Как сделать зарядку для литий ионных аккумуляторов: Схемы самодельных зарядок для литий-ионных аккумуляторов (18650, 14500 li-ion), как правильно заряжать литий-полимерные АКБ

Содержание

Изготовление и зарядка зарядного устройства для литий-ионных аккумуляторов своими руками-battery-knowledge

  • Лучший литиевый аккумулятор 18650

  • Цилиндрическая литий-ионная батарея

  • Лучшее руководство по литиево-ионной батарее

  • Лучшее руководство по LiPo батареям

  • Лучшее руководство по батарее Lifepo4

  • Руководство по литиевой батарее 12 В

  • Литий-ионный аккумулятор 48 В

  • Подключение литиевых батарей параллельно и последовательно

  • Лучшая литий-ионная батарея 26650

APR 29, 2020   Вид страницы:343

Батареи играют важную роль в любом предприятии / предметах, работающих от батарей. Перезаряжаемые батареи дороги, так как вы должны покупать зарядное устройство вместе с батареями, а не использовать и выбрасывать батареи, но они являются невероятным стимулом для денег. В аккумуляторных батареях используется несколько уникальных смесей анодных материалов и электролитов, например, коррозионно-свинцовые, никель-кадмиевые (NiCd), никель-металлогидридные (NiMH), литиевые (Li-частицы) и литиевые частицы. полимер (литий-частицы полимера).

Вам интересно сделать зарядное устройство для сборки вместо того, чтобы покупать дорогое? Давайте начнем.

Как сделать зарядное устройство для литий-ионного аккумулятора?

Шаг 1 – Первый шаг – собрать электронные компоненты, необходимые для зарядного устройства литий-ионной батареи.

  • Литий-ионный аккумулятор 18650

Шаг 2 – Модуль зарядного устройства для литий-ионных аккумуляторов на основе TP4056

Давайте углубимся в тонкости этого модуля. На рынке доступны два варианта этой коммутационной платы для литий-частиц зарядного устройства на основе TP4056, с оборудованием для обеспечения гарантии заряда аккумулятора и без него.

TP4056 – это полный модуль прямого зарядного устройства с постоянным током / постоянным напряжением для одноэлементных литиевых батарей. Комплект поставки SOP и низкий уровень проверки внешних деталей делают TP4056 идеальным решением для самостоятельного использования. Он может работать с USB так же, как настенные разъемы.

Для безопасной зарядки литий-ионных аккумуляторов 3,7 В их следует заряжать постоянным током от 0,2 до 0,7 раз от их способности, пока их напряжение на клеммах не достигнет 4,2 В, позже их следует заряжать в режиме постоянного напряжения до зарядный ток падает до 10% от начальной скорости зарядки.

Вы не можете завершить зарядку при 4,2 В, так как предел до 4,2 В составляет всего около 40-70% от полного лимита. Это учтено TP4056.

В настоящее время важна одна важная вещь: ток зарядки определяется резистором, связанным с выводом PROG, модули, доступные на рынке, по большей части сопровождают 1,2 кОм, связанные с этим выводом, что сопоставимо с током зарядки 1 ампер.

Шаг 3 – Соедините все детали

В настоящее время вы должны соединить электрические части, используя железо и соединительный провод, чтобы закончить оборудование.

Шаг 4 – Сборка

Сборка деталей – Изменение корпуса

Отпечатайте компоненты держателя батареи на обнесенной стеной области, используя режущее лезвие.

Используйте острый край, чтобы прорезать уголок в соответствии с отметкой на держателе батареи.

После корректировки среза с помощью острого острия уголки должны выглядеть так.

Вы должны сделать маркировку USB-порта TP4056 на огороженной территории.

Используйте острый край, чтобы прорезать огороженную территорию в соответствии с проверкой порта USB.

Произведите замер и нанесите маркировку светодиодов TP4056 на обнесенную стеной область.

Используйте острый край, чтобы прорезать огороженную территорию в соответствии с проверкой светодиодов.

Сделайте аналогичные шаги, чтобы сделать монтажные отверстия для разъема постоянного тока и переключателя.

после настройки огороженной территории открывается адекватный доступ к оборудованию.

Хранение электроники внутри корпуса

Дополнительный аккумуляторный отсек с конечной целью, то есть фокусировки крепления находятся вне огороженной территории; использовать клеевой пистолет для выполнения сварного шва.

Модуль Spot TP4056, конечная цель которого состоит в том, чтобы светодиоды и USB-порты были доступны для структурирования за пределами огороженной территории. Нет веских причин для подчеркивания, если соответствующие оценки были сделаны в прошлом заранее, то, как следствие, все обрушится, и, наконец, используйте клеевой пистолет, чтобы сделать прочное соединение.

Схема регулятора напряжения Spot 7805; с помощью клеевого пистолета сделайте сварной шов.

Найдите разъем постоянного тока и переключатель в их сравниваемых областях и снова используйте клеевой пистолет, чтобы сделать жесткое соединение.

Используйте несколько дополнительных винтов и отвертку, чтобы закрыть заднюю крышку.

Позже вы можете использовать темную защитную ленту, чтобы скрыть неприятные выступы, возникшие из-за разреза горячего края. (запись также является достойной альтернативой)

Завершенный вид зарядного устройства литий-гранулированный. Теперь вам следует проверить зарядное устройство.

Какой инструмент вам понадобится, если вы сделаете самостоятельно зарядное устройство для литий-ионных аккумуляторов?

Это инструменты, необходимые для самостоятельного зарядного устройства для литий-ионных аккумуляторов.

Припой, проволока для припоя,

Горячий клинок (ссылка на мои инструкции, которые помогут вам в создании этого клинка),

Клеевой пистолет, клеевые стержни,

Отвертка и несколько винтов и,

Пластиковый корпус 8 см х 7 см х 3 см.

Можно ли зарядить литий-ионный аккумулятор стандартным зарядным устройством?

Основной стандарт зарядки аккумуляторов заключается в том, что зарядное устройство, предназначенное для одного типа аккумулятора, может не подходить для зарядки другого. Вы не можете заряжать мобильный телефон автомобильным зарядным устройством, но также не должны заряжать никель-металлгидридные батареи зарядного устройства nicad.

  • Многочисленные современные перезаряжаемые устройства и устройства, такие как ПК, MP3-плееры и мобильные телефоны, сопровождают свое собственное необычное зарядное устройство, когда вы их получаете, поэтому вам не нужно беспокоиться о согласовании зарядного устройства с аккумулятором.

  • Однако, если вы покупаете в магазине комплект обычных батарей с батарейным питанием, важно, чтобы вы покупали батареи, подходящие к имеющемуся у вас зарядному устройству, или заменяли зарядное устройство аналогичным образом.

  • Обратите внимание на напряжение и ток, которые требуются для аккумуляторов (они будут установлены отдельно на блоке аккумуляторов или на самих аккумуляторах), убедитесь, что выбрали зарядное устройство с правильным напряжением и током, чтобы работать с ними, и заряжайте в течение правильного времени. .

  • Однако, если вам нужно приобрести несколько аккумуляторных батарей, но вы не совсем уверены, как подходить к согласованию аккумуляторов и зарядного устройства, выберите объединенный набор, в котором вы покупаете аккумуляторы и зарядное устройство в одном комплекте.

А теперь сделайте собственное зарядное устройство.

  • Предыдущая статья: Лучшие литиевые батареи для солнечных панелей – тип батареи, зарядка и характеристики
  • Следующая статья: Правила утилизации литиевых батарей – услуги и методы

Самые популярные категории

Индивидуальные решения

  • Схема конструкции аккумулятора 11,1 В, 6600 мАч портативного сверхзвукового диагностического набора B

  • Схема резервного питания 7,4 В 10 Ач медицинского инфузионного насоса

  • Решения для литий-ионных аккумуляторов AGV 25,6 В, 38,4 Ач

Зарядное устройство батарей из трёх литий-ионных аккумуляторов

Предлагаемое зарядное устройство (ЗУ) предназначено для зарядки батарей из трёх элементов литий-ионных аккумуляторов стабильным током до заданного напряжения.  ЗУ имеет следующие технические характеристики;

ПараметрЗначение
 Способ зарядки Ток – Напряжение 
 Зарядный ток 1,5 A
 Конечное напряжение  12,6 В
 Тип преобразования Импульсный

В статье рассматривается небольшая переделка и доработка готовой конструкции, и за основу был взят импульсный блок питания, ремонт которого был представлен в предыдущей статье

В принципе можно использовать любой, подходящий по параметрам, преобразователь сетевого напряжения импульсного типа со стабилизацией выходного напряжения, и далее будет рассмотрено как переделать стабилизированный блок питания в зарядное устройство батареи аккумуляторов. Полная схема и конструктивные особенности переделываемого адаптера не имеют большого значения, поэтому была зарисована только часть схемы вторичного напряжения, в которой нужно будет произвести изменения и доработку, ставшая стандартной для большинства подобных устройств.

Маркировка и порядковые номера радиоэлементов соответствуют обозначениям на плате устройства:

Для доработки в первую очередь нужно поднять верхний уровень выходного стабилизированного напряжения до 12,6 В, необходимого для полной зарядки батареи литий-ионных аккумуляторов из трёх элементов. Это напряжение задаётся цепью, состоящей из регулируемого интегрального стабилизатора напряжения параллельного типа TL431 и делителя из резисторов R15 и R16. На сайте “Паяльник” опубликована статья “Буферное зарядное устройство свинцовых аккумуляторов”, где описана подобная возможность изменения напряжения стабилизации:

В данном же случае выходное напряжение можно повысить увеличением сопротивления резистора R15, и для этого можно воспользоваться TL431 калькулятором, но более точное значение сопротивления придётся подобрать опытным путём, и далее будет описано как это сделать.

Из расчётов было определено, что для получения выходного напряжения 12,6 Вольт резистор R15 нужно заменить на резистор сопротивлением 4,1 кОм. Для получения такого сопротивления на плату, вместо бывшего резистора, были установлены два параллельно соединённых резистора с сопротивлением 4,7 кОм и 33 кОм. Для расчёта общего сопротивления параллельно соединённых резисторов можно воспользоваться онлайн калькулятором

Сначала на плату был установлен резистор с сопротивлением 4,7 кОм, и с помощью мультиметра были отобраны несколько резисторов номинала 33 кОм с небольшим разбросом сопротивления. Далее, поочерёдно устанавливая каждый резистор и мультиметром замеряя выходное напряжение блока питания, нужно добиться максимально точного значения 12,6 Вольт. При сильно отличающемся напряжении в ту или иную сторону батарея не будет заряжаться до конца. При слишком низком значении, напряжения просто не хватит для полной зарядки, а при слишком высоком, зарядный ток в конце процесса зарядки не будет падать и плата защиты батареи преждевременно отключит её от цепи. Про это на сайте имеется статья “Самодельная разборная Li-ion 3S батарея с платой контроля и защиты HH – P3-10. 8″

Всё это касалось повышения выходного напряжения дорабатываемого блока питания, но для правильной его работы как зарядного устройства, нужно ещё обеспечить постоянство зарядного тока в определённых пределах. Для этого на плате адаптера была разрезана, зачищена и просверлена токопроводящая дорожка положительного полюса вторичного питания, соединяющая два электролитических конденсатора фильтра. В этом месте был установлен токоизмерительный шунт R1 для модуля стабилизации и индикации тока зарядки. Так же был добавлен красный индикаторный светодиод LED2 с токоограничивающим резистором R2. Порядковые номера добавленных радиокомпонентов были заданы сначала, и они не пересекаются с уже имеющимися. Все изменённые и добавленные радиоэлементы на схеме выделены красным цветом:

Кроме этого был разработан и установлен модуль измерения/стабилизации и индикации зарядного тока. Модуль разрабатывался в несколько этапов и каждый раз его параметры улучшались по мере доработки. Изначально пороговым элементом являлся германиевый транзистор прямой проводимости типа МП41, а шунт имел сопротивление 0,33 Ом:

Резисторы R1, R2 и светодиод LED2 установлены на плате самого блока питания, а остальные компоненты были собраны на отдельной плате и двойными точками на схеме отмечены места соединения плат между собой.

Стабилизация работала, так же и индикация, но измерительный шунт заметно нагревался, а ток стабилизации сильно зависел от температуры внутри блока питания, что потребовало доработку модуля и применение кремниевого измерительного транзистора.

Но у кремниевых транзисторов пороговое напряжение открывания выше чем у германиевых, и для компенсации этого в схему была установлена стабильная вольт-добавка на таком же транзисторе:

Доработанная схема работала намного лучше, а сопротивление шунта, и следовательно выделение тепла на нём, получилось немного снизить. Принцип работы такой схемы с вольт-добавкой и расчёт её элементов был описан в статье “Простой способ стабилизации больших токов с малыми потерями на измерительном элементе”

В отзывах читателей указанной статьи было несколько хороших рекомендаций, которые далее были учтены и добавлены в первоначальную схему. Схема данного измерительного модуля так же была доработана и более точно были подобраны номиналы некоторых резисторов. Окончательный вариант схемы модуля представлен на рисунке:

Двойными точками с цифрами так же отмечены места подключения модуля с основной платой зарядного устройства, а полная схема доработанного выходного узла блока питания вместе с модулем измерения и индикации тока зарядки выглядит следующим образом:

  • Точка “1” подключается к минусу блока питания;
  • “2” – к выходному выводу токоизмерительного шунта;
  • “3” – к входному выводу шунта;
  • “4” – к оптрону обратной связи;
  • “5” – к светодиоду индикации зарядки.

После включения в сеть, пока через нагрузку не течёт ток, дополнительно установленный модуль не влияет на работу адаптера, и выходное напряжение стабилизировано на уровне 12,6 Вольт. При подключении заряжаемого аккумулятора через шунт протекает ток, который обнаруживается транзистором Q1 и далее усиливается транзистором Q3. Коллекторной нагрузкой последнего является светодиод оптрона обратной связи, который начинает светиться всё ярче с ростом протекающего через нагрузку тока, а так как с увеличением яркости его свечения скважность импульсов генератора преобразователя так же увеличивается, то выходное напряжение уменьшается и ток нагрузки стабилизируется. Этот ток зависит от порога открывания измерительного транзистора и задаётся сопротивлением резистора токового шунта.

В активном режиме стабилизации тока транзистор Q4 входит в насыщение и светодиод LED2 светится, сигнализируя о процессе зарядки аккумулятора. Транзистор Q2 играет ключевую роль в значении порога срабатывания измерительного транзистора Q1. На нём создаётся стабильная вольт-добавка, которая складываясь с напряжением на шунте прикладывается к переходу база-эмиттер транзистора Q1 и понижает порог его срабатывания, уменьшая тем самым количество выделяемого на шунте тепла.

Модуль был собран из миниатюрных радиокомпонентов на небольшом отрезке платы подходящих размеров методом навесного монтажа:

 

Плата была расположена в пространстве между радиаторами силового транзистора и диодной сборки, над импульсным понижающим трансформатором, в перевёрнутом виде, и соединена с основной платой жёсткими разноцветными проводами в двойной изоляции:

 

В дальнейшем так же была разработана печатная плата для изготовления модуля, на которой оставлена большая часть фольги для экономии вытравливающего раствора и соединения с массой и проводом заземления адаптера (не общим проводом, и не минусом питания), если такой имеется:

Вид печатной платы со стороны расположения радиоэлементов

Вид печатной платы со стороны проводников

Плата рассчитана на установку транзисторов типа КТ209В и КТ315Б, но их можно заменить любыми маломощными соответствующей структуры с коэффициентом передачи тока базы более 50.  Ещё лучшие результаты работы будут, если применить транзисторные сборки, но тогда придётся изменить чертёж печатной платы.

Токо-измерительный шунт представляет из себя сложенный вдвое отрезок нихромовой проволоки с подобранным необходимым сопротивлением, но при наличии можно установить обычный низкоомный резистор, или резистор поверхностного монтажа. От его сопротивления в большей степени зависит уровень тока зарядки – чем меньше сопротивление, тем больше ток зарядки, который естественно должен уметь обеспечивать переделываемый блок питания:

 

Налаживание устройства заключается в установке выходного напряжения 12,6 В без нагрузки, подбором сопротивления верхнего резистора R15 делителя напряжения, и установке желаемого тока заряда подбором сопротивления измерительного шунта.

Для этого нужно взять заведомо большую длину нихромового провода, и подключив к выходу разряженную батарею установить необходимое сопротивление шунта, постепенно укорачивая провод и контролируя силу тока низкоомным амперметром. Подключать батарею нужно обязательно разряженную, так как в конце зарядки ток постепенно будет падать и не удастся установить его номинальное значение.

Производить наладку лучше с реальной батареей, а не с резистивной нагрузкой, так как заряжаемая батарея представляет из себя динамическую нагрузку, и если настраивать не в реальных условиях, то в дальнейшем показания будут отличаться.

Оба резистора, как для настройки выходного напряжения, так и тока нагрузки, расположены в удобных и доступных для многократной пайки местах:

Во время включения с подсоединённой аккумуляторной батареей светится зелёный светодиод индикатора наличия генерации и вторичного напряжения, и дополнительно установленный красный светодиод индикатора зарядки. Не нужно забывать о технике безопасности во время работы с высоким напряжением, и не следует дотрагиваться до оголённых и токопроводящих элементов устройства, находящихся под сетевым напряжением:

Для проверки и налаживания зарядного устройства использовался многофункциональный измеритель параметров заряда/разряда аккумуляторов, включённый по схеме с дополнительным питанием:

Максимальный ток зарядки был установлен в пределах 1,5 А при полностью разряжённой батареи, а по мере зарядки ток незначительно падал, и резко снижался в самом её конце. В этот момент индикаторный светодиод снижал яркость своего свечения, но всё равно оставался информативным, и полностью погасал по достижении полного(почти) заряда батареи, так как установленный в батарее контроллер размыкал цепь.

В завершение устройство было помещено в корпус, а на конец выходного кабеля был установлен унифицированный разъём XT60 с контактами типа “папа”, применяющийся в литий-ионных и литий-полимерных батареях:

 

 

В последствии была изготовлена батарея на контроллере с установленной системой балансировки, и проверена возможность её зарядки сконструированным здесь зарядным устройством. Следите за новыми публикациями и оставляйте свои отзывы и рекомендации, которые возможно будут учтены при написании дальнейших статей. Смотрите так же дополнительные материалы по теме:

  • Быстрый ремонт импульсного блока питания
  • Буферное зарядное устройство свинцовых аккумуляторов
  • Самодельная разборная Li-ion 3S батарея с платой контроля и защиты HH – P3-10. 8
  • Самодельная Li-ion 3S батарея с платой защиты и балансировки BMS-Wh4S0404LI2535
  • Простой способ стабилизации больших токов с малыми потерями на измерительном элементе
  • Многофункциональный измеритель параметров заряда/разряда аккумуляторов
Список радиоэлементов
ОбозначениеТипНоминалКоличествоПримечаниеМагазинМой блокнот
Транзисторы
Q1, Q2Биполярный транзистор

КТ209В

2PNPПоиск в магазине ОтронВ блокнот
Q3, Q4Биполярный транзистор

КТ315Б

2NPNПоиск в магазине ОтронВ блокнот
 
Индикатор
LED2Светодиод10 mA1КрасныйПоиск в магазине ОтронВ блокнот
 
Резисторы
R1Резистор

0. 1 Ом

1ПроволочныйПоиск в магазине ОтронВ блокнот
R2, R3Резистор

1 кОм

2Поиск в магазине ОтронВ блокнот
R4Резистор

220 Ом

1Поиск в магазине ОтронВ блокнот
R5Резистор

4.7 кОм

1Поиск в магазине ОтронВ блокнот
R6Резистор

3.3 кОм

1Поиск в магазине ОтронВ блокнот
R7Резистор

820 Ом

1Поиск в магазине ОтронВ блокнот
Добавить все

Скачать список элементов (PDF)

Теги:
  • Литий-ионный аккумулятор
  • Зарядное устройство

Зарядка литий-ионных аккумуляторов: 5 советов экспертов для продления срока службы | Saft

Литий-ионные аккумуляторы промышленного класса , питающие ваши удаленные или портативные устройства, имеют прочную конструкцию и высокую плотность энергии для длительного срока службы даже при экстремальных температурах. Их долговечность напрямую связана с тем, как батарея заряжается, разряжается, а также с рабочей температурой.

В этой статье мы объясним, как работают эти аккумуляторы, и поделимся нашими 5 главными советами о том, как заряжать литий-ионные аккумуляторы промышленного класса, чтобы продлить срок их службы. Вы узнаете , как баланс скорости и скорости зарядки является ключевым для промышленных приложений , так же как и для ваших мобильных телефонов, ноутбуков или электровелосипедов.
Читайте дальше… 
   

Совет 1. Понимание языка аккумуляторов

Литий-ионные аккумуляторы состоят из двух электродов: положительного и отрицательного. Когда вы заряжаете или разряжаете аккумулятор, электроны выходят из аккумулятора под действием электрического тока, а ионы перетекают от одного электрода к другому. Как будто оба электрода дышат, обмениваясь ионами.
 
Когда батарея обеспечивает ток, электроны перемещаются от анода к катоду вне батареи. Подача обратного тока позволяет аккумулятору перезарядиться: электроны возвращаются к аноду, а ионы лития повторно внедряются в катод. Восстанавливает емкость аккумулятора . Весь процесс зарядки/разрядки определяется как цикл. Количество циклов, которые может выполнить ваша батарея, зависит от производственного процесса, химических компонентов и фактического использования.

Емкость аккумуляторной батареи измеряется в Ач. Например, Saft MP 176065 xtd может похвастаться емкостью 5,6 Ач, что означает, что 5,6 А могут быть выданы за час при 25°C в течение цикла.

На эту емкость напрямую влияют: 

  1. Скорость зарядки и разрядки батареи, называемая скоростью C. Токи заряда и разряда обычно выражаются в долях или кратных значениям C: Зарядка/разрядка C означает, что вы будете заряжать или разряжать батарею в течение часа. Зарядка/разрядка C/2 занимает два часа, зарядка/разрядка 2C — 30 минут и т. д. Норма Saft MP 176065 xtd C составляет 5,6 А. Зарядка C / 2 при 2,8 А займет ок. 2 часа.
  2. Уровень напряжения, который отражает уровень заряда: в нашем примере MP 176065 xtd выше, 4,2 В указывает на полный заряд, 2,7 В указывает на то, что батарея полностью разряжена (напряжение отсечки).
  3. Температура зарядки, разрядки и рабочая температура.
  4. Несколько циклов: со временем батарея теряет емкость из-за физической и химической деградации электродов и электролита.

Надлежащее управление глубиной разрядки (DoD — процент емкости, которая была удалена из полностью заряженной батареи) и максимальным зарядным напряжением также может увеличить количество циклов, в течение которых батарея будет работать. работоспособность и, следовательно, срок службы.

В этой статье основное внимание уделяется передовым методам зарядки, но мы рассмотрим методы разрядки в нашей следующей статье.
 

Главный совет 2. Уважайте процесс зарядки CCCV, особенно в плавающем режиме (зарядное устройство — ваш лучший друг)

Зарядка литий-ионного аккумулятора не так проста. Зарядное устройство, которое вы выберете, играет здесь ключевую роль, поскольку способ настройки параметров влияет на срок службы батареи. Не подключайте его просто к любому блоку питания и не используйте зарядное устройство, предназначенное для другой технологии (никель-кадмиевое или свинцовое), если вы не хотите столкнуться с проблемами безопасности.

Для правильной зарядки литий-ионной батареи требуется 2 этапа: постоянный ток (CC) с последующей зарядкой постоянным напряжением (CV) . Сначала применяется заряд CC, чтобы довести напряжение до уровня напряжения окончания заряда. Вы даже можете решить уменьшить целевое напряжение, чтобы сохранить электрод. Как только желаемое напряжение достигнуто, начинается зарядка CV и ток уменьшается. Когда ток слишком низкий, зарядка завершается, и ток необходимо отключить.
Например, чтобы вернуть вашему MP 176065 xtd напряжение в конце зарядки 4,2 В, вы можете подать ток 5,6 А. При достижении 4,2 В вы поддерживаете этот уровень напряжения, медленно уменьшая ток до 100 мА или меньше, а затем останавливаете его. Вы также можете выбрать только 4,1 В, тем самым сохранив эластичность электродов и увеличив срок службы батареи.

Емкость аккумулятора напрямую зависит от напряжения окончания заряда , поэтому снижение напряжения снижает емкость аккумулятора. Вам придется найти правильный компромисс между необходимой автономностью, минимальным напряжением, при котором может работать ваше устройство, и долговечностью батареи.
Оставление батареи на постоянном заряде плавающим током после режима CV в процессе зарядки называется плавающим режимом . Солнечная панель — типичный пример приложения с плавающим режимом.

Большинство производителей не рекомендуют плавающий режим, так как он со временем повреждает батарею. Литий-ионная химия не нуждается в обслуживании благодаря низкому уровню саморазряда. Более того, , если в конструкции батареи не предусмотрены надлежащие меры предосторожности, поддержание скорости заряда в полностью заряженной ячейке может привести к ее перезарядке и взрыву.
Серия Saft xtd специально разработана для работы в плавающем режиме в безопасных условиях с ограниченным старением в широком диапазоне температур.
 

Главный совет 3. Тщательно спроектируйте свою BMS (другого вашего лучшего друга)

Каким бы ни было приложение, литий-ионные аккумуляторы должны ассоциироваться с электроникой. Этот ключевой электронный компонент называется системой управления батареями (BMS). Обязательные функции безопасности прерывают разрядку/зарядку для защиты аккумулятора от перенапряжения или пониженного напряжения. BMS проверяет температуру и отключает аккумулятор во избежание перегрева.

BMS также может включать электронику, оптимизирующую однородный заряд между каждым элементом аккумуляторной батареи ( балансировка ). В батарее, объединяющей несколько последовательно соединенных элементов, через некоторое время в полевых условиях элементы из пакета будут стареть по-разному. Без этой функции балансировки в BMS самая устаревшая ячейка пакета будет стареть быстрее, чем другая. Поскольку продолжительность жизни батареи напрямую связана с самой старой ячейкой, хорошая система балансировки продлит срок службы батареи.

Система BMS может быть адаптирована к вашему варианту использования. Некоторые могут отображать состояние заряда и Состояние здоровья (например: 85% состояния здоровья означает, что емкость батареи уменьшилась на 15% с начала ее срока службы — интересное указание, поскольку понимается как потеря 30% исходного емкость означает, что химический срок службы батареи подходит к концу и время замены близко ).
 

Совет 4. Снизьте скорость зарядки C

При низкой скорости зарядки (C/2, C/5 или даже меньше) ионы лития плавно внедряются в графитовые листы, не повреждая электроды.
Когда скорость заряда увеличивается, эта интеркаляция становится все труднее и труднее. Если скорость слишком высока, ионы лития не успевают должным образом проникнуть в электрод и просто оседают на его поверхности, что приводит к преждевременному старению батареи.

Возможны быстрые скорости зарядки, такие как 4C или 10C, например, для аккумуляторов мобильных или электромобилей, но конструкции электродов отличаются, и ожидаемый срок службы короче.

В зависимости от того, сколько времени нужно вашему приложению для перезарядки, и вашего варианта использования, вам нужно будет найти правильный компромисс между необходимым временем и скоростью зарядки и старением батареи. Скорость зарядки A C/50 лучше для электродов, но не каждое приложение может позволить себе время зарядки более 50 часов! Время зарядки 2C (30 минут) возможно, но ускорит старение батареи.
Поэтому Saft рекомендует ограничивать скорость зарядки своего диапазона MP до C или ниже.

 

Совет 5. Контролируйте температуру зарядки 

В большинстве литий-ионных аккумуляторов в одном электроде используется материал графитового типа. Повышенная температура зарядки провоцирует расслаивание графитовых листов, что ускоряет необратимую потерю емкости аккумулятора. Это явление может усугубляться, если оно связано с высокой скоростью зарядки: зарядный ток повышает температуру и вызывает ускорение явления отслоения.

Высокий уровень напряжения в сочетании с высокой температурой заставляет электрохимию генерировать газы внутри ячейки, что ускоряет старение химии. В зависимости от конструкции клетки высокие температуры также могут вызывать набухание клеток. Такая деформация может представлять угрозу безопасности, если корпус батареи или расположение устройства не рассчитаны на ее поддержку. Следите за тем, чтобы не превышались ограничения, установленные производителем аккумуляторов, или, например, не ставьте аккумулятор на полную зарядку на длительное время в перегретой машине в разгар лета!

Если в конструкции батареи не предусмотрены обязательные меры защиты от перезарядки, чрезмерной разрядки и перегрева, внутренняя температура элемента выше 130°C может привести к тепловому выходу из строя.

Большинство литий-ионных аккумуляторов могут выдерживать максимальную температуру 60°C, и их рекомендуется заряжать при максимальной температуре 45°C при скорости заряда C/2, в то время как серия Saft MP может поддерживать скорость заряда C выше. до 60°C и даже C/5 до +85°C для продуктов xtd благодаря уникальному дизайну.

Очень немногие батареи можно заряжать при температуре ниже 0°C. Электродные листы сжимаются, и электронная проводимость электролита снижается, что затрудняет интеркаляцию ионов в графит. Могут образовываться отложения лития, которые вызывают необратимую потерю емкости. Чтобы компенсировать и обеспечить правильную интеркалацию иона, некоторые производители рекомендуют заряжать батарею очень медленно (C/20) при работе при температуре ниже 0°C.
Ассортимент Saft MP может работать с заправками при очень низких температурах — до -30°C! — при использовании скоростей C/8 и даже C/5.

 

Давайте обобщим наши 5 основных советов о том, как заряжать литий-ионные аккумуляторы промышленного класса, чтобы продлить срок их службы: Знание того, как работает батарея, поможет вам оптимизировать способ зарядки и разрядки, чтобы максимально использовать возможности вашей перезаряжаемой батареи

  • Главный совет 2: Уважайте процесс зарядки CCCV, особенно в плавающем режиме (зарядное устройство — ваш лучший друг).
  • Главный совет 3: Тщательно спроектируйте свою BMS (другого вашего лучшего друга) , особенно при использовании многоячеечной аккумуляторной батареи.
  • Полезный совет 4: Уменьшите время зарядки C rate: При низкой скорости зарядки ионы плавно внедряются в электрод, что продлевает срок службы батареи.
  • Совет 5. Контролируйте температуру зарядки: Аккумуляторы лучше всего работают при зарядке при температуре окружающей среды. Высокие или низкие температуры приводят к преждевременному старению аккумулятора.
  • См. нашу следующую статью, предлагающую дополнительные советы по оптимизации работы литий-ионной батареи!

    Для получения дополнительной информации о серии аккумуляторов Saft MP посетите страницу продукта: https://www.saftbatteries.com/products-solutions/products/mp-small-vl

    А если вы хотите узнать больше о том, как работают наши аккумуляторы, ознакомьтесь с нашими примерами из практики:
    Fuji Tecom предотвращает утечку воды и обеспечивает более эффективную работу благодаря инновационному детектору протечки воды 
    Kongsberg Seatex AS : автономный Saft аккумуляторное решение для наблюдения за морем, несмотря на сильный холод на архипелаге Шпицберген
     

    Как заряжать литий-железо-фосфатные (LiFePO4) батареи

    Если вы недавно приобрели или изучаете литий-железо-фосфатные батареи (в этом блоге они называются литий или LiFePO4), вы знаете, что они обеспечивают большее количество циклов, равномерное распределение мощности и весят меньше, чем сопоставимые герметичные свинцово-кислотные батареи (SLA). ) батарея. Знаете ли вы, что они также могут заряжаться в четыре раза быстрее, чем SLA? Но как именно вы заряжаете литиевую батарею?

    Power Sonic рекомендует выбирать зарядное устройство, разработанное с учетом химического состава вашей батареи. Это означает, что при зарядке литиевых аккумуляторов мы рекомендуем использовать литиевое зарядное устройство, такое как серия зарядных устройств LiFe от Power Sonic.

    МОЖЕТ ЛИ ЗАРЯДИТЬ ЛИТИЕВУЮ АККУМУЛЯТОРНУЮ БАТАРЕЮ ОТ СВИНЦОВО-КИСЛОТНОГО УСТРОЙСТВА?

    Как вы узнаете из этого блога, профили зарядки SLA и лития во многом схожи. Тем не менее, следует проявлять особую осторожность при использовании зарядных устройств SLA для зарядки литиевых батарей, поскольку они могут привести к повреждению, недозаряду или снижению емкости литиевой батареи с течением времени. Есть много различий при сравнении литиевых и SLA-аккумуляторов.

    ПРОФИЛЬ ЗАРЯДКИ ГЕРМЕТИЧНОЙ СВИНЦОВО-КИСЛОТНОЙ (SLA) АККУМУЛЯТОРНОЙ БАТАРЕИ

    Вернемся к основам зарядки герметичной свинцово-кислотной аккумуляторной батареи. Наиболее распространенным методом зарядки является трехэтапный подход: первоначальный заряд (постоянный ток), заряд до насыщения (постоянное напряжение) и плавающий заряд.

    В Stage 1 , как показано выше, ток ограничен во избежание повреждения аккумулятора. Скорость изменения напряжения постоянно меняется на этапе 1, в конечном итоге выходя на плато, когда приближается предел напряжения полного заряда. Постоянный ток/этап 1 заряда имеет решающее значение перед переходом к следующему этапу. Зарядка на этапе 1 обычно выполняется при токе 10–30 % (от 0,1 до 0,3 °C) от номинальной емкости аккумулятора или меньше.

    Этап 2 , постоянное напряжение, начинается, когда напряжение достигает предела напряжения (14,7 В для быстрой зарядки аккумуляторов SLA, 14,4 В для большинства других). На этом этапе потребляемый ток постепенно уменьшается по мере продолжения заряда батареи. Этот этап завершается, когда ток падает ниже 5% от номинальной емкости батареи. Последняя стадия, подзарядка, необходима для предотвращения саморазряда и потери емкости аккумулятора.

    Этап 3 используется, если батарея используется в резервном режиме. Плавающий заряд необходим для обеспечения полной емкости батареи, когда требуется ее разрядка. В приложениях, где батарея находится на хранении, подзарядка поддерживает батарею SLA в состоянии 100% заряда (SOC), что необходимо для предотвращения сульфатации батареи, что, следовательно, предотвращает повреждение пластин батареи.

    ПРОФИЛЬ ЗАРЯДКИ БАТАРЕИ LIFEPO4

    Батарея LiFePO4 использует те же ступени постоянного тока и постоянного напряжения, что и батарея SLA. Несмотря на то, что эти две стадии похожи и выполняют одну и ту же функцию, преимущество батареи LiFePO4 заключается в том, что скорость зарядки может быть намного выше, что значительно сокращает время зарядки.

    Стадия 1 зарядка аккумулятора обычно выполняется при токе 30–100 % (от 0,3 до 1,0 °C) от номинальной емкости аккумулятора. Этап 1 приведенной выше таблицы SLA занимает четыре часа. Этап 1 литиевой батареи может занять всего один час, что делает литиевую батарею доступной для использования в четыре раза быстрее, чем SLA. На приведенной выше диаграмме показано, что литиевая батарея заряжается всего при 0,5°C и при этом заряжается почти в 3 раза быстрее! Как показано на приведенной выше диаграмме, литиевая батарея заряжается всего при 0,5°C и при этом заряжается почти в 3 раза быстрее!

    Стадия 2 необходима в обеих химиях для доведения батареи до 100% SOC. Аккумулятору SLA требуется 6 часов для завершения этапа 2, в то время как литиевому аккумулятору может потребоваться всего 15 минут. В целом, литиевая батарея заряжается за четыре часа, а батарея SLA обычно занимает 10 часов. В циклических приложениях время зарядки очень важно. Литиевый аккумулятор можно заряжать и разряжать несколько раз в день, тогда как свинцово-кислотный аккумулятор можно полностью заряжать только один раз в день.

    Где они отличаются в профилях зарядки Этап 3 . Литиевая батарея не нуждается в плавающем заряде, как свинцово-кислотная. При длительном хранении литиевая батарея не должна храниться при 100% SOC, и поэтому ее можно обслуживать с полным циклом (зарядкой и разрядкой) каждые 6–12 месяцев, а затем хранить при зарядке только до 50% SoC.

    В режиме ожидания, поскольку скорость саморазряда лития настолько низка, литиевая батарея будет работать почти на полную мощность, даже если она не заряжалась в течение 6–12 месяцев. Для более длительных периодов времени рекомендуется система зарядки, которая обеспечивает дозарядку в зависимости от напряжения. Это особенно важно для наших аккумуляторов Bluetooth, где модуль Bluetooth потребляет очень небольшой ток от аккумулятора, даже когда он не используется.

    ХАРАКТЕРИСТИКИ ЗАРЯДА ЛИТИЕВОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ

    Настройки напряжения и тока во время зарядки

    Напряжение холостого хода при полной зарядке (OCV) 12-вольтовой батареи SLA номинально составляет 13,1, а OCV при полной зарядке 12-вольтовой литиевой батареи составляет около 13,6. Аккумулятор может быть поврежден только в том случае, если приложенное зарядное напряжение значительно превышает напряжение полного заряда аккумулятора.

    Это означает, что напряжение батареи SLA должно быть ниже 14,7 В для зарядки Stage 2 и ниже 15 В для литиевых. Плавающая зарядка требуется только для батареи SLA, рекомендуется около 13,8 В. Исходя из этого, диапазон зарядного напряжения от 13,8 В до 14,7 В достаточен для зарядки любой батареи без повреждения. При выборе зарядного устройства для любого химического состава важно выбрать то, которое останется в пределах, перечисленных выше.

    Зарядные устройства выбираются в соответствии с емкостью заряжаемой батареи, поскольку ток, используемый во время зарядки, зависит от номинальной емкости батареи. Литиевая батарея может заряжаться со скоростью 1C, тогда как свинцово-кислотная батарея должна поддерживаться при температуре ниже 0,3C. Это означает, что литиевую батарею емкостью 10 Ач обычно можно заряжать током 10 А, а свинцово-кислотную батарею емкостью 10 Ач можно заряжать током 3 А.

    Ток отсечки заряда составляет 5% от емкости, поэтому отсечка для обеих батарей будет 0,5А. Как правило, установка тока терминала определяется зарядным устройством.

    Универсальные зарядные устройства обычно имеют функцию выбора химического состава. Эта функция выбирает оптимальный диапазон зарядного напряжения и определяет, когда аккумулятор полностью заряжен. Если он заряжает литиевую батарею, зарядное устройство должно отключиться автоматически. Если он заряжает аккумулятор SLA, он должен переключиться на плавающий заряд.

    Литиевые батареи вместо герметичных свинцово-кислотных в устройствах с плавающей запятой

    Очень часто литиевые батареи используются в приложениях, в которых батареи SLA должны поддерживаться в режиме плавающего заряда, например, в системе ИБП. Были некоторые опасения, безопасно ли это для литиевых батарей. Обычно допустимо использовать стандартное зарядное устройство SLA постоянного напряжения с нашими литиевыми батареями, если оно соответствует определенным стандартам.

    При использовании зарядного устройства SLA с постоянным напряжением зарядное устройство должно соответствовать следующим условиям:
    — Зарядное устройство не должно иметь настройки десульфатации
    — Напряжение быстрой/массовой зарядки 14,7 В
    — Рекомендуемое напряжение подзарядки 13,8 В

    В качестве примечания, некоторые интеллектуальные или многоступенчатые зарядные устройства SLA имеют функцию, которая определяет напряжение холостого хода (в качестве примечания, некоторые интеллектуальные или многоступенчатые зарядные устройства SLA имеют функцию, которая определяет напряжение холостого хода (OCV). разряженная литиевая батарея, находящаяся в режиме защиты, будет иметь OCV около 0 В. Этот тип зарядного устройства предполагает, что эта батарея разряжена, и не будет пытаться ее зарядить. Зарядное устройство с литиевой настройкой попытается восстановить или «разбудить» переразряженная литиевая батарея, находящаяся в режиме защиты

    Долгосрочное хранение

    Если вам нужно хранить батареи хранение в течение длительного периода, есть несколько вещей, которые следует учитывать в качестве Требования к хранению различны для SLA и литиевых батарей. Есть два Основные причины, по которым хранение SLA отличается от хранения литиевой батареи.

    Первая причина заключается в том, что химический состав батареи определяет оптимальный SOC для хранения. Аккумулятор SLA следует хранить как можно ближе к 100% SOC, чтобы избежать сульфатирования, которое вызывает накопление кристаллов сульфата на пластинах. Накопление кристаллов сульфата снижает емкость аккумулятора.

    Для литиевой батареи структура положительного вывода становится нестабильной при истощении электронов в течение длительных периодов времени. Нестабильность плюсовой клеммы может привести к необратимой потере емкости. По этой причине литиевая батарея должна храниться при температуре около 50% SOC, которая равномерно распределяет электроны на положительной и отрицательной клеммах. Для получения подробных рекомендаций по долгосрочному хранению литиевых батарей ознакомьтесь с этим руководством по хранению литиевых батарей.

    Вторым фактором, влияющим на хранение, является скорость саморазряда. Высокая скорость саморазряда батареи SLA означает, что вы должны поставить ее на подзарядку или подзарядку, чтобы поддерживать ее SOC как можно ближе к 100%, чтобы избежать необратимой потери емкости. Для литиевой батареи, которая имеет гораздо более низкую скорость разряда и не требует 100% SOC, вы можете обойтись минимальной подзарядкой для обслуживания.

    Рекомендуемые зарядные устройства для аккумуляторов

    Всегда важно, чтобы зарядное устройство соответствовало вашему зарядному устройству, чтобы обеспечить правильный ток и напряжение для заряжаемого аккумулятора. Например, вы не будете использовать зарядное устройство на 24 В для зарядки аккумулятора на 12 В. Также рекомендуется использовать зарядное устройство, соответствующее химическому составу вашей батареи, за исключением приведенных выше примечаний о том, как использовать зарядное устройство SLA с литиевой батареей. Кроме того, при зарядке литиевой батареи с помощью обычного зарядного устройства SLA вы должны убедиться, что зарядное устройство не имеет режима десульфатации или режима разряженной батареи.

    Если у вас есть какие-либо вопросы о существующей возможности зарядного устройства с одним из наших продуктов, пожалуйста, позвоните нам или отправьте нам электронное письмо. Мы будем рады помочь вам с вашими потребностями в зарядке.

    Вас также может заинтересовать…
    Полное руководство по зарядке электромобилей уровня 2

    Категории: Блог, Эвеско

    Это подробное руководство по зарядке электромобилей (EV) уровня 2 охватывает все, от скоростей зарядки уровня 2 и типов зарядных устройств до…

    Подробнее…

    Типы разъемов для зарядки электромобилей: полное руководство

    Категории: Блог, Эвеско

    Популярность электромобилей (EV) продолжает расти во всем мире благодаря их экологически чистой энергии и эффективной работе.

    Автор: alexxlab

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *