Никель кадмиевые аккумуляторы устройство: Никель-кадмиевые аккумуляторы: особенности, плюсы и минусы

Содержание

Никель кадмиевые аккумуляторы устройство – Морской флот

Сегодня одним из самых популярных видов пополнения энергии бытовой техники являются никель-кадмиевые аккумуляторы. Это довольно простое в эксплуатации устройство, которое при правильном обращении прослужит достаточно длительный промежуток времени. Как правильно обращаться с никель-кадмиевыми аккумуляторами, следует рассмотреть подробнее.

Общая характеристика

Никель-кадмиевый аккумулятор устроен так, что при низком внутреннем сопротивлении он может отдавать достаточно большой ток. Такие аккумуляторы выдерживают даже короткое замыкание.

Аккумуляторы представленного типа легко выдерживают длительные нагрузки. При понижении температуры окружающей среды их работоспособность практически не меняется.

Никель-кадмиевые аккумуляторы уступают другим видам в емкости. Однако их высокая отдача делает батареи одними из самых популярных и востребованных в области портативной техники.

Для приборов с электродвигателями, которые потребляют большие токи, применение таких зарядных устройств, как аккумуляторы никель-кадмиевого типа, просто незаменимо.

Разрядные токи, на которых они используются, находятся в диапазоне 20-40 А. Предельная нагрузка для NiCd-аккумуляторов составляет 70 А.

Преимущества

Представленные устройства обладают рядом преимуществ. Они способны работать в широком диапазоне токов разряда и заряда, а также температуры.

Заряжать аккумуляторы никель-кадмиевого типа можно при низких температурах, что объясняется высокой нагрузочной способностью. Они не требовательны к типу затяжного устройства. Это существенное преимущество. Оно выделяет устройство из массы других разновидностей, так как зарядить никель-кадмиевый аккумулятор можно в любых условиях. Он устойчив к механическим нагрузкам, пожаробезопасен. Аккумуляторы никель-кадмиевой разновидности имеют более 1000 циклов зарядки и обладают способностью восстановления после понижения емкости.

Низкая стоимость вместе с перечисленными преимуществами делают NiCd-аккумуляторы очень популярными.

Недостатки

Устройство никель-кадмиевого аккумулятора имеет и ряд недостатков. Основным из них является “эффект памяти”.

Заряд никель-кадмиевых аккумуляторов чем дальше, тем больше будет терять свою эффективность. Источник будет иметь всё меньшую емкость.

Недостатком также является высокий саморазряд в течение первых суток до 10 % после зарядки. Минусом можно считать также большие габариты.

Зарядка

Чтобы разобраться, как заряжать никель-кадмиевые аккумуляторы, следует учесть ряд особенностей этого процесса.

Быстрый режим зарядки для представленных источников питания предпочтительнее, чем медленный. Импульсное пополнение емкости для них лучше, чем постоянный ток.

Рекомендуется выполнять восстановление устройства. Этого требуют никель-кадмиевые аккумуляторы. Как заряжать их подобным методом, учли производители соответствующих устройств. Реверсивный заряд ускоряет процесс благодаря рекомбинации газов, выделяющихся во время его проведения.

Представленная техника осуществления восстановления подобных батарей позволяет увеличить срок эксплуатации до 15 %. Как зарядить никель-кадмиевый аккумулятор? Существует целая технология. Некоторые пользователи для увеличения отдачи источника питания применяют быструю зарядку с последующей дозаправкой слабыми токами. Это позволяет более плотно наполнить аккумулятор.

Хранение и утилизация

Хранить представленные батареи следует в разряженном состоянии. Существуют зарядные устройства, в которых предусмотрена функция разряда. Если же таковой не имеется, перед хранением никель-кадмиевые аккумуляторы опустошают при помощи лампы накаливания с допустимым током 3-20 А. Батарею подключают к ней и ждут, пока спираль не начнет краснеть.

Такая процедура позволит хранить устройство довольно длительное время. Причем условия окружающей среды, перепады температуры не будут иметь воздействия на устройство.

Если требуется утилизировать представленную разновидность батарей, следует отдать их на особый пункт приема подобных устройств. Во всех развитых странах они есть. Это связано с наличием в аккумуляторе кадмия. По своей токсичности он сопоставим с ртутью.

Понимая технологию того, как зарядить никель-кадмиевый аккумулятор, хранить его и утилизировать, можно не сомневаться в безопасности и долговечности этого источника питания. Он не навредит экологии и здоровью человека при ответственной утилизации батарей.

Восстановление

Аккумуляторы никель-кадмиевого типа являются единственной разновидностью подобных устройств, которые нуждаются в восстановлении.

Для проведения восстановления существует два типа устройств. Первое называется реверсивно-импульсным зарядным устройством с разным временем продолжительности. Это очень эффективное устройство, но сложное и дорогостоящее. Восстановление никель-кадмиевых аккумуляторов можно выполнять более простым устройством. Оно совершает цикл разряда-заряда автоматически. Такое устройство дешевле, удобнее и позволяет заряжать сразу 2-4 батареи.

Для проведения процесса необходимо вставить аккумуляторы в кассету оборудования. При помощи переключателя задается число аккумуляторов. Включение прибора в сеть приведет в действие индикатор. Красный цвет соответствует зарядке, а желтый – разрядке. Зеленый свет индикатора оповещения о прекращении процесса. Разряжать батареи следует принудительно. Для этого на приборе необходимо переключить определенный рычаг. После окончания разрядки устройство продолжит процесс зарядки автоматически.

Ознакомившись с основными характеристиками такого источника питания, как никель-кадмиевые аккумуляторы, можно правильно их эксплуатировать. Придерживаясь инструкции производителя, регулярно выполняя восстановление батарей, можно значительно продлить их срок службы. Правильно утилизируя представленное устройство, достаточно просто будет обезопасить себя, других людей и экологию в целом от токсического воздействия кадмия.

Аккумуляторы Ni-Cd используются в подавляющем большинстве электронных устройств и портативных инструментов. В последние годы производители стремятся заменить их Li-ion батареями, но из-за дороговизны последних полное замещение произойдет нескоро. К тому же, несмотря на некоторые недостатки, Ni-Cd battery в эксплуатации безопаснее литий-ионных аккумуляторов.

История создания

Полноценные щелочные аккумуляторы были разработаны в конце 19 века швейцарским ученым Вальдемаром Юнгером. При этом никелю отводилась роль положительного электрода, а кадмию — отрицательного.

Через пару лет конструкция первого Ni-Cd аккумулятора была улучшена Эдисоном. Он предложил сделать отрицательный электрод из железа, чтобы удешевить батарею. Однако даже после этого Ni-Cd аккумуляторы оставались настолько дорогими, что их промышленное производство было отложено на 50 лет.

В 1932 ученые Шлехт и Акерман предложили технологию прессованного анода, позволявшую значительно повысить ток батареи и ее долговечность. В серию эти Ni-Cd аккумуляторные батареи пошли лишь после разработки Ньюманом герметичного корпуса для них. Произошло это в 1947 г.

Основные преимущества и недостатки

Аккумуляторы с никелем и кадмием имеют различные формы. Самыми распространенными являются цилиндрические батареи. Чуть меньше распространены плоские батарейки в виде таблеток для часов.

Эти АКБ имеют следующие преимущества:

  • У Ni-Cd АКБ достаточно прочный металлический корпус. Он способен как выдержать внешнее физическое воздействие, так и противостоять внутренним химическим реакциям.
  • Такие аккумуляторные батареи способны пережить замораживание до -40°С.
  • Такие батареи считаются пожаробезопасными. В отличие от своих литий-ионных собратьев они не воспламеняются во время зарядки, эксплуатации и хранения.
  • Еще одно важное преимущество — невысокая стоимость. Низкая цена делает эти аккумуляторы очень привлекательными.
  • Независимо от формы зарядные элементы этого типа имеют небольшую емкость в сравнении Ni-MH батареями, разработанными значительно позже. Но меньшая емкость — не повод отказываться от кадмиевых аккумуляторов. Дело в том, что при использовании они нагреваются существенно медленнее, чем никель-металл-гидридные батареи.

Медленное нагревание объясняется эндотермическим характером реакций, протекающих внутри аккумуляторной батареи. Тепловая энергия поглощается самим аккумулятором. В никель-металл-гидридных АКБ тепло, напротив, выделяется наружу. Выделение тепла настолько существенное, что если вовремя не прекратить использовать МН аккумуляторов, то они могут выйти из строя.

Эти батареи имеют следующие недостатки:

  • Невысокая энергетическая емкость в сравнении с другими типами АКБ.
  • Эффект памяти. При неполном разряде с последующей зарядкой емкость аккумулятора постепенно уменьшается.
  • Материалы, применяемые при изготовлении этих аккумуляторов, считаются токсичными. Из-за этого в некоторых странах их запретили.
  • Достаточно высокий саморазряд. После длительного хранения нужно полностью зарядить аккумулятор.

Несмотря на эти недостатки, такие АКБ сегодня широко применяются в авиационной промышленности, военной технике и устройствах, обеспечивающих мобильную связь. В форме таблеток они востребованы в компьютерах и электронных часах.

Конструкция аккумулятора

Устройство Ni-Cd аккумулятора довольно простое. В нем есть положительный и отрицательный электроды. Они разделены перегородкой, называемой сепаратором. Каждый электрод погружен в щелочную среду.

Положительный электрод состоит из оксид-гидроксида никеля, а отрицательный из кадмия, заключенного в термопластичную полимерную смолу. Роль электролита играет гидроксид калия. У этого вещества нет запаха. К его преимуществам можно отнести хорошую пожаробезопасность.

Электроды в никель-кадмиевой АКБ очень тонкие. Это сделано специально для увеличения площади их поверхности. Разделительная перегородка изготавливается из нетканого материала нейтрального по отношению к щелочи. Во время реакции гидроксид калия, являющийся сильной щелочью, не расходуется.

Роль клеммы играет токовыводящий элемент, называемой борном. Он плотно закреплен в корпусе.

Особенности эксплуатации батарей

Максимальный срок эксплуатации этих аккумуляторов возможен только в том случае, если их полностью разряжать. Если этого не делать, то эффективная площадь электродов уменьшается.

Эффект памяти заключается в том, что АКБ запоминает нижнее значение разряда при подключении к зарядной станции. В результате оставшаяся энергия не учитывается. Это приводит к прекращению зарядки при достижении нижней точки разряда.

Эффекта памяти можно избежать, если перед зарядкой искусственно разрядить аккумуляторы до напряжения в 0,9 вольта. Такие манипуляции увеличат срок службы АКБ. При искусственной разряде следует быть осторожными, поскольку преодоление минимального порога может вывести батарею из строя.

Опытные пользователи рекомендуют перед установкой в устройство тренировать Ni-Cd батарейки. Тренировка заключается в нескольких полных циклах разряд-заряд. Эти манипуляции позволяют вывести батареи на заявленные производителем параметры. Кроме того, аккумуляторные элементы начинают лучше держать нагрузку, и у них уменьшается эффект памяти.

К процессу тренировки также рекомендуется прибегать после длительного хранения Hi-Cd аккумуляторов. Причем заряд нужно осуществлять низким током.

Не рекомендуется заряжать эти батарейки перед длительным хранением. Эти элементы в разряженном виде не утрачивают свои характеристики.

Виды зарядных устройств

Для заряда никель-кадмиевых аккумуляторов рекомендуется использовать специальные зарядные устройства. Они бывают автоматическими и реверсивными импульсными.

Автоматические зарядки

Автоматические ЗУ устроены просто и стоят очень дешево. Как правило, у них четыре ячейки под батареи. Причем одновременно можно заряжать как 4, так и 2 аккумулятора. Для начала заряда нужно просто вставить банки в ЗУ и подключить его к сети.

Если требуется быстро и безопасно восстановить никель-кадмиевые аккумуляторные батареи, то лучше всего прибегнуть к методу восстановления дистиллированной водой. Он гарантированно оживляет нерабочие аккумуляторы.

Никель-ка́дмиевый аккумуля́тор (NiCd) — вторичный химический источник тока, в котором катодом является гидрат закиси никеля Ni(OH)2 с графитовым порошком (около 5–8%), электролитом — гидроксид калия KOH плотностью 1,19–1,21 с добавкой гидроксида лития LiOH (для образования никелатов лития и увеличения ёмкости на 21–25%), анодом — гидрат закиси кадмия Cd(OH)2 или металлический кадмий Cd (в виде порошка). ЭДС никель-кадмиевого аккумулятора — около 1,37 В, удельная энергия — порядка 45–65 Вт·ч/кг. В зависимости от конструкции, режима работы (длительные или короткие разряды) и чистоты применяемых материалов, срок службы составляет от 100 до 900 циклов заряда-разряда. Современные (ламельные) промышленные никель-кадмиевые батареи могут служить до 20–25 лет. Никель-кадмиевые аккумуляторы (NiCd) наряду с Никель-Солевыми аккумуляторами могут храниться разряженными, в отличие от никель-металл-гидридных (NiMH) и литий-ионных аккумуляторов (Li-ion), которые нужно хранить заряженными.

Содержание

История изобретения [ править | править код ]

В 1899 году Вальдмар Юнгнер (Waldmar Jungner) из Швеции изобрёл никель-кадмиевый аккумулятор, в котором в качестве положительного электрода использовался никель, а в качестве отрицательного — кадмий. Двумя годами позже Эдисон (Edison) предложил альтернативную конструкцию, заменив кадмий железом. Из-за высокой (в сравнении с сухими или свинцово-кислотными аккумуляторами) стоимости, практическое применение никель-кадмиевых и никель-железных аккумуляторов было ограниченным.

После изобретения в 1932 году Шлехтом (Shlecht) и Акерманом (Ackermann) спрессованного анода было внедрено много усовершенствований, что привело к более высокому току нагрузки и повышенной долговечности. Хорошо известный сегодня герметичный никель-кадмиевый аккумулятор стал доступен только после изобретения Ньюманом (Neumann) полностью герметичного элемента в 1947 году.

Принцип действия [ править | править код ]

Принцип действия никель-кадмиевых аккумуляторов основан на обратимом процессе:

2NiOOH + Cd + 2H2O ↔ 2Ni(OH)2 + Cd(OH)2 E 0 = 1,37 В.

Никелевый электрод представляет собой пасту гидроксида никеля, смешанную с проводящим материалом и нанесенную на стальную сетку, а кадмиевый электрод — стальную сетку с впрессованным в неё губчатым кадмием. Пространство между электродами заполнено желеобразным составом на основе влажной щелочи, который замерзает при -27°С [1] . Индивидуальные ячейки собирают в батареи, обладающие удельной энергией 20–35 Вт*ч/кг и имеющие большой ресурс — несколько тысяч зарядно-разрядных циклов.

Параметры [ править | править код ]

  • Теоретическая энергоёмкость: 237 Вт·ч/кг
  • Удельная энергоёмкость: 45–65 Вт·ч/кг
  • Удельная энергоплотность: 50–150 Вт·ч/дм³
  • Удельная мощность: 150…500 Вт/кг
  • ЭДС = 1,37 В
  • Рабочее напряжение = 1,35…1,0 В
  • Нормальный ток зарядки = 0,1…1 C, где С — ёмкость
  • Срок службы: около 100—900 циклов заряда/разряда.
  • Саморазряд: 10% в месяц
  • Рабочая температура: −50…+40 °C

В настоящее время использование никель-кадмиевых аккумуляторов сильно ограничено по экологическим соображениям, поэтому они применяются только там, где использование других систем невозможно, а именно — в устройствах, характеризующихся большими разрядными и зарядными токами. Типичный аккумулятор для летающей модели можно зарядить за полчаса, а разрядить за пять минут. Благодаря очень низкому внутреннему сопротивлению аккумулятор не нагревается даже при зарядке большим током. Только когда аккумулятор полностью зарядится, начинается заметный разогрев, что и используется большинством зарядных устройств как сигнал окончания зарядки. Конструктивно все никель-кадмиевые аккумуляторы оснащены прочным герметичным корпусом, который выдерживает внутреннее давление газов в тяжёлых условиях эксплуатации.

Цикл разряда начинается с 1,35 В и заканчивается на 1,0 В (соответственно 100% ёмкости и 1% оставшейся ёмкости)

Электроды никель-кадмиевых аккумуляторов изготавливаются как штамповкой из листа, так и прессованием из порошка. Прессованные электроды более технологичны, дешевле в производстве и обладают более высокими показателями рабочей ёмкости, в связи с чем все аккумуляторы бытового назначения имеют прессованные электроды. Однако прессованные системы подвержены так называемому «эффекту памяти». Эффект памяти проявляется, когда аккумулятор подвергают зарядке раньше, чем он реально разрядится. В электрохимической системе аккумулятора появляется «лишний» двойной электрический слой и его напряжение снижается на 0,1 В. Типичный контроллер устройства, использующего аккумулятор, интерпретирует это снижение напряжения как полный разряд батареи и сообщает, что батарея «плохая». Реального снижения энергоёмкости при этом не происходит, и хороший контроллер может обеспечить полное использование ёмкости аккумулятора. Тем не менее, в типичном случае контроллер побуждает пользователя выполнять всё новые и новые циклы зарядки. А это и приводит к тому, что пользователь своими руками, из лучших побуждений, «убивает» батарею. То есть можно сказать, что батарея выходит из строя не столько от «эффекта памяти» прессованных электродов, сколько от «эффекта беспамятства» недорогих контроллеров.

Бытовой никель-кадмиевый аккумулятор, разряжаемый и заряжаемый слабыми токами (например, в пульте дистанционного управления телевизора), быстро теряет ёмкость, и пользователь считает его вышедшим из строя. Так же и аккумулятор, длительное время стоявший на подзарядке (например, в системе бесперебойного питания) потеряет ёмкость, хотя его напряжение будет правильным. То есть использовать никель-кадмиевый аккумулятор в буферном режиме нельзя. Тем не менее, один цикл глубокой разрядки и последующая зарядка полностью восстановят ёмкость аккумулятора.

При хранении NiCd-аккумуляторы также теряют ёмкость, хотя и сохраняют выходное напряжение. Чтобы избежать неверной разбраковки при снятии аккумуляторов с хранения, рекомендуется хранить их в разряженном виде — тогда после первой же зарядки аккумуляторы будут полностью готовы к использованию. Для полной разрядки батареи и выравнивания напряжений на каждом разряжаемом элементе можно подключить цепочку из двух кремниевых диодов и резистора на каждый элемент, тем самым ограничив напряжение на уровне 1-1.1 В на элемент. При этом падение напряжения на каждом кремниевом диоде составляет 0,5–0,7 В, поэтому выбирать диоды для цепочки необходимо вручную, используя, например, мультиметр. После длительного хранения батареи необходимо провести два-три цикла заряд/разряд током, численно равным номинальной ёмкости (1C), чтобы она вошла в рабочий режим и работала с полной отдачей.

Области применения [ править | править код ]

Малогабаритные никель-кадмиевые аккумуляторы используются в различной аппаратуре как замена стандартного гальванического элемента, особенно если аппаратура потребляет большой ток. Так как внутреннее сопротивление никель-кадмиевого аккумулятора на один-два порядка ниже, чем у обычных марганцево-цинковых и марганцево-воздушных батарей, мощность выдаётся стабильнее и без перегрева.

Никель-кадмиевые аккумуляторы применяются на электрокарах (как тяговые), трамваях и троллейбусах (для питания цепей управления), речных и морских судах. Широко применяются в авиации в качестве бортовых аккумуляторных батарей самолётов и вертолётов. Используются как источники питания для автономных шуруповёртов/винтовёртов и дрелей, однако здесь намечается тенденция к вытеснению их высокотоковыми батареями различных литиевых систем.

Несмотря на развитие других электрохимических систем и ужесточение экологических требований, никель-кадмиевые аккумуляторы остаются основным выбором для высоконадёжных устройств, потребляющих большую мощность, например фонарей для дайвинга.

Длительный срок хранения, относительная нетребовательность к постоянному уходу и контролю, способность стабильно работать на морозе до -40 °C и отсутствие возможности возгорания при разгерметизации в сравнении с литиевыми, малый удельный вес в сравнении со свинцовыми и дешевизна в сравнении с серебряно-цинковыми, меньшее внутренне сопротивление, большая надёжность и морозостойкость в сравнении с NiMH обуславливают по-прежнему широкое применение никель-кадмиевых аккумуляторов в военной технике, авиации и портативной радиосвязи.

Дисковые никель-кадмиевые аккумуляторы [ править | править код ]

Никель-кадмиевые аккумуляторы выпускаются также в герметичном “таблеточном” конструктиве, наподобие батареек для часов. Электроды в таком аккумуляторе — две прессованные тонкие таблетки из активной массы, сложенные в пакет с сепаратором и плоской пружиной и завальцованные в никелированный стальной корпус диаметром с монету. Используются для питания различных, в основном маломощных, нагрузок (током C/10-C/5). Допускают только небольшие зарядные токи, не более С/10, так как внутри корпуса должна успевать происходить рекомбинация выделяющихся газов. Благодаря замкнутой конструкции допускают длительный перезаряд с непрерывной рекомбинацией и выделением избыточной энергии в виде тепла. Напряжение такого аккумулятора ниже, чем у негерметичного, и мало изменяется в процессе разряда вследствие избытка активной массы катода, создаваемого с целью ускорения рекомбинации кислорода.

Дисковые аккумуляторы (как правило, в батареях по 3 шт. в общей оболочке, типоразмера аналогичного советскому Д-0,06) широко применялись в персональных компьютерах выпуска 1980–90 годов, в частности PC-286/386 и ранних 486, для питания энергонезависимой памяти настроек (CMOS NVRAM) и часов реального времени при отключенном сетевом питании. Срок службы аккумуляторов в таком режиме составлял несколько лет, после чего батарея, в большинстве случаев — впаянная в материнскую плату, подлежала замене. С развитием CMOS-технологии и уменьшением потребляемой мощности NVRAM и RTC аккумуляторы были вытеснены одноразовыми литиевыми элементами ёмкостью порядка 200 мА·ч (CR2032 и др.), устанавливаемыми в гнёзда-защёлки и легко заменяемыми пользователем, с аналогичным сроком непрерывной работы.

В СССР дисковые аккумуляторы были практически единственными доступными в широкой продаже аккумуляторами (кроме автомобильных и, позднее, NiCd размера AA на 450 мА·ч). Помимо отдельных элементов, предлагалась 9-вольтовая батарея из семи аккумуляторов Д-0,1 с разъёмом, аналогичным “Кроне”, которая, однако, входила в отсек питания не у всех радиоприёмников, для которых предназначалась. Поставлялись только простейшие зарядные устройства с током С/10, заряжавшие аккумулятор или батарею примерно за 14 часов (время контролировалось пользователем).

Название
аккумулятора
Диаметр,
мм
Высота,
мм
Напряжение,
В
Ёмкость,
А*ч
Рекомендуемый
ток разряда, мА
Применение
Д-0,0311,65,51,20,033фотоаппараты,
слуховые аппараты
Д-0,0615,66,41,20,0612фотоаппараты, фотоэкспонометры,
слуховые аппараты, дозиметры
Д-0,125206,61,20,12512,5аккумуляторные электрические фонарики [ уточнить ] , миниатюрные радиоприёмники
Д-0,2625,29,31,20,2626аккумуляторные электрические фонарики, фотовспышки, калькуляторы (Б3-36)
Д-0,5534,69,81,20,5555прицел ночного видения 1ПН58 (блок из пяти Д-0.55С), фотовспышки, аккумуляторные электрические фонарики, калькуляторы (Б3-34)[1]
7Д-0,1258,40,12512,5замена батарее Крона

Производители [ править | править код ]

NiCd-аккумуляторы производят множество фирм, в том числе такие крупные интернациональные компании, как GP Batteries, Samsung (под брендом Pleomax), VARTA, GAZ, Konnoc, Metabo, EMM, Advanced Battery Factory, Panasonic/Matsushita Electric Industrial, Ansmann и др. Среди отечественных производителей можно назвать НИАИ (создан на базе Центральной аккумуляторной лаборатории, 1946 г.), “Космос”, ЗАО “Опытный завод НИИХИТ”, ЗАО “НИИХИТ-2”.

Безопасная утилизация [ править | править код ]

Плавка продуктов утилизации NiCd-аккумуляторов происходит в печах при высоких температурах, кадмий в этих условиях становится чрезвычайно летучим, и в случае, если печь не оборудована специальным улавливающим фильтром, токсичные вещества (например пары кадмия) выбрасываются во внешнюю среду, отравляя окружающие территории. Вследствие этого оборудование для утилизации — более дорогое, чем для утилизации свинцовых батарей.

Как выбрать аккумулятор и зарядное устройство

Аккумуляторный инструмент с каждым годом становится всё популярнее среди профессионалов и мастеров-любителей. Батарея способна накапливать заряд, а потом отдавать её электроприбору. Мобильность, мощность, экологичность, низкий уровень шума и широкие возможности применения, позволяют использовать аккумуляторное оборудование там, куда невозможно протянуть сетевой провод.

Возможности аккумулятора зависят от материалов, из которых он изготовлен. Существуют следующие типы аккумуляторных батарей: никель-кадмиевые, никель-металлогидридные, литий-ионные. Аккумуляторы различаются по химическому составу, производительности, времени эксплуатации и общим функциональным характеристикам.

Никель-кадмиевые аккумуляторы

Никель-кадмиевые аккумуляторы (NiCd) успешно выполняют свои функции при минусовых температурах. Выдерживают более тысячи циклов разряда/заряда. При условии правильного использования, даже после длительного хранения восстанавливают свою ёмкость. Срок эксплуатации такого оборудования может доходить до 20 лет. Из недостатков никель-кадмиевых аккумуляторов можно выделить большой вес и «эффект памяти» – потеря ёмкости, если подзаряжать аккумулятор не потратив полностью заряд батареи, то аккумулятор запоминает эту границу и в следующий рабочий цикл отдаёт энергию только до неё. Минус никель-кадмиевых аккумуляторов в том, что их производство загрязняет окружающую среду.

При неправильном использовании аккумулятора, рабочее вещество внутри постепенно изменяется, при этом снижается напряжение и его ёмкость. Неправильная эксплуатация батареи способна привести к её поломке. Чтобы избежать потери ёмкости, заряжать такие батареи необходимо только после полной разрядки. При частой или не полной подзарядке ёмкость аккумулятора уменьшается. Для длительного хранения следует оставлять батарею полностью разряженной.

Никель-металлогидридные аккумуляторы

Никель-металлогидридные аккумуляторы (NiMH) – в малой степени подвержены «эффекту памяти» по сравнению с никель-кадмиевыми аккумуляторами, а также легче их по весу. Рассчитаны, в среднем, на 500 зарядных циклов. NiMH-батареи экологичны и не содержат вредных для окружающей среды веществ. Хранить их необходимо частично разряженными. Заряжать такое оборудование необходимо только после полной разрядки.

Такие аккумуляторы нельзя использовать при температуре от -10 и более +40 градусов. Для них нежелателен перегрев и частая зарядка.

Хранить оборудование необходимо не при комнатной температуре, а в подсобном помещении, гараже, или прохладной мастерской, но не ниже нуля.

Литий-ионные аккумуляторы

Литий-ионные аккумуляторы (Li-Ion) – это мощные и удобные в использовании батареи, держат большой заряд для продолжительной и эффективной работы. Гораздо меньше по весу и габаритам относительно других видов аккумуляторов. Выдерживают до 600 разрядных/зарядных циклов. Широко используются для бытовых и профессиональных инструментов.

Не обладают «эффектом памяти», такие батареи можно заряжать в любой момент, не дожидаясь полного разряда. Литий-ионные аккумуляторы лучше хранить в тепле, при комнатной температуре не ниже 15 градусов, и разряженными не меньше чем на 40%, чтобы они со временем не теряли свою ёмкость.

Для нормального функционирования аккумулятора требуется его регулярное использование. Полный разряд и заряд батареи нужен только для колибровки параметров. В процессе эксплуатации аккумулятора, если осталось 20% ёмкости, можно ставить его заряжаться до показателя ёмкости 95%, потому что перезаряд также вреден.

Для длительного хранения лучше оставлять зарядку до 50% и держать в помещении при температуре от +15 до +25 градусов.

Не следует оставлять инструмент с аккумулятором на солнце, потому что, перегрев приводит к быстрому старению оборудования. Работа при температуре до -20 градусов не опасна, но не стоит заряжать аккумулятор на морозе – это приводит к потере его свойств.

По соотношению цены, практичности, долговечности использования и другим качественным характеристикам, на сегодняшний день литий-ионные аккумуляторы считаются лучшими аккумуляторными батареями.

Ёмкость, напряжение, сопротивление аккумулятора

Ёмкость аккумулятора одна из основных характеристик, которая определяет сколько времени инструмент сможет работать без подзарядки. Измеряется в Ач – ампер часах. Аккумулятор ёмкостью 1 Ач способен в течение 1 часа выдавать ток в 1А.

Производительность оборудования зависит от напряжения. Чем выше у аккумулятора напряжение, тем дольше он сможет работать и сложнее задачи сможет решать. Диапазон напряжения у шуроповёртов варьируется от 3 до 36В. Аккумуляторные инструменты с напряжением 36В используют для сверления отверстий большого диаметра в твёрдых материалах. Большой популярностью пользуются инструменты с 12-вольтными аккумуляторами. Именно такое оборудование сочетает в себе баланс между продолжительностью работы, производительностью и стоимостью инструмента.

Внутреннее сопротивление аккумулятора измеряется в Омах. Чем сопротивление меньше, тем лучше для работы аккумулятора. В процессе эксплуатации этот параметр со временем будет увеличиваться, понижая напряжение зарядной батареи.

Для работы подходят аккумуляторы чьё напряжение соответствует напряжению, которое указано производителем в паспорте инструмента. Если в инструмент установить батарею с низким напряжением, то его производительность снизится. А если установить аккумулятор со слишком высоким напряжением, то двигатель будет работать на износ, что приведёт к его поломке.

Зарядные устройства

Для подзарядки аккумуляторной батареи используются зарядные устройства. Зарядка аккумулятора осуществляется с помощью встроенных или внешних – выносных зарядных устройств. Встроенное ЗУ позволяет заряжать батарею не извлекая её из инструмента. Выносное ЗУ для подзарядки предполагает извлечение аккумуляторной батареи из инструмента.

Зарядные устройства – это узкоспециализированные приборы, различаются по типу заряжаемых батарей, заряжают литий-ионные, никель-кадмиевые, никель-металлогидридные аккумуляторы. Выдают ток напряжением в 12В, 14,4В и 18В и т.д.

При выборе зарядного устройства следует обратить внимание на следующие опции:

  • наличие индикатора величины заряда, некоторые виды аккумуляторов нельзя перезаряжать слишком сильно, выше определённого показателя;
  • автоматическое отключение при достижении необходимого уровня заряда, что позволяет не следить за зарядкой батареи;
  • функция восстановления ёмкости после неправильного использования аккумулятора, продвинутые зарядники могут восстановить параметры элементов питания батареи и частично исправить «эффект памяти».

Виды зарядных устройств

Приборы для зарядки различаются внутренним наполнением. Выделяют трансформаторные и аналоговые конструкции зарядников, с выносным или встроенным блоком питания. Импульсные или инверторные модели зарядных устройств являются более современными.

Трансформаторные зарядники располагают простой электронной базой, имеют большую массу и габариты. Вес определяется обмоткой трансформатора. Трансформатор со слабой обмоткой выдаёт малый ток.

Аналоговые ЗУ со встроенным блоком питания пользуются большим спросом у покупателей из-за своей невысокой цены. Для домашнего инструмента, как правило, подбирают зарядное устройство с минимальными функциями, обращая внимание только на соответствующую для оборудования токовую нагрузку и скорость заряда.

Аналоговые ЗУ с внешним блоком питания, такое устройство включает в себя сетевой блок и зарядник. Имеют стандартную электронную базу, аналогичную устройствам со встроенным блоком питания. Такие агрегаты не оснащены радиатором для отвода тепла и могут перегреваться.

Импульсные зарядные устройства применяются для зарядки профессионального инструмента. Они отличаются небольшими размерами, высоким зарядным током, системой защиты прибора и батарей, заряжают аккумуляторы в течение одного часа. Сила тока постоянная, выходное напряжение 25В. Это «умные» зарядные устройства, которые перед началом зарядки проверяют состояние источника питания, чтобы установить оптимальное напряжение и силу тока для быстрой зарядки. Импульсные ЗУ защищают батарею от появления эффекта памяти. С таким зарядным устройством полностью разряженный аккумулятор восстанавливает свою ёмкость в среднем за час – полтора часа.

Важно помнить, что если литий-ионную батарею установить в зарядное устройство для никель-кадмиевой батареи, то можно испортить и батарею и зарядник. Чтобы сберечь функции и возможности аккумуляторов необходимо соблюдать все инструкции по эксплуатации оборудования и для их подзарядки использовать фирменные и подходящие зарядные устройства.

Где приобрести аккумуляторную батарею и зарядное устройство?

В магазинах ТМК Инструмент представлен широкий выбор зарядных устройств и аккумуляторных батарей от ведущих современных производителей. Вы сможете подобрать наиболее качественное фирменное оборудование для работы бытового и профессионального инструмента.

Устройство и сравнение аккумуляторных батарей

Современную жизнь невозможно представить без электронных устройств. Для их работы требуются автономные источники питания. Аккумулятор – прибор способный под действием электрического тока накапливать энергию, а затем и отдавать ее в виде того же электрического тока. Рассмотрим различные виды аккумуляторов, их строение, особенности, сильные и слабые стороны.

Свинцово-кислотные – Pb.

Один из самых старых и широко распространенных видов аккумуляторных батарей. Был изобретен аж в 1859 году. Обычно представляют собой именно батарею из трех-шести секций соединенных последовательно. Каждая секция содержит положительный и отрицательный электроды в виде решеток из сплава свинца с добавлением сурьмы и различных примесей. Решетки погружены в электролит – серную кислоту разбавленную дистиллированной водой. В аккумуляторах для бытовых источников бесперебойного питания электролит сгущен раствором силикатов натрия до состояния пасты. На фото батарея для ИБП.

Одна секция в полностью заряженном состоянии выдает 2.11-2.17 вольт, что в сумме, при трех-шести секциях обеспечивает напряжение 6-12 В.

Применяются в автомобилях, источниках бесперебойного питания, аварийном электроснабжении. Можно встретить в ручных галогеновых прожекторах, в некоторых фонарях с раздельным расположением лампы и аккумуляторного блока.

Достоинства. Способны отдавать большой ток, широкий диапазон рабочих температур, относительно малая потеря емкости при отрицательных температурах, не имеют «эффекта памяти», долгий срок службы в благоприятных условиях и при правильном обслуживании.

Недостатки. Большой вес и размеры, подвержены саморазряду при хранении, при глубоком разряде теряют емкость или вообще выходят из строя, некоторые модели требуют обслуживания.

Никель-кадмиевые – NiCd.

Никель-кадмиевые аккумуляторы были изобретены всего на 40 лет позже свинцово-кислотных, но распространения не получили из-за высокой стоимости компонентов для их производства. Первые промышленные изделия появились лишь в середине 20 века.

Широко распространены в виде источников питания для портативной электроники, ручного инструмента. Имеют очень низкое внутреннее сопротивление, за счет чего могут быстро заряжаться и отдавать большие токи. Лучше всего подходят для устройств с непродолжительным высоким потреблением тока. Рабочее напряжение одного элемента – около 1.37 В. Ниже показаны некогда распространенные модели аккумуляторов для портативной электроники.

Это единственный вид аккумуляторов, который рекомендуется хранить в полностью разряженном состоянии. Несколько «тренировочных» циклов – глубокий разряд и полный заряд приводят батарею в работоспособное состояние после длительного хранения.

В области портативной электроники последнее время уступают свои позиции никель-металлгидридным аккумуляторам.

Достоинства. Способность отдавать большие токи и быстро заряжаться, работать при низких температурах, удобство при хранении, долгий срок службы (для промышленных моделей может исчисляться десятилетиями).

Недостатки. Присутствует «эффект памяти», относительно малая емкость, высокий саморазряд при хранении (около 10% в месяц).

Никель-металлгидридные – NiMH.

Были разработаны в 80х годах двадцатого века в качестве замены никель-кадмиевых аккумуляторов и успешно их заменяют во многих областях применения. При равных габаритах имеют примерно на треть большую емкость, но меньший срок службы и больший в 1.5-2 раза саморазряд. При разряде держат стабильное напряжение и резко снижают его при полном истощении элемента. Почти лишены «эффекта памяти», напряжение одного элемента около 1.2 В. Оптимальный режим работы – разряд током не более 0.5 С (где С – номинальная емкость элемента. То есть, при емкости аккумулятора 2000 мАч максимально допустимый ток нагрузки не должен превышать 1 А).Хранить никель-металлгидридные аккумуляторы следует полностью заряженными, при низкой, но не ниже 0 градусов, температуре.

Основное применение – замена батарейкам формата АА или ААА. По внешнему виду и размерам полностью соответствуют никель-кадмиевым.

Достоинства. Отсутствие эффекта памяти, высокая емкость сразу после заряда, стабильное выходное напряжение.

Недостатки. Высокий саморазряд при хранении, значительная (до 30%) потеря емкости при низких температурах, малый срок службы (300-500 циклов заряд-разряд).

LSD (LowSelfDischarge) или аккумуляторы с низким саморазрядом появились гораздо позже и имеют ряд преимуществ в сравнении с обычными NiMH. Если традиционный аккумулятор за первый месяц хранения может потерять до 20% заряда, то для LSD гарантируется остаток более 75% заряда после трех лет хранения. Способность отдавать гораздо большие токи, до 2С. Более устойчивы к низкой температуре. Увеличенный в 2-3 раза срок службы. И всего пару недостатков – меньшая емкость и более высокая цена. Рекомендуются как для устройств с высоким потреблением тока: фотовспышки, мощные фонари, так и для длительного использования в малопотребляющих устройствах: пульты дистанционного управления, часы.

Достоинства. Низкий саморазряд, отсутствие эффекта памяти, сохранение емкости при низких температурах, способность отдавать большой ток, долгий срок службы (1000-1500 циклов).

Недостатки. Сравнительно малая емкость и высокая цена.

Литий-ионные.

Литий-кобальтовые – LiNiCo.

Традиционные литий-ионные аккумуляторы. Широко применяются для питания цифровых фотокамер, видеокамер, в батареях для ноутбуков, радиоуправляемых моделей, фонарей, на транспорте. В качестве катода в настоящее время используется графит, анод – оксид лития с кобальтом. Диапазон рабочих напряжений – от 2.5 до 4.2 В. Как и все литиевые аккумуляторы, имеют очень малый вес. Способны отдавать ток до 2С, но рекомендуемый длительный ток разряда не должен превышать 1С. Хранить рекомендуется при температуре около 5 градусов Цельсия заряженными до 40%. Подвержены старению с потерей емкости даже когда не используются. Средний срок хранения и использования составляет 5 лет.

При низких отрицательных температурах (ниже -20) могут невосстановимо терять емкость. Представляют опасность возгорания или взрыва при перезаряде или перегреве, поэтому всегда снабжаются устройствами защиты. Глубокий разряд приводит к полной неработоспособности аккумулятора. На фото показана серия литий ионных аккумуляторов AW размерами от 15266 (RCR2) до 18650.

Набор цифр написанный на литий-ионных аккумуляторах не что иное как обозначение геометрических размеров модели в миллиметрах. Расшифровывается следующим образом:

Возьмем 18650.

Первые две цифры – диаметр. 18 миллиметров.

Оставшиеся три – длина элемента с точностью до одной десятой доли мм. 650 – 65,0 мм.

Это правило применимо и для других моделей литиевых элементов.

Достоинства. Малый вес, высокая емкость, большой срок службы (500-1000 циклов), отсутствие «эффекта памяти», низкий саморазряд.

Недостатки. Чувствительны к перезаряду/переразряду, подвержены старению, опасны при перегреве, теряют емкость при низких температурах.

Литий-марганцевые – IMR.

В аноде аккумуляторов IMR используется марганец, а ионы лития расположены более плотно друг к другу. За счет этих особенностей, IMR более безопасны, устойчивы к быстрому заряду большими токами и способны отдавать токи до 5С. Используются в устройствах потребляющих большой ток: мощные фонари, радиоуправляемые модели. Выходное напряжение соответствует литий-кобальтовым моделям – от 2.5 до 4.2 В.

За счет низкого внутреннего сопротивления меньше нагреваются при использовании, более безопасны. Обычно не оснащаются встроенной защитной электроникой и лучше защищенных собратьев подходят для сборки батарей. При перезаряде элемент «потечет» или он просто испортится, без дополнительных пиротехнических эффектов. Обязательно наличие защитной электроники в зарядном устройстве.

Емкость IMR несколько ниже обычных литий-кобальтовых аккумуляторов, но, в тех условиях для которых они предназначены, LiNiCo значительно быстрее потеряют емкость либо вообще не смогут работать, отключившись из-за перегрузки. Срок службы и прочие характеристики схожи с литий-кобальтовыми элементами. IMR аккумуляторы AW отличаются от других моделей даже внешне.

Достоинства. Способность переносить большие токи заряда/разряда, безопасность, большой срок службы (более 500 циклов), удобны для сборки батарей из нескольких элементов.

Недостатки. Относительно низкая емкость, еще большая чувствительность к низким температурам (охлаждать ниже -10 не рекомендуется).

Литий-железофосфатные–LiFePO4.

Еще более молодые аккумуляторы, начали массово производиться лишь после 2003 года. По своим свойствам очень похожи на IMR, имеют схожие области применения. Отличие в сниженной емкости, способности работать под еще большими нагрузками (до 10С), более низкой стоимости комплектующих. Так же улучшены безопасность и срок службы. Химия этих элементов устроена таким образом что даже при критических нагрузках не происходит образования кислорода, следовательно, не растет давление внутри элемента. Срок службы может превышать 3000 циклов.

Литий-железофосфатные аккумуляторы настолько безопасны, что могут переносить даже такое обращение как на фото ниже. Аккумулятор питает светодиод, будучи полностью погруженным в емкость с водой.

Рабочее напряжение – от 2.0 до 3.3 В. Переразряд ниже 2 В губителен, небольшой перезаряд не вредит аккумулятору. Почти не чувствительны к отрицательным температурам.

Достоинства. Устойчивость к низким температурам, безопасность, долгий срок службы, неприхотливость, способность переносить большие токи заряда/разряда.

Недостатки. Малая емкость.

Литий-полимерные – LiPo.

Литий-полимерные аккумуляторы уже почти полностью вытеснили литий-ионные из сотовых телефонов, нашли широкое применение в радиоуправляемых моделях. В качестве электролита используется полимерный материал. Обычно литий-ионные аккумуляторы имеют цилиндрическую форму, литий-полимерные же дают инженерам большую свободу выбора. Минимальная толщина достигает 1 мм. Можно изготавливать миниатюрные модели различной формы. Обычно бытовые аккумуляторы предназначены для устройств с низким энергопотреблением, но существуют промышленные модели и модели для моделистов способные отдавать ток до 45С. Остальные характеристики сходны с обычными литий-кобальтовыми моделями. Срок службы 300-500 циклов, чувствительность к низким температурам, стареют, взрывоопасны при перегрузках, часто имеют встроенную электронику защиты.

Ниже показан аккумулятор сотового телефона без корпуса.

Достоинства. Существуют различных форм и размеров, в том числе гибкие модели. Некоторые модификации способны отдавать очень большой ток. Малый вес, большая плотность запасенной энергии, отсутствие «эффекта памяти», низкий саморазряд.

Недостатки. Потеря емкости при низких температурах, взрывоопасность при перезаряде/превышении допустимой нагрузки, подвержены старению.

 

 

источник: http://www.lumentorg.ru/review/compare-batteries/

 

      Зарядка аккумуляторов Ni-Cd и Ni-MH: сравнение NiCd и NiMH

      NiCd (Ni-Cd, никель-кадмиевые) — старые аккумуляторы с эффектом памяти, требуют правильной зарядки. NiMH (Ni-MH, никель-металлгидридные) более современные, экологичные и проще в эксплуатации. Это руководство избавит от путаницы в использовании устройств на базе NiCd и NiMH-батарей, поможет научиться правильно их заряжать, чтобы избежать проблем (снижение ёмкости, ухудшение характеристик, быстрый износ).


      Далее мы сравним, чем отличается зарядка аккумуляторов NiCd от зарядки NiMH. Сравнение актуально для электронных устройств:

      • • электроинструмент (отвёртки, шуруповёрты, дрели, перфораторы, циркулярки и так далее),
      • • электрические зубные щётки,
      • • машинки для стрижки,
      • • электробритвы,
      • • электросамокаты и гироскутеры,
      • • игрушки и радиоуправляемые модели.


      Ni-Cd и Ni-MH-аккумуляторы: сравнение зарядки (как заряжать)

      Никель-металлгидридные (NiMH) батареи обладают более высокой плотностью энергии, чем никель-кадмиевые (Ni-Cd). Другими словами, при одинаковых размере и весе NiMH обеспечивает примерно на 30% больше мощности, чем Ni-Cd. Мы получаем увеличенное время автономной работы без дополнительной нагрузки.


      У NiMH слабый эффект памяти, у Ni-Cd сильный и заметный

      У NiMH есть ещё одно важное преимущество — эти аккумуляторы не страдают от эффекта памяти в отличие от Ni-Cd.

      Если никель-кадмиевая батарея регулярно разряжается частично (до 60%, например), то перед следующей зарядкой ячейка как бы «забывает», что у неё есть способность полностью разряжаться. И 60% ёмкости остаются неиспользованными (аккумулятор работает, но только на 40% от изначальной ёмкости).

      В никель-кадмиевых (Ni-Cd) аккумуляторах в отличие от никель-металлгидридных (NiMH) следует избегать пресловутого эффекта памяти. Если не следовать некоторым правилам, то ёмкость уменьшится, время работы от одной зарядки сильно сократится.


      Как заряжать Ni-Cd (никель-кадмиевые аккумуляторы)

      Особенность: ярко выражен эффект памяти. Требуется полная разрядка и полная зарядка, чтобы не уменьшилась ёмкость (время автономной работы).


      • 1. Полностью разрядите (до 1В на ячейку или выключения устройства) и полностью зарядите (чем чаще, тем лучше, минимум раз в месяц).
      • 2. Используйте только зарядные устройства, предназначенные для Ni-Cd-аккумуляторов (от литий-ионных и литий-полимерных не подходят).
      • 3. Есть универсальные зарядники, где должен быть предусмотрен режим «Ni-Cd» (если его нет, то лучше не использовать такой адаптер).
      • 4. Если вы не планируете долгое время использовать Ni-Cd-аккумулятор, то полностью зарядите его.
      • 5. После длительного хранения разрядите до 1В на элемент и полностью зарядите в течение 3-5 циклов.
      • 6. Некоторые зарядные устройства перед зарядкой Ni-Cd, полностью разряжают ячейку — это нормальная хорошая практика.
      • 7. Во время зарядки никель-кадмиевых батарей температура не должна быть выше 40°C (при нагреве отсоедините зарядник).

      Как заряжать Ni-MH (никель-металлгидридные аккумуляторы)

      Особенность: чувствительны к качеству зарядного устройства. Требуют стадийного алгоритма и тщательного контроля процесса зарядки из-за высокой чувствительности к перезаряду.


      • 1. Заряжайте и разряжайте, когда удобнее и как удобнее (эффект памяти не выражен).
      • 2. Нужны специальные зарядные устройства для Ni-MH-аккумуляторов (от литий-ионных и литий-полимерных не подходят).
      • 3. В универсальных зарядниках выбирайте режим Ni-MH (без такого режима безопасность процесса и срок службы могут снизиться).
      • 4. В батарейных блоках (когда ячеек несколько) нужна балансировка каждый десятый цикл заряд-разряд (режим балансировки предусмотрен в качественных адаптерах питания).
      • 5. Для хранения аккумуляторов дольше трёх недель полностью зарядите их (избегайте высоких температур хранения).
      • 6. После хранения разрядите (до 1В на ячейку) и полностью зарядите для восстановления номинальной ёмкости.
      • 7. Если во время зарядки аккумулятор Ni-MH очевидно нагревается (температура не должна превышать 60°C), то отключите его от зарядника.

      Если коротко подытожить и простыми словами, то никель-кадмиевые (Ni-Cd) аккумуляторы лучше полностью разряжать и полностью заряжать. Чем чаще, тем лучше. Они долго служат и в остальном не очень-то и капризны, как кажется.

      У никель-металлгидридных (NiMH) эксплуатация проще и удобнее. Вам не нужно беспокоиться о полной разрядке и полной зарядке. Однако после долгого хранения (например, когда электроинструментом не пользовались больше трёх недель) их лучше «потренировать» 3-5 циклами полного заряда и разряда. Также в батарейных блоках нужно иногда (каждые 10 циклов) делать балансировку (режим обычно предусмотрен в заряднике).



      ***

      Для составления руководства мы использовали результаты исследования «Быстрая, высокоэффективная и автономная зарядка Ni-MH и NiCd-аккумуляторов», размещённые на сайте ResearchGate. Авторы описывают все особенности и различия в зарядке аккумуляторов обоих типов в рамках исследования двух зарядных устройств LTC4010 и LTC4011.

      Принципы и схемы конструкции качественных зарядных устройств для NiMH можно посмотреть в заметке на GlobTek. В ней указано, как работает защита при нарушении температурных режимов, где срабатывает отсечка при перезаряде, химические реакции в процессе, профили разрядки и так далее.

      Нет причин избегать никель-кадмиевые ячейки. Достаточно понимать принцип их зарядки и чем он отличается от никель-металлгидридных. В этом руководстве мы сделали акцент именно на сравнении зарядки аккумуляторов Ni-MH и Ni-Cd. Перечень всех отличий, плюсы и минусы — по кнопке выше.


      Если вам нужно больше информации, то пишите вопросы в комментарии. Мы ждём ваши сообщения и ВКонтакте @NeovoltRu.

      Подпишитесь на нашу группу, чтобы узнавать новости из мира автономности гаджетов, об их улучшении и прогрессе в научных исследованиях аккумуляторов. Подключайтесь к нам в Facebook и Twitter. Мы также ведём насыщенный блог в «Дзене» и на Medium — заходите посмотреть.



      Какие имеются разновидности аккумуляторов? | Главная

      Разновидности аккумуляторов, необслуживаемые или сухие аккумуляторы?

      В зависимости от разновидностей используемых металлов, аккумуляторы делятся на кислотные, никель-кадмиевые, никель-железные.

      В настоящее время наиболее распространёнными являются кислотные аккумуляторы, которые в основном подразделяются на два типа: сухозаряженные и жидкозаряженные.

      Наиболее распространенными жидкозаряженными аккумуляторами являются классические автомобильные стартерные аккумуляторы и аккумуляторы SLI (аббревиатура на английском означает запуск, освещение и старт). Автомобильные аккумуляторы также подразделяются на два типа: необслуживаемые и обслуживаемые. Внутренняя структура этих аккумуляторов идентична. То есть оба этих типа являются классическими кислотными аккумуляторами. Необслуживаемые аккумуляторы отличаются тем, что у них нет откручивающихся пробок. Так как эти аккумуляторы не требуют заливку электролита, они больше подходят для транспорта с хорошей системой электрического устройства.

      Кроме этого, имеются стационарные (стационарное устройство) и тяговые (погрузчики) аккумуляторы, отличающиеся внутренней структурой и областью использования.

      Внутренняя структура и технология производства сухих аккумуляторов, т.е. аккумуляторов VRLA, отличается. VRLA – это свинцово-кислотный аккумулятор с клапанным регулированием. Эти аккумуляторы также подразделяются на два типа.

      Аккумуляторы AGM (с абсорбированным электролитом) и гелевые VRLA. Основным отличием этих аккумуляторов является то, что там отсутствует проблема перелива или утечки электролита. Выход газа минимальный. Поэтому, эти аккумуляторы являются очень надежными и могут длительное время храниться на складе. Кроме того, в сравнении с жидкозаряженными, эти аккумуляторы обладают более высокой устойчивостью к вибрации и удобны для транспортировки. Эти аккумуляторы используются для стационарных сооружений, UPS, катеров и коммутаторных.

      Зарядное устройство для никель-кадмиевых и никель-металлогидридных аккумуляторов

      Андрей Шарый, с.Кувечичи,
      Черниговская область, Украина.
      E-mail andrij_s (at) mail.ru

      В наше время существует огромное количество типов зарядных устройств для никель-кадмиевых (NiCd) и никель-металлогидридных (NiMH) аккумуляторов типоразмера АА или ААА.  Существуют различные методики зарядки. Самая древняя и она же самая щадящая по отношению к аккумулятору — это зарядка стабильным током 0,1 от емкости, выраженной в ампер-часах до достижения напряжения на элементе 1,45-1,5 В, на что обычно требуется 12-14 часов.

      Способы более быстрой зарядки большими токами часто оказываются губительными для здоровья аккумулятора, потому что должны индивидуально соответствовать конкретно взятому типу аккумулятора, что далеко не всегда реализуемо в зарядном устройстве: не станет же пользователь каждый раз перестраивать зарядное устройство или закупать абсолютно одинаковые аккумуляторы во всю аппаратуру, потому без крайней надобности быструю зарядку лучше не использовать. Если аккумулятор никель-кадмиевый, то перед зарядкой его нужно разрядить до напряжения 1 В, иначе он будет терять емкость, особенно, если каждый раз его заряжать не полностью разряженным, но такие аккумуляторы уже используются очень редко, на смену им приходят NiMH элементы, обладающие большей удельной емкостью и не склонные к эффекту памяти, однако имеющие значительно меньший ресурс количества циклов заряд-разряд. Существуют конечно фирменные зарядные устройства, учитывающие все нюансы правильного заряда аккумуляторов. Они определяют степень заряженности по напряжению на аккумуляторе или (и) по небольшому спаду напряжения в конце зарядки (дельта-U чувствительные устройства), контролируют они также и температуру аккумулятора. Но такие устройства очень дороги. Кроме того, готовые зарядные устройства часто заряжают последовательно соединенные 2 или 4 аккумулятора, что есть очень неправильно, поскольку при зарядке последовательно соединенных аккумуляторов практически невозможно обеспечить одинаковую степень их заряженности. Аккумуляторы часто имеют хоть и  незначительный, но все же заметный разброс в параметрах, потому обеспечить их правильный заряд можно только контролируя процесс каждого аккумулятора отдельно.

      Понятно, что изготовить в домашних условиях устройство, учитывающее все тонкости заряда практически невозможно — получится дороже готового фирменного. Таким образом, ставилась задача создать максимально простое зарядное устройство, которое будет однако абсолютно безопасным для здоровья аккумуляторов и максимально универсальным, подходящим для разных аккумуляторов, имеющихся в хозяйстве. Исходя из этого был выбран алгоритм зарядки стабильным током 200 мА для элементов типоразмера АА и 75 мА для аккумуляторов ААА. Степень заряженности определяется по напряжению на одном отдельно взятом аккумуляторе. Как показала практика, для здоровья аккумуляторов не страшно довольно значительное (-50 +100%) отклонение зарядного тока от положенных 0,1 от емкости. Намного опаснее недо- или перезаряд а также разная степень заряженности аккумуляторов, которые потом будут использоваться в одном устройстве. Исходя из таких соображений собрано зарядное устройство, схема которого приведена ниже.

      Рис. 1. Схема зарядного устройства

      Трансформатор Т1 понижает сетевое напряжение до 7-12 В, которое потом стабилизируется импульсным стабилизатором, реализованным на транзисторах Т1-Т4 на уровне 4,9В. При одновременной зарядке четырех аккумуляторов стабилизатор выдает ток около 1 А, но благодаря импульсному режиму работы теплоотводы транзисторам не требуются.

      Делитель напряжения R8R9 создает опорное напряжение 1,4В, которое сравнивается с напряжением на аккумуляторе, который заряжается, компаратором на OP1. Резистор R7 в цепи обратной связи создает гистерезис около 0,05 В, благодаря чему после достижения напряжения на аккумуляторе 1,45В зарядка прекращается и не включается до тех пор, пока напряжение на аккумуляторе не снизится до 1,35 В. Такой режим работы очень важен при кратковременных отключениях напряжения во время зарядки аккумуляторов: если зарядка не была завершена, то после возобновления электроснабжения она продолжится. Кроме того, устраняются повторные включения-отключения в конце зарядки.

      Зарядный ток стабилизируется генератором стабильного тока на Т5 Т6, зарядный ток задается резистором R13. Пока напряжение на аккумуляторе не достигнет установленного порога, напряжение на выходе операционного усилителя практически равно напряжению питания, следовательно транзистор Т5 открыт, генератор стабильного тока работает, светодиод LED1 (оранжевый) светится, индицируя нормальный режим заряда. Когда напряжение на аккумуляторе повысится до 1,45 В, напряжение на выходе операционного усилителя снизится почти до 0, Т5 закроется, светодиод погаснет, зарядка прекратится. Особенностью схемы является то, что светодиод LED1 кроме функций индикации играет роль источника опорного напряжения для генератора стабильного тока.

      Импульсный стабилизатор напряжения может использоваться один на несколько аккумуляторов (до 4 без теплоотвода на Т1, и до 8 с теплоотводом, при соответствующей мощности сетевого трансформатора и диодного моста). Количество модулей, обведенных линией и обозначенных на схеме А1 должно быть равно количеству одновременно заряжаемых аккумуляторов.

      Настройка.

      Сразу после сборки приступают к налаживанию устройства. Сначала подбирая сопротивление R5 в пределах сотен Ом, устанавливают напряжение стабилизации 4,9В, в точке, обозначенной на схеме. Проверяют стабильность напряжения, при изменении нагрузки от 20 мА до 1 А оно не должно изменяться более чем на 0,05В. Если планируется заряжать не более 2 аккумуляторов, верхний предел тока может быть 0,5 А. Проверяют, чтобы не перегревался транзистор Т1. Его сильный нагрев более 50-60oС говорит о неправильной работе стабилизатора. Потом проверяют образцовое напряжение 1,4 В, при необходимости подбирают сопротивление R9. Далее, установив в разъем разряженный аккумулятор, подбирают сопротивление R13 для обеспечения нужного зарядного тока. При использовании оранжевых светодиодов сопротивлению 3,6 Ом соответствовал зарядный ток 200 мА, при 10 Омах ток был 75 мА. На этом настройка закончена. Если зарядный ток не превышает 200 мА, то теплоотвод на Т6 не нужен.

      О деталях.

      Транзистор Т1 может быть любым высокочастотным, с небольшим напряжением насыщения эмиттер-коллектор в открытом состоянии. Ток коллектора должен быть более 2 А, напряжение эмиттер-коллектор не менее 40 В. В качестве этого транзистора также неплохо применить n-канальный ключевой полевой транзистор типа IRFZ44, IRF510, но тогда надо менять полярность подключения к диодному мосту на противоположную, а транзисторы Т2 и Т3 должны быть структуры n-p-n, например, КТ815 и КТ3102 соответственно, а Т4 — p-n-p, например, КТ3107. Диод D1 должен быть обязательно высокочастотным, можно с барьером Шоттки, например, 1N5819. Дроссель L1 мотают проводом диаметром около 0,8 мм (20 витков) на ферритовой чашке Б18-Б22 из феррита 1500-2500НМ с немагнитным зазором 0,1 мм. Можно с успехом использовать тороидальный сердечник из прессованного железного порошка (используются выходных в фильтрах компьютерных блоков питания). Дроссель L2 — марки ДПМ или любой готовый около 100 мкГн, обязательно на ток более 1А. Можно также намотать самому проводом не тоньше 0,8 мм на любой подходящий сердечник. Индуктивность этого дросселя может отличаться в большую сторону в несколько раз, важно, чтобы он имел очень маленькое сопротивление постоянному току. Операционный усилитель в данной конструкции применяется счетверенный, но если устройство будет на 2 аккумулятора, то можно применить и сдвоенный. Трансформатор любой сетевой, с напряжением на вторичной обмотке от 7 до 12 В, мощность примерно 1,5-2 Вт на каждый заряжаемый аккумулятор.

      Диодный мост может использоваться любой подходящий на ток 1 А и более, можно и на отдельный диодах типа 1N4001.
      Вариант компоновки и печатной платы устройства на 4 аккумулятора (2 АА и 2 ААА) смотрите на фото.

      Рисунок 2. Печатная плата

      Рисунок 3. Компоновка внутри корпуса и внешний вид

      Зарядка щелочных аккумуляторов! | Статьи компании ООО «KRONVUZ» г Москва

      Щелочные аккумуляторы имеют широкое применение в бытовых целях и в промышленных. Аккумуляторы, как правило, подразделяются на никель-кадмиевые (Ni-Cd) и никель-железные (металлогидридные, Ni-MH). Щелочные аккумуляторы первого типа были изобретены ещё в 1988 гг. Вальдмаром Юнгнером, но стали популярны только после 1950 гг., когда материалы для их изготовления получили доступность для широкого производства. Основное преимущество никель-кадмиевых аккумуляторов заключается в том, что они заряжаются относительно быстро и могут храниться при низких температурах почти при полном разряде довольно длительный срок. К недостаткам такого типа можно отнести малую энергетическую плотность, высокую токсичность и «эффект памяти», для устранения которого требуется полный разряд батареи. Номинальное напряжение Ni-Cd аккумуляторов – 1,2 В. Обычный режим заряда такого устройства – током 0,1 С происходит в течение 16 ч. При использовании его очень важным является процесс перезаряда, потому как сам заряд сопровождается повышением внутреннего давления. По мере нагревания выделяется кислород и коэффициент использования тока может упасть. Важно не передерживать аккумулятор в зарядном устройстве, не давая кислороду выделяться сверх меры. При соблюдении этих простых норм щелочная никель-кадмиевая аккумуляторная батарея прослужит весь отведенный ей стандартом срок.

      Сравнительные характеристики щелочных аккумуляторов

      Параметры Ni-Cd Ni-MH
      Номинальное напряжение, В 1,2 1,2
      Ток разряда, максимальный 10С
      Удельная энергия: Втч/кг Втч/л 20-40 50-80
      60-120 100-270
      Срок службы: годы циклы 1-5 1-5
      500-1000 500-2000
      Саморазряд, % 20-30 (за 28 сут.) 20-40 (за 28 сут.)
      Рабочая температура, °С -50 – +60 -40 – +60

      Металлогидридные (Ni-MH) щелочные батареи являются во многом аналогами никель-кадмиевых, но по электрохимическим процессам они больше похожи на электро-водородные. Их удельная энергия значительно превышает параметры остальных видов щелочных аккумуляторов. Разработка таких устройств началась примерно в 50-70 гг. прошлого столетия и они стали прототипом батарей, используемых в космической промышленности. Для качественного заряда щелочной металлогидридной батареи необходимо соблюдать тепловой режим. Следует избегать перезарядов (менее 1В). Такое действие может привести к увеличению температуры. Не рекомендуется подсоединять к устройству клеммы, провода и т.п. от неисправных батарей. Это может привести к замыканию. Зарядка щелочного Ni-MH аккумулятора, производится током Iз=0,1С в течение 15 часов.

      Наша компания известна как производитель зарядно-разрядных устройств для щелочных аккумуляторов, в том числе широко известного разрядно-зарядного устройства «Зевс». Это оборудование является оптимальным как раз для видов батарей, которые перед процессом зарядки должны полностью разрядиться. Такое устройство оснащено контроллером перезаряда, который помогает своевременно в этом случае отключить напряжение. Ассортимент продукции «Зевс» подходит для всех типов АКБ.

      По желанию заказчика наша компания может изготовить устройство «Зевс» двухкамерным. То, есть оно сможет одновременно использоваться для заряда двух аккумуляторов. Также можно сделать его по Северо-Американскому стандарту, т.е. с напряжением питания 110 В и частотой тока 60Гц.


      Рекомендуем ознакомиться со следующими материалами:

      Что такое никель-кадмиевый аккумулятор?

      Что означает никель-кадмиевый аккумулятор (NiCd или NiCad)?

      Никель-кадмиевый аккумулятор (NiCd или NiCad) – это аккумулятор, используемый для портативных компьютеров, дрелей, видеокамер и других небольших устройств с батарейным питанием, требующих равномерного разряда. В NiCd используются электроды из гидроксида оксида никеля, металлического кадмия и щелочного электролита из гидроксида калия.

      Никель-кадмиевый аккумулятор был изобретен Вальдемаром Юнгером и запатентован в 1899 году.

      Techopedia объясняет никель-кадмиевую батарею (NiCd или NiCad)

      Два или более элемента никель-кадмиевых аккумуляторных батарей объединяются в аккумуляторную батарею. Поскольку они часто имеют размер, как первичные элементы (неперезаряжаемые батареи), никель-кадмиевые батареи могут иметь более низкое напряжение на клеммах и меньшую емкость в ампер-часах. Однако никель-кадмиевые аккумуляторы обеспечивают почти постоянное напряжение на клеммах во время разряда, в отличие от первичных элементов, что приводит к почти не обнаруживаемым низким зарядам. Во время разряда никель-кадмиевые батареи преобразуют химическую энергию в электрическую.Во время перезарядки NiCd преобразует электрическую энергию в химическую.

      NiCd аккумулятор имеет следующие преимущества:

      • Допускает глубокую разрядку в течение длительного периода
      • Больше циклов заряда / разряда, чем у других аккумуляторных батарей, для увеличения срока службы батарей
      • Более высокая плотность энергии, легче и компактнее, чем у свинцово-кислотных аккумуляторов . NiCd предпочтительнее, когда ключевыми факторами являются размер и вес, например, в самолетах.
      • Более низкая скорость саморазряда, чем у никель-металлогидридных (NiMH) батарей (20 процентов в месяц против 30 процентов в месяц).

      Никель-кадмиевые батареи чрезвычайно токсичны.Кроме того, никель и кадмий – дорогие металлы.

      В отличие от свинцово-кислотных аккумуляторов, никель-кадмиевые аккумуляторы чрезмерно нагреваются, переходят в режим теплового разгона и самоуничтожаются при зарядке динамо-машиной – даже в системах защиты от перегрузки по току. Однако никель-кадмиевые аккумуляторные батареи обычно оснащены внутренним устройством отключения теплового зарядного устройства, которое сигнализируется, если аккумулятор нагревается и / или достигает максимального напряжения.

      В чем разница между NiCAD и NiMH батареями?

      Самая популярность этих аккумуляторных батарей часто вызывает вопрос: «В чем разница между NiCAD и NiMH батареями?»

      Подводя итог, основные различия между NiCAD и NiMH батареями связаны с емкостью, эффектом памяти и экологичностью.

      Никель-металлогидридные (NIMH) батареи

      имеют большую емкость, чем никель-кадмиевые (NICAD) батареи, а это означает, что они могут дольше обеспечивать питание вашего устройства. Они также не страдают от такого же эффекта памяти, поэтому они не «забывают» способность достичь полного заряда с течением времени. Наконец, никель-металлгидридные батареи намного лучше для окружающей среды, чем их аналоги из никель-кадмиевых батарей.

      Тем не менее, никель-кадмий по-прежнему имеет некоторые преимущества перед никель-металлогидридом, такие как их экстремальные температурные характеристики.

      Наша команда из Battery Depot написала эту статью, чтобы помочь объяснить разницу между NiCAD и NiMH батареями и помочь вам решить, какая батарея подходит для ваших нужд. Не стесняйтесь обращаться к нам, когда закончите читать, если у вас возникнут какие-либо вопросы.

      Никель-кадмиевые (NiCAD) батареи

      Первая в мире никель-кадмиевая батарея была разработана шведским ученым в 1899 году. Излишне говорить, что с тех пор было сделано много улучшений.

      Стандартная никель-кадмиевая батарея состоит из пластины положительного электрода из оксида и гидроксида никеля (III), пластины отрицательного электрода из кадмия, сепаратора и электролита из гидроксида калия.

      Общее использование: Некоторые популярные применения NiCAD батарей – игрушки, аварийное освещение, медицинское оборудование, коммерческие и промышленные товары, электрические бритвы, двусторонние радиоприемники, электроинструменты и многое другое.

      Преимущества: Вот обзор некоторых преимуществ NiCAD батарей:

      • Сравнительно недорого
      • Заряжается очень быстро, просто заряжается
      • Легко хранить, легко транспортировать
      • Возьмите большое количество зарядов
      • Работоспособен при низких температурах

      Недостатки: А вот некоторые их недостатки:

      • Не такой мощный, как у некоторых других аккумуляторов
      • Саморазряд при хранении
      • Содержат токсичные металлы, вредные для окружающей среды

      Никель-металлогидридные (NiMH) батареи Батареи

      NiMH – гораздо более современное явление.Исследования и разработки начались в Исследовательском центре Battelle-Geneva в 1967 году и были удовлетворительно завершены в 1987 году.

      Химический состав стандартной никель-металлогидридной батареи выглядит следующим образом: пластина положительного электрода из гидроксида никеля, пластина отрицательного электрода с ионами водорода, сепаратор и щелочной электролит, например гидроксид калия.

      Общее использование: Сюда входят автомобильные аккумуляторы, медицинские инструменты, пейджеры, сотовые телефоны, видеокамеры, цифровые фотоаппараты, электрические зубные щетки и другие недорогие потребительские устройства.

      Преимущества: Вот несколько преимуществ использования батареи NIMH:

      • Достаточно большая емкость по сравнению с другими аккумуляторами
      • Противостоит как чрезмерной зарядке, так и чрезмерной разрядке
      • Чрезвычайно легкая конструкция
      • Безвреден для окружающей среды: нет опасных химикатов, таких как кадмий, ртуть или свинец

      Недостатки: А вот некоторые ограничения:

      • Дороже, чем у других аккумуляторных моделей
      • Быстрая саморазрядка при хранении
      • Резкое отключение электроэнергии, а не медленное падение
      • Некоторые работают только с зарядным устройством производителя

      Узнайте больше о разнице между NiCad и NiMH

      Если у вас есть какие-либо вопросы о природе или различиях между никель-кадмиевыми или никель-металлогидридными батареями NiCad и NiMH, наша команда может вам помочь.

      Мы работаем в этой области более 20 лет, и у нас есть большой опыт ответов на вопросы как о никель-кадмиевых, так и о никель-металлогидридных батареях.

      Мы с нетерпением ждем вашего ответа. Свяжитесь с нами в Battery Depot сегодня, чтобы связаться с экспертом.

      BU-203: Никелевые батареи – Battery University

      Узнайте о различиях между никель-кадмиевым и никель-металлогидридным.

      В течение 50 лет портативные устройства работали почти исключительно на никель-кадмиевом (NiCd).Это привело к появлению большого количества данных, но в 1990-х годах никель-металлогидрид (NiMH) взял верх, чтобы решить проблему токсичности, в остальном надежного NiCd. Многие характеристики NiCd были переданы в лагерь NiMH, предлагая квази-замену, поскольку эти две системы похожи. Из-за экологических норм, никель-кадмиевый металл сегодня ограничен специальными применениями.

      Никель-кадмиевый (NiCd)

      Никель-кадмиевый аккумулятор, изобретенный Вальдемаром Юнгнером в 1899 году, имел несколько преимуществ по сравнению со свинцово-кислотными, в то время единственными перезаряжаемыми аккумуляторами; однако материалы для NiCd были дорогими.Разработка шла медленно, но в 1932 году были предприняты шаги по нанесению активных материалов внутри пористого никелированного электрода. Дальнейшие усовершенствования произошли в 1947 году за счет поглощения газов, образующихся во время зарядки, что привело к созданию современной герметичной никель-кадмиевой батареи.

      В течение многих лет никель-кадмиевые батареи были предпочтительным выбором для радиоприемников двусторонней связи, оборудования скорой медицинской помощи, профессиональных видеокамер и электроинструментов. В конце 1980-х годов NiCd сверхвысокой емкости потряс мир своей емкостью, которая была на 60 процентов выше, чем у стандартного NiCd.Этого удалось добиться за счет упаковки большего количества активного материала в ячейку, но этот выигрыш был затенен более высоким внутренним сопротивлением и уменьшенным количеством циклов.

      Стандартный никель-кадмиевый аккумулятор остается одним из самых надежных и щадящих аккумуляторов, и авиационная отрасль остается верна этой системе, но для достижения долговечности за ней требуется надлежащий уход. NiCd, а отчасти и NiMH, обладают эффектом памяти, который приводит к потере емкости, если не выполнять периодический полный цикл разряда. Батарея, кажется, запоминает предыдущую поданную энергию, и после того, как установлен порядок, она не хочет отдавать больше.(См. BU-807: Как восстановить никелевые батареи). По данным RWTH, Аахен, Германия (2018), стоимость никель-кадмиевых батарей составляет около 400 долларов за киловатт-час. В таблице 1 перечислены преимущества и ограничения стандартного никель-кадмиевого сплава.

      Преимущества


      Прочный, большое количество циклов при надлежащем обслуживании

      Только аккумулятор, который можно сверхбыстро заряжать с небольшим напряжением

      Хорошие нагрузочные характеристики; прощает при злоупотреблении

      Длительный срок хранения; можно хранить в разряженном состоянии, перед использованием необходимо грунтовать

      Простое хранение и транспортировка; не подлежит нормативному контролю

      Хорошие низкотемпературные характеристики

      Экономичная цена; NiCd является самым низким с точки зрения затрат на цикл

      Доступен в широком диапазоне размеров и вариантов производительности

      Ограничения


      Относительно низкая удельная энергия по сравнению с более новыми системами

      Эффект памяти; требует периодических полных разрядов и может восстанавливаться

      Кадмий – токсичный металл.Невозможно выбрасывать на свалки

      Высокий саморазряд; требует подзарядки после хранения

      Низкое напряжение элемента 1,20 В требует, чтобы многие элементы достигли высокого напряжения

      Таблица 1: Преимущества и ограничения NiCd батарей.

      Металлогидрид никеля (NiMH)

      Исследования металлогидрида никеля начались в 1967 году; однако нестабильность с металлогидридом вместо этого привела к развитию никель-водородного (NiH).Новые гидридные сплавы, открытые в 1980-х годах, в конечном итоге улучшили проблемы стабильности, и сегодня NiMH обеспечивает на 40 процентов более высокую удельную энергию, чем стандартный NiCd.

      Металлогидрид никеля не лишен недостатков. Батарея более хрупкая и ее сложнее заряжать, чем NiCd. Благодаря 20-процентному саморазряду в первые 24 часа после зарядки и 10 процентам в месяц после этого NiMH занимает одно из первых мест в своем классе. Модификация гидридных материалов снижает саморазряд и уменьшает коррозию сплава, но это снижает удельную энергию.В аккумуляторных батареях для электрического силового агрегата эта модификация используется для достижения необходимой прочности и длительного срока службы.

      Потребительские приложения

      NiMH стали одними из наиболее доступных перезаряжаемых аккумуляторов для потребительского использования. Производители аккумуляторов, такие как Panasonic, Energizer, Duracell и Rayovac, осознали необходимость в долговечных и недорогих перезаряжаемых аккумуляторах и предлагают никель-металлгидридные аккумуляторы AA, AAA и других размеров. Производители батарей хотят переманить покупателей от одноразовых щелочных батарей к перезаряжаемым.

      NiMH батарея для потребительского рынка – альтернатива вышедшей из строя многоразовой щелочной батарее, появившейся в 1990-х годах. Ограниченный срок службы и плохие характеристики нагрузки помешали его успеху.

      В таблице 2 сравниваются удельная энергия, напряжение, саморазряд и время работы батарей, продаваемых без рецепта. Доступные в размерах AA, AAA и других размерах, эти элементы могут использоваться в портативных устройствах, разработанных для этих норм. Несмотря на то, что напряжения элементов могут изменяться, напряжения в конце разряда являются общими, которые обычно составляют 1 В на элемент.Портативные устройства обладают некоторой гибкостью с точки зрения диапазона напряжений. Важно не смешивать элементы и всегда использовать в держателе батареи одного типа. Из-за соображений безопасности и несовместимости напряжений продажа большинства литий-ионных батарей в форматах AA и AAA невозможна.

      Тип батареи Емкость
      AA элемент
      Напряжение Саморазряд
      Емкость после
      хранения в течение 1 года
      Время работы
      Примерные фото
      на цифровой камере
      NiMH 2700 мАч, перезаряжаемый 1.2V 50% 600 выстрелов
      Eneloop * 2,500 мАч, перезаряжаемый 1,2 В 85% 500 выстрелов
      9004 900 2 щелочных
      неперезаряжаемый
      1,5 В 95%
      Срок хранения 10 лет
      100 выстрелов
      Многоразовый щелочной 2,000 мАч; ниже при последующей подзарядке 1,4 В 95% 100 выстрелов
      Литий
      (Li-FeS2)
      2,500–3400 мАч
      (неперезаряжаемый)
      1.5V Очень низкий
      Срок годности 10 лет
      690 снимков

      Таблица 2: Сравнение щелочных, многоразовых щелочных, Eneloop и NiMH
      * Eneloop является товарным знаком Panasonic (2013) на основе NiMH.

      Высокий уровень саморазряда вызывает постоянную озабоченность у потребителей, использующих аккумуляторные батареи, а NiMH ведет себя как протекающая баскетбольная или велосипедная шина. Фонарик или портативное развлекательное устройство с никель-металлгидридным аккумулятором становится «разряженным», если его отложить всего на несколько недель.Необходимость подзаряжать устройство перед каждым использованием не устраивает многих потребителей, особенно фонариков, которые находятся в режиме ожидания на случай перебоев в подаче электроэнергии; Щелочной сохраняет заряд 10 лет.

      Eneloop NiMH от Panasonic и Sanyo уменьшил саморазряд в шесть раз. Это означает, что вы можете хранить заряженный аккумулятор в шесть раз дольше, чем обычный никель-металлгидридный аккумулятор, прежде чем потребуется подзарядка. Недостатком Eneloop перед обычным NiMH является немного меньшая удельная энергия.

      В таблице 3 приведены преимущества и ограничения NiMH промышленного класса. В таблицу не включены Eneloop и другие потребительские бренды.

      Преимущества


      Емкость на 30-40 процентов выше, чем у стандартного NiCd

      Менее подвержен запоминанию, чем NiCd, можно восстановить

      Простое хранение и транспортировка; не подлежит нормативному контролю

      Экологически чистый; содержит только легкие токсины

      Содержание никеля делает переработку прибыльной

      Широкий температурный диапазон

      Ограничения


      Ограниченный срок службы; глубокая разрядка сокращает срок службы

      Требуется сложный алгоритм зарядки.Чувствителен к перезарядке

      Не очень хорошо поглощает перезаряд; постоянный заряд должен быть низким

      Вырабатывает тепло во время быстрой зарядки и разрядки при высокой нагрузке

      Высокий саморазряд

      Кулоновский КПД всего около 65% (99% с литий-ионным аккумулятором)

      Таблица 3: Преимущества и недостатки NiMH аккумуляторов.

      Никель-железо (NiFe)

      После изобретения никель-кадмия в 1899 году швед Вальдемар Юнгнер попытался заменить железо кадмием, чтобы сэкономить деньги; однако низкая эффективность заряда и газообразование (образование водорода) побудили его отказаться от разработки без получения патента.

      В 1901 году Томас Эдисон продолжил разработку никель-железной батареи в качестве заменителя свинцово-кислотной батареи для электромобилей. Он утверждал, что никель-железо, погруженное в щелочной электролит, «намного превосходит батареи, в которых используются свинцовые пластины в серной кислоте». Он рассчитывал на развивающийся рынок электромобилей и проиграл, когда его заняли бензиновые автомобили. Его разочарование возросло, когда автомобильная промышленность использовала свинцово-кислотные батареи в качестве батарей для стартера, освещения и зажигания (SLI) вместо никель-железных.(См. BU-1002: Электрический силовой агрегат, HEV, PHEV.)


      Рисунок 4: Томас А. Эдисон и его улучшенная аккумуляторная батарея.
      Эдисон продвигал никель-железо как более легкий и чистый, чем свинцово-кислотный. Более низкие эксплуатационные расходы должны были компенсировать более высокую первоначальную стоимость. В ок. 1901 г. Эдисон осознал потребность в электромобиле. Он сказал, что батарее нужно уделять такое же внимание, как и конному и железнодорожному локомотиву.
      Источник: Scientific America Нью-Йорк, 14 января 1911 г.

      Никель-железная батарея (NiFe) использует катод из оксида-гидроксида и железный анод с электролитом из гидроксида калия, который обеспечивает номинальное напряжение элемента 1.20В. NiFe устойчив к перезарядке и чрезмерной разрядке и может прослужить более 20 лет в режиме ожидания. Устойчивость к вибрации и высоким температурам сделала NiFe батареей предпочтительной для горнодобывающей промышленности в Европе; во время Второй мировой войны использовались аккумуляторные немецкие летающие бомбы Фау-1 и ракеты Фау-2. Другое использование – железнодорожная сигнализация, вилочные погрузчики и стационарные приложения.

      NiFe имеет низкую удельную энергию около 50 Втч / кг, плохие низкотемпературные характеристики и высокий саморазряд 20-40 процентов в месяц.Это, вместе с высокой стоимостью производства, побудило промышленность оставаться верной свинцово-кислотной продукции.

      Производятся улучшения, и NiFe становится жизнеспособной альтернативой свинцово-кислотной в внесетевых энергосистемах. Технология карманной пластины снизила саморазряд; аккумулятор практически невосприимчив к перезарядке и недозаряду и должен прослужить более 50 лет. Для сравнения: при использовании свинцовых кислот глубокого цикла в циклическом режиме менее 12 лет. NiFe стоит примерно в четыре раза дороже, чем свинцово-кислотный, и по закупочной цене сопоставим с Li-ion.

      Никель-железные батареи используют конический заряд, аналогичный никель-кадмиевым и никель-металлгидридным. Не используйте заряд постоянного напряжения, как в свинцово-кислотных и литий-ионных аккумуляторах, но позвольте напряжению свободно плавать. Подобно батареям на никелевой основе, напряжение элемента начинает падать при полной зарядке, поскольку внутренний газ накапливается и температура повышается. Избегайте перезарядки, так как это вызывает испарение воды и высыхание. Только капельный заряд для компенсации саморазряда.

      Низкую емкость часто можно улучшить, применяя высокий разрядный ток, в три раза превышающий C-rate, в течение 30 минут.Убедитесь, что температура электролита не превышает 46 ° C (115 ° F).


      Никель-цинк (NiZn)

      Никель-цинк похож на никель-кадмиевый в том, что в нем используются щелочной электролит и никелевый электрод, но он отличается по напряжению; NiZn обеспечивает 1,65 В на элемент, а не 1,20 В, которые обеспечивают NiCd и NiMH. NiZn заряжается при постоянном токе до 1,9 В на элемент и не может принимать постоянный заряд, также известный как поддерживающий заряд. Удельная энергия составляет 100 Втч / кг, и ее можно включить 200–300 раз.NiZn не содержит тяжелых токсичных материалов и может быть легко переработан. Некоторая упаковка доступна в формате ячейки AA.

      В 1901 году Томас Эдисон получил патент США на систему перезаряжаемых никель-цинковых батарей, которая была установлена ​​в железнодорожных вагонах между 1932 и 1948 годами. NiZn страдал от высокого саморазряда и короткого срока службы, вызванного ростом дендритов, что часто приводило к на короткое замыкание. Усовершенствования электролита уменьшили эту проблему, и NiZn снова рассматривается для коммерческого использования.Низкая стоимость, высокая выходная мощность и хороший рабочий температурный диапазон делают этот химический состав привлекательным.

      Никель-водородный (NiH)

      Когда в 1967 году начались исследования никель-металлогидрида, проблемы с нестабильностью металлов вызвали сдвиг в сторону разработки никель-водородных батарей (NiH). NiH использует стальной контейнер для хранения водорода под давлением 8,270 кПа (1,200 фунтов на квадратный дюйм). Ячейка включает твердые никелевые электроды, водородные электроды, газовые экраны и электролит, заключенные в сосуд под давлением.

      NiH имеет номинальное напряжение элемента 1,25 В и удельную энергию 40–75 Вт · ч / кг. Преимущества: длительный срок службы даже при полных циклах разряда, хороший календарный срок службы из-за низкой коррозии, минимальный саморазряд и замечательные температурные характеристики от –28 ° C до 54 ° C (от –20 ° F до 130 ° F). . Эти характеристики делают NiH идеальным спутником. Ученые пытались разработать батареи NiH для наземного использования, но низкая удельная энергия и высокая стоимость работали против этого усилия. Одна ячейка для спутникового приложения стоит тысячи долларов.Поскольку NiH заменил NiCd в спутниках, наблюдается переход к литий-ионным батареям с длительным сроком службы. (См. BU-211: Альтернативные аккумуляторные системы.)

      % PDF-1.2 % 45 0 объект > эндобдж xref 45 76 0000000016 00000 н. 0000001868 00000 н. 0000002247 00000 н. 0000002455 00000 н. 0000003005 00000 н. 0000003451 00000 н. 0000003808 00000 н. 0000006765 00000 н. 0000007078 00000 п. 0000007258 00000 н. 0000007439 00000 п. 0000007636 00000 н. 0000008027 00000 н. 0000008208 00000 н. 0000008318 00000 н. 0000008605 00000 н. 0000008682 00000 н. 0000008817 00000 н. 0000009092 00000 н. 0000009514 00000 н. 0000011413 00000 п. 0000011722 00000 п. 0000012093 00000 п. 0000012114 00000 п. 0000013016 00000 п. 0000013496 00000 п. 0000014218 00000 п. 0000014403 00000 п. 0000014582 00000 п. 0000019940 00000 п. 0000020334 00000 п. 0000020829 00000 п. 0000020850 00000 п. 0000021616 00000 п. 0000021835 00000 п. 0000025106 00000 п. 0000025465 00000 п. 0000025831 00000 п. 0000026418 00000 п. 0000026439 00000 п. 0000027219 00000 п. 0000027240 00000 п. 0000027883 00000 п. 0000027904 00000 н. 0000028353 00000 п. 0000028374 00000 п. 0000028816 00000 п. 0000028837 00000 п. 0000029260 00000 п. 0000029489 00000 н. 0000029697 00000 п. 0000029930 00000 н. 0000030138 00000 п. 0000030349 00000 п. 0000030560 00000 п. 0000030771 00000 п. 0000030986 00000 п. 0000031210 00000 п. 0000031462 00000 п. 0000031671 00000 п. 0000031886 00000 п. 0000032098 00000 п. 0000032310 00000 п. 0000032519 00000 п. 0000037275 00000 п. 0000037513 00000 п. 0000037768 00000 п. 0000037999 00000 н. 0000038217 00000 п. 0000038432 00000 п. 0000038666 00000 п. 0000038688 00000 п. 0000039098 00000 н. 0000039177 00000 п. 0000001941 00000 н. 0000002225 00000 н. трейлер ] >> startxref 0 %% EOF 46 0 объект > эндобдж 119 0 объект > транслировать Hb“f“

      Руководство по аккумуляторным батареям | NiMH | Литий-ионный

      АККУМУЛЯТОРЫ

      Аккумуляторная батарея измеряется ее зарядной емкостью, которая указывается в мАч (миллиампер-час).Вы увидите этот номер на упаковке, а также на самом аккумуляторе. Емкость – это количество электрического заряда, хранящегося внутри батареи. Чем больше заряда в аккумуляторе, тем больше электрического тока он может передавать и тем дольше может питать ваше устройство. Для аккумуляторных батарей AA вы найдете емкость от 1300 мАч до 2900 мАч, перезаряжаемые батареи AAA в диапазоне от 500 мАч до 1100 мАч. Перезаряжаемые батареи можно заряжать и повторно использовать от 500 до 1000 раз в зависимости от использования.Различные технологии аккумуляторов влияют на производительность аккумуляторов.

      Есть 3 основных типа аккумуляторных батарей:

      • NiCd (никель-кадмиевый)
      • NiMH (никель-металлогидрид)
      • Литий-ионный (литий-ионный)

      NiCd (никель-кадмиевый)

      • Никель-кадмиевые батареи – это устаревшая технология, эти батареи довольно дешевы, поскольку имеют проблемы с памятью.
      • Золотое правило никель-кадмиевых аккумуляторов – полностью разряжать их каждый раз перед повторной зарядкой, чтобы они всегда были в наилучшей форме.
      • NiCd
      • можно «циклировать» около 1000 раз или заряжать один раз в день в течение примерно 3 лет, прежде чем они умрут.
      • Никель-кадмиевые батареи
      • имеют более низкое напряжение, чем их стандартные аналоги

      NiMH (никель-металлогидрид)

      Никель-металлгидридные батареи
      • более дорогие, но на протяжении всего срока службы их можно частично разряжать и заряжать сколько угодно раз (примерно до 1000 раз), и они всегда будут иметь полную емкость.
      • Гораздо больше емкости, чем у NiCd, которые они заменили
      • Очень часто встречается, поэтому легко найти как аккумуляторы, так и зарядные устройства

      Литий-ионный (литий-ионный)
      • Литий-ионные батареи решают обе проблемы, связанные с двумя другими типами батарей (полное напряжение и отсутствие проблем с памятью).
      • Недоступно при стандартном напряжении, за исключением размера 9 В (литий-ионный аккумулятор размера AAA, AA, C и D выдает 3,7 В вместо 1.5 В)
      • Требуется специальное зарядное устройство

      Вопросы и ответы

      A. Могу ли я использовать аккумуляторные батареи в устройствах, в которых используются одноразовые или щелочные батареи?

      Да. В большинстве случаев никель-металлогидридные (NiMH) батареи могут заменить (одноразовые) первичные батареи, особенно для электронных устройств с большим потреблением энергии. Основные преимущества заключаются в том, что после первоначальных инвестиций они сэкономят вам деньги, поскольку вы можете повторно использовать эти батареи сотни раз, и они имеют дополнительное преимущество, помогая окружающей среде, экономя сырье и избегая отходов одноразовых аккумуляторов, которые в конечном итоге могут закончиться. в свалку.

      Могут быть некоторые устройства, для которых перезаряжаемые батареи могут не подходить, например, некоторые марки радиостанций DAB, в которых последовательно используются четыре или шесть батарей, а разница в напряжении между NiMh аккумуляторными батареями и стандартными щелочными батареями может привести к снижению производительности.

      B. Могу ли я использовать аккумуляторные батареи прямо из упаковки?

      Если в ваших перезаряжаемых аккумуляторах указано, что они «Предварительно заряжены», или «Готовы к использованию» , их можно использовать прямо из упаковки, как одноразовые батареи.Однако стандартные аккумуляторные батареи не имеют этой функции, поэтому перед использованием их необходимо предварительно зарядить.

      C. Что такое «саморазряд» аккумуляторной батареи?

      Саморазряд – это явление в перезаряжаемых батареях, в котором внутренние химические реакции уменьшают накопленный заряд батареи без какого-либо соединения между электродами, т.е. когда они не используются в устройстве. Саморазряд сокращает срок службы аккумуляторов и приводит к тому, что они изначально не полностью заряжены, когда фактически используются.

      Скорость, с которой происходит саморазряд аккумулятора, зависит от ряда факторов, таких как тип аккумулятора, состояние заряда, зарядный ток и температура окружающей среды. Как правило, среди стандартных перезаряжаемых батарей литиевые батареи подвергаются наименьшему саморазряду (около 2–3% разряда в месяц), в то время как никелевые батареи страдают более серьезно (никель-кадмиевые, 15–20% в месяц; металлический никель). гидрид, 30% в месяц), за исключением NiMH аккумуляторов с низким саморазрядом (постоянный заряд) (2-3% в месяц).

      Хранение батарей при более низких температурах, таким образом, снижает скорость саморазряда и сохраняет начальную энергию, запасенную в батарее.

      D. Что означает «оставаться заряженным»?

      Постоянная зарядка перезаряжаемые батареи намного эффективнее удерживают заряд, когда они не используются. Стандартные никель-металлгидридные аккумуляторные батареи (те, которые не имеют технологии Stay-Charged) постепенно теряют свою мощность в течение недель и месяцев, даже когда они не используются (около 30% в месяц), в процессе, известном как «саморазряд». .Это происходит, когда внутренние химические реакции уменьшают накопленный заряд батареи, даже когда она не используется. Для сравнения, постоянно заряженные батареи имеют низкую скорость саморазряда около 2-3% в месяц, поэтому они сохраняют свой заряд и остаются готовыми к использованию.

      На практике использование постоянно заряженных аккумуляторов для повседневных устройств (которые не разряжают аккумуляторы полностью за короткий период времени) означает, что они сохранят свою мощность, когда они не используются, и поэтому будут готовы к использованию и не нуждаются в подзарядке. так часто.Для устройств с высоким энергопотреблением, таких как игрушки с дистанционным управлением или цифровые фотоаппараты, использующие вспышку, более подходящим может быть стандартный никель-металлгидридный аккумулятор с большей емкостью, поскольку они будут иметь большую мощность в течение первых нескольких дней, прежде чем будут применены преимущества постоянно заряженной батареи. Однако для таких устройств, как дымовые извещатели, фонари или устройства, которые используются немного реже, но нуждаются в подзарядке по запросу, оставшиеся заряженные батареи могут быть лучшим вариантом.

      E. Что такое «эффект памяти»? Относится ли это к аккумуляторным батареям?

      Эффект памяти возникает, когда аккумулятор заряжается до того, как его емкость полностью разряжена.Затем аккумулятор может «запомнить» последний уровень разряда и принимать только этот уровень заряда при последующих зарядках, тем самым уменьшая емкость, до которой он будет заряжаться, и сокращая время его службы. Однако с развитием аккумуляторных технологий эта проблема была практически устранена в современных никель-металлгидридных аккумуляторных батареях.

      F. Как заряжать аккумуляторные батареи?

      Для зарядки аккумуляторных батарей обычно требуется отдельное подходящее зарядное устройство.

      Существует широкий выбор зарядных устройств для аккумуляторов разного размера, от быстрых интеллектуальных зарядных устройств до ночных зарядных устройств – все с различными функциями и преимуществами.

      Есть некоторые исключения, например, в беспроводных телефонах DECT, радионянях или солнечных батареях, где аккумуляторы заряжаются через контакты в устройстве, когда оно помещается в базовое зарядное устройство или док-станцию. Пожалуйста, ознакомьтесь с инструкциями, чтобы убедиться, что вы выбрали правильный тип перезаряжаемой батареи для своего устройства.

      G. Аккумулятор какой емкости мне подходит?

      Для разных устройств требуются аккумуляторы разной емкости. Например, беспроводные телефоны часто заряжаются, поэтому обычно у них нет возможности полностью разрядиться, поэтому подойдет аккумулятор от низкой до средней емкости. Другие устройства, которые могут использовать батарею малой емкости, включают садовые солнечные фонари или пульты дистанционного управления.

      Типичные батареи низкой и средней емкости : батареи размера AA (800–1300 мАч) и батареи размера AAA (400–800 мАч)

      Типичные батареи большой емкости : батареи размера AA (1950 – 2700 мАч) и батареи размера AAA (950 – 1100 мАч)

      Устройства, для которых требуются батареи большой емкости, включают автомобили с дистанционным управлением, цифровые камеры и некоторые электронные игрушки.Если вы обнаружите, что часто меняете батареи, батарея большой емкости обеспечит более длительный срок службы.

      Если вашему устройству требуются аккумуляторы, которые удерживают свой заряд в перерывах между использованием и, возможно, не используются в течение определенного периода времени, вы можете выбрать перезаряжаемую батарею с технологией постоянного заряда, которая означает, что аккумуляторы сохраняют свой заряд между использованиями.

      H. Температура VS. Срок службы батареи

      Батареи обычно используют электрохимическую реакцию для выделения полезной энергии.На эффективность этой реакции может сильно влиять несколько внешних факторов, в том числе температура. Большинство производителей аккумуляторов рекомендуют идеальную рабочую температуру своих продуктов, равную или близкую к комнатной, около 68 ° -80 ° F. Эксплуатация или зарядка аккумулятора при разных температурах за пределами этого диапазона приведет к очень разным характеристикам одного и того же аккумулятора. Интересно, что здесь вы можете увидеть большую разницу в работе батареи, работающей при низких температурах, и батареи.тот же аккумулятор работал при высоких температурах

      Эксплуатация аккумулятора При Чрезвычайно высокие температуры : Высокие температуры позволяют снизить электрическое сопротивление аккумулятора. Это позволит значительно увеличить мощность вашего устройства. Хотя звучит здорово, что ваша батарея даст вам больше энергии, вы сократите общий срок службы батареи. Например, батарея, работающая при температуре 68 ° F, может потерять 40% общего срока службы при работе при температуре 115 ° F.Это важно помнить при рассмотрении перезаряжаемых батарей, так как у вас будет меньше общих циклов зарядки, прежде чем вам понадобится вся новая батарея.

      Эксплуатация батареи При Чрезвычайно низкие температуры : Эксплуатация батареи при очень низких температурах в основном дает противоположный результат для вашей батареи. Сильный холод может привести к большему сопротивлению аккумулятора. Это снижает эффективность батареи, что приводит к снижению мощности и времени работы от одной зарядки.Хотя это и обратная сторона, работа батареи при очень низких температурах может значительно продлить общий срок службы батареи. Это означает, что вы можете получить больше циклов зарядки от одной и той же батареи, и вам не придется ее заменять. Обычно в мобильных телефонах используются очень дорогие литиевые батареи, поэтому возможность продления срока службы вашего продукта является хорошим утешением для сокращения общего времени работы.

      В целом, лучше всего попробовать использовать батареи при рекомендуемой оптимальной температуре, чтобы добиться максимального баланса между производительностью и сроком службы.Если вы используете устройство в условиях сильного холода, вы можете положить его в карман рядом с телом – это простой способ убедиться, что температура вашего устройства ближе к комнатной, когда оно будет использоваться. Если вам нужно использовать устройство в очень жаркой среде, вы можете попытаться подержать его рядом с кондиционером, чтобы снизить температуру до рекомендуемой температуры в помещении.

      Никель-кадмиевый аккумулятор – Academic Kids

      От академических детей

      Изображение отсутствует
      NiCd_various.jpg
      Сверху вниз: никель-кадмиевые батареи типа «Gumstick», AA и AAA.

      Никель-кадмиевый аккумулятор (обычно сокращенно NiCd или NiCad ) – популярный тип аккумуляторных батарей для портативной электроники и игрушек, в которых в качестве активных химикатов используются металлы никель и кадмий. Иногда они используются в качестве замены так называемых первичных батарей , таких как сверхмощные или щелочные, которые доступны во многих из тех же размеров. Кроме того, специальные никель-кадмиевые батареи занимают свою нишу на рынке беспроводных и беспроводных телефонов, аварийного освещения, а также электроинструментов.

      Благодаря выгодному соотношению массы и энергии по сравнению с технологиями на основе свинца, никель-кадмиевые батареи большой емкости с влажным электролитом используются для электромобилей и в качестве стартовых батарей для самолетов.

      Никель-кадмиевые элементы имеют номинальное напряжение 1,2 В. Это ниже, чем 1,5 В многих популярных первичных батарей, и, следовательно, они не подходят для замены во всех областях применения. Однако, в отличие от большинства первичных батарей, никель-кадмиевые батареи поддерживают почти постоянное напряжение на протяжении всего срока службы.Поскольку многие электронные устройства предназначены для работы в течение всего срока службы батареи, они должны работать при напряжении от 0,9 до 1,0 В на элемент, а 1,2 В для никель-кадмиевых аккумуляторов более чем достаточно. Обратите внимание, что некоторые сочтут почти постоянное напряжение недостатком, так как это затрудняет обнаружение низкого заряда батареи; обычно это второстепенная проблема. Несмотря на более низкое номинальное напряжение, никель-кадмиевые батареи на самом деле лучше подходят для сильноточных приложений. Благодаря значительно более низкому последовательному сопротивлению они могут обеспечивать высокие импульсные токи.Это делает их подходящим выбором для электрических моделей самолетов, лодок и автомобилей с дистанционным управлением, а также для аккумуляторных электроинструментов.

      Помимо одиночных элементов 1,2 В, широко доступны никель-кадмиевые батареи 7,2, 9,6 и 12 В, состоящие из нескольких элементов, соединенных последовательно. Батареи на 7,2 В являются наиболее распространенной заменой первичным батареям на 9 В.

      История

      В 1899 году Вальдемар Юнгнер из Швеции создал первую никель-кадмиевую батарею. В то время единственным прямым конкурентом была свинцово-кислотная батарея.Никель-кадмиевый аккумулятор дает несколько преимуществ в определенных областях применения. Даже первые никель-кадмиевые батареи были физически и химически устойчивыми. После незначительных улучшений первых прототипов плотность энергии быстро увеличилась примерно до половины от плотности первичных батарей, что значительно лучше, чем у свинцово-кислотных батарей.

      В 1910 году была образована компания по производству промышленных никель-кадмиевых батарей в Швеции. Первое производство в Соединенных Штатах началось в 1946 году. До этого момента батареи были «карманного типа», состоящие из никелированных стальных карманов, содержащих никель и кадмиевые активные материалы.Примерно в середине двадцатого века никель-кадмиевые батареи из спеченных пластин становились все более популярными. Спеченные пластины создаются путем плавления никелевого порошка при температуре значительно ниже точки плавления с использованием высокого давления. Сформированные таким образом пластины являются высокопористыми, с объемом пор около 80 процентов. Положительные и отрицательные пластины изготавливаются путем пропитки никелевых пластин в никелевых и кадмиевых активных материалах соответственно. Спеченные пластины обычно намного тоньше, чем карманы батарей карманного типа, что обеспечивает большую площадь поверхности на единицу объема, что, в свою очередь, позволяет использовать более высокие токи для батарей сопоставимого размера.Как правило, чем больше площадь поверхности реактивных материалов в батарее, тем ниже внутреннее сопротивление. В последние несколько десятилетий этот факт позволил создавать никель-кадмиевые батареи с таким же низким внутренним сопротивлением, как у щелочных батарей. Сегодня все потребительские никель-кадмиевые аккумуляторы имеют конструкцию «желе-ролл». Как и следовало ожидать, эта конструкция включает несколько слоев анодного и катодного материала, свернутых в цилиндрическую форму.

      Прогресс в технологиях производства аккумуляторов во второй половине двадцатого века сделал производство аккумуляторов все более дешевым.В целом возросла популярность устройств с батарейным питанием. По состоянию на 2000 год ежегодно производилось около 1,5 миллиарда никель-кадмиевых батарей. Хотя никель-кадмиевые батареи так и не стали широко использоваться в качестве замены свинцово-кислотных батарей в тех областях, где эти батареи доминируют, до середины 1990-х годов никель-кадмиевые батареи составляли подавляющее большинство рынка аккумуляторных батарей в бытовой электронике. Однако в последнее время никель-металлогидридные (NiMH) и литий-ионные батареи стали более коммерчески доступными и дешевыми, хотя и более дорогими, чем никель-кадмиевые.Там, где важна плотность энергии, эти типы батарей стали более выгодными для никель-кадмиевых батарей, особенно когда стоимость батареи невелика по сравнению со стоимостью устройства, например, в сотовых телефонах.

      Химия

      Никель-кадмиевые батареи

      содержат пластину положительного электрода из гидроксида никеля, пластину отрицательного электрода из гидроксида кадмия, сепаратор и щелочной электролит. Никель-кадмиевые батареи обычно имеют металлический корпус с уплотнительной пластиной, снабженный самоуплотняющимся предохранительным клапаном.Пластины положительного и отрицательного электрода, изолированные друг от друга сепаратором, свернуты по спирали внутри корпуса.

      В никель-кадмиевых батареях происходит следующая химическая реакция:

      2 NiO (OH) + Cd + 2 H 2 O ↔ 2 Ni (OH) 2 + Cd (OH) 2

      Эта реакция идет слева направо, когда батарея разряжается и справа налево при подзарядке. Щелочной электролит (обычно КОН) в этой реакции не расходуется.

      Когда Юнгнер построил первые никель-кадмиевые батареи, он использовал оксид никеля в катоде и железо и кадмий в аноде. Только позже стали использовать чистый металлический кадмий и гидроксид никеля. Примерно до 1960 года реакция в никель-кадмиевых батареях не была полностью изучена. Было несколько предположений относительно продуктов реакции. Спор был окончательно разрешен с помощью спектрометрии, которая показала гидроксид кадмия и гидроксид никеля.

      Другим исторически важным изменением основного никель-кадмиевого элемента является добавление гидроксида лития к электролиту гидроксида калия.Считалось, что это продлит срок службы, сделав элемент более устойчивым к воздействию электрического тока. Никель-кадмиевые батареи в их современном виде в любом случае чрезвычайно устойчивы к неправильному использованию электричества, поэтому такая практика была прекращена.

      При проектировании большинства аккумуляторных батарей необходимо учитывать перезарядку. В случае никель-кадмиевых аккумуляторов возможны два возможных результата перезарядки. Если анод перегружен, образуется газообразный водород; если катод перегружен, образуется газообразный кислород.По этой причине анод всегда рассчитан на большую емкость, чем катод, чтобы избежать выделения газообразного водорода. По-прежнему существует проблема удаления газообразного кислорода, чтобы избежать разрыва корпуса ячейки. Ячейки NiCd вентилируются, а уплотнения выходят из строя при высоком внутреннем давлении газа. Механизм уплотнения должен позволять газу выходить изнутри ячейки и снова должным образом уплотняться при выходе газа. Этот сложный механизм, ненужный в щелочных батареях, способствует их более высокой стоимости.

      Еще одна потенциальная проблема – обратная зарядка. Это может произойти из-за ошибки пользователя или, чаще, когда батарея из нескольких ячеек полностью разряжена. Поскольку емкость ячеек в батарее немного отличается, одна из ячеек обычно полностью разряжается раньше других, и в этот момент начинается обратная зарядка, серьезно повреждая другие элементы, сокращая срок службы батареи. Побочным продуктом обратной зарядки является газообразный водород, который в некоторых случаях может быть опасен.Некоторые комментаторы советуют никогда не разряжать многоэлементные никель-кадмиевые батареи до нулевого напряжения, например, горелки следует выключать, когда они желтеют, до того, как они полностью погаснут.

      Отдельные элементы могут быть полностью разряжены до нуля вольт, и некоторые производители аккумуляторов рекомендуют это, если элементы должны храниться в течение длительного времени. По крайней мере, один производитель даже рекомендует закоротить каждой ячейки для хранения. Однако обычно рекомендуется заряжать никель-кадмиевые батареи примерно до 40% емкости для длительного хранения.

      Никель-кадмиевые батареи содержат кадмий, который является токсичным тяжелым металлом и поэтому требует особой осторожности при утилизации батарей. В Соединенных Штатах часть стоимости никель-кадмиевых батарей – это плата за их надлежащую утилизацию по окончании срока службы. В Европейском союзе Директива об ограничении использования опасных веществ запрещает использование кадмия в электрическом и электронном оборудовании после июля 2006 года.

      Эффект памяти

      Основная статья Эффект памяти

      Иногда утверждают, что никель-кадмиевые батареи страдают от так называемого «эффекта памяти», если их перезаряжают до того, как они полностью разрядятся.Очевидным признаком является то, что батарея «запоминает» точку цикла зарядки, в которой началась перезарядка, и во время последующего использования испытывает внезапное падение напряжения в этой точке, как если бы батарея была разряжена. Емкость аккумулятора практически не снижается. Некоторая электроника, рассчитанная на питание от никель-кадмиевых аккумуляторов, способна выдерживать это пониженное напряжение достаточно долго, чтобы напряжение вернулось в норму. Однако, если устройство не может работать в течение этого периода пониженного напряжения, оно не сможет получить столько энергии от батареи, и для всех практических целей батарея будет иметь уменьшенную емкость.

      Существуют разногласия по поводу того, существует ли эффект памяти на самом деле, или это настолько серьезная проблема, как иногда думают. Некоторые критики утверждают, что он используется для продвижения конкурирующих никель-металлгидридных аккумуляторов, которые, по-видимому, в меньшей степени страдают от этого эффекта. Многие производители никель-кадмиевых аккумуляторов либо отрицают существование этого эффекта, либо умалчивают об этом.

      Эффект с похожими симптомами на эффект памяти – это так называемый «эффект ленивой батареи» (обратите внимание, однако, что некоторые люди используют этот термин как синоним «эффекта памяти»).Этот эффект является результатом многократной перезарядки; Симптомом является то, что батарея кажется полностью заряженной, но быстро разряжается после короткого периода работы. Иногда большую часть потерянной емкости можно восстановить за несколько циклов глубокой разрядки, что часто обеспечивается зарядными устройствами для никель-кадмиевых аккумуляторов. При правильном обращении никель-кадмиевые батареи могут прослужить 1000 или более циклов, прежде чем емкость упадет ниже 80% от первоначальной.

      Сравнение с другими батареями

      Свинцово-кислотные батареи – это наиболее часто используемые аккумуляторные батареи, которые можно найти почти во всех автомобилях.Однако они имеют гораздо меньшую плотность энергии, чем никель-кадмиевые. Никель-кадмиевые батареи нашли ограниченное применение в транспортных средствах, где преобладали свинцово-кислотные батареи, но из-за более высокой стоимости они применимы только тогда, когда важны размер и вес.

      Никель-кадмиевые батареи имеют меньшую емкость, чем щелочные батареи, которым они являются прямым конкурентом во многих областях применения. Однако общий срок службы NiCd больше, так как большинство щелочей не подлежат перезарядке. В середине 1990-х Rayovac представила перезаряжаемый щелочной аккумулятор Renewal , который, хотя и был более дорогим, стал заменять никель-кадмиевые.

      Никель-металлогидридные (NiMH) батареи похожи на никель-кадмиевые, но менее токсичны и обладают большей емкостью. Когда они стали коммерчески доступными в 1990-х годах, никель-металлгидридные батареи заняли большую часть рынка аккумуляторных батарей. Однако у NiCd есть два преимущества перед NiMH. Для потребителей важнее всего более низкая стоимость. Другое преимущество заключается в том, что скорость саморазряда для NiCd аккумуляторов составляет около 20% в месяц, тогда как для никель-металлогидридных батарей она составляет около 30% в месяц.В обоих типах аккумуляторов скорость саморазряда максимальна при полном заряде и несколько снижается при более низком заряде.

      В будущем на передний план может выйти еще одна новая щелочная технология перезаряжаемых аккумуляторов – сверхмощные железные батареи. По состоянию на 2000 год были построены только работающие прототипы, но, похоже, батареи будут иметь емкость примерно на 50% выше, чем у щелочных, и их можно будет перезаряжать до 300 раз.

      Список литературы

      • Bergstrom, Sven.«Никель-кадмиевые батареи карманного типа». Журнал Электрохимического общества, сентябрь 1952 года. 1952 Электрохимическое общество.
      • Эллис Г. Б., Мандель Х. и Линден Д. «Спеченные пластинчатые никель-кадмиевые батареи». Журнал Электрохимического общества, сентябрь 1952 года. 1952 Электрохимическое общество.

      См. Также

      ja: ニ ッ ケ ル ・ カ ド ミ ウ ム 蓄電池

      Линейное зарядное устройство

      для никель-кадмиевых или никель-металлогидридных батарей сокращает количество деталей

      Хотя перезаряжаемый литий-ионный и литий-полимерные батареи имеют в последнее время был предпочтительным аккумулятором в высоком производительность портативных продуктов, старая рабочая лошадка никель-кадмиевый (NiCd) и новый никель-металлгидрид (NiMH) батареи по-прежнему важны источники портативного питания.Никель аккумуляторы на базе прочные, способные высокой скорости разряда, хорошего срока службы и относительно недороги. NiMH батареи заменяют NiCd во многих приложений из-за более высокого номинальная мощность (на 40-50% выше) и из-за экологических проблем кадмий, содержащийся в элементах NiCd. В этой статье рассказывается о батареях NiCd / NiMH. основы зарядки и знакомит с Линейное зарядное устройство LTC4060.

      Различные способы зарядки Батареи на никелевой основе делятся на категории по скорости: медленно, быстро и быстро.В Самый простой тип зарядного устройства – медленный зарядное устройство с таймером, относительно низкий ток заряда около 14 часов. Это тоже может быть долго для многих портативных приложений. Для более короткого времени зарядки, быстрой и быстрые зарядные устройства применяют постоянный ток при мониторинге напряжения аккумуляторной батареи и / или температуру для определения когда прекратить или прекратить заряд цикл. Время зарядки обычно варьируется от 3 до 4 часов (быстро зарядки) примерно до 0,75–1,5 часов (быстрая зарядка).

      Зарядные устройства для быстрой и быстрой зарядки постоянный ток заряда и разрешить напряжение батареи подняться до уровня требуется (в определенных пределах) заставить это Текущий.Во время цикла зарядки зарядное устройство измеряет напряжение аккумулятора через регулярные промежутки времени, чтобы определить, когда для завершения цикла зарядки. В течение цикл заряда, напряжение аккумулятора поднимается по мере принятия заряда (см. рисунок 1). Ближе к концу цикла зарядки напряжение батареи начинает сильно расти быстрее достигает пика, затем начинает падать. Когда напряжение батареи упало фиксированное количество мВ от пика (–ΔV), аккумулятор полностью заряжен и цикл зарядки заканчивается.

      Рисунок 1.Типичный профиль заряда для 4-элементного никель-металлгидридного аккумулятора емкостью 2000 мАч, заряжаемого со скоростью 1С.

      Аккумулятор имеет внутреннюю защиту против завышения. В то время как напряжение на ячейке падает со своего пика, температура батареи и внутренняя давление быстро повышается. Если быстрая зарядка продолжается в течение значительного количества время после достижения полной зарядки герметичное уплотнение аккумулятора может на мгновение открываются, вызывая выход газа. Этот не обязательно катастрофичен для батарея, но когда ячейка вентилирует, некоторые также выделяется электролит.Если вентиляция происходит часто, клетка со временем неудача. Кроме того, после вентиляции уплотнение может закрываться неправильно, и электролит может высохнуть.

      Напряжение холостого хода (номинальное 1,2 В) и напряжение в конце срока службы (от 0,9 В до 1 В) почти идентичны между двумя типы аккумуляторов, но характеристики зарядки несколько отличаются. Все элементы NiCd может заряжаться непрерывно, но некоторые NiMH-элементы не могут и могут быть поврежденным, если капельный заряд продолжается после достижения полной зарядки.Также профиль напряжения батареи во время цикл быстрой зарядки различается между два типа батарей.

      Для NiMH ячеек снижение напряжение аккумуляторной батареи (–ΔV) после достижения пик составляет примерно половину NiCd ячеек, таким образом заряжая прекращение на основе –ΔV слегка труднее. Кроме того, NiMH повышение температуры батареи во время цикл заряда выше, чем у NiCd, и чем выше температура, тем выше уменьшает величину –ΔV, которая возникает при достижении полной зарядки. Для Ячейки NiMH, –ΔV практически не существует при высоких температурах для зарядки ставки ниже, чем C / 2.(См. Боковую панель для определение «C»). Старые батареи и несоответствие элементов еще больше сокращают уже минута падает в батарее Напряжение.

      Другие различия между двумя химия включает более высокую энергию плотность и значительно пониженное напряжение депрессия или «эффект памяти» для NiMH ячеек, хотя никель-кадмиевые по-прежнему предпочтительны для приложений с большим током утечки. NiCd-элементы также обладают более низким саморазрядом. характеристики, но NiMH технологиям есть куда совершенствоваться в этом отношении, в то время как технология NiCd довольно зрелый.

      LTC4060 – это полностью NiCd или Контроллер линейного зарядного устройства NiMH что обеспечивает постоянный ток заряда и прекращение заряда для быстрого зарядка до четырех последовательно соединенных клетки. Простой в использовании и требующий минимум внешних компонентов, IC управляет недорогим внешним PNP транзистор для обеспечения тока заряда. Базовая конфигурация требует только пять внешних компонентов, хотя включены дополнительные функции, такие as, вход NTC для температуры батареи квалификация, регулируемое напряжение перезарядки, выходы состояния, способные управлять светодиод и входы выключения и паузы.Выбор химического состава аккумулятора и количество заряжаемых ячеек достигнуто закрепив булавки, а ток заряда программируется с помощью резистор стандартного номинала. При адекватном тепловое управление, ток заряда возможно до 2А, а то и выше ток при использовании внешнего тока чувствительный резистор параллельно с внутренний резистор считывания.

      Как только аккумуляторная химия и количество ячеек установлено, необходимо определить правильный ток заряда. LTC4060 разработан для быстрого зарядка никелевых аккумуляторов и использует –ΔV в качестве окончания заряда метод.Температура батареи может также следует контролировать, чтобы избежать чрезмерного температура аккумулятора во время зарядки, а таймер безопасности отключает зарядное устройство, если прекращение заряда не происходит. Типичное напряжение быстрой зарядки профиль (быстрый подъем, затем падение по напряжению батареи (–ΔV) ближе к концу цикла заряда) происходит только при относительно высокий ток заряда. Если ток заряда слишком низкий, аккумулятор напряжение не дает необходимого падение напряжения аккумуляторной батареи после достижения пик, необходимый для LTC4060 для завершения цикла зарядки.При очень низком токе заряда –ΔV делает не происходит вообще. С другой стороны, если ток заряда слишком велик, аккумулятор может сильно нагреться требует наличия термистора NTC, расположенного рядом с аккумулятором, чтобы приостановить заряд цикл, позволяющий батарее остыть перед возобновлением цикла зарядки.

      При достаточном входном напряжении, батарея не подключена и правильный ток заряда, время заряда и соединения термистора на месте, выходное напряжение зарядного устройства очень близко к входному напряжению.Подключение разряженный аккумулятор к зарядному устройству тянет понизить выходное напряжение зарядного устройства ниже 1,9 • V CELL (V CELL – общее напряжение батареи, деленное на количество заряжаемых ячеек) цикл зарядки.

      Если температура АКБ, как измеряется термистором NTC, составляет вне окна от 5 ° C до 45 ° C, цикл зарядки приостанавливается и не заряжается ток течет до приемлемого температура достигнута. Когда температура АКБ в допустимых пределах, напряжение батареи измеряется и должно быть ниже максимального предела.

      Если напряжение V CELL ниже 900 мВ, зарядное устройство начинает капельный заряд 20% от запрограммированный ток заряда до напряжение превышает 900 мВ, после чего полный запрограммированный ток заряда начинается. Несколько сотен миллисекунд после начала цикла зарядки, если напряжение аккумулятора превышает 1,95 В, цикл зарядки прекращается. Это перенапряжение состояние обычно означает аккумулятор неисправен, требуется, чтобы зарядное устройство сбросить вручную, заменив аккумулятор, переключая контакт выключения, или снятие и повторное включение питания.

      После запрограммированной константы ток заряда начинает течь, период времени, известное как «время задержки». Это время задержки колеблется от 4 минут до 15 минут в зависимости от ток заряда и время заряда настройки. Во время задержки окончание –ΔV отключено, чтобы предотвратить ложное прекращение начисления. А аккумулятор, который сильно разряжен или не был заряжен в последнее время может демонстрируют падение напряжения батареи во время ранняя часть цикла зарядки, который может быть ошибочно принят за действительный –ΔV прекращение.

      Во время цикла зарядки аккумулятор напряжение медленно повышается. Когда аккумулятор приближается к полной зарядке, напряжение аккумулятора начинает расти быстрее, достигает пика, затем начинает падать. Зарядное устройство непрерывно измеряет напряжение батареи каждые 15-40 секунд, в зависимости от тока заряда и таймера настройки. Если каждое измеренное значение напряжения меньше, чем предыдущее значение, для четырех последовательных чтений, а общее падение напряжения батареи превышает 8 мВ / элемент для NiMH или 16 мВ / элемент для NiCd, ток заряда прекращается, окончание цикл зарядки.Открытый сток выходной штифт «CHRG», который был вытащен низкий во время цикла зарядки, теперь становится высоким импедансом.

      Программируемая пользователем подзарядка функция запускает новый цикл зарядки, если напряжение АКБ падает ниже установленного уровень напряжения из-за саморазряда или нагрузка на аккумулятор. Кроме того, если полностью заряженный аккумулятор более 1,3 В подключенный к зарядному устройству, клемма –ΔV схема обнаружения включена немедленно, без задержки, таким образом сокращая цикл зарядки для аккумулятор, который уже почти полностью плата.

      Если батарея достигает примерно 55 ° C во время цикла зарядки зарядное устройство останавливается, пока температура падает до 45 ° C, затем возобновляет зарядку пока окончание –ΔV не закончит цикл зарядки. Если нет прекращения –ΔV происходит, таймер безопасности останавливается цикл зарядки. Если таймер остановит цикл зарядки, считается неисправностью состояние и зарядное устройство должно быть сбросить, удалив и заменив аккумулятор, переключение контакта SHDN или переключение входная мощность зарядного устройства.

      Правильный ток заряда всегда зависит от емкости аккумулятора или просто «C».Буква «C» – это термин, используемый для обозначения заявленной производителем разрядной емкости аккумулятора, которая измеряется в мА • час. Например, батарея с номиналом 2000 мАч может обеспечивать нагрузку 2000 мА в течение одного часа, прежде чем напряжение элемента упадет до 0,9 В или нулевой емкости. В том же примере зарядка той же батареи со скоростью C / 2 будет означать зарядку с током 1000 мА (1 А).

      Правильный ток заряда для быстрой зарядки никель-кадмиевых или никель-металлгидридных аккумуляторов составляет примерно от C / 2 до 2C . Этот уровень тока необходим для того, чтобы элемент демонстрировал требуемый изгиб –ΔV, который возникает, когда элемент достигает полного заряда, хотя зарядка при 2 ° C может вызвать чрезмерное повышение температуры аккумулятора, особенно с небольшими NiMH элементами большой емкости.Из-за химических различий между двумя химическими составами аккумуляторов NiMH-элементы выделяют больше тепла при быстрой зарядке.

      Не подключайте нагрузку напрямую к аккумулятор при зарядке. Заряд ток должен оставаться относительно постоянным для прекращения заряда –ΔV чтобы быть эффективной. Нагрузки с изменением текущие уровни приводят к небольшим изменениям в напряжении батареи, которое может сработать ложное прекращение заряда –ΔV. Для приложения, требующие нагрузки, см. к показанным компонентам силового тракта на рисунке 2.Когда входное напряжение в настоящее время нагрузка питается от входное питание через диод Шоттки D1 и аккумулятор изолирован от Загрузка. Снятие входного напряжения тянет ворота Q2 на низкий уровень, включая его обеспечение пути тока с низким сопротивлением между аккумулятором и нагрузкой.

      Рис. 2. Зарядное устройство для 4-элементных никель-металлгидридных аккумуляторов 2 А с термистором NTC и управлением трактом питания

      Минимизируйте сопротивление постоянному току между зарядное устройство и аккумулятор. Некоторые держатели батарей имеют пружины и контакты с чрезмерным сопротивлением.Повышенное сопротивление в серия с аккумулятором может предотвратить цикл зарядки с момента запуска из-за состояние перенапряжения аккумулятора один раз начинается полный зарядный ток. Плохо сконструированные держатели аккумуляторных батарей также могут произвести ложное прекращение начисления, если движение батареи вызывает преждевременное –ΔV чтение.

      В отличие от литий-ионных элементов, которые могут быть параллельно для увеличения емкости, NiCd или никель-металлгидридные элементы не должны подключаться параллельно, особенно при быстрой зарядке. Взаимодействие между ячейками мешает правильному прекращение начисления.Если больше емкости требуется, выберите ячейки большего размера.

      Не все батареи NiCd или NiMH ведут себя так же при зарядке. Производители различаются материалами и строительство, приводящее к некоторому различные профили напряжения заряда или количество выделяемого тепла. Аккумулятор может быть разработан для общего назначения использовать или оптимизировать для большой емкости, быстрая зарядка или высокая температура операция. Некоторые батареи могут не предназначен для сильноточного (2C) заряда скорости, приводящие к высокой температуре ячейки при зарядке.Кроме того, самые новые клетки сформированы не полностью и требуют некоторой подготовки, прежде чем они достигают своей номинальной мощности. Кондиционирование состоит из многократного заряда и циклы разряда.

      Термистор, установленный рядом с аккумулятором упаковка, желательно контактирующая с одной или несколькими ячейками, очень рекомендуется, как в целях безопасности и для увеличения срока службы батареи. В отличие от литий-ионных батарей, которые очень небольшое повышение температуры при зарядке, Никелевые батареи нагреваются во время цикл зарядки, особенно NiMH батареи.Минимизация продолжительности времени аккумулятор подвергается воздействию повышенной температуры продлевает срок службы батареи.

      NiCd и NiMH батареи идеально подходят источники аккумуляторной энергии для многие портативные продукты и резервное копирование Приложения.

      Автор: alexxlab

      Добавить комментарий

      Ваш адрес email не будет опубликован. Обязательные поля помечены *