный, потому для больших токов заряда она не очень подходит.
Более правильным вариантом будет применить понижающий DC-DC преобразователь. Например такой:
Конечно в исходном виде он не будет ограничивать ток, но при желании его можно доработать (на тот случай если он уже есть).
Доработка проста и я ее уже описывал в одном из своих обзоров, правда там в конце я применял ее как драйвер светодиодов, но по сути это неважно.
Надо:
1 транзистор типа BC557 или любой аналог (да хоть известный КТ361 или КТ3107)
2 резистора номиналом 33-200 Ом любой мощности.
1 резистор в качестве токового шунта
1 керамический конденсатор 0.1мкФ.
Токоизмерительный резистор рассчитывается очень просто, как и в случае с LM317, только значения чуть другие.
0,6/I (ток в Амперах) = R (номинал резистора в Омах).
Например нужен ток 1.5 Ампера, тогда будет 0,6/1.5= 0.4 Ома.
Выход добавочной схемы подключается к выводу 4 микросхемы LM2596, если применена другая микросхема, то ищем в описании вывод помеченный как FB и подключаем к нему.
В таком варианте при помощи подстроечного резистора устанавливаем выходное напряжение (на холостом ходу). Правда такая схема может немного недозаряжать аккумуляторы, хотя и не сильно, но это плата за простоту. Чтобы заряжать полностью, надо переключить вход измерения напряжения (один из резисторов делителя напряжения) к выходу всей схемы.
Все вышеприведенные способы заряда работоспособны, но не очень удобны.
Более правильно будет применить плату, которая «умеет» не только стабилизировать выходное напряжение, а и ток.
Например вот такая платка. Отличить подходящие платы от других весьма просто, в описании должно быть написано — DC-DC StepDown, а на плате присутствовать как минимум два подстрочных резистора.
Но помимо регулировки выходного тока данная плат имеет еще дополнительный бонус в виде индикации:
1. Светодиод вверху, показывает режим ограничения тока
2. Пара светодиодов внизу, показывают окончание заряда.
Индикация заряда аккумулятора реализована очень просто, переключение светодиодов происходит при падении тока ниже чем 1/10 от изначально установленного. Такой режим работы очень распространен и используется во многих простых зарядных устройствах.
Т.е. к примеру мы установили ток заряда в 1.5 Ампера, подключили аккумулятор, когда ток заряда упадет ниже чем 150мА, то один из светодиодов погаснет, а второй засветится, показывая тем самым, что процесс заряда окончен.
Обзоры данной платы делал коллега ksiman, потому для более детального описания проще дать ссылку.
Схема данной платы также из указанного выше обзора, возможно будет полезна.
Получается, что данная плата весьма неплохо подходит для заряда аккумуляторов, сначала выставляем напряжение окончания заряда из расчета 4,2 Вольта на элемент, а затем ток заряда.
Для гурманов можно предложить такую же плату, но с индикацией тока заряда и напряжения на батарее, но как по мне, то в данном случае это лишнее.
Я делал обзор этой платы, собственно это и есть фото из того обзора, там же я показывал как самому сделать импульсный блок питания.
Так будет выглядеть этот вариант на блок схеме.
Вот мы потихоньку и подобрались к предмету обзора, который прежде всего заинтересовал своей низкой ценой. У меня очень большие подозрения насчет «фирменности» установленной микросхемы, но если не использовать ее на все заявленные 3 Ампера, то она вполне жизнеспособна.
Так получилось, что изначально я не думал делать обзор данной платы и хотя их было куплено 4 штуки, но дома у меня осталась всего одна и та уже со следами моего вмешательства.
Я выпаял родные светодиоды и припаял другие.
В исходном виде на плате расположены три светодиода:
1. Заряжено.
2. Заряд
3. Индикация ограничения тока.
Как работает индикация.
Светодиоды Заряд и Заряжено включены так, что светит только один из них, потому можно их рассматривать как один. В платах без регулировки тока при которой будет срабатывать индикация, переключение происходит при падении тока заряда ниже 1/10 от установленного резистором — Ограничение тока. В обозреваемой плате можно установить произвольный ток срабатывания, я бы советовал выставить 1/5.
Светодиод индикации ограничения тока работает несколько по другому, он светит когда происходит ограничение тока, т.е. когда ток при установленном напряжении стремится вырасти больше, чем установлено регулятором.
Например выставили ток 1 Ампер и 10 Вольт (условно), подключили нагрузку, которая при 10 Вольт потребляет 0.5 Ампера. На выходе будет 10 Вольт 0.5 Ампера. Затем подключили нагрузку, которая при 10 Вольт будет потреблять 1.5 Ампера, на выходе будет 1 Ампер и 8 Вольт (условно), т.е. плата снизит напряжение до такого значения при котором ток на выходе не будет превышать установленного и при этом засветит светодиод.
Также на плате находится три подстроечных резистора:
1. Регулировка выходного напряжения.
2. Регулировки порога срабатывания индикации окончания заряда.
3. Регулировка порога ограничения выходного тока.
Плата весьма простая, на ней расположена собственно микросхема LM2596, стабилизатор 78L05 и компаратор LM358.
LM2596 собственно ШИМ контроллер.
78L05 используется дли питания компаратора и как источник опорного напряжения.
LM358 «следит» за током и попутно управляет индикацией
В качестве токового шунта работает дорожка на печатной плате.
Такой метод измерения тока не очень хорош, так как ток будет «плавать» в зависимости от температуры платы, но так как для нас стабильность выходного тока не имеет значения, то можно не обращать на это внимание.
Расположение контактов, органов управления и индикации со страницы товара.
Платы с возможностью ограничения выходного тока весьма хорошо подходят для заряда аккумуляторов. А те платы, которые имеют индикацию окончания заряда, позволяют еще и получить некое удобство, позволяющее знать что аккумулятор заряжен.
Но есть у всех вышеперечисленных способов один минус, все эти варианты не могут отключить аккумулятор после окончания заряда, т.е. полностью прекратить процесс.
Конечно мне скажут, а как же живут аккумуляторы в блоках бесперебойного питания. А вот здесь есть особенность, у некоторых типов аккумуляторов есть понятие — циклический заряд и так называемый Standby, т.е. поддерживающий. Тот же свинцовый аккумулятор в циклическом режиме заряжают до 14.3-15 Вольт, а в дежурном только до 13.8-13.9 Вольта.
Если аккумулятор не отключить, то небольшой ток заряда всегда будет через него течь, и хотя литиевым аккумуляторам в этом плане немного «повезло», ток у них падает очень значительно, но все равно, оставлять их в таком режиме не рекомендуется.
Дело в том, что кадмиевые или свинцовые просто начинают разрушаться, нагреваться и все, а с литиевыми возможно возгорание. Да, литиевые аккумуляторы имеют защитный клапан, но лишняя защита никогда не мешает.
Очень часто задают вопрос — а как же плата защиты, ведь она может отключить аккумулятор по завершении заряда. Может и не только может, а и отключит, только сделает это она не при 4.2 Вольта на элемент, а при 4.25-4.35 Вольта, так как функция отключения для нее скорее защитная, а не основная. Потому так делать крайне не рекомендуется.
Собственно потому я придумал простенькую схемку, которая будет отключать аккумулятор по завершению заряда. Принцип работы очень прост (потому имеет некоторые ограничения). Подключили аккумулятор, так как конденсатор С1 разряжен, то через него течет ток, который открывает транзистор, а он подает ток на реле. Реле подключает к зарядному аккумулятор, а дальше реле питается через оптрон, который подключен к выходу индикации заряда платы преобразователя.
Соответственно была разработана небольшая платка, причем в универсальном исполнении.
Ну а дальше все просто и знакомо, печатаем плату на бумаге, переносим на текстолит, травим.
Кому интересно, процесс изготовления печатных плат подробно показан в этом обзоре.
Когда я придумывал схему, то старался ее максимально упростить, применив минимум компонентов.
1. Реле — любое с напряжением обмотки 12 Вольт (для вариантов с 3-4 аккумуляторами) и контактами рассчитанными на ток хотя бы 2х от тока заряда.
2. Транзистор — BC846, 847, или известный КТ315, КТ3102, а также аналоги.
3. Диод — любой маломощный диод.
4. Резисторы — любые в диапазоне 15 — 33кОм
5. Конденсатор — 33-47мкФ 25-50 Вольт.
6. Оптрон — PC817, стоит на большинстве плат блоков питания.
Собрал плату.
Плату я сделал универсальной, можно применить вместо реле полевой транзистор, часть компонентов остается та же, что и была до этого. Кроме того такой вариант более универсален, так как подходит для шуруповертов с 3-4-5 аккумуляторами.
Но у такой платы есть недостаток. Внутри транзистора есть «паразитный» диод и если оставить аккумулятор подключенным к зарядному устройству, но выключить его из розетки, то аккумулятор будет разряжаться через схему зарядного. В том варианте, что я показал выше, будет похожая проблема, но там ток совсем маленький, около 0.5мА и для полного разряда аккумулятору понадобится около 4000 часов.
Здесь применены немного другие номиналы, хотя по сути важен только номинал резисторов R4 и R5. Номинал R5 должен быть по крайней мере в 2 раза меньше чем у R4.
Подбираем компоненты для будущей платы. К сожалению транзистор скорее всего придется купить, так как в готовых устройствах такие применяются редко, они могут встречаться на материнских платах, но крайне редко.
Плата универсальная, можно применить реле и сделать по предыдущей схеме, а можно применить полевой транзистор.
Теперь блок схема зарядного устройства будет выглядеть следующим образом:
Трансформатор, затем диодный мост и конденсатор фильтра, потом плата DC-DC преобразователя, ну и в конце плата отключения.
Полярность выводов индикации заряда я не подписывал, так как на разных платах может быть по разному, если что то не работает, то надо просто поменять их местами, тем самым изменив полярность на противоположную.
Переходим собственно к переделке.
Первым делом я перерезаю дорожки от выхода диодного моста, клемм подключения аккумулятора и светодиода индикации заряда. Цель — отключить их от остальной схемы, чтобы она не мешала «процессу». Можно конечно просто выпаять все детали кроме диодов моста, будет то же самое, но мне было проще перерезать дорожки.
Затем припаиваем фильтрующий конденсатор. Я припаял его прямо к выводам диодов, но можно поставить отдельный диодный мост, как я показывал выше.
Помним, что вывод с полоской — плюс, без полоски — минус. У конденсатора длинный вывод — плюс.
Печатные платы сверху не влазили совсем, постоянно упираясь в верхнюю крышку, потому пришлось разместить их снизу. Здесь конечно было тоже не все так гладко, пришлось выкусить одну стойку и немного подпилить пластмассу, но в любом случае здесь им было куда лучше.
по высоте они стали даже с запасом.
Переходим к электрическим соединениям. Для начала припаиваем провода, сначала я хотел применить более толстые, но потом понял что просто с ними не развернусь в тесном корпусе и взял обычные многожильные сечением 0.22мм.кв.
К верхней плате припаял провода:
1. Слева — вход питания платы преобразователя, подключается к диодному мосту.
2. Справа — белый с синим — выход платы преобразователя. Если применена плата отключения, то к ней, если нет, то на контакты аккумулятора.
3. Красный с синим — выход индикации процесса заряда, если с платой отключения, то к ней, если нет, то на светодиод индикации.
4. Черный с зеленым — Индикация окончания заряда, если с платой отключения, то на светодиод, если нет, то никуда не подключаем.
К нижней плате припаяны пока только провода к аккумулятору.
Да, совсем забыл, на левой плате виден светодиод. Дело в том, что я совсем забыл и выпаял все светодиоды, которые были на плате, но проблема в том, что если выпаять светодиод индикации ограничения тока, то ток ограничиваться не будет, потому его надо оставить (помечен на плате как CC/CV), будьте внимательны.
В общем соединяем все так, как на показано, фото кликабельно.
Затем клеим на дно корпуса двухсторонний скотч, так как снизу платы не совсем гладкие, то лучше использовать толстый. В общем этот момент каждый делает как удобно, можно приклеить термоклеем, привинтить саморезами, прибить гвоздями 🙂
Приклеиваем платы, провода прячем.
В итоге у нас должны остаться свободными 6 проводов — 2 к батарее, 2 к диодному мосту и 2 к светодиоду.
На желтый провод внимание не обращайте, это частный случай, у меня нашлось только реле на 24 Вольта, потому я его запитал от входа преобразователя.
Когда готовите провода, то всегда старайтесь соблюдать цветовую маркировку, красный/белый — плюс, черный/синий — минус.
Подключаем провода к родной плате зарядного. Здесь конечно у каждого будет по своему, но общий принцип думаю понятен. Особенно внимательно надо проверить правильность подключения к клеммам аккумулятора, лучше предварительно проверить тестером, где плюс и минус, впрочем то же самое касается и входа питания.
После всех этих манипуляций обязательно надо проверить и возможно заново установить выходное напряжение платы преобразователя, так как в процессе монтажа можно сбить настройку и получить на выходе не 12.6 Вольт (напряжение трех литиевых аккумуляторов), а к примеру 12.79.
Также можно подкорректировать и ток заряда.
Так как настройка порога срабатывания индикации окончания заряда не очень удобна, то я рекомендую купить плату с двумя подстроечными резисторами, это проще. Если купили плату с тремя подстроечными резисторами, то для настройки надо подключить к выходу нагрузку примерно соответствующую 1/10 — 1/5 от установленного тока заряда. Т.е. если ток заряда 1.5 Ампера и напряжение 12 Вольт, то это может быть резистор номиналом 51-100 Ом мощностью около 1-2 Ватт.
Настроили, перед сборкой проверяем.
Если сделали все правильно, то при подключении аккумулятора должно сработать реле и включиться заряд. В моем случае светодиод индикации при этом погасает, а включается когда заряд окончен. Если хотите сделать наоборот, то можно включить этот светодиод последовательно с входом оптрона, тогда светодиод будет светить пока идет заряд.
Так как в заголовке обзора все таки указана плата, а обзор о переделке зарядного, то я решил проверить и саму плату. Через пол часа работы при токе заряда 1 Ампер температура микросхемы была около 60 градусов, потому я могу сказать, что данную плату можно использовать до тока 1.5 Ампера. Впрочем это я подозревал с самого начала, при токе в 3 Ампера плата скорее всего выйдет из строя из-за перегрева. Максимальный ток при котором плату еще можно относительно безопасно использовать — 2 Ампера, но так как плата находится в корпусе и охлаждение не очень хорошее, то я рекомендую 1.5 Ампера.
Все, скручиваем корпус и ставим на полный прогон. Мне правда пришлось перед этим разрядить аккумулятор, так как я его зарядил в процессе подготовки прошлой части.
Если к зарядному подключается заряженный аккумулятор, то на 1.5-2 секунды срабатывает реле, потом опять отключается, так как ток низкий и блокировка не происходит.
Так, а теперь о хорошем и не очень.
Хорошее — переделка удалась, заряд идет, плата отключает аккумулятор, в общем просто, удобно и практично.
Плохое — Если в процессе заряда отключить питания зарядного, а потом опять включить, то заряд автоматически не включится.
Но есть куда большая проблема. В процессе подготовки я использовал плату из предыдущего обзора, но там же я писал, что плата без контроллера, потому полностью блокироваться не умеет. Но более «умные» платы в критической ситуации полностью отключают выход, а так как он одновременно является и входом то при подключении к зарядному которое я переделал выше, стартовать оно не будет. Для старта необходимо напряжение, и плате для старта необходимо напряжение 🙁
Решения данной проблемы несколько.
1. Поставить между входом и выходом платы защиты резистор, через который на клеммы будет попадать ток для старта зарядного, но как поведет себя плата защиты, я не знаю, для проверки ничего нет.
2. Вывести вход для зарядного на отдельную клемму батареи, так часто делается у аккумуляторного инструмента с литиевыми аккумуляторами. Т.е. заряжаем через одни контакты, разряжаем через другие.
3. Не ставить плату отключения вообще.
4. Вместо автоматики поставить кнопку как на этой схеме.
Вверху вариант без платы защиты, внизу просто реле, оптрон и кнопка. Принцип прост, вставили аккумулятор в зарядное, нажали на кнопку, пошел заряд, а мы пошли отдыхать. Как только заряд будет окончен, реле полностью отключит аккумулятор от зарядного.
Обычные зарядные устройства постоянно пытаются подать напряжение на выход если оно ниже определенного значения, но такой вариант доработки неудобен, а с реле не очень то и применим. Но пока думаю, возможно и получится сделать красиво.
Что можно посоветовать по поводу выбора вариантов заряда батарей:
1. Просто применить плату с двумя подстроечными резисторами (она есть в обзоре), просто, вполне корректно, но лучше не забывать что зарядное включено. День-два проблем думаю не будет, но уехать в отпуск и забыть зарядное включенным я бы не рекомендовал.
2. Сделать как в обзоре. Сложно, с ограничениями, но более правильно.
3. Использовать отдельное зарядное, например известный Imax.
4. Если в вашей батарее сборка из двух-трех аккумуляторов, то можно использовать B3.
Это довольно просто и удобно, кроме того есть полное описание в этом обзоре от автора Onegin45.
5. Взять блок питания и немного доработать его. Нечто подобное я делал в этом обзоре.
6. Сделать полностью свое зарядное, со всем автоотключениями, корректным зарядом и расширенной индикацией. Самый сложный вариант. Но это тема третьей части обзора, впрочем там же скорее всего будет и переделка блока питания в зарядное.
7. Использовать зарядное устройство типа такого.
Кроме того я часто встречаю вопросы насчет балансировки элементов в батарее. Лично я считаю, что это лишнее, так как качественные и подобранные аккумуляторы разбалансировать не так просто. Если хочется просто и качественно, то куда проще купить плату защиты с функцией балансировки.
Недавно был вопрос, можно ли сделать так, чтобы зарядное умело заряжать и литиевые аккумуляторы и кадмиевые. Да, сделать можно, но лучше не нужно так как кроме разной химии аккумуляторы имеют и разное напряжение. Например сборке из 10 кадмиевых аккумуляторов надо 14.3-15 Вольт, а из трех литиевых — 12.6 Вольта. В связи с этим нужен переключатель, который можно случайно забыть переключить. Универсальный вариант возможен только если количество кадмиевых аккумуляторов кратно трем, 9-12-15, тогда их можно заряжать как литиевые сборки 3-4-5. Но в распространенных батареях инструмента стоят сборки 10 штук.
На этом вроде все, я постарался ответить на некоторые вопросы, которые мне задают в личке. Кроме того, обзор скорее всего будет дополнен ответами на ваши следующие вопросы.
Купленные платы вполне работоспособны, но микросхемы скорее всего поддельные, потому нагружать лучше не более чем на 50-60% от заявленного.
А я пока думаю что надо иметь в правильном зарядном устройстве, которое будет делаться с нуля. Пока из планов —
1. Автостарт заряда при установке аккумулятора
2. Рестарт при пропадании питания.
3. Несколько ступеней индикации процесса заряда
4. Выбор количества аккумуляторов и их типа при помощи джамперов на плате.
5. Микропроцессорное управление
Хотелось бы также узнать, что интересно было бы вам увидеть в третьей части обзора (можно в личку).
Хотел применить специализированную микросхему (вроде даже бесплатный семпл можно заказать), но она работает только в линейном режиме, а это нагрев :((((
Возможно будет полезно, ссылка на архив с трассировками и схемами, но как я выше писал, добавочная плата скорее всего не будет работать с платами, которые полностью отключают аккумуляторы.
Дополнение, такие способы переделки подходят только для батарей до 14.4 Вольта (примерно), так как зарядные устройства под 18 Вольт аккумуляторы выдают напряжение выше 35 Вольт, а платы DC-DC рассчитаны только до 35-40.
mysku.ru
Схема зарядки литий ионного аккумулятора 12v
Всем привет! Cегодня расскажу и покажу схему зарядки литий ионных аккумуляторов от 12 вольт. Такое зарядное устройство может пригодиться на рыбалке, в походе для зарядки фонарей или дома при использовании источника питания в 12 вольт.
Итак, зарядное устройство, собранное по данной схеме, подойдёт для литий ионных аккумуляторов объёмом от 900 mAh и более. Питаться зарядное устройство может от любого источника питания вольтажом 12 V или от прикуривателя автомобиля. Максимальный ток заряда будет около 650 mA.
Вот так выглядит готовое устройство в сборе:
Схема довольно проста. Изначально, видно, что выходное напряжение в 8,4v предназначается для зарядки пары (2) банок. Но это не совсем так. Дело в том, что переменный резистор на схеме (R4) отвечает за вольтаж. С его помощью можно отрегулировать выходное напряжение, как для одного элемента 4,2V, так и для пары элементов общим вольтажом 8.4V.
Для создания такой зарядки потребуется:
- Стабилизатор с регулируемым выходным напряжением LM317
- 2N2222A или любой транзистор, который обрабатывает 800mA
- 2 Конденсатора 0,1 мкФ
- Резистор 1 om 1Watt
- Переменный резистор 1K
- Не большой радиатор для LM317
Резистор R4 выставляет требуемое выходное напряжение
R1 контролирует выходной ток
Автор схемы предостерегает. Данную зарядку лучше использовать для аккумуляторов с зарядом не ниже 3V.
Фото платы после травли и в собранном состоянии:
Радиатор для LM317 используется, для зарядки аккумуляторов с большими объёмами. Это был вариант простейшего зарядного устройства литий ионных аккумуляторов, не самого функционального, но надёжного. Другие варианты зарядок смотрите в разделе зарядные устройства
silatoka.net
Зарядное устройство для литиевых аккумуляторов
Внимание покупателей подшипников Уважаемые покупатели, отправляйте ваши вопросы и заявки по приобретению подшипников и комплектующих на почту или звоните сейчас: +7(499)403 39 91
Доставка подшипников по РФ и зарубежью.
|
Внимание покупателей подшипников
Уважаемые покупатели, отправляйте ваши вопросы и заявки по приобретению подшипников и комплектующих на почту или звоните сейчас:
+7 (499) 403
39 91
[email protected]
Доставка подшипников по РФ и зарубежью.
Каталог подшипников на сайте
Внимание покупателей подшипников
Уважаемые покупатели, отправляйте ваши вопросы и заявки по приобретению подшипников и комплектующих на почту или звоните сейчас:
+7 (499) 403
39 91
[email protected]
Доставка подшипников по РФ и зарубежью.
Каталог подшипников на сайте
Изобретения и использование инструмента с источниками автономного питания стало одним из визитных карточек нашего времени. Разрабатывается и внедряются всё новые активные компоненты, улучшающие работу батарейных сборок. К сожалению аккумуляторы не могут работать без подзарядки. И если на устройствах, имеющих постоянный доступ электросети вопрос решается встроенными источниками, то для мощных источников питания, например, шуруповерта, необходимо отдельные зарядные устройства для литиевых аккумуляторов с учетом особенности различных типов аккумуляторов.
Последние годы всё активнее используются изделия на литий-ионном активном компоненте. И это вполне понятно, так — как эти источники питания зарекомендовали себя с очень хорошей стороны:
- у них отсутствует эффект памяти;
- практически полностью ликвидирован саморазряд;
- могут работать при минусовых температурах;
- хорошо удерживают разряд.
- количество доведен до 700 циклов.
Но, каждый тип батарей имеет свои особенности. Так, литий — ионный компонент требует конструкцию элементарных батареек с напряжением 3, 6В, что требует некоторые индивидуальные особенности для подобных изделий.
Особенности восстановления
При всех достоинствах литий-ионных аккумуляторах у них есть свои недостатки — это возможность внутреннего замыкания элементов при перенапряжении зарядки из — за активные кристаллизации лития в активном компоненте. Также имеется ограничение по минимальному значению напряжения, которое приводит к невозможности приема электронов активным компонентом. Чтобы исключить последствия, батарея оснащается внутренними контроллером, которое разрывает цепь элементов с нагрузкой при достижении критических значений. Хранятся такие элементы лучше всего при зарядке 50 % при +5 — 15° С. Еще одно из особенностей литий-ионных аккумуляторов является то, что время эксплуатации батарейки зависит от времени ее изготовления, вне зависимости от того была ли она в эксплуатации или нет, или другими словами подвержена «эффекту старения», который ограничивает сроком эксплуатации — пять лет.
Зарядка литий — ионных аккумуляторов
Простейшее устройство зарядки одного элемента
Для того чтобы понять более сложные схемы зарядки литий — ионных аккумуляторов, рассмотрим простое зарядное устройство для литиевых аккумуляторов, точнее для одной батарейки.
Основа схемы оставляет управление: микросхема TL 431 (выполняет роль регулируемого стабилитрона) и одном транзисторе обратной проводимости.
Как видно из схемы управляющий электрод TL431 включен в базу транзистора. Настройка аппарата сводится к следующему: нужно на выходе устройства установить напряжение 4,2В — это устанавливается регулировкой стабилитрона подключением на первую ножку сопротивления R4 — R3 номиналом 2,2 кОм и 3 кОм. Эта цепочка отвечает за регулировку выходного напряжения, регулировка напряжения устанавливается только один раз и является стабильной.
Далее регулируется ток заряда, регулировка производится сопротивлением R1 (на схеме номиналом 3Ом) в случае, если эмиттер транзистора будет включён без сопротивления, тогда входное напряжение будет и на клеммах зарядки, то есть — это 5В, что может не соответствовать требованиям.
Так же, в этом случае не будет светиться светодиод, а он сигнализирует об протекании процесса насыщения током. Резистор может быт номиналом от 3 до 8 Ом.
Для быстрой подстройки напряжение на нагрузке, сопротивление R3 можно установить регулируемое (потенциометр). Напряжение настраивается без нагрузки, то есть, без сопротивления элемента, номиналом 4, 2 — 4,5В. После достижения необходимого значения достаточно замерить величину сопротивление переменного резистора и поставить основную деталь нужного номинала вместо него. Если нет необходимого номинала его можно собрать из нескольких штук параллельным или последовательным соединением.
Сопротивление R4 предназначено для открывания базы транзистора, его номинал должен быть 220Ом.При увеличении заряда аккумулятора напряжение будет повышаться, управляющий электрод базы транзистора будет увеличивать переходное сопротивление эмиттер — коллектор, уменьшая ток зарядки.
Транзистор можно использовать КТ819, КТ817 или КТ815, но тогда придется ставить радиатор для охлаждения. Также радиатор будет необходим если токи будут превышать 1000мА. В общем, эта классическая схема простейшая зарядки.
Усовершенствование зарядного устройства для литиевых li — ion аккумуляторов
Когда появляется необходимость зарядить литий ионных батарей, соединенных из нескольких спаянных элементарных ячеек, то лучше всего заряжать ячейки отдельно с применением контрольной схемы, которая будет следить за зарядкой индивидуально каждой отдельной батарейкой. Без этой схемы значительное отклонение характеристик одного элемента в последовательно спаянной батареи приведет к неисправности все аккумуляторы, а сам блок будет даже опасным по причине его возможного перегрева или даже воспламенения.
Зарядное устройство для литиевых аккумуляторов 12 вольт. Устройство балансира
Термин балансировка в электротехнике означает режим зарядки, который производит контроль за каждым отдельным элементом, участвующим в процессе, не допуская увеличения или снижения напряжения менее необходимого уровня. Необходимость подобных решений вытекает из особенностей сборок с li — ion. Если из за внутренней конструкции один из элементов зарядиться быстрее остальных, что очень опасно для состояния остальных элементов, и как следствие всей батареи. Схемное решение балансира выполнена таким образом, что элементы схемы берут на себя избыток энергии, тем самым регулируя процесс зарядки отдельной ячейки.
Если сравнивать принципы зарядки никель-кадмиевых аккумуляторов, то они имеют отличия от литий-ионного, прежде всего у Ca — Ni окончание процесса свидетельствует повышение напряжения полярных электродов и уменьшение тока до 0, 01мА. Также перед зарядкой этот источник должен быть разряжен не менее 30% от первоначальной емкости, если не выдержать это условия в батарее возникает «эффект памяти», который снижает емкость батареи.
С Li-Ion активным компонентом все наоборот. Полная разрядка этих элементов может привести к необратимым последствиям и резко понизить способность заряжаться. Нередко некачественные контроллеры могут не обеспечить контроль за уровнем разрядки батареи, что может привести неисправности всей сборки из-за одной ячейки.
Выходом из ситуации может стать применение выше рассмотренной схемы на регулируемом стабилитроне TL431. Нагрузку 1000 мА или больше может обеспечить установка более мощным транзистором. Такие ячейки подключается к непосредственно к каждой ячейке предохранит от неправильной зарядки.
Выбирать транзистор следует от мощности. Мощность подсчитывается по формуле P = U*I, где U — напряжение, I – зарядный ток.
Например, при токовой зарядки 0,45 А транзистор должен иметь рассеиваемую мощность не менее 3,65 В*0,45А = 1,8 Вт. а это для внутренних переходов большая токовая нагрузка , поэтому выходные транзисторы лучше установить в радиаторы.
Ниже приведен примерный расчет величины резисторов R1 и R2 на различное напряжение заряда:
R1 + R2 => U
22,1к + 33к => 4,16 В
15,1к + 22к => 4,20 В
47,1к + 68к => 4,22 В
27,1к + 39к => 4,23 В
39,1к + 56к => 4,24 В
33к + 47к => 4,25 В
Сопротивление R3 – нагрузка на базе транзистора. Его сопротивление может быть 471Ом — 1, 1 кОм.
Но, при реализации этих схемных решений, возникла проблема, как заряжать отдельную ячейку в аккумуляторном блоке? И такое решение нашлось. Если посмотреть на контакты на зарядной ножке, то на выпускаемых в последнее время корпусах с литий-ионными батареями находится такое количество контактов, сколько отдельных ячеек в батарее, естественно, на зарядном устройстве каждый такой элемент подключается отдельный схеме контроллера.
По стоимости подобное зарядное изделие несколько дороже чем линейное устройство с двумя контактами, но это стоит того, особенно если учесть, что сборки с высококачественными литий-ионными компонентами с доходят да половины стоимости самого изделия.
Импульсное зарядное устройство для литиевых li — ion аккумуляторов
Последнее время многие ведущие — фирмы производители ручного инструмента с автономным питанием, широко рекламирует быстро зарядные устройства. Для этих целей были разработаны импульсные преобразователи на основе широтно-импульсно модулированных сигналов (ШИМ) для восстановления блоков питания шуруповертов на основе ШИМ генератора на микросхеме UC3842 собран обратноходовой AS — DS преобразователь c нагрузкой на импульсный трансформатор.
Далее будет рассмотрена работа схема наиболее распространённых источника ( см прилагаемую схему) : сетевое напряжение 220В поступает на диодную сборку D1- D4, для этих целей используются любые диоды мощностью до 2A. Сглаживание пульсаций происходит на конденсаторе C1, где концентрируется напряжение порядка 300В. Это напряжение является питанием для импульсного генератора с трансформатором T1 на выходе.
Первоначальное питание для запуска интегральная микросхемы A1 поступает через резистор R1, после чего включается генератор импульсов микросхемы, которая выдает их на вывод 6. Далее импульсы подаются на затвор мощного полевого транзистора VT1 открывая его. Стоковая цепь транзистора подает питание к первичной обмотке импульсного трансформатора Т1. После чего включатся в работу трансформатор и начинается передача импульсов на вторичную обмотку. Импульсы вторичной обмотки 7 — 11 после выпрямления диодом VT6 используется для стабилизации работы микросхемы A1, которая в режиме полной генерации потребляют гораздо больший ток, чем получает по цепи от резистора R1.
В случае неисправности диодов Д6, источник переходит у режиму пульсации, поочередно запуская работу трансформатор и прекращая его, при этом слышен характерный пульсирующий «писк» посмотрим работу схемы в этом режиме.
Питание через R1 и конденсатор C4 запускают генератор микросхемы. После запуска, для нормальной работы требуется более повышенный ток. При неисправности Д6 дополнительного питания на микросхему не поступает, и генерация прекращается, затем процесс повторяется. Если диод Д6 исправен, сразу включает в работу импульсный трансформатор под полную нагрузку. При нормальном запуске генератора на обмотке 14- 18 появляется импульсный ток 12 — 14В (на холостом ходу 15В). После выпрямления диодом V7 и сглаживания импульсов конденсатором C7 и импульсный ток поступает на зажимы батареи.
Ток 100 мА, не вредит активному компоненту, но повышает время восстановления в 3-4 раза, снижая ее время от 30 мин до1 часа. (источник — журнал интернет издание Радиоконструктор 03-2013)
Внимание! Быстрая зарядка без нежелательных последствий для аккумуляторных батарей возможно только от импульсного источника. Некоторые недобросовестные производители, пользуясь рекламой предлагают купить зарядное устройство убийцу для литиевых аккумуляторов. Это произойдет в том случае, если производитель искусственно повысит постоянный зарядный ток в несколько раз от номинала. В этом случае батарея действительно будут заряжаться быстрее, но время работы в эксплуатации сократится примерно втрое и составит не один — максимум два года.
Напомним, что номинальный зарядный ток рассчитывается как 0,1 от полной емкости.
Быстрозарядное устройство G4-1H RYOBI ONE+ BCL14181H
Импульсное устройство для литиевых аккумуляторов 18 вольт производства немецкой компании Ryobi, производитель народная республика Китай. Импульсное устройство подходит для литий-ионных , никель кадмиевых 18В. Рассчитана на нормальную эксплуатацию при температуре от 0 до 50 С. Схемное решение обеспечивает два режима питания по напряжению и стабилизации по току. Импульсная подача тока обеспечивает оптимальную подпитку каждой отдельной батарейки.
Устройство выполнено в оригинальном корпусе из ударопрочной пластмассы. Применено принудительное охлаждение от встроенного вентилятора, с автоматическим включением при достижении 40° С .
Характеристики:
- Минимальное время заряда 18В при 1,5 А /ч — 60 минут, вес 0,9 кг, габариты: 210 x 86 x 174 мм. Индикация процесса зарядки подсвечивается синим светодиодом, по окончании загорается красный. Имеется диагностика неисправности, которая загорается при неисправности сборки отдельной подсветкой на корпусе.
- Питание однофазное 50Гц. 220В. Длина сетевого провода 1,5 метра.
Ремонт зарядной станции
Если случилось так, что изделие перестало выполнять свои функции, лучше всего обратиться в специализированные мастерские, но элементарные неисправности можно устранить своими руками. Что делать если не горит индикатор питания, разберем некоторые простые неисправности на примере станции 12В ДА-10/12ЭР.
Это изделие предназначено для работы с литий-ионными батареями 12В, 1,8А. Изделие выполнено с понижающим трансформатором, преобразование пониженного переменного тока выполняется четырех диодные мостовую схему. Для сглаживания пульсации установлен электролитический конденсатор. Из индикации имеется светодиоды сетевого питания, начала и окончание насыщения.
Итак, если не горит сетевой индикатор. Прежде всего необходимо через сетевую вилку убедится в целостности цепи первичной обмотки трансформатора. Для этого через штыри вилки подключения сетевого питания нужно прозвонить омметром целостность первичной обмотки трансформатора коснувшись щупами прибора за штыри сетевой вилки, если цепь показывает обрыв, тогда нужно осмотреть детали внутри корпуса.
Возможен обрыв предохранителя, обычно это тоненькая проволочка, протянутая в фарфоровом или стеклянном корпусе, сгорающая при перегрузках. Но некоторые фирмы, например, «Интерскол», для того чтобы предохранить обмотки трансформатора от перегрева устанавливают между витками первичной обмотки тепловой предохранитель, цель которого при достижении температуры 120 — 130° С, разрывать цепь питания сети и, к сожалению, ее уже после разрыва не восстанавливает.
Обычно предохранитель находится под покровной бумажной изоляцией первичной обмотки, после вскрытия которой, можно легко обнаружить эту деталь. Чтобы снова привести схему в рабочее состояние, можно, просто спаять концы обмотки в одно целое, но нужно помнить — трансформатор остается без защиты от короткого замыкания и лучше всего вместо теплового установить обычный сетевой предохранитель.
Если цепь первичной обмотки целая, прозванивается вторичная обмотка и диоды моста. Для прозвонки диодов лучше выпаять один конец из схемы и проверить диод омметром. При подсоединении концов к выводам поочередно щупов в одну сторону, диод должен показывать обрыв, в другую, короткое замыкание.
Таким образом необходимо проверить все четыре диода. И, если, уж, мы залезли в схему, тогда лучше всего сразу поменять конденсатор, потому, что диоды обычно перегружаются по причине высовшего электролита в конденсаторе.
Далее можно проверить все соединения на плате с помощью увеличительного стекла. Если это не помогло, то лучше всего обратиться к специалисту в сервисную компанию.
Купить блоки питания для шуруповерта
Любой ручной инструмент и аккумуляторы можно приобрести у нас на сайте. Для этого необходимо пройти простую процедуру регистрации и далее следовать по несложный навигации. Простая навигации сайта легко выведет на необходимый для вас инструмент. На сайте можно посмотреть цены и сравнить их с конкурирующими магазинами. Любой возникший вопрос можно решить с помощью менеджера, позвонив по указанному телефону или оставить вопрос дежурному специалисту. Заходите к нам, и вы не останетесь без выбора необходимого вам инструмента.
themechanic.ru
Зарядное устройство для сборки аккумуляторов своими руками 12.6 Вольт 1 Ампер
Еще один обзор еще одного небольшого зарядного устройства для 3S (12.6 Вольт) сборки аккумуляторов. Не так давно я публиковал обзор версии на 3 Ампера, сегодня версия попроще, 1 Ампер.К сожалению все пошло не так, как хотелось, но не буду забегать вперед, подробности
Началось все с того, что заказал я для товарища пять небольших зарядных устройств. Хотя нет, заказал я их раза в три больше, но другие относятся к более мощной серии и о них я расскажу в другой раз, а пока покажу «малышей».
Вопросов как к доставке, так и к упаковке не возникло, продавец отнесся к своей задаче вполне ответственно. Все было плотно уложено в картонную коробку, а сверху лежал листик вспененного полиэтилена.
Помимо этого каждый блок был упакован в небольшой пакетик. Конечно картонные коробочки смотрелись бы лучше, но в принципе и так неплохо.
На выбор было два варианта вилки, естественно я выбрал Евро. Каждое зарядное устройство имеет кабель подключения нагрузки, длина кабеля около метра, на конце находится привычный многим разъем 5.5/2.1
Заявленные характеристики — 12.6 Вольта, ток 1 Ампер, как и было заявлено на странице товара. Кроме того указано, что это именно зарядное устройство.
Корпус не склеен, потому выкручиваем единственный саморез и лезем внутрь.
Плата, на твердую тройку. Даже при беглом взгляде видно, что нет как минимум входного фильтра, а трансформатор несколько маловат для заявленной мощности в 12.6 Ватта, хотя с учетом потерь на диоде и шунте скорее в 13 Ватт, но не суть важно, проверим позже в деле.
Отмечу что присутствует предохранитель, при общем качестве сборки я бы не удивился если бы его не было.
1. Использован ШИМ контроллер KTG207C со встроенным высоковольтным транзистором. Судя по даташиту мощность составляет 12 Ватт для адаптера и 18 для открытого корпуса. В нашем случае мы имеем дело с адаптером (БП в маленьком закрытом корпусе), потому работать он будет с перегревом.
2. Входной конденсатор емкостью 15мкФ, измеренная 13.8, ESR- 1 Ом. Без запаса, но для зарядного нормально.
3. Присутствует нормальный помехоподавляющий конденсатор Y типа, я о них как-то рассказывал в своем видео.
4. На выходе диод Шоттки на ток 3 Ампера, конденсатор 16 Вольт 470мкФ и двухцветный светодиод. К конденсатору есть замечания. Емкость 470 мкФ (500 реальная) в данном случае нормально, это не БП и пульсации вредны только конденсатору, а не нагрузке, но напряжение 16 Вольт, это мало.
Качество пайки примерно на те же три балла, что и вид сверху. Имеются большие «сопли» припоя на некоторых контактах. Выходные провода припаяны снизу, хотя для них в плате есть соответствующие отверстия, да и сечение проводов не очень высокое, хотя опять же, для зарядного это не критично.
Первичная сторона меня интересует меньше всего, а вот вторичная куда важнее.
Уже видно, что зарядное устройство «без мозгов», а в качестве ОУ применена привычная LM358. Кроме того видно, что поверх одного из резисторов напаян еще один, видимо подбирали выходной ток.
Так как по печатной плате не очень удобно разбираться, что и как сделано, то я перечертил схему в более привычный вид.
Как и предполагалось, перед нами простое зарядное устройство. Хотел сначала назвать его примитивным, но нет, есть варианты куда проще.
На схеме я выделил основные узлы.
1. Синий — узел стабилизации напряжения. Фактически он определяет напряжение окончания заряда.
2. Красный — узел стабилизации тока. Определяет ток заряда.
3. Зеленый — источник опорного напряжения. Отвечает за стабильность измерения тока заряда и индикации.
4. Оранжевый — узел индикации. Так как под окончанием заряда (для литиевых аккумуляторов) принято понимать падение зарядного тока ниже чем 1/10 от исходного тока заряда, то здесь схема похожа на узел стабилизации тока, но с другими порогами срабатывания.
Отмечу то, что схема индикации не имеет гистерезиса и полное переключение красный/зеленый может занимать 10-40 секунд в зависимости от емкости аккумуляторов.
Стандартный первичный тест.
1. Напряжение окончания заряда 12.67 Вольта, т.е. каждый аккумулятор будет заряжен не до 4.20, а до 4.22 Вольта, что несколько выше нормы, хотя и терпимо.
2. При подключенной батарее и отключенном питании потребление 14мА, многовато, кроме того при этом светит светодиод.
3. Ток заряда 1.05 Ампера, немного выше заявленного. Причем что интересно, выше я показывал печатную плату и там был добавлен дополнительный резистор. Так вот если его выпаять то ток упадет с 1.05 до 1.00 (согласно расчетам). Зачем его припаяли — загадка.
4. Ток, при котором происходит переключение индикации, составляет 70мА, что ниже нормы (100мА).
5, 6. Ради интереса посмотрел ток через 5 и 10 минут после переключения индикации. Через 5 минут ток упал до 35мА, а еще через 5 минут до 20мА. Такой режим заряда не приветствуется, но допускается. Рекомендация проста — не оставлять на длительное время (несколько дней).
Вот теперь можно перейти к тестам под нагрузкой.
Так как моя электронная нагрузка не умеет работать в режиме CV, то я подключился до шунта зарядного устройства и нагрузил его током 1.05 Ампера, эмулируя реальную ситуацию. Зарядное было подключено отдельным проводом к сети, а сверху накрыто родной крышкой. Впрочем это видно на фото. Конечно есть отличия от реальных условий эксплуатации, но они незначительны.
Первый тест — измерение ухода напряжения окончания заряда от прогрева. Уход есть, хотя и не очень большой, кроме того к концу заряда температура падает и напряжение приходит в норму. Но я провожу этот тест для общей оценки качества устройства.
Но в процессе теста меня ждал неприятный сюрприз. Примерно через 20-25 минут электронная нагрузка «притихла», т.е. выключила вентилятор. Обычно это говорит о том, что произошло автоотключение.
В тесте я настроил порог отключения в 12 Вольт, так как у меня была цель проверить, а не спалить устройство.
Я немного остудил устройство и запустил тест еще раз, через 17 минут опять произошло отключение по падению напряжения.
Причина стала понятна сразу, как я открыл крышку. Банальный перегрев. Причем сначала я волновался по поводу перегрева трансформатора, но перегрев микросхемы произошел раньше, в процессе работы она нагрелась как минимум до 115 градусов, реально выше, так как измерил я через секунд 5 после отключения.
Так как зарядные устройства все таки были нужны, а в таком виде эксплуатировать их нельзя, то было принято решение снизить выходной ток.
Ниже я выделил элементы, которые влияют на выходные параметры.
1. Зеленым — шунт, влияет как на выходной ток, так и на индикацию. Влияет пропорционально, т.е. снижение выходного тока в 2 раза во столько же снизит порог переключения индикации.
2. Красным — делитель опорного напряжения. Влияет на выходной ток.
3. Синим — Второй делитель опорного напряжения. Влияет на порог переключения индикации.
Вариантов у меня было два, изменить номинал шунта или номинал делителя опорного напряжения (красный). Так как удобнее уменьшать сопротивление резисторов путем параллельного подключения еще одного, то я выбрал второй вариант, менять номиналы делителя.
Можно было конечно посчитать все при помощи калькулятора, но мне было куда проще сделать это в старом, но проверенном симуляторе электронных схем.
Сначала я сделал родную схему и узнал напряжение на выходе делителя (оно будет немного отличаться от реального). Вышло 116мВ.
Затем посчитал, какое напряжение мне надо выставить, чтобы на выходе был нужный мне ток (я решил сделать 700-750мА, среднее 725).
Так как исходный ток известен, то считаем 116/1.05х0.725=0.79.
Затем путем подбора добавочного резистора (правый нижний на схеме) я добился напряжения в 80мВ. В моем случае вышло что надо припаять параллельно резистор номиналом 10 кОм.
Затем находим нужный делитель на плате, нумерация в схеме и на плате соответствует. Попутно поправил косо установленный резистор. После этого припаиваем параллельно новый резистор. Я использовал резистор размера 0805.
Проверяем. Примерно соответствует расчетам, можно оставлять как есть.
Погонял еще примерно с пол часа, температура контроллера упала со 115 до 85. Как по мне, то довольно неплохо, для улучшения ситуации можно снизить ток до 700мА, ниже смысла снижать нет.
Кроме того, теперь ток переключения индикации составляет почти требуемые 1/10 от тока заряда 🙂
После обзора было снято видео, где я вкратце объясняю что к чему, просто как дополнение.
Теперь попробую кратко описать мое мнение об этом устройстве.
Общее качество изготовления не очень высокое, схема простая. Если снизить выходной ток до 700-750мА, то будет работать.
Без доработки использовать крайне не рекомендую, контроллер будет работать в режиме постоянного перегрева периодически выключаясь для остывания и может выйти из строя.
На этом все, надеюсь что обзор был полезен, а также скажу, что у меня лежит еще одно зарядное устройство 12.6 Вольта 3 Ампера, но уже «фирменное».
mysku.ru