Схема блока питания на 12в шуруповерта – Универсальный блок питания для шуруповерта

Блок питания для шуруповерта из компьютерного АТХ

Батарейные шуруповерты очень удобны в использовании и получили широкое распространение, как у профессионалов, так и у домашних мастеров. Самой первой, как правило, приходит в негодность батарея. В настоящий момент все производители электроинструмента перешли на литиевые батареи и приобрести новую никель-кадмиевую батарею на старый шуруповерт становится все проблематичней, а цены на эти батареи гораздо выше, чем на литиевые.

Конечно, существует возможность покупки аккумуляторов на различных сервисах, торгующих китайскими товарами. Но нужно время, пока придет посылка с “банками” и опять же, это определенные затраты. Существует альтернатива покупке батареи/банок – подключить шуруповерт к сетевому блоку питания и забыть про быстрый разряд батареек. Мощный блок питания на Алиэкспресс. Появляется много неудобств из-за сетевого шнура, но всегда приходится чем-то жертвовать.

Какой ток потребляет шуруповерт

Прежде, чем подбирать подходящий блок питания, нужно понять, на какой потребляемый ток нужно рассчитывать. К сожалению, производители аккумуляторных шуруповертов не указывают ток, потребляемый двигателем. Емкость самого аккумулятора в ампер-часах, которая обязательно указанна на батарее, не позволяет понять какой ток потребляет шуруповерт в рабочем режиме. Максимум, что может указать производитель, это мощность в ваттах, но это бывает очень редко, обычно мощность указанна непосредственно в силе крутящего момента.

Если мощность в ваттах все-таки указанна, мы можем иметь представление о потребляемом токе и подобрать соответствующий блок питания с небольшим запасом по току/мощности. Для вычисления силы тока достаточно разделить мощность в ваттах на рабочее напряжение шуруповерта, в данном случае это 12 вольт. Итак, если производитель указал мощность например 200 ватт – 200:12=16,6 А – такой ток потребляет шуруповерт в рабочем режиме.

Однако указанная мощность это большая редкость и нет универсальной цифры, характеризующей все 12-ти вольтовые шуруповерты. Нужно понимать, что при полном торможении вала двигателя, токи могут значительно превышать номинальные и вычислить эту величину очень не просто. В то же время, анализ различных форумов и собственного опыта показали – для работы шуруповерта зачастую достаточно тока в 10 А, этого достаточно для выполнения многих функций закручивания и сверления. При этом известно, что броски тока при полном торможении вала могут превышать 30 А.

Ну и какой же вывод можно сделать из всего этого? Для шуруповерта подойдет блок питания 12 В дающий 10 А тока, если имеется возможность использовать блок 20-30 А, это даже лучше. Это среднестатистические цифры, применимые к большинству шуруповертов.

Блок питания

Мы не будем рассматривать покупку каких-либо блоков или трансформаторов, если уж и покупать, то новую батарею! Мы рассмотрим возможность использовать то, что есть под рукой. Скажу сразу – зарядное устройство от того же шуруповерта подойдет лишь для сверления переспелых бананов, мощность его слишком низкая.

В идеале подойдет понижающий, мощный трансформатор 12 В, например от компьютерного бесперебойника. Мощность такого трансформатора обычно 350-500 ватт. Но у меня не было в наличии такого трансформатора, зато было много компьютерных блоков питания. Уверен, что если у кого-то имеется различный электронный хлам, компьютерные АТХ в нем обязательно завалялись.

Это один из первых представителей компьютерных АТХ блоков питания.

Компьютерный АТХ-блок вполне подходит для шуруповерта, нагрузочная способность по шине +12 вольт позволяет снять токи 10-20 ампер. Хочется развеять небольшой миф – запихать блок в корпус батареи шуруповерта не получится, уж слишком большая плата у АТХ. Придется делать блоку отдельный корпус или оставить его в родном, металлическом корпусе. Недостаток родного корпуса – чувствительность к пыли, а ведь даже самый маленький ремонт – это много пыли.

Довольно слабенький блок, по шине +12В нагрузка всего 10 А. По возможности, лучше выбирать блоки с более мощной двенадцативольтовой шиной.

Пробные тесты

Прежде, чем приниматься за сооружение рабочей конструкции, следует протестировать все на “коленках”, убедиться в стабильности работы шуруповерта под нагрузкой и отсутствии сильных перегревов в блоке питания.

Берем компьютерный блок питания и проверяем его: включаем в сеть, в выходном пучке проводов находим зеленый (говорят он может быть другого цвета, но мне всегда попадались зеленые) и замыкаем его перемычкой на любой из черных (все черные провода на выходе – общий вывод, в нашем случае он минус). Блок должен включиться, между черными и желтыми проводами появится напряжение 12 вольт. Проверить это можно мультиметром или подключив к названным выводам любой компьютерный кулер.

Если все в порядке и блок выдает около 12 вольт на желтом(+) и черном(-) выводах, продолжаем. Если же напряжение на выходе отсутствует – ищем другой блок или ремонтируем этот, эта отдельная тема будет описана отдельно.

Отрезаем штекер от выхода блока и берем по 3-4 желтых и черных проводов, идущих из блока и соединяем их параллельно. Отрезая штекер, не забудьте о зеленом пусковом проводнике, он должен быть замкнут на черный. Мы получили источник 12 В с приличной нагрузочной способностью по току в 10-20 А, токи зависят от модели и мощности блока.

Теперь нужно подцепить наши 12 В к клеммам шуруповерта без батареи, полярность подключения смотрим по батарее. Ну и проверяем шуруповерт – на холостом ходу, потом притормаживая рукой. На этом этапе я столкнулся с проблемой: при полном нажатии кнопки шуруповерт работает, при медленном, плавном нажатии кнопки шуруповерта блок питания уходит в защиту. Для сброса защиты необходимо отключать блок от сети и включать заново. Совсем не пойдет, нужно как-то исправлять такую нестабильность.

Я вытащил плату блока из корпуса и подцепил дополнительно мультиметр, для постоянного контроля напряжения

На мой взгляд, такое явление может возникать из-за того, что блоком питания и кнопкой шуруповерта управляют ШИМ-контроллеры, из-за помех по проводам питания, контроллеры как-то мешают друг другу. Пробуем решить эту проблему использованием импровизированного LC-фильтра.

Я собрал фильтр за 5 минут из того что было под рукой: 3 электролитических конденсатора по 1000 мкф на 16 вольт, неполярного конденсатора менее 1 мкф и намотал 20 витков медного провода диаметром 2 мм на ферритовое колечко от другого блока. Вот его схема:

А вот так он выглядит. Это чисто пробная версия, в дальнейшем эта конструкция перенесется в корпус батареи шуруповерта и будет выполнена аккуратнее.

Проверяем всю конструкцию: блок не уходит в защиту при любых положениях кнопки, великолепно! Теперь можно попробовать закрутить несколько саморезов – все пучечком. Чувствуется, что шуруповерт сможет закрутить и более крупные саморезы.

Ну чтож, теперь нужно убрать все сопли и кучи проводов, вытащить из корпуса батареи “сдохшие банки”, заменив их на LC-фильтр и уже потестировать шуруповерт в более реальных условиях.

Сборка рабочей конструкции

Для удобства пользования и подключения, я вывел шнур от блока питания в корпус батареи. Шнур взял 3,5 метра длинной, какой был в наличии. Из батареи удалил все аккумуляторные элементы и вмонтировал LC-фильтр. Теперь, если у меня появится каким-то образом исправная батарея – ее всегда можно будет поставить на шуруповерт, а блок питания убрать про запас. Аккумуляторы из батареи не выбросил, есть идея где их применить, но это тема для другого обзора.

Так как шнур, соединяющий блок с шуруповертом, обладает определенным сопротивлением и индуктивностью, можно попробовать замкнуть перемычкой выводы катушки L1. Теоретически, это может повысить мощность на мизерное значение.

Со шнуром шуруповерт себя отлично чувствует, но если честно, мне он показался несколько слабоватым при торможении рукой. Но пробные закручивания саморезов развеяли мои сомнения: саморезы длинной 35 мм спокойно закручиваются в фанеру 20 мм. Это означает, что шуруповерт будет удовлетворять большинство потребностей в ремонте.

У блока я отрезал все выходные провода, оставив зеленый стартовый, его конец я припаял к общему проводнику платы, куда впаяны все черные. Лучше всего аккуратно выпаять все провода, но мой паяльник был слишком слабый для этого и пришлось обрезать. К общему контакту и +12 (куда впаяны желтые) припаял два коротких, жестких медных провода и соединил через клемник со шнуром к шурику.

На этом мы закончим данный обзор, желаемого мы добились – шуруповерт отлично работает от компьютерного блока питания. В дальнейшем планирую сделать для платы блока питания добротный фанерный корпус без щелей – тесты показали, радиаторы на плате совсем не греются и можно не беспокоиться о перегреве элементов в закрытом корпусе.

Немного дополнений

Для компенсации потерь в шнуре, соединяющем шуруповерт с блоком питания, полезно поднять напряжение на 2-3 вольта. Но это при условии, что вы знаете схемотехнику компьютерных АТХ и знаете что делать.

Если есть возможность использовать мощный трансформатор, то на его выходной, вторичной обмотке должно быть переменное напряжение 12 В. Если напряжение отличается, рекомендуется подкорректировать вторичную обмотку путем отматывания (если напряжение больше 12 В) или доматывания (если меньше 12 В) нескольких витков. Стоит заметить, что при выпрямлении и фильтрации переменного напряжения 12 В получается около 14.4 В без нагрузки. Так пусть вас это не смущает, это напряжение ЭДС и это закономерно, что оно выше номинального.

Дополнительно к трансформатору собирается выпрямитель, диоды должны спокойно держать 30 А. Конденсаторный фильтр целесообразнее расположить в корпусе батареи, как в варианте с АТХ.

Смотрите так же другие статьи

yserogo.ru

Блок питания для шуруповерта 12 В своими руками

Кто постоянно пользуется аккумуляторным шуруповертом, уже оценил его превосходство. Каждый раз, не запутываясь в проводах, можно подлезть в любые труднодоступные места, пока не разрядятся аккумуляторы. Это главный недостаток: нужно регулярно заряжать. И все равно когда-то батареи вырабатывают свой резерв серий перезарядки.

Единственный выход – переработка электроинструмента 12 В для работы от сети. Конечно, потеряется мобильное превосходство, но для производства работ внутри здания, где есть подходы к 220 вольт – это великолепное решение. К тому же шуруповерт приобретает новое более эффективное применение.

Блок питания для шуруповерта

Большую популярность приобрел импульсный источник питания, так как он легче и меньше по размерам трансформаторных блоков. Такой блок собирается при помощи интегральных преобразователей. Устройство компараторов для элементов применяют на 2–3 обкладки. Некоторые модели делают с низкоомными выпрямителями. Коэффициент перегрузки устройства начинается от 9–10 ампер. Большинство модификаций производят с применением канальных фильтров. Среди самоделок попадаются модели на частотных преобразователях. Они характеризуются высокой степенью проводимости. Но к ним используют только конденсаторы на 4–6 пикофарад. При этом фильтрующие каналы собираются с лучевыми переходниками. Мастера утверждают, что такие импульсные блоки работают с шуруповертами до 18 вольт.

Трансформатор для шуруповерта 12 В

Зная элементарные принципы электрической схемы трансформаторов, можно самому смастерить источник питания. Наиболее распространенная схема изображена на рисунке.

Трансформаторный выпрямитель подбирается в зависимости от мощности (обычно по 220 вольтам это составляет 250–350 ватт). Такой трансформатор имеется в старой ламповой технике. Правда, старые блоки хоть и подходят для переделки, но они громоздки, тяжелы и обладают низким КПД. Разность потенциалов на выходной обмотке должно быть 18–20 вольт. Вторичная обмотка выполняется из провода, отличающегося от сечения первичной обмотки. Естественно, шнур, идущий на шуруповерт, должен быть большего сечения, по сравнению с проводом на 220 В. Вторичный ток составляет не меньше 14 А. После потери напряжения на диодах (56 вольт) получается требуемое напряжение на выходных клеммах.

Основной задачей является перепайка проводов от соединяющих контактов трансформатора к клеммам электроинструмента. В итоге ток пойдёт сразу на них, позволяя запускать мотор при нажатии кнопки.
Есть еще неплохой вариант с применением блоков питания от персональных компьютеров. В радиомагазинах можно недорого купить подержанный блок питания от старого компьютера. Только чтобы обязательно у компьютера был параметр АТ, который выключался кнопкой после завершения работы операционной системы. Специалисты со стажем знакомы с такими системными блоками. Преимущество этого блока питания заключается в том, что у него написан правдивый реальный показатель мощности. Если уж было указано 250–300 ватт, то это означало наверняка получить 12 вольт и 14–15 ампер выхода. А это полностью подойдет для электропитания обычного шуруповерта.

У подобных устройств имеется встроенная кнопка включения, есть охлаждающий вентилятор, идеальная система, защищающая от перегрузок. Можно спрятать источник питания в изящную оболочку, но не стоит забывать о вентиляционных отверстиях.

В общем, есть много способов превратить шуруповерт от уже севших аккумуляторов в сетевой инструмент. Нужно только должным образом разобраться, что для этого больше подходит.

pro-instrument.com

Блок питания для шуруповерта с ограничением по току

Опубликовал admin | Дата 6 августа, 2017

В статье описывается простой блок питания для шуруповерта с использованием унифицированного сетевого трансформатора ТН-55 220. Заняться этой схемой заставило письмо одного из посетителей сайта, в котором сообщалось, что у него после тяжелой и продолжительной работы приказал долго жить последний аккумулятор, а работа в самом разгаре.

И просьба о помощи. И у меня появилась идея об использовании ограничителя тока, о котором я рассказал в статье «Регулируемый стабилизатор тока на LM317», в сетевом блоке питания для работы с шуруповертом. В самой конструкции шуруповерта имеется механический ограничитель момента затяжки самореза, а в данной схеме конечный момент затяжки будет ограничен выставленным порогом тока стабилизации. Задумано – сделано. Схема блока питания показана на рисунке 1.

Все очень просто. Вторичные обмотки трансформатора соединены таким образом, что на выходе мы получаем 12,6 вольт переменного напряжения, которое подается на диодный мост VD1. При этом ток нагрузки может достигать величины 8 ампер. Мост можно применить хоть готовый, хоть собранный из отдельных диодов на рабочий ток не менее 10А.

Обязательно используйте теплоотвод, прикинуть его площадь относительно необходимой температуры можно по диаграмме в статье «Расчет радиаторов». Емкость конденсатора фильтра С1 вообще-то выбирается из соображения 2000 микрофарад на один ампер тока нагрузки. Но в данном случае мы не связаны с ограничением по пульсациям выходного отфильтрованного напряжения, поэтому емкость можно взять и меньше необходимой величины. Постоянное напряжение на конденсаторе фильтра будет примерно равно амплитудному значению переменного напряжения 12,6 В. Uа = 12,6 • √2 ≈ 17В. Это напряжение холостого хода. Под нагрузкой это напряжение будет падать. Далее по схеме идет ограничитель тока нагрузки, подробное описание которого приводится в выше упомянутой статье «Регулируемый стабилизатор тока на LM317». Падение напряжения на нем в неограничивающем режиме примерно три вольта, на выходе устройства остается 14 вольт, поэтому в схеме отсутствует стабилизатор напряжения.

Транзистор VT1 можно заменить импортным — TIP145, 146, 147.

Диод любой кремниевый с током анода не менее 10А. Я использовал КД213А. Микросхему DA1 можно заменить импортным аналогом LM317. Резистор R2 можно составить из параллельно включенных семи одноваттных резисторов по 1 Ому. От величины этого резистора зависит максимально возможный ток ограничения схемы. Под схемой приведены формулы для расчета данного резистора. Трансформатор можно применить другой, например, ТС-100 или ТС-90. Но их вторичные обмотки необходимо будет пересчитать и перемотать. Упрощенный расчет трансформатора можно посмотреть в статье «Упрощенный расчет трансформатора»

Все устройство можно собрать на одной общей пластине из алюминия навесным способом. Все ПП приборы устанавливаются через слюдяные прокладки с использованием термопасты. В качестве корпуса блока питания удобно использовать коробку от автоаптечки ФЕСТ.

В нее уместится и сам блок питания и провода. На этом все. Успехов. К.В.Ю.

 

Скачать “Blok_pitaniy_dly_shurupoverta.rar” Blok_pitaniy_dly_shurupoverta.rar – Загружено 457 раз – 123 KB

Обсудить эту статью на – форуме “Радиоэлектроника, вопросы и ответы”.

Просмотров:2 159


www.kondratev-v.ru

Шуруповерт от сети – переделка шуруповерта

Безусловно, такое решение лишит шуруповерт его основного достоинства – мобильности. Но это довольно популярный вариант среди самоделкиных, если не удается достать комплект аккумуляторов на замену старым.

Блок питания очень дешевый и простой. Он построен на базе умощненного электронного трансформатора. В роли подопытного может выступать любой электронный трансформатор с мощностью от 50 до 100 Вт. Больше нет смысла, поскольку мощность все равно будет увеличиваться. Более подробно с этим вопросом можно ознакомиться в статье об увеличении мощности трансформатора.

Силовой трансформатор формата ATX был взят из компьютерного БП.

Родные обмотки были демонтированы и на их место были намотаны новые. Для тех, кто будет использовать схожие сердечники – первичная обмотка содержит 55 витков, а намотка производилась трехжильным проводом (0,5 мм каждая жила). В один слой обмотка не влезла, поэтому каждый слой был тщательно заизолирован.

Вторичная обмотка с расчетом: на 1 виток – 2 В. Рекомендованный диаметр провода – 4 мм. Для удобства намотки можно использовать жгут из более тонких проводов.

Располовиненный сердечник можно склеить суперклеем или при помощи скотча.

Блок питания нестабилизированного типа, поэтому напряжение на выходе будет немного отклоняться от расчетного. Но ничего страшного не будет.

В качестве диодного выпрямителя установлены диоды КД2997. Они на 30 А и без проблем могут работать на частотах до 100 кГц.

На изображениях диодный мост изготовлен на отдельной плате, хотя прилагаемая для скачивания схема печатной платы содержит этот выпрямитель.

Диоды обязательно устанавливаются на теплоотвод и изолируются от радиатора с помощью слюдяных прокладок.

Также к радиатору прикреплены и силовые транзисторы блока питания. Они из линейки MJE, а точнее, MJE13009. Но можно заменить на 13007 в корпусе ТО220, хотя посадочные места на плате предусмотрены для ключей в корпусе ТО247.

Получившееся устройство было установлено в корпус от аккумулятора. В конце был подключен сетевой провод.

Итак, получившийся вариант блока питания является простейшим и имеет право на существование как один из многих. Естественно, можно сконструировать и что-нибудь посерьезнее, но это усложнит конструкцию.

Прикрепленные файлы: СКАЧАТЬ.

АВТОР:  АКА КАСЬЯН


 

volt-index.ru

Сетевой блок питания шуруповерта – Блоки питания (импульсные) – Источники питания

Аккумуляторный шуруповерт – удобный и необходимый в хозяйстве инструмент. При эксплуатации «от случая к случаю», он может верой и правдой служить многие годы. К сожалению, через 2-3 года, даже при не очень интенсивной эксплуатации, аккумуляторы шуруповерта практически полностью теряют свою емкость. Исправный инструмент, а пользоваться нельзя… Что делать?

Выбросить и купить новый. Самое разумное решение, если Вы эксплуатируете щуруповерт профессионально. А если он бывает нужен всего лишь несколько раз в году – починить забор, повесить полку и т.п. Рука не поднимается выбросить исправный аккумуляторный шуруповерт. Поиск в Интернете показал, что эта проблема волнует многих. Как же предлагают поступить в данной ситуации экономные россияне и жители братских республик.

Первое, самое очевидное решение – использовать внешний аккумулятор для питания шуруповерта. Старый автомобильный или герметичный свинцово-кислотный от ИБП. Но проблема в том, что шуруповерт даже на холостом ходу потребляет 1,5…3 А, а под полной нагрузкой потребляемый ток превышает 10 А. Придется использовать либо толстые, либо короткие соединительные провода. И то и другое неудобно. Разве что работать с аккумулятором в рюкзаке…

Второе решение – сетевой блок питания шуруповерта. Ведь в большинстве случаев работы ведутся в пределах досягаемости электрической розетки. Несколько теряется мобильность, но зато щуруповерт постоянно готов к работе. В качестве блока питания можно использовать обычный трансформатор с выпрямителем. Просто, но тяжело и громоздко. Компьютерный блок питания легче, но проблема с проводами остается. Кроме того, стабилизированный блок питания при работе на коллекторный электродвигатель с резко меняющейся нагрузкой и искрящими щетками может вести себя непредсказуемо.

Самое разумное, на мой взгляд, смонтировать сетевой блок питания в аккумуляторном отсеке шуруповерта. Кабель питания в этом случае может быть небольшого сечения, гибкий и легкий. При необходимости можно использовать стандартный сетевой удлинитель. Сложность в том, что места в аккумуляторном отсеке очень мало. Тем не менее, задача вполне выполнима. Подобная конструкция описана в журнале «Радио» №7 за 2011г. – К. Мороз. Сетевой блок питания для шуруповерта. Эта статья растиражирована на многих сайтах, но практическая проверка описанной в ней конструкции показала, что электронный трансформатор для галогенных ламп, который предлагает использовать автор, – не лучшее, в данном случае решение.

Генератор с самовозбуждением на двух транзисторах хорошо работает на активную нагрузку, а вот искрящий коллектор и резко меняющаяся нагрузка – тяжелое испытание для него. В общем, после выгорания нескольких транзисторов я отказался от дальнейших экспериментов с электронным трансформатором.

Лучшее решение мне удалось найти, на форуме http://forum.easyelectronics.ru/viewtopic.php?f=17&t=1773. Его предлагаетДмитрий (dimm.electron) – под таким именем он зарегистрировался на форуме. Собранный по предложенной им схеме блок питания предназначен для установки в аккумуляторный отсек шуруповерта на 12 или 14 В, в котором находилось 10 или 12 никель-кадмиевых аккумуляторов. Схема блока показана на рисунке.

 

 

Учитывая, что это должна быть простая и дешевая конструкция «выходного дня» я слегка доработал авторский вариант. С целью экономии места исключил сетевой фильтр. Это конечно плохо, но учитывая, что пользоваться шуруповертом планирую не часто, и в основном вдали от радиоаппаратуры, вполне допустимо. Не хватило места также и для резистора, ограничивающего зарядный ток конденсаторов в момент включения в сеть. Тоже не очень хорошо, но оправдания те же самые…

В схеме максимально использованы детали от старого компьютерного блока питания. Это выпрямительный мостик VD1, конденсаторы C1, C2, трансформатор T1 и диодная сборка VD4. Силовые транзисторы тоже можно использовать от компьютерного блока питания, но они должны быть обязательно полевыми. В моем блоке они оказались биполярными, пришлось приобрести рекомендованные автором IRF840.

Еще одно упрощение – использование обычного выпрямителя VD4 на диодах Шоттки, вместо предлагаемого автором «хитрого» синхронного выпрямителя. Замечу, что необходимо использовать диодную сборку именно из диодов с барьером Шоттки. Отличить ее от обычной можно, если измерить мультиметром в режиме прозвонки прямое падение напряжения на диодах. На диодах Шоттки падает не более 0,2 В, тогда как на обычных диодах около 0,6 В. Учитывая ограниченные размеры радиатора нагрев обычных диодов будет недопустимым.

Ну и, наконец, питание микросхемы DD1 осуществляется через обычный гасящий резистор R3. Автор использует для этого еще одну «хитрую» схему – питание берется с точки соединения транзисторов VT3, VT4 через гасящий конденсатор и дополнительный выпрямитель на диодах. Сложно в наладке – надо довольно точно подбирать емкость конденсатора, он должен быть высоковольтным и термостабильным. Есть вероятность сжечь DD1.

В процессе обсуждения на форуме родился еще один вариант схемы питания – с дополнительной обмотки трансформатора. Это самый лучший вариант, бесполезный нагрев элементов минимален. Но на трансформаторе нужна дополнительная изолированная обмотка на 20-30 В.

Трансформатор – это самый важный элемент схемы блока питания шуруповерта, от качества его изготовления на 90% будет зависеть Ваше мнение об умственных способностях автора разработки. Если использовать первое попавшееся ферритовое кольцо неизвестной марки, ничего хорошего не получится. Кроме магнитной проницаемости у феррита есть и другие параметры, которые очень важны в данном случае. Необходимо использовать специально предназначенный для работы в сильных магнитных полях феррит, например от трансформаторов импульсных блоков питания компьютеров, телевизоров и др. аппаратуры мощностью не менее 200 Вт. Технология намотки тоже очень важна, автор подробно описывает, как должны быть расположены обмотки на сердечнике.

Я поступил проще – использовал готовый трансформатор от старого компьютерного блока питания. Он как раз подходит по всем параметрам. Лучше раскурочить старый блок мощностью 200-250 Вт, в нем высота трансформатора равна 35 мм – как раз помещается в аккумуляторном отсеке. Трансформаторы от более мощных блоков имеют большую высоту и не помещаются в моем корпусе.

Перед выпаиванием трансформатора нужно внимательно рассмотреть, как соединяются его обмотки и с каких выводов запитан выпрямитель +5 В. Тут возможны варианты, может потребоваться небольшая коррекция чертежа печатной платы блока питания шуруповерта. Обращаю внимание, что используется именно 5-и вольтовая обмотка, амплитуда напряжения на ней как раз около 12 В. Другие обмотки не используются.

А вот намотать на такой трансформатор дополнительную обмотку или изменить число витков существующих, к сожалению не получится. Трансформатор залит эпоксидкой и при его разборке велика вероятность сломать сердечник.

 

 

В микросхеме IR2153D между выводами 1 и 4 установлен стабилитрон на 15,6 В, поэтому питание нужно подавать обязательно через токоограничивающий резистор. Показанный на схеме пунктиром диод VD5 необходим только при использовании IR2153 без индекса «D». Конденсаторы C1, C2 можно заменить одним – 100…150 МК, 400 В. При его приобретении определяющий параметр – высота, желательно не более 35 мм, иначе может не поместиться в корпус.

Резистор R3 составлен из 4-х последовательно включенных по 8,2К, 2 Вт. Его номинал желательно подобрать при наладке так, чтобы при минимально возможном напряжении в сети, напряжение на конденсаторе C4 не падало ниже 11 В. Для уменьшения бесполезного нагрева номинал этого резистора должен быть максимально возможным, если его уменьшить, просто увеличится ток через этот резистор и внутренний стабилитрон микросхемы.

Элементы R5, R6, VD2, VD3, VT2, VT4 защищают полевые транзисторы от пробоя в случае аварийных режимов работы. Номинал C9 увеличивать не следует, т.к. это увеличит и без того большой бросок тока при включении в сеть. Мостик VD1 должен выдерживать ток не менее 5 А при напряжении 400 В. VD4 – сборка из диодов Шоттки с допустимым током не менее 30А. VD1 и VD4 отлично подходят от компьютерного блока питания. Вентилятор на 12 В, его внешние размеры 40х40 или 50х50 мм. Элементы в корпусах для поверхностного монтажа типоразмеров 0805 или 1206. DD1 в DIP корпусе, обратите внимание на надежность изоляции на плате между выводами 5 и 6.

Чертеж печатной платы показан на рисунке, вид со стороны печатных проводников. Перед ее изготовлением нужно разобрать имеющийся аккумуляторный отсек шуруповерта и убедиться, что плата в него вписывается. Скорее всего потребуется небольшая коррекция, т.к. отсеки у разных производителей имеют небольшие конструктивные отличия.

Силовые транзисторы VT1, VT3 и диодная сборка VD4 монтируются на небольших алюминиевых пластинках. Их габариты – по месту. В корпусе необходимо просверлить вентиляционные отверстия. Вентилятор придется разместить снаружи корпуса – без него длительная работа не гарантируется. Естественной вентиляции в данном случае недостаточно. И не забудьте про предохранитель FU1.

При первом включении блок лучше запитать от источника питания 20-25 В с током 100…200 МА. При этом резистор R3 временно шунтируется другим, с номиналом 1К. Если все нормально, на выходе будет 0,6…1 В. Можно посмотреть форму и частоту импульсов на вторичной обмотке трансформатора. Там должны быть прямоугольные импульсы со скважностью 50% и частотой 50…100 КГц. Частота определяется номиналами R4, C5.

Если все нормально, убираем временно установленный резистор 1К, включаем последовательно с блоком питания шуруповерта лампу накаливания на 60…100 Вт и включаем все это в сеть. В момент включения лампа кратковременно вспыхнет и погаснет, на выходе должно установиться напряжение около 12 В. Если все работает, убираем лампу и проверяем работу блока под нагрузкой около 1 Ом. Наконец, выбрасываем аккумуляторы, устанавливаем блок питания в корпус и проверяем работу шуруповерта в разных режимах.

Если эта конструкция Вас заинтересовала, можете ознакомиться с вариантами схемы от автора и его рекомендациями по самостоятельному изготовлению трансформатора.

АРХИВ:Скачать

cxema.my1.ru

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *