Приборы для измерения напряжения: Прибор для измерения напряжения. Как измерить напряжение мультиметром

Содержание

Прибор для измерения напряжения. Как измерить напряжение мультиметром

Здравствуйте, уважаемые читатели сайта sesaga.ru. Основной единицей измерения электрического напряжения является вольт. В зависимости от величины напряжение может измеряться в вольтах (В), киловольтах (1 кВ = 1000 В), милливольтах (1 мВ = 0,001 В), микровольтах (1 мкВ = 0,001мВ = 0,000001 В). На практике, чаще всего, приходится сталкиваться с вольтами и милливольтами.

Существует два основных вида напряжений – постоянное и переменное. Источником постоянного напряжения служат батареи, аккумуляторы. Источником переменного напряжения может служить, например, напряжение в электрической сети квартиры или дома.

Для измерения напряжения используют вольтметр. Вольтметры бывают стрелочные (аналоговые) и цифровые.

На сегодняшний день стрелочные вольтметры уступают пальму первенства цифровым, так как вторые более удобны в эксплуатации. Если при измерении стрелочным вольтметром показания напряжения приходится вычислять по шкале, то у цифрового результат измерения сразу высвечивается на индикаторе. Да и по габаритам стрелочный прибор проигрывает цифровому.

Но это не значит, что стрелочные приборы совсем не применяются. Есть некоторые процессы, которые цифровым прибором увидеть нельзя, поэтому стрелочные больше применяются на промышленных предприятиях, лабораториях, ремонтных мастерских и т.п.

На электрических принципиальных схемах вольтметр обозначается кружком с заглавной латинской буквой «V» внутри. Рядом с условным обозначением вольтметра указывается его буквенное обозначение «PU» и порядковый номер в схеме. Например. Если вольтметров в схеме будет два, то около первого пишут «PU 1», а около второго «PU 2».

При измерении постоянного напряжения на схеме указывается полярность подключения вольтметра, если же измеряется переменное напряжение, то полярность подключения не указывается.

Напряжение измеряют между двумя точками схемы: в электронных схемах между

плюсовым и минусовым полюсами, в электрических схемах между фазой и нулем. Вольтметр подключают параллельно источнику напряжения или параллельно участку цепи — резистору, лампе или другой нагрузке, на которой необходимо измерить напряжение:

Рассмотрим подключение вольтметра: на верхней схеме напряжение измеряется на лампе HL1 и одновременно на источнике питания GB1. На нижней схеме напряжение измеряется на лампе HL1 и резисторе R1.

Перед тем, как измерить напряжение, определяют его вид и приблизительную величину. Дело в том, что у вольтметров измерительная часть рассчитана только для одного вида напряжения, и от этого результаты измерений получаются разными. Вольтметр для измерения постоянного напряжения не видит переменное, а вольтметр для переменного напряжения наоборот, постоянное напряжение измерить сможет, но его показания будут не точными.

Знать приблизительную величину измеряемого напряжения также необходимо, так как вольтметры работают в строго определенном диапазоне напряжений, и если ошибиться с выбором диапазона или величиной, прибор можно повредить. Например. Диапазон измерения вольтметра составляет 0…100 Вольт, значит, напряжение можно измерять только в этих пределах, так как при измерении напряжения выше 100 Вольт прибор выйдет из строя.

Помимо приборов, измеряющих только один параметр (напряжение, ток, сопротивление, емкость, частота), существуют многофункциональные, в которых заложено измерение всех этих параметров в одном приборе. Такой прибор называется тестер (в основном это стрелочные измерительные приборы) или цифровой мультиметр.

На тестере останавливаться не будем, это тема другой статьи, а сразу перейдем к цифровому мультиметру. В основной своей массе мультиметры могут измерять два вида напряжения в пределах 0…1000 Вольт. Для удобства измерения оба напряжения разделены на два сектора, а в секторах на поддиапазоны: у постоянного напряжения поддиапазонов пять, у переменного — два.

У каждого поддиапазона есть свой максимальный предел измерения, который обозначен цифровым значением: 200m, 2V, 20V, 200V, 600V. Например. На пределе «200V» измеряется напряжение, находящееся в диапазоне 0…200 Вольт.

Теперь сам процесс измерения.

1. Измерение постоянного напряжения.

Вначале определяемся с видом измеряемого напряжения (постоянное или переменное) и переводим переключатель в нужный сектор. Для примера возьмем пальчиковую батарейку, постоянное напряжение которой составляет 1,5 Вольта. Выбираем сектор постоянного напряжения, а в нем предел измерения «2V», диапазон измерения которого составляет 0…2 Вольта.

Измерительные щупы должны быть вставлены в гнезда, как показано на нижнем рисунке:

красный щуп принято называть плюсовым, и вставляется он в гнездо, напротив которого изображены значки измеряемых параметров: «VΩmA»;
черный щуп называют минусовым или общим и вставляется он в гнездо, напротив которого стоит значок «СОМ».

Относительно этого щупа производятся все измерения.

Плюсовым щупом касаемся положительного полюса батарейки, а минусовым — отрицательного. Результат измерения 1,59 Вольта сразу виден на индикаторе мультиметра. Как видите, все очень просто.

Теперь еще нюанс. Если на батарейке щупы поменять местами, то перед единицей появится знак минуса, сигнализирующий, что перепутана полярность подключения мультиметра. Знак минуса бывает очень удобен в процессе наладке электронных схем, когда на плате нужно определить плюсовую или минусовую шины.

Ну а теперь рассмотрим вариант, когда величина напряжения неизвестна. В качестве источника напряжения оставим пальчиковую батарейку.

Допустим, мы не знаем напряжение батарейки, и чтобы не сжечь прибор измерение начинаем с самого максимального предела «600V», что соответствует диапазону измерения 0…600 Вольт. Щупами мультиметра касаемся полюсов батарейки и на индикаторе видим результат измерения, равный «001». Эти цифры говорят о том, что напряжения нет или его величина слишком мала, или выбран слишком большой диапазон измерения.

Опускаемся ниже. Переключатель переводим в положение «200V», что соответствует диапазону 0…200 Вольт, и щупами касаемся полюсов батарейки. На индикаторе появились показания равные «01,5». В принципе этих показаний уже достаточно, чтобы сказать, что напряжение пальчиковой батарейки составляет 1,5 Вольта.

Однако нолик, стоящий впереди, предлагает снизиться еще на предел ниже и точнее измерить напряжение. Снижаемся на предел «20V», что соответствует диапазону 0…20 Вольт, и снова производим измерение. На индикаторе высветились показания «1,58». Теперь можно с точностью сказать, что напряжение пальчиковой батарейки составляет 1,58 Вольта.

Вот таким образом, не зная величину напряжения, находят ее, постепенно снижаясь от высокого предела измерения к низкому.

Также бывают ситуации, когда при измерении в левом углу индикатора высвечивается единица «1». Единица сигнализирует о том, что измеряемое напряжение или ток выше выбранного предела измерения. Например. Если на пределе «2V» измерить напряжение равное 3 Вольта, то на индикаторе появится единица, так как диапазон измерения этого предела всего 0…2 Вольта.

Остался еще один предел «200m» с диапазоном измерения 0…200 mV. Этот предел предназначен для измерения совсем маленьких напряжений (милливольт), с которыми иногда приходится сталкиваться при наладке какой-нибудь радиолюбительской конструкции.

2. Измерение переменного напряжения.

Процесс измерения переменного напряжения ни чем не отличается от измерения постоянного. Отличие состоит лишь в том, что для переменного напряжения соблюдать полярность щупов не требуется.

Сектор переменного напряжения разбит на два поддиапазона 200V и 600V.
На пределе «200V» можно измерять, например, выходное напряжение вторичных обмоток понижающих трансформаторов, либо любое другое находящееся в диапазоне 0…200 Вольт. На пределе «600V» можно измерять напряжения 220 В, 380 В, 440 В или любое другое находящееся в диапазоне 0…600 Вольт.

В качестве примера измерим напряжение домашней сети 220 Вольт.
Переводим переключатель в положение «600V» и щупы мультиметра вставляем в розетку. На индикаторе сразу появился результат измерения 229 Вольт. Как видите, все очень просто.

И еще один момент.
Перед измерением высоких напряжений ВСЕГДА лишний раз убеждайтесь в исправности изоляции щупов и проводов вольтметра или мультиметра, а также дополнительно проверяйте выбранный предел измерения. И только после всех этих операций производите измерения. Этим Вы убережете себя и прибор от неожиданных сюрпризов.

А если что осталось не понятно, то посмотрите видеоролик, где показано измерение напряжения и силы тока с помощью мультиметра.

Как Вы убедились, измерить напряжение мультиметром не так уж и сложно. Главное понимать что, где и как. И в заключении хочу предложить Вам прочитать статью прибор для измерения силы тока, как измерить силу тока мультиметром.
Удачи!

Прибор для измерения напряжения в электрической цепи

В век технических достижений электричество ценится на вес золота. Чтобы его измерить, нужен прибор для измерения напряжения. Но аппарат и его разновидности существенно отличаются по параметрам и принципу действия.

Приборы для измерения напряжения

В результате прямых и косвенных измерений становятся известны конкретные данные физической величины.

Прямые отображают результат на шкале напрямую. Определение косвенных производится с помощью вычислений нужных параметров. Последний способ значительно точнее. Измерения проводятся в электротехнических и радиотехнических цепях.

Вольтаж измеряют оборудованием

Напряжение измеряется от одной точки до другой и характеризируется силой переноса из конца цепи A в B. Отображается величина с помощью буквы V.  Единица напряжения — Вольты. Для облегчения, показатель разделяется на кило-, милли- и микро- единицы. Измеритель может быть электромеханическим, электронным, цифровым или электронным.

Вольтметры

Именно этот прибор учат, измеряя напряжение на уроках физики. Действие измерителя основано на законе Ома. Измерение производится с помощью электромагнитного поля. Характеристики аппарата улучшаются при высоком внутреннем сопротивлении и широком диапазонном значений. Приборы, определяющие кило-, милли- и микро-единицы условно имеют название киловольтметров, милливольтметров и микровольтметров. Последние два диапазона имеют минимальную погрешность.

Знать вольтаж цепи необходимо

Вольтметры бывают 2 видов.

Электронный — высокочувствительный аппарат с большим сопротивлением. Позволяет определить широкие пределы значений. Отличается добавлением к основному механизму преобразователя. Такие приборы требуют ток в качестве источника питания. Известны аналоговые и цифровые вольтметры. Первые действуют, переводя входное переменное напряжение на постоянное, постепенно отклоняя стрелку. ИП также включает в себя шкалу. При течении тока в противоположном направлении, стрелка смещается влево, при обычном — вправо. Таким образом, следует учитывать положительное напряжение или отрицательное. Цифровые вольтметры сразу считывают показатель напряжения на входе и выводят данные на табло. Точность зависит от качества аналого-цифирного преобразователя, но оцифрованные вольтметры все же имеют меньшую погрешность, чем аналоговые.

Электронные модели широко распространены

Электромеханические отличаются тем, что им не нужен токовый источник для работы. После подключения к цепи вольтметра, прибор определяет входное значение, которое уменьшается с помощью специального внутреннего или внешнего резистора. Внутренние резисторы последовательно подсоединяются изнутри корпуса, внешние — с наружной стороны. Прибор компактный и стоит недорого, но может потреблять мощность из цепи. Диапазон измерения не сильно широкий, поэтому не всегда может быть получен точный результат.

Электромеханический не требует батареек

При выборе прибора имеет значение категория измерений. Предусмотрены вольтметры для постоянного и переменного тока, селективные, импульсные, фазочувствительные и универсальные приборы.

А именно:

  • Импульсный. Поможет справиться с перебоями в сети. Проверяет напряжение одиночного импульсного сигнала. Благодаря этому можно выяснить, на каком участке цепи появилась помеха, и устранить ее.
  • Фазочувствительный. Значение выводится посредством преобразования постоянного или минимально меняющегося напряжения. Табло выдает общий результат.
  • Селективный. Прибор узкополосный, избирательным путем дает понятие об амплитуде и частоте одной из частей, не отключая другую. Аппарат нужен, если требуется вычленить некоторые составляющие большого участка.
  • Универсальный. Сочетает в себе все виды вольтметров, позволяет определять электродвижущую силу на разных участках и при любых условиях.
  • Вольтметры для постоянного и переменного тока определяют соответствующие величины.
Универсальный аппарат более удобен

Переносными, стационарными и щитовыми могут быть приборы, в зависимости от возможности перемещения, размеров и конструкционных особенностей.

А именно:

  • Щитовые. Предназначены для нахождения в специальных шкафах. После приобретения, они устанавливаются и находятся в месте монтажа. Переносить можно, но редко и аккуратно.
  • Стационарные. Ввиду громоздкости перенести их будет трудно. Неудобства использования перекрываются высокими техническими характеристиками, точностью и большой шкалой измерений.
  • Переносные. Не требуют подключения к источнику энергии, доступны к свободному перемещению. Компактные, находятся в аккуратном корпусном чехле.
Есть стационарные модели

Потенциометр

Потенциометром может называться устройство-регулятор тока. Представляет собой 3-х выводной, открытый переменный резистор. В большинстве случаев имеет отводной контакт. Особое распространение получил при работе с аудиосистемами и в сфере автомобильной промышленности.

При работе один из выводов подключается к контакту, два других — отводные. Основа изготавливается из углеродных и керамических материалов.

Разделяются по принципу действия:

  • Линейные. Сопротивление измеряется пропорционально углу, который зафиксирован при повороте контакта. Делятся на одинарный (одноканальный), двойной (двухканальный) и многооборотный вариант.
  • Логарифмические. Потенциометр изменяет сопротивление сначала быстро, затем скорость уменьшается.
  • Экспотенциальные. Потенциометр изменяет сначала медленно, затем скорость увеличивается.
Иногда припаиваются к плате

Корпус может быть монтажным или стационарным. В первом случае устройство монтируется на плате, во втором — остается на корпусе. Оборотные делятся на однооборотные или многооборотные, а также сдвоенные. Если однооборотные совершают 1 оборот, многооборотные — более чем 5, то сдвоенные на каждом валу имеют 2 резисторных элемента. Чаще всего многооборотные делают от 5 до 15 оборотов.

Есть аналоговые модели

Мультиметр

Комбинированное устройство с доступным для нескольких приборов функционалом. Может измерять силу тока, напряжение и сопротивление цепи и ее частей. Может включать и большее количество измерителей.

К сведению. Функции вольтметра, амперметра и омметра исполняет любая модель.

Подходит для работы с переменным и постоянным током. Из-за хорошей эффективности многие предпочитают использовать именно его.

Аппарат спрятан в корпусный чехол, на верхней стороне имеет дисплей или шкалу измерений. Нижняя сторона оснащена панелью управления. Центральная часть панели управления отведена под кнопки переключения режимов и переключатель измерений. Питается с помощью батареек, преимущественно прямоугольных.

Есть цифровые модели

Бывают 2 видов:

  • Аналоговые. Со стрелочной шкалой в верхней части наружной панели. Некоторые модели измеряют Вольты и Амперы без, а Омы — с питанием. Во время измерения можно увидеть динамику.
  • Цифровые. Имеют ЖК-экран, на который выводятся показания. Просты в использовании, имеют понятный интерфейс.

В комплекте идут 2 щупа, красный и черный.

Аппарат может показать амплитуду сигнала

Осциллограф

Прибор, измеряющий электрические сигналы и их колебания, будет называться осциллографом. Важен при работе с электроникой. Показывает работу любого, даже минимального импульса. С помощью специального устройства, идущего в комплекте, может соединиться с сетью, сигналом или внешним источником.

Визуально выглядит, как телевизор, позволяющий осуществлять наблюдение в текущем режиме. Если сигнал подается на канал вертикально, отображается на табло полосой вверх. Имеет также модуляционный диапазон, работающий с лучами, лучевую трубку и блок питания. Может быть аналоговым и цифровым. Цифровые приборы имеют встроенную память и могут сохранять определенное количество предыдущих измерений.

Электрический импульс, измеряемый осциллографом, облегчает работу с автомобилем и активно используется в медицинских целях.

Осциллографы наиболее точны из всех остальных

Подразделяются на:

  • Специализированные. Предназначены для конкретного устройства.
  • Стробоскопические. Наблюдают за кратковременными импульсами, склонными к повторению.
  • Скоростные. Измеряют «быстрые» импульсы.
  • Запоминающиеся. Имеют небольшую память для сохранения сигнала.
  • Универсальные. Своего рода симбиоз — включает несколько различных видов осциллографов.
Самый простой вариант измерителя

Электрометр

Электрометром можно назвать прибор для измерения электрического потенциала и разностей его величин. Является усовершенствованной версией электроскопа. Электрический заряд определяется с помощью стержня — основания конструкции. К основанию подвешиваются 2 бумажки или 2 кусочка фольги, параллельно друг другу. Стержень надежно защищен металлическим корпусом и закрыт стеклянной пробкой. Присутствие заряда запускает реакцию «отталкивания». Сила реакции зависит от его величины. Реакция идет в обе стороны, поэтому притяжение индикаторов дает понять, что заряд отрицателен.

Как правильно эксплуатировать

Инструкция:

  1. Собрать информацию по технической неполадке.
  2. Проверить отсутствие повреждений на измеряемом субъекте.
  3. Подсоединить щупы в гнезда.
  4. Включить устройство и выбрать нужный режим. Уточняют, постоянное или переменное напряжение будет измеряться.
  5. Измерение производится параллельно сети.
  6. Считать результат на шкале или табло.
Подсоединение осуществляется параллельно

Единицы измерения

Величина измеряется в вольтах. Обозначается буквой V, русская В.

Правила безопасности

Стоит обратить внимание:

  • Обязательно обеспечение заземления.
  • Прибор и цепь не трогаются голыми руками.
  • При возникновении непредвиденных ситуаций, немедленно прекратить работу и убедиться, что измерение не несет последствий. Например, не создастся пожар.
  • Прибор подсоединяется параллельно к уже собранной цепи.
  • Рабочее место должно быть изолировано от посторонних.
  • Измеряющий должен иметь представление о технике безопасности, знать устройство прибора и принцип его действия.
  • Цепь должна быть правильно собрана.
  • По окончании работы устройство отключается и разбирается, укладывается на место хранения в соответствующих чехлах. Рабочий снимает средства защиты и тщательно обрабатывает руки.
Стоит работать в перчатках

Ответ на вопрос, как называется прибор для измерения электрического напряжения, очень прост, как и сама процедура проведения. Главное — действовать аккуратно и бережно относиться к оборудованию. В таком случае аппаратура прослужит века.

Семь основных приборов для электриков

Место в сумке для инструментов всегда в дефиците, поэтому необходимо убедиться, что все приборы, которые вы носите с собой, выполняют свое назначение. Для оптимального использования пространства в сумке для инструментов в первую очередь необходимо выбирать универсальные, надежные, прочные и компактные инструменты. Кроме того, стоит использовать приборы, которые оснащены несколькими функциями.

Недавно мы спросили электриков о том, какие пять приборов они считают основными. Получив множество разных ответов, мы решили рассказать не о пяти, а о семи главных приборах: бесконтактном тестере напряжения, изолированных ручных инструментах, токоизмерительных клещах, мультиметре, тестере сопротивления изоляции, тестере флуоресцентного освещения и измерителе сопротивления заземления. Эти инструменты являются для электриков приборами первой необходимости.

1. Бесконтактный тестер напряжения

Возможность измерять напряжение без измерительных проводов позволяет сэкономить время и обеспечить безопасность. Электрический тестер Fluke T6-1000 с технологией FieldSense и измерительной вилкой скользит по проводнику, позволяя легко измерять напряжение до 1000 В перем. тока и силу тока до 200 А перем. тока. Кроме того, этот прибор легко помещается в кармане.

2. Изолированные инструменты

Изолированные ручные инструменты новой серии Fluke соответствует тем же строгим требованиям безопасности, надежности и эргономики, что и все приборы нашей компании. Изолированные инструменты Fluke, которые точно спроектированы и изготовлены из немецкой стали CMV, имеют длительный срок службы и обеспечивают безопасность.

Изолированные отвертки Fluke, сертифицированные для напряжения 1000 В перем. тока и 1500 В пост. тока, обеспечивают превосходную защиту от поражения электрическим током и случайных падений на оборудование под напряжением. Эргономичная рукоятка приспособлена к руке пользователя, что снижает нагрузку и утомляемость во время работы, а также обеспечивает максимальный крутящий момент.

Высокопрочные пассатижи Fluke для электромонтеров обеспечивают надежный и мощный захват благодаря губкам с насечками и отверстию с четырьмя точками зажима. Компактная форма обеспечивает удобный захват проводов в ограниченных пространствах и позволяет сэкономить место в сумке. Масса этих пассатижей на 20 % меньше аналогичных инструментов.

Длинногубцы Fluke с узкими губками выполняют сразу две функции. Уникальные фрезерованные волнообразные зоны захвата и четыре точки зажима для круглых предметов обеспечивают фиксацию без проскальзывания. Кроме того, с помощью боковой режущей кромки можно обрезать провода.

3. Токоизмерительные клещи

Обхватите с помощью токоизмерительных клещей Fluke 376 FC с измерением истинных среднеквадратичных значений проводник и посмотрите показания тока на смартфоне, находясь на безопасном расстоянии от зоны с угрозой возникновения вспышки дугового разряда. Прибор позволяет измерять силу тока до 1000 А перем./пост. тока, а также регистрировать результаты и тенденции для поиска перемежающихся неисправностей. Кроме того, вы можете создавать и отправлять отчеты непосредственно с места проведения работ.

4. Мультиметр

Цифровой мультиметр Fluke 117 разработан электриками для электриков. Этот прибор позволяет выполнять основные измерения: сила тока 10 А, сопротивление, целостность цепи, частота и емкость. Также он оснащен встроенными функциями бесконтактного обнаружения напряжения, автоматического измерения напряжения и LoZ. Это именно то, что вам нужно для точной и продуктивной работы.

5. Тестер сопротивления изоляции

Тестер сопротивления изоляции Fluke 1587 FC — это цифровой тестер сопротивления изоляции, объединенный в компактном корпусе с полнофункциональным цифровым мультиметром с измерением истинных среднеквадратичных значений. Используйте этот прибор для определения проблем, связанных с изоляцией. Результаты можно просматривать и сохранять непосредственно на приборе. Также результаты можно получать удаленно и отправлять их коллегам с помощью смартфона.

6. Тестер флуоресцентного освещения

Откажитесь от метода проб и ошибок при обслуживании флуоресцентных ламп и сэкономьте много времени с помощью тестера флуоресцентного освещения Fluke 1000FLT. С помощью одного компактного устройства можно выполнить пять основных проверок флуоресцентного освещения. Прибор оснащен функциями проверки ламп, измерения балластного сопротивления и бесконтактного измерения напряжения, а также функциями проверки целостности контактов и дискриминатора типа балластного сопротивления. Устройство выдерживает падение с высоты 1,8 м (6 футов).

7. Измеритель сопротивления заземления

Безэлектродные клещи для проверки заземления Fluke 1630-2 FC измеряют утечку переменного тока на землю без необходимости устанавливать дополнительные измерительные электроды. Благодаря этому измерителю сопротивления заземления не нужно отключать параллельное заземление. Прибор упрощает проверку заземления внутри зданий, на опорах линий электропередач и в местах, где нет доступа к почве для установки измерительных электродов. Беспроводное подключение к мобильному приложению позволяет удаленно просматривать и сохранять результаты измерений, а также отправлять эти данные коллегам.

Измерение напряжения. Виды и принцип измерений. Особенности

Измерение напряжения на практике приходится выполнять довольно часто. Напряжение измеряют в радиотехнических, электротехнических устройствах и цепях и т.д. Вид переменного тока может быть импульсным или синусоидальным. Источниками напряжения являются химические элементы или генераторы тока.

Измерение напряжения

Напряжение импульсного тока имеет параметры амплитудного и среднего напряжения. Источниками такого напряжения могут быть импульсные генераторы. Напряжение измеряется в вольтах, имеет обозначение «В» или «V». Если напряжение переменное, то впереди ставится символ «

~», для постоянного напряжения указывается символ «-». Переменное напряжение в домашней бытовой сети маркируют ~220 В.

На аккумуляторах и гальванических элементах при указании напряжения знак «-» не используют, а ставят только цифры, например, «1,5 В». На корпусе гальванического элемента обязательно присутствует обозначение «+» возле положительного полюса. В практических электротехнических измерениях применяются кратные единицы: милливольты, киловольты и т.д.

Переменное напряжение имеет полярность, которая изменяется с течением времени. В бытовой сети напряжение изменяет полярность 50 раз за секунду, что означает частоту 50 герц. Постоянное напряжение имеет неизменную полярность. Поэтому для замеров напряжений переменного и постоянного тока применяют измерительные приборы, имеющие отличие в устройстве – вольтметры. Они могут быть цифровыми или аналоговыми (стрелочные). Однако существуют универсальные приборы, которые способны измерить постоянное и переменное напряжение, не переключая режимы.

Для начала измерений измерительный прибор соединяют параллельно с выводами источника питания или нагрузки специальными щупами.

Кроме вольтметров для измерения напряжения используют электронные осциллографы.

Это приборы, предназначенные для измерения и контроля характеристик электрических сигналов. Осциллографы работают на принципе отклонения электронного луча, который выдает изображение значений переменных величин на дисплее.

Измерение напряжения в сети переменного тока

Согласно нормативным документам величина напряжения в бытовой сети должна быть равной 220 вольт с точностью отклонений 10%, то есть напряжение может меняться в интервале 198-242 вольта. Если в вашем доме освещение стало более тусклым, лампы стали часто выходить из строя, либо бытовые устройства стали работать нестабильно, то для выяснения и устранения этих проблем для начала необходимо измерение напряжения в сети.

Перед измерением следует подготовить имеющийся измерительный прибор к работе:
  • Проверить целостность изоляции контрольных проводов со щупами и наконечниками.
  • Установить переключатель на переменное напряжение, с верхним пределом 250 вольт или выше.
  • Вставить наконечники контрольных проводов в гнезда измерительного прибора, например, мультиметра. Чтобы не ошибиться, лучше смотреть на обозначения гнезд на корпусе.
  • Включить прибор.

На мультиметре выбрана граница измерений 700 вольт. Некоторые приборы требуют для измерения напряжения устанавливать в нужное положение несколько разных переключателей: вид тока, вид измерений, а также вставить наконечники проводов в определенные гнезда. Конец черного наконечника в мультиметре воткнут в гнездо СОМ (общее гнездо), красный наконечник вставлен в гнездо с обозначением «V». Это гнездо является общим для измерения любого вида напряжения. Гнездо с маркировкой «ma» применяется для замеров небольших токов. Гнездо с обозначением «10 А» служит для измерения значительной величины тока, который может достичь 10 ампер.

Если измерять напряжение со вставленным проводом в гнездо «10 А», то прибор выйдет из строя, или сгорит предохранитель. Поэтому при выполнении измерительных работ следует быть внимательным. Наиболее часто ошибки возникают в случаях, когда сначала измеряли сопротивление, а затем, забыв переключить на другой режим, начинают измерение напряжения. При этом внутри прибора сгорает резистор, отвечающий за измерение сопротивления.

После подготовки прибора, можно начинать измерения. Если при включении мультиметра на индикаторе ничего не появляется, это означает, что элемент питания, расположенный внутри прибора, отслужил свой срок и требует замены. Чаще всего в мультиметрах стоит «Крона», выдающая напряжение 9 вольт. Срок ее службы составляет около года, в зависимости от производителя. Если мультиметром долго не пользовались, то крона все равно может быть неисправной. Если батарейка исправна, то мультиметр должен показать единицу.

Щупы проводов необходимо вставить в розетку или прикоснуться ими к оголенным проводам.

На дисплее мультиметра сразу появится величина напряжения сети в цифровом виде. На стрелочном приборе стрелка отклонится на некоторый угол. Стрелочный тестер имеет несколько градуированных шкал. Если их внимательно рассмотреть, то все становится понятным. Каждая шкала предназначена для определенных измерений: тока, напряжения или сопротивления.

Граница измерений на приборе была выставлена на 300 вольт, поэтому нужно отсчитывать по второй шкале, имеющий предел 3, при этом показания прибора необходимо умножить на 100. Шкала имеет цену деления, равной 0,1 вольта, поэтому получаем результат, изображенный на рисунке, около 235 вольт. Этот результат находится в допустимых пределах. Если при измерении показания прибора постоянно меняются, возможно, плохой контакт в соединениях электрической проводки, что может привести к искрению и неисправностям в сети.

Измерение постоянного напряжения

Источниками постоянного напряжения являются аккумуляторы, низковольтные блоки питания или батарейки, напряжение которых не более 24 вольт. Поэтому прикосновение к полюсам батарейки не опасно, и нет необходимости в специальных мерах безопасности.

Для оценки работоспособности батарейки или другого источника, необходимо измерение напряжения на его полюсах. У пальчиковых батареек полюсы питания расположены на торцах корпуса. Положительный полюс маркируется «+».

Постоянный ток измеряется аналогичным образом, как и переменный. Отличие заключается только в настройке прибора на соответствующий режим и соблюдении полярности выводов.

Напряжение батарейки обычно обозначено на корпусе. Но результат измерения еще не говорит об исправности батарейки, так как при этом измеряется электродвижущая сила батарейки. Продолжительность эксплуатации прибора, в котором будет установлен элемент питания, зависит от его емкости.

Для точной оценки работоспособности батарейки, необходимо проводить измерение напряжения при подключенной нагрузке. Для пальчиковой батарейки в качестве нагрузки подойдет обычная лампочка для фонарика на 1,5 вольта. Если напряжение при включенной лампочке снижается незначительно, то есть, не более, чем на 15%, следовательно, батарейка пригодна для работы. Если напряжение падает значительно сильнее, то такая батарейка может еще послужить только в настенных часах, которые расходуют очень мало энергии.

Похожие темы:

Измерение напряжения: 3 используемых прибора, примеры

Тусклый свет от приборов освещения или отказ стиральной машины выполнять свои функциональные обязанности свидетельствует о возможном падении питающего напряжения ниже нормы. В таких случаях необходимо произвести измерение напряжения, что позволит определить его соответствие заданному номиналу электрической сети.

Такая же процедура производится при ремонте электронных приборов, где измеряется падение напряжения на радиодеталях и отдельных участках цепи. Данная процедура выполняется довольно легко, но без понимания физики процесса и особенностей проведения замеров, человек рискует не только повредить дорогостоящее оборудование, но и получить электротравму, поэтому далее мы рассмотрим основные принципы измерения.

Используемые приборы

В каждом доме прибор учета электроэнергии находится в состоянии постоянного измерения переменного напряжения, но крайне редко эти данные где-либо отображаются. Некоторые из них подключаются напрямую, другие через измерительные трансформаторы. 

В практических целях для измерения уровня напряжения могут применяться:

  • Вольтметры;
  • Мультиметры
  • Осциллографы.

Вольтметр представляют собой устройство для проверки разности потенциалов. На практике могут встречаться как цифровые, так и аналоговые вольтметры, на которых измеряемое напряжение отображается на дисплее или посредством отклонения стрелки на циферблате соответственно.

Важными параметрами при выборе как электронного, так и стрелочного вольтметра являются единицы измерений (мВ, В, кВ), рабочий диапазон и класс точности. Однако сфера их применения ограничена и применяется, чаще всего, для лабораторных исследований, поскольку в бытовых и производственных нуждах содержать один прибор для измерения одной электрической величины нецелесообразно.

Мультиметр или цифровой тестер является более универсальным прибором, который может работать с несколькими  параметрами: электрическим током, сопротивлением, частотой, температурой, напряжением и т.д. Для измерения напряжения мультиметр переключается в режим вольтметра, щупы подключаются к соответствующим разъемам. Конструктивно встречаются и цифровые и аналоговые модели, в некоторых из них можно переключать диапазон измерений, выбирать род тока, в других мультиметрах все эти величины могут подбираться автоматически.

Осциллограф – это довольно сложный прибор для измерения разности потенциалов, так как в нем на цифровом или аналоговом дисплее выводится кривая измеряемой величины. При  этом можно растянуть или сократить диапазон частот, чтобы рассмотреть форму импульсных напряжений, длительность импульсов, нарастание и провалы в кривой функции. Поэтому осциллограф для измерения напряжения применяется в электрических цепях и приборах высокой точности, при изготовлении и проверке радиодеталей и т.д. Мало кто держит дома осциллограф из-за высокой стоимости и сложности выполнения операций.

Измерение напряжения в сети

Чтобы правильно выполнить измерение напряжения необходимо четко представлять принцип и объект исследования. Поэтому следует отметить, что напряжение представляет собой такую электрическую величину, которая показывает разность заряда между двумя электрическими точками. К примеру, если в одной точке заряд составит +35 В, а в другой +310 В, то разница между этими точками составит 310 – 35 = 275 В, это и будет напряжение. Соответственно измерение напряжения может производиться только относительно чего-то, поэтому используются сразу две точки.

Рис. 1. Схема измерения напряжения

Если говорить о падении напряжения на каком-либо объекте или участке цепи, то измерение напряжения проводиться относительно концов прибора или цепи, точек подключения и т.д. При этом важно учитывать, что цифровой вольтметр или мультиметр в режиме измерения считается бесконечным сопротивлением или разрывом в цепи.

Падение напряжения возможно только при условии протекания тока, поэтому подключение вольтметров последовательно с измеряемым объектом недопустимо, так как через него перестанет протекать ток. Аналоговый или электронный вольтметр должен подключаться только параллельно по отношению к измеряемому сигналу.

С практической точки зрения следует заметить, что аналоговые модели измерительных приборов имеют входное сопротивление равное 10 – 20 кОм, а современные мультиметры могут похвастаться 1МОм. Так как через сопротивление на входе в измерительное устройство может протекать ток утечки, этот делитель напряжения будет обуславливать снижение точности измерений. Поэтому чем ближе сопротивление на входе к бесконечности, тем более точный прибор вы используете.

Важно отметить, что замеры производятся под напряжением, из-за чего присутствует угроза поражения электротоком. Поэтому важно соблюдать элементарные меры предосторожности. Далее рассмотрим порядок выполнения измерения для постоянного и переменного напряжения.

Постоянного тока

Рис. 2. Измерение напряжения постоянного тока

Для цепи постоянного тока расмотрим порядок измерения напряжения при помощи цифрового мультиметра. Для этого:

  1. Переведите переключатель мультиметра в положение для постоянного напряжения. На панели обозначается латинской буквой V со значком « = », знаками «+ и – », также может обозначаться аббревиатурой DC.
  2. Выберете нужный предел измерения, который будет максимально приближен к предполагаемому номиналу, но выше измеряемого.
  3. Установите щупы в соответствующие разъемы – черный к выводу COM, красный к выводу V.
  4. Приложите щупы мультиметра  сразу к двум точкам – красный к плюсу, черный к минусу. Если вы заранее не знаете положение потенциалов, и показание прибора имеет отрицательное значение, нужно просто поменять полярность подключения.

На дисплее вы увидите показания вольтметра, если значение слишком малое, переключите ручку на меньший предел измерений. Прикладывая щупы, создавайте хорошее усилие, чтобы избежать большого переходного сопротивления, иначе они внесут ощутимую погрешность измерений.

Переменного тока

Рис. 3. Измерение переменного напряжения

В цепи переменного тока бытовой цепи важно учитывать ее опасность из-за номинала в 220/380 В. Поэтому при невозможности подключения мультиметра непосредственно в процессе эксплуатации, его присоединение должно выполняться при отключенном напряжении при помощи «крокодилов».

В остальном процесс измерения идентичен:

  1. Переключите ручку мультиметра в положение для измерения переменного напряжения. На панели оно обозначается как  V со значком «~» или аббревиатурой AC.
  2. Установите ручкой деление на нужный предел по принципу ближайшего большего потенциала относительно измеряемого номинала. 
  3. Выполните подключение щупов к соответствующим выводам: черный к выводу COM, красный к выводу V.
  4. Подключите измерительный прибор к нужному устройству, заметьте, что полярность щупов здесь значения не имеет.

На дисплее у вас отобразится действующее значение разности потенциалов, именно оно и является основным для всех расчетов. Но, помимо этого существует и амплитудное значение, которое больше действующего на √2 раз или 1,41 раза.

Реальные примеры измерения напряжения

Наиболее простым примером измерения напряжения в бытовых условиях является пальчиковая батарейка. В ней вам необходимо приложить черный щуп к выводу «– », а красный к выводу « + », позицию переключателя установить на 2 В постоянного напряжения.

Рис. 4. Пример измерения напряжения на батарейке

Если показания для батарейки 1,5 В будут в пределах от 1,6 до 1,2 В, то такой источник питания считается пригодным для всего оборудования, в случае снижения значений до 1 – 0,7 В, от батарейки будут запускаться импульсные устройства, к примеру, часы. Если вольтметр покажет 0,6 В и менее, разряд достиг критического значения.

При измерении разности потенциалов в бытовой сети, вам следует коснуться щупами контактов розетки. Так как изолированная часть щупа имеет ограничительное кольцо, за которым расположен длинный стержень, вы можете безопасно проникнуть в розетку, не рискуя прикоснуться к токоведущим элементам. Допустимыми считаются отклонения от номинала на 10%, то есть от 198 до 142 В.

Также можно замерить разность потенциалов на выходе автомобильного аккумулятора или на другом элементе цепи электрической проводки. Для этого черный щуп мультиметра устанавливается на «– » клемму аккумулятора, а красный на « + » клемму.

Если аккумулятор заряжен, то показания вольтметра должны находиться в пределах от 12 до 14 В, но встречаются модели и с большим разбросом. Такое измерение позволяет диагностировать различные причины неполадок.

Видео по теме

как называется электрический прибор для измерения ЭДС

Ток, проходящий в проводнике, имеет определённую электродвижущую силу. Когда возникает необходимость определить её значение на отдельно выбранном участке цепи, используют измеритель напряжения. Единицей измерения принято считать вольт, а прибор получил название вольтметр. Этот аппарат широко применяется в промышленности, научных исследованиях и повседневном быте человека.

Классификация и принцип действия

Чтобы лучше понять, каким прибором измеряется напряжение и почему он так называется, стоит обратиться к физике. По определению — это сила, которая действует на электроны и заставляет их перемещаться в одном или в разных направлениях. Единица измерения — вольт.

Вольтметры используются людьми в различных сферах деятельности. Существует множество разновидностей и модификаций этого устройства. В зависимости от конструктивных особенностей и области применения, приборы для измерения электрического напряжения классифицируются по трём основным параметрам:

  1. Принцип действия. Электромеханические и электронные.
  2. Назначение. Постоянного и переменного тока, импульсные и фазочувствительные, а также селективные и универсальные.
  3. Конструкция и применение. Стационарные, переносные и щитовые.

Принцип действия электромеханических вольтметров основывается на изменении магнитного поля. Ток проходит через обмотку, что приводит к возникновению электромагнитного поля. В результате этого стрелка, насаженная на ось с постоянным магнитом, отклоняется и показывает значение электродвижущей силы (ЭДС).

Электронные приборы также могут иметь стрелку. В корпусе находится преобразователь переменного тока в постоянный, а отклонение указателя происходит под действием детектора напряжения.

Цифровые измерители отображают информацию на жидкокристаллическом дисплее. Их работа основана на микросхеме и преобразователе сигнала.

Виды измерителей напряжения

Вольтметр для измерения напряжения в цепи постоянного тока имеет маркировку В2. Применяется в качестве тестера для проводки и электроприборов.

Если приходится иметь дело с переменным током, прибор маркируется В3. Он имеет компактный преобразователь для выпрямления и усилитель сигнала.

Импульсный (В4) разработан для измерения помех в электросети. Позволяет найти в цепи место со слабым контактом.

Фазовый (В5) определяет квадратурные составляющие первой гармоники. В быту не применяется из-за своей невостребованности.

Селективный (В6) отличается большими габаритами и напоминает радиоприёмник. Он может различать частоту сигнала.

Универсальный вольтметр (В7) — прибор для измерения напряжения в электросетях любого типа.

Переносные модели (тестер, мультиметр) — это небольшие автономные устройства, оснащённые электродами.

Стационарные вольтметры — это большие и тяжёлые приборы, часто встроенные в оборудование. Используются на производстве для контролирования работы электросистемы.

Щитовые аппараты более простые. Их интегрируют в бытовые электроприборы, а также используют на транспортных средствах в качестве датчиков.

Подключение и технические характеристики

Для проведения адекватного измерения вольтметр должен быть включён в необходимый участок цепи посредством последовательного соединения. Подключение переносных измерителей производится с помощью электродов или специальных прищепок. При снятии показаний от источника питания электроды подсоединяют прямо к клемам.

Перед подключением стоит определить:

  • порядок величины напряжения;
  • полярность;
  • характер и тип тока;
  • режим измерения (на универсальном вольтметре).

Прежде чем купить или начать использовать вольтметр, нелишним будет оценить его эффективность. Нужно определиться со своими потребностями и выбрать необходимый измеритель напряжения.

Оценка технических показателей проходит по таким параметрам:

  1. Внутреннее сопротивление. Чем этот показатель выше, тем точнее он измеряет напряжение.
  2. Диапазон. Как правило, приборы снабжаются универсальным диапазоном, которого с головой хватает любому рядовому потребителю. Однако в научных и узкоспециальных целях могут понадобиться устройства, предназначенные для точного измерения очень маленьких величин. На производстве приходится иметь дело с напряжением в сотни киловатт, что тоже требует высокоспециализированных вольтметров.
  3. Погрешность показателей.
  4. Частотный диапазон переменного тока.

Разобравшись с вопросом, каким прибором измеряют напряжение, стоит напомнить о мерах безопасности. Электрический ток может серьёзно травмировать и даже убить человека. Если проводится снятие показаний высокого напряжения, нельзя притрагиваться к проводам оголёнными участками тела. На руки необходимо надеть защитные перчатки.

1. Как называют прибор для измерения напряжения?2. Как включают вольтметр для измерения

Извините, я не уловил мысль. Помогите понять, что имелось ввиду. "Как и в случае равномерного движения, можно пользоваться формулой [tex]s \: = ut[/t … ex]для определения пути, пройденного за данный промежуток времени при определённой средней скорости, и формулой [tex]t \: = \frac{s}{u} [/tex]для определения времени, за которое пройден данный путь с данной средней скоростью. Но пользоваться этими формулами можно только для того участка пути и для того промежутка времени, для которых эта средняя скорость была рассчитана. Например, зная среднюю скорость на участке пути AB и зная длину AB, можно определить время, за которое был пройден этот участок, но нельзя найти время, за которое была пройдена половина участка АВ, т.к. средняя скорость на половине участка при неравномерном движении, вообще говоря, не будет равна средней скорости на всём участке.Что имеется ввиду под предпоследним предложением? Объясните просторно и понятно, даю 40 баллов​

ПОЖАЛУЙСТА, СРОЧНО! 1). Известно, что нота "до" первой октавы имеет частоту 262 Hz. Также известно, что частоты двух одноимённых нот соседних октав от … личаются ровно в 2 раза. В какой октаве находится звук, порождённые колебаниями, ищображенными на графике? (график приложен) 2). Нарисовать график 3). Определить музыкальный инструмент

Для того, чтобы быстрее остудить кастрюлю с горячей водой, Вам предложили: 1) поставить кастрюлю на лёд, 2) положить лёд на крышку кастрюли. Выберите … один из вариантов и обоснуйте его.

В системе, показанной на рисунке, все нити невесомы и находятся в вертикальном положении. Верхний груз в два раза легче нижнего. Верхняя нить натянута … с силой T1=19 Н, нижняя — с силой T3=10 Н. Определите силу натяжения средней нити T2 .

28. На полиці стоять дві бронзові статуетки, одна з яких є учетверо зменшеною копією другої. У скільки разів відрізняються тиски, що створюють ці стат … уетки на полицю? 29. Знайти максимальну висоту колони, яку можна збудувати з каменю, що має межу міцності на стискання 5 МПа і густину 5000 кг/м3. Вважати g = 10 м/с2. 30. Який тиск чинить вода на нижню поверхню плоскої крижинки площею 20 см2 та масою 500 г?

Визначити омічний опір коливального контуру, індуктивність якого 1 Гн, якщо за час 0,01 с амплітуда напруги на конденсаторі зменшуєтся в 4 рази

Решите пожалуйста 3 задачи​

Решите пожалуйста эти 3 задачи)​

решите пожалуйста задачу 18 даю 20 баллов

решите пожалуйста задачу 11 даю 20 баллов

Приборы для измерения высокого напряжения | Япония Finechem Co., Inc.

Приборы для измерения высокого напряжения | Япония Finechem Co., Inc.

本 シ ス テ ム で は JavaScript を 利用 し て い ま す 。JavaScript を 有効 に 設定 し て か ら ご 利用 く だ さ い。

h2

コ ン テ ン ツ

Цифровой высоковольтный измеритель постоянного тока DHM (DC)


Цифровой вольтметр типа DHM имеет высокое входное сопротивление и, как и электростатический вольтметры, измеряют напряжения, создаваемые пьезоэлектрическими устройствами и другими высокоомное оборудование для производства электроэнергии высокого напряжения.Этот вольтметр обеспечивает высокую точность и короткое время измерения. Тем более, что это маленький и прочный и практически не подверженный влиянию условий окружающей среды. Эти особенности делают этот вольтметр пригодным для использования на производственных линиях. как в лабораториях. Возможно использование интерфейса GP-IB и USB. максимальное измерительное напряжение Точность
постоянного тока ± 10 кВ ~
± 20кВ
± 0.2%
постоянного тока ± 30 кВ ~
± 50кВ
± 0,5%
постоянного тока ± 60 кВ ± 0,8%
постоянного тока ± 100 кВ ± 1%

Цифровой измеритель высокого напряжения переменного тока DHM (AC)


Цифровой высоковольтный измеритель переменного тока для промышленной частоты небольшой, прочный и удобный для переноски, а цифровой дисплей упрощает измерения.По этим причинам этот вольтметр можно легко использовать как высоковольтметр переменного тока вместо статического вольтметра или трансформатора для манометра. Несмотря на небольшой размер, этот вольтметр может производить измерения до 50 кВ переменного тока. Возможно использование интерфейса GP-IB и USB. максимальное измерительное напряжение Точность
AC30кВ
(RMS)
± 2%
AC50кВ
(RMS)
± 5%

Цифровой измеритель высокого напряжения переменного / постоянного тока DHM (A / M)


Цифровой высоковольтный измеритель переменного / постоянного тока имеет высокое входное сопротивление и может измерять напряжения, создаваемые генераторами высокого напряжения с небольшой выходной мощностью вместимость.Этот вольтметр маленький, прочный и удобный. Более того, этот простой в использовании вольтметр позволяет проводить высокоточные измерения за короткое время. промежуток времени. Возможно использование интерфейса GP-IB и USB. максимальное измерительное напряжение Точность
AC20кВ
(RMS)
Постоянный ток ± 30кВ
переменного тока ± 1%
Постоянный ток ± 0.5%
AC30кВ
(RMS)
Постоянный ток ± 40кВ
AC50кВ
(RMS)
Постоянный ток ± 60кВ

Делитель высокого напряжения


Делитель высокого напряжения, за исключением секции дисплея, сохраняет преимущества цифрового высоковольтного измерителя E&C и позволяет в полной мере использовать ваши мультиметр.Кроме того, его можно контролировать на расстоянии с помощью кабеля. Номинальное напряжение Точность
постоянный ток ± 10 кВ

Постоянный ток ± 200кВ
± 0,1%

± 1%

Датчик высокого напряжения


Этот пробник высокого напряжения в сочетании с осциллографом может использоваться для измерения формы волны высокого напряжения.
Внутренняя часть корпуса заполнена элегазом для изоляции.
Макс. входное напряжение
DC или ACp-p
30 кВ ~ 100 кВ
Импульс
50 кВ ~ 150 кВ

【全】 サ イ ド メ ニ ュ ー

【参】 サ イ ド リ ン ク

ВНИМАНИЕ

Измерители тока: необходимы для точных измерений!

Электрический тестер измеряет напряжение или ток и подходит как для переменного, так и для постоянного напряжения.В качестве мультиметра он также определяет другие данные измерений, помимо точного уровня напряжения. Автоматическое обнаружение означает, что прибор подходит практически для всех повседневных задач электрических измерений без необходимости переключения.

Преимущества тестеров тока / напряжения testo 755

  • Надежное отображение напряжения даже при разряженной батарее
  • Немедленное измерение без включения или выбора
  • Сменные измерительные наконечники

Тестер тока / напряжения testo 755 в сравнении

    • testo 755-1
    • ток / напряжение
  • testo 755-1, тестер тока / напряжения, включая батареи и измерительные наконечники
  • Арт. 0590 7551
  • Напряжение: от 6 до 600 В
  • Ток: от 0,1 до 200 А
  • Сопротивление: от 1 Ом до 100 кОм
  • Проверка целостности:
  • Испытание вращающимся магнитным полем: НЕТ
  • Однополюсное испытание фазы: НЕТ
  • Категория измерений: CAT IV 600 В; CAT III 1000 В
    • testo 755-2
    • ток / напряжение
  • testo 755-2, тестер тока / напряжения, включая батареи и измерительные наконечники
  • Арт. 0590 7552
  • Напряжение: от 6 до 1000 В
  • Ток: от 0,1 до 200 А
  • Сопротивление: от 1 Ом до 100 кОм
  • Проверка целостности:
  • Испытание вращающимся магнитным полем: от 100 до 690 В
  • Однополюсное фазное испытание: от 100 до 690 В
  • Категория измерений: CAT IV 600 В; CAT III 1000 В

Токовый тестер для важных измерений

Измерительные инструменты обычно имеют сменные измерительные наконечники.Встроенная подсветка также означает, что неблагоприятные условия освещения не проблема, поскольку свет четко показывает результаты измерений.

Классический электрический тестер позволяет выполнять следующие измерительные задачи:

  • проверка электрических систем на определенное напряжение или отсутствие напряжения,
  • измерение тока,
  • проверка целостности цепи.

Безопасное измерение тока - с подходящими приборами

Для проверки силы тока или напряжения можно использовать различные инструменты.Профессиональный тестер напряжения позволяет не только получить информацию о наличии напряжения, но также определить сопротивление и другие значения измерения.

Выбирая электрический тестер , вы можете выбрать один из следующих продуктов:

С двухполюсным тестером напряжения вы получаете прибор, который обеспечивает особенно точные данные измерений. Два испытательных электрода прочно закреплены на измерительном приборе. Этот блок управления имеет хорошо видимый дисплей, а его эргономичная форма позволяет надежно удерживать его.Чтобы защитить тестер напряжения и пользователя, прибор оснащен множеством последовательных резисторов. Чтобы провести измерение, вы касаетесь двух разных кабелей или других потенциалов тестовыми электродами. Затем вы считываете последние значения напряжения на дисплее.

Измерители тока от Testo - для вашего безопасного использования

Измерители тока Testo характеризуются надежным измерением и отображением напряжения даже при разряженной батарее.Инструменты не нужно специально включать и работать без предварительного выбора. Измерительные приборы имеют соответствующие знаки соответствия безопасности.

При необходимости вы просто замените измерительные наконечники, чтобы затем можно было безопасно продолжить проверку тока. Электрический тестер выполняет автоматическое определение электрических параметров, что означает отсутствие необходимости в отдельном выборе.

Testo предлагает вам два измерителя тока, которые обеспечивают надежный результат и впечатляют своей универсальностью:

  • тестер тока / напряжения testo 755-1 с батареями, измерительными наконечниками и колпачками для измерительных наконечников,
  • testo 755-2 с большим диапазоном напряжения до 1000 вольт.

Электрический тестер для прецизионных измерений

По сравнению с другими приборами для измерения напряжения, двухполюсные испытательные приборы впечатляют своей многофункциональностью и точными результатами. Существуют категории измерений для тестеров напряжения, которые предназначены для обеспечения оптимальной защиты персонала. Двухполюсные тестеры напряжения CAT III надежно защищены от перенапряжения и, следовательно, также выдерживают короткое замыкание.

Тестеры напряжения Testo очень удобны и безопасны в эксплуатации благодаря своему удобному размеру и весу 320 граммов.Они подходят для рабочей температуры от -10 до +50 градусов Цельсия и имеют класс защиты IP64.

Следующие технические данные относятся к обоим токовым тестерам Testo:

  • диапазон измерения от 6 до 600 В или от 6 до 1000 В, в зависимости от прибора,
  • разрешение составляет 0,1 В,
  • точность измерения Переменный и постоянный ток составляет ± 1,5% от измеренного значения + 3 цифры.

Испытательные токи: что нужно иметь в виду

Испытательные токи: что нужно иметь в виду Вы всегда управляете тестерами напряжения двумя руками, что означает, что вы избегаете случайного прикосновения к испытательным электродам, которые находятся под напряжением.Кроме того, испытательные приборы соответствуют строгим требованиям безопасности и имеют печати CSA и CE.

Перед проверкой напряжения стоит провести функциональную проверку. Для этого вы держите инструмент на уже известном источнике тока и проверяете правильность отображения. Следующее поможет вам как в этом процессе, так и в тестировании фактического тока:

  • светодиодная подсветка точки измерения, цифровой дисплей
  • .

Глава 13: Приборы для измерения напряжения, тока и сопротивления

Категория: Измерители LCR

Должность: - Выбирать - Архитектор / Строитель / Подрядчик Образование, Студент Образование, Факультет / Персонал Инжиниринг, Консалтинг Инженерный дизайн Инжиниринг, Процесс / Производство Инженерное дело, Другое Общее корпоративное управление Техническое обслуживание / Управление объектами Производство Маркетинг Управление проектом Покупка Контроль качества / гарантия Исследования и разработки Продажи Техническая поддержка / услуги

Инженерная дисциплина: - Выберите -Аэрокосмическая промышленностьАрхитектурнаяАвтомобильнаяБиомедицинскаяХимическаяГражданскаяКомпьютерная Электроэнергетика

Промышленность: - Select - Аэрокосмическая и оборонная промышленность Сельское хозяйство / Лесное хозяйство Автомобильная биотехнология / Фармацевтика Строительная и строительная химия, пластмассы и резина Связь - Datacom / Телекоммуникации / Беспроводная связь / Сетевые компьютеры, системы и периферийные устройства Потребительские товары / Электроника Образовательная инженерия / Услуги технического дизайна Металлические изделия Еда и напитки Общее производство Государственное оборудование, системы отопления, вентиляции и кондиционирования воздуха, безопасность Промышленное оборудование / Инструменты и оборудование Контрольно-измерительные приборы и средства управления Медицинское оборудование / Контрольно-измерительные приборы Нефть и газ Упаковочное оборудование Бумага, печать и текстиль Полупроводники и электронные компоненты Транспортные коммуникации / Энергетика

Электроизмерительные приборы - Университетская физика, том 2

Цели обучения

К концу раздела вы сможете:

  • Опишите, как подключить вольтметр в цепь для измерения напряжения
  • Опишите, как подключить амперметр в цепь для измерения тока
  • Опишите использование омметра
Закон

Ома и метод Кирхгофа полезны для анализа и проектирования электрических цепей, предоставляя вам значения напряжения, проходящего тока и сопротивления компонентов, составляющих цепь.Для измерения этих параметров требуются инструменты, и эти инструменты описаны в этом разделе.

Вольтметры и амперметры постоянного тока

В то время как вольтметр с измеряет напряжение, амперметр с измеряет ток. Некоторые измерители в автомобильных приборных панелях, цифровых камерах, сотовых телефонах и тюнерах-усилителях на самом деле являются вольтметрами или амперметрами ((рисунок)). Внутренняя конструкция простейшего из этих счетчиков и то, как они подключены к системе, которую они контролируют, дает более полное представление о применениях последовательного и параллельного подключения.

Датчики топлива и температуры (крайний правый и крайний левый соответственно) в этом Volkswagen 1996 года выпуска представляют собой вольтметры, которые регистрируют выходное напряжение «передающих» устройств. Эти единицы пропорциональны количеству бензина в баке и температуре двигателя. (Источник: Кристиан Гирсинг)

Измерение тока с помощью амперметра

Для измерения тока через устройство или компонент амперметр подключается последовательно с устройством или компонентом. Последовательное соединение используется потому, что последовательно соединенные объекты имеют одинаковый ток, проходящий через них.(См. (Рисунок), где амперметр обозначен символом A.)

(a) Когда амперметр используется для измерения тока через два резистора, подключенных последовательно к батарее, один амперметр подключается последовательно с двумя резисторами, потому что ток через два последовательно включенных резистора одинаков. (b) Когда два резистора соединены параллельно с батареей, три метра или три отдельных показания амперметра необходимы для измерения тока от батареи и через каждый резистор.Амперметр подключается последовательно к рассматриваемому компоненту.

Амперметры должны иметь очень низкое сопротивление, доли миллиома. Если сопротивлением нельзя пренебречь, установка амперметра в цепь изменит эквивалентное сопротивление цепи и изменит измеряемый ток. Поскольку ток в цепи проходит через измеритель, амперметры обычно содержат предохранитель для защиты измерителя от повреждения слишком высокими токами.

Измерение напряжения с помощью вольтметра

Вольтметр подключается параллельно к любому устройству, которое он измеряет.Параллельное соединение используется потому, что объекты, находящиеся параллельно, испытывают одинаковую разность потенциалов. (См. (Рисунок), где вольтметр обозначен символом V.)

Для измерения разности потенциалов в этой последовательной цепи вольтметр (V) помещается параллельно источнику напряжения или одному из резисторов. Обратите внимание, что напряжение на клеммах измеряется между положительной клеммой и отрицательной клеммой аккумулятора или источника напряжения. Невозможно подключить вольтметр напрямую через ЭДС без учета внутреннего сопротивления - батареи.

Поскольку вольтметры подключаются параллельно, вольтметр должен иметь очень большое сопротивление. Цифровые вольтметры преобразуют аналоговое напряжение в цифровое значение для отображения на цифровом индикаторе ((рисунок)). Недорогие вольтметры имеют сопротивление порядка, тогда как у высокоточных вольтметров сопротивление порядка. Значение сопротивления может варьироваться в зависимости от того, какая шкала используется на измерителе.

(a) Аналоговый вольтметр использует гальванометр для измерения напряжения.(b) Цифровые счетчики используют аналого-цифровой преобразователь для измерения напряжения. (кредит: модификация работ Джозефа Дж. Траута)

Аналоговые и цифровые счетчики

В лаборатории физики вы можете встретить два типа измерителей: аналоговые и цифровые. Термин «аналоговый» относится к сигналам или информации, представленной непрерывно изменяющейся физической величиной, такой как напряжение или ток. Аналоговый измеритель использует гальванометр, который по сути представляет собой катушку провода с небольшим сопротивлением в магнитном поле, с прикрепленной стрелкой, указывающей на шкалу.Ток течет через катушку, заставляя катушку вращаться. Чтобы использовать гальванометр в качестве амперметра, параллельно катушке помещают небольшое сопротивление. У вольтметра большое сопротивление ставится последовательно с катушкой. Цифровой измеритель использует компонент, называемый аналого-цифровым (аналого-цифровым) преобразователем, и выражает ток или напряжение как серию цифр 0 и 1, которые используются для работы цифрового дисплея. Большинство аналоговых счетчиков было заменено цифровыми.

Проверьте свое понимание Цифровые измерители способны обнаруживать меньшие токи, чем аналоговые измерители, использующие гальванометры.Как это объясняет их способность измерять напряжение и ток более точно, чем аналоговые измерители?

Поскольку цифровые счетчики требуют меньшего тока, чем аналоговые счетчики, они изменяют схему меньше, чем аналоговые счетчики. Их сопротивление в качестве вольтметра может быть намного больше, чем у аналогового измерителя, а их сопротивление в качестве амперметра может быть намного меньше, чем у аналогового измерителя. Обратитесь к (Рисунок) и (Рисунок) и их обсуждение в тексте.

Омметры

Омметр - это прибор, используемый для измерения сопротивления компонента или устройства.Работа омметра основана на законе Ома. Традиционные омметры содержат внутренний источник напряжения (например, аккумулятор), который подключается к проверяемому компоненту, создавая ток через компонент. Затем для измерения тока использовался гальванометр, а сопротивление вычислялось по закону Ома. Современные цифровые измерители используют источник постоянного тока для пропускания тока через компонент, и измеряется разность напряжений на компоненте. В любом случае сопротивление измеряется по закону Ома, где известно напряжение и измеряется ток, либо известен ток и измеряется напряжение.

Интересующий компонент должен быть изолирован от цепи; в противном случае вы будете измерять эквивалентное сопротивление цепи. Омметр никогда не следует подключать к «активной» цепи, к которой подключен источник напряжения и через нее протекает ток. Это может повредить глюкометр.

Сводка

  • Вольтметры измеряют напряжение, а амперметры измеряют ток. Аналоговые счетчики основаны на комбинации резистора и гальванометра, устройства, которое дает аналоговые показания тока или напряжения.Цифровые измерители основаны на аналого-цифровых преобразователях и обеспечивают дискретное или цифровое измерение тока или напряжения.
  • Вольтметр помещается параллельно источнику напряжения для получения полного напряжения и должен иметь большое сопротивление, чтобы ограничить его влияние на цепь.
  • Амперметр включается последовательно, чтобы через ответвление протекал полный ток, и должен иметь небольшое сопротивление, чтобы ограничить его влияние на цепь.
  • Стандартные вольтметры и амперметры изменяют схему, к которой они подключены, и поэтому их точность ограничена.
  • Омметры используются для измерения сопротивления. Компонент, в котором должно быть измерено сопротивление, должен быть изолирован (удален) от цепи.

Концептуальные вопросы

Что произойдет, если вы включите вольтметр последовательно с проверяемым компонентом?

Вольтметр включит большое сопротивление последовательно с цепью, что значительно изменит схему. Это, вероятно, дало бы толкование, но это было бы бессмысленно.

Каков основной принцип действия омметра при измерении сопротивления резистора?

Почему не следует подключать амперметр непосредственно к источнику напряжения, как показано ниже?

Амперметр имеет малое сопротивление; следовательно, будет образовываться большой ток, который может повредить измеритель и / или перегреть аккумулятор.

Проблемы

Предположим, вы измеряете напряжение на клеммах щелочного элемента на 1,585 В, имеющего внутреннее сопротивление, путем размещения вольтметра на его клеммах (см. Ниже). а) Какой ток течет? (b) Найдите напряжение на клеммах. (c) Чтобы увидеть, насколько близко измеренное напряжение на клеммах к ЭДС, рассчитайте их отношение.

Глоссарий

амперметр
прибор для измерения силы тока
вольтметр
прибор для измерения напряжения

6.4 Электрические измерительные приборы - знакомство с электричеством, магнетизмом и схемами

ЦЕЛИ ОБУЧЕНИЯ

К концу раздела вы сможете:
  • Опишите, как подключить вольтметр в цепь для измерения напряжения
  • Опишите, как подключить амперметр в цепь для измерения тока
  • Опишите использование омметра
Закон

Ома и метод Кирхгофа полезны для анализа и проектирования электрических цепей, предоставляя вам значения напряжения, проходящего тока и сопротивления компонентов, составляющих цепь.Для измерения этих параметров требуются инструменты, и эти инструменты описаны в этом разделе.

Вольтметры и амперметры постоянного тока

В то время как вольтметры измеряют напряжение, амперметры измеряют ток. Некоторые измерители в автомобильных приборных панелях, цифровых камерах, сотовых телефонах и тюнерах-усилителях на самом деле являются вольтметрами или амперметрами (рисунок 6.4.1). Внутренняя конструкция простейшего из этих счетчиков и то, как они подключены к системе, которую они контролируют, дает более полное представление о применениях последовательного и параллельного подключения.

(рисунок 6.4.1)

Рисунок 6.4.1. Датчики топлива и температуры (крайний правый и крайний левый, соответственно) в этом Volkswagen 1996 года выпуска представляют собой вольтметры, которые регистрируют выходное напряжение «передающих» устройств. Эти единицы пропорциональны количеству бензина в баке и температуре двигателя. (Источник: Кристиан Гирсинг)

Измерение тока с помощью амперметра

Для измерения тока через устройство или компонент амперметр подключается последовательно с устройством или компонентом.Последовательное соединение используется потому, что последовательно соединенные объекты имеют одинаковый ток, проходящий через них. (См. Рисунок 6.4.2, где амперметр обозначен символом A.)

(рисунок 6.4.2)

Рисунок 6.4.2 (a) Когда амперметр используется для измерения тока через два резистора, подключенных последовательно к батарее, один амперметр подключается последовательно с двумя резисторами, потому что ток через два резистора в ряд. (b) Когда два резистора соединены параллельно с батареей, три метра или три отдельных показания амперметра необходимы для измерения тока от батареи и через каждый резистор.Амперметр подключается последовательно к рассматриваемому компоненту.

Амперметры должны иметь очень низкое сопротивление, доли миллиома. Если сопротивлением нельзя пренебречь, установка амперметра в цепь изменит эквивалентное сопротивление цепи и изменит измеряемый ток. Поскольку ток в цепи проходит через измеритель, амперметры обычно содержат предохранитель для защиты измерителя от повреждения слишком высокими токами.

Измерение напряжения с помощью вольтметра

Вольтметр подключается параллельно к любому устройству, которое он измеряет.Параллельное соединение используется потому, что объекты, находящиеся параллельно, испытывают одинаковую разность потенциалов. (См. Рисунок 6.4.3, где вольтметр обозначен символом V.)

(рисунок 6.4.3)

Рисунок 6.4.3 Для измерения разности потенциалов в этой последовательной цепи вольтметр (В) помещается параллельно источнику напряжения или одному из резисторов. Обратите внимание, что напряжение на клеммах измеряется между положительной клеммой и отрицательной клеммой аккумулятора или источника напряжения.Невозможно подключить вольтметр напрямую через ЭДС без учета внутреннего сопротивления батареи.

Поскольку вольтметры подключаются параллельно, вольтметр должен иметь очень большое сопротивление. Цифровые вольтметры преобразуют аналоговое напряжение в цифровое значение для отображения на цифровом индикаторе (рисунок 6.4.4). Недорогие вольтметры имеют сопротивление порядка, тогда как высокоточные вольтметры имеют сопротивление порядка. Значение сопротивления может варьироваться в зависимости от того, какая шкала используется на измерителе.

(рисунок 6.4.4)

Рисунок 6.4.4 (a) Аналоговый вольтметр использует гальванометр для измерения напряжения. (b) Цифровые счетчики используют аналого-цифровой преобразователь для измерения напряжения. (кредит а и б: Джозеф Дж. Траут)

Аналоговые и цифровые счетчики

В лаборатории физики вы можете встретить два типа измерителей: аналоговые и цифровые. Термин «аналоговый» относится к сигналам или информации, представленной непрерывно изменяющейся физической величиной, такой как напряжение или ток.Аналоговый измеритель использует гальванометр, который по сути представляет собой катушку провода с небольшим сопротивлением в магнитном поле с прикрепленной стрелкой, указывающей на шкалу. Ток течет через катушку, заставляя катушку вращаться. Чтобы использовать гальванометр в качестве амперметра, параллельно катушке помещают небольшое сопротивление. У вольтметра большое сопротивление ставится последовательно с катушкой. Цифровой измеритель использует компонент, называемый аналого-цифровым (аналого-цифровым) преобразователем, и выражает ток или напряжение как серию цифр и, которые используются для запуска цифрового дисплея.Большинство аналоговых счетчиков было заменено цифровыми.

ПРОВЕРЬТЕ ПОНИМАНИЕ 6.8

Цифровые счетчики способны обнаруживать меньшие токи, чем аналоговые счетчики, использующие гальванометры. Как это объясняет их способность измерять напряжение и ток более точно, чем аналоговые измерители?

Омметры

Омметр - это прибор, используемый для измерения сопротивления компонента или устройства. Работа омметра основана на законе Ома.Традиционные омметры содержат внутренний источник напряжения (например, аккумулятор), который подключается к проверяемому компоненту, создавая ток через компонент. Затем для измерения тока использовался гальванометр, а сопротивление вычислялось по закону Ома. Современные цифровые измерители используют источник постоянного тока для пропускания тока через компонент, и измеряется разность напряжений на компоненте. В любом случае сопротивление измеряется по закону Ома, где известно напряжение и измеряется ток, либо известен ток и измеряется напряжение.

Интересующий компонент должен быть изолирован от цепи; в противном случае вы будете измерять эквивалентное сопротивление цепи. Омметр никогда не следует подключать к «активной» цепи, к которой подключен источник напряжения и через нее протекает ток. Это может повредить глюкометр.

Кандела Цитаты

Лицензионный контент CC, особая атрибуция

  • Загрузите бесплатно по адресу http://cnx.org/contents/[email protected] Получено из : http://cnx.org/contents/[email protected] Лицензия : CC BY: Атрибуция

Вольтметры и амперметры | Безграничная физика

Вольтметры и амперметры

Вольтметры и амперметры используются для измерения напряжения и тока соответственно.

Цели обучения

Сравнить схемы подключения амперметра и вольтметра

Основные выводы

Ключевые моменты
  • Вольтметр - это прибор, используемый для измерения разности электрических потенциалов между двумя точками в электрической цепи.
  • Амперметр - это измерительное устройство, используемое для измерения электрического тока в цепи.
  • Вольтметр подключен параллельно к устройству для измерения его напряжения, а амперметр подключен последовательно к устройству для измерения его тока.
  • В основе большинства аналоговых счетчиков лежит гальванометр, прибор, который измеряет ток, используя движение или отклонение иглы. Отклонение иглы вызывается магнитной силой, действующей на провод с током.
Ключевые термины
  • шунтирующее сопротивление : небольшое сопротивление R, помещенное параллельно гальванометру G для получения амперметра; чем больше измеряемый ток, тем меньше R должно быть; большая часть тока, протекающего через счетчик, шунтируется через R для защиты гальванометра
  • гальванометр : Аналоговое измерительное устройство, обозначенное буквой G, которое измеряет ток, используя отклонение стрелки, вызванное силой магнитного поля, действующей на провод с током.

Вольтметры и амперметры измеряют напряжение и ток цепи соответственно. Некоторые измерители в автомобильных приборных панелях, цифровых камерах, сотовых телефонах и тюнерах-усилителях являются вольтметрами или амперметрами.

Вольтметры и амперметры : Краткое введение в вольтметры и амперметры для начинающих студентов-физиков.

Вольтметры

Вольтметр - это прибор, который измеряет разность электрических потенциалов между двумя точками в электрической цепи.Аналоговый вольтметр перемещает указатель по шкале пропорционально напряжению в цепи; цифровой вольтметр обеспечивает числовой дисплей. Любое измерение, которое можно преобразовать в напряжение, можно отобразить на правильно откалиброванном измерителе; такие измерения включают давление, температуру и расход.

Вольтметр : Демонстрационный вольтметр из класса физики

Чтобы вольтметр мог измерять напряжение устройства, он должен быть подключен параллельно этому устройству.Это необходимо, потому что параллельные объекты испытывают одинаковую разность потенциалов.

Вольтметр, подключенный параллельно : (a) Для измерения разности потенциалов в этой последовательной цепи вольтметр (V) подключается параллельно источнику напряжения или одному из резисторов. Обратите внимание, что напряжение на клеммах измеряется между точками a и b. Невозможно подключить вольтметр напрямую к ЭДС без учета его внутреннего сопротивления r. (b) Используемый цифровой вольтметр

Амперметры

Амперметр измеряет электрический ток в цепи.Название происходит от названия единицы измерения электрического тока в системе СИ, ампер (А).

Чтобы амперметр мог измерять ток устройства, он должен быть последовательно подключен к этому устройству. Это необходимо, потому что последовательно соединенные объекты испытывают одинаковый ток. Их нельзя подключать к источнику напряжения - амперметры предназначены для работы с минимальной нагрузкой (которая относится к падению напряжения на амперметре, обычно составляющему небольшую долю вольта).

Амперметр серии : Амперметр (A) подключается последовательно для измерения тока.Весь ток в этой цепи протекает через счетчик. Амперметр будет иметь такие же показания, если он расположен между точками d и e или между точками f и a, как и в показанном положении. (Обратите внимание, что заглавная буква E обозначает ЭДС, а r обозначает внутреннее сопротивление источника разности потенциалов.)

Гальванометры (аналоговые измерители)

У аналоговых счетчиков

иглы, которые поворачиваются, чтобы указывать на числа на шкале, в отличие от цифровых счетчиков, у которых есть числовые показания.Сердцем большинства аналоговых счетчиков является устройство, называемое гальванометром, которое обозначается номером G . Ток через гальванометр I G вызывает пропорциональное движение или отклонение стрелки.

Двумя важнейшими характеристиками любого гальванометра являются его сопротивление и чувствительность по току. Чувствительность по току - это ток, который дает полное отклонение стрелки гальванометра, другими словами, максимальный ток, который может измерить прибор.Например, гальванометр с токовой чувствительностью 50 мкА имеет максимальное отклонение стрелки при протекании через него 50 мкА, находится на полпути шкалы, когда через него протекает 25 мкА, и так далее.

Если такой гальванометр имеет сопротивление 25 Ом, то только напряжение В = IR = (50 мкА) (25 Ом) = 1,25 мВ дает показания полной шкалы. Подключив резисторы к этому гальванометру различными способами, вы можете использовать его как вольтметр или амперметр для измерения широкого диапазона напряжений или токов.

Гальванометры как вольтметры

Гальванометр может работать как вольтметр, если он подключен последовательно с большим сопротивлением R . Значение R определяется максимальным измеряемым напряжением. Предположим, вам нужно 10 В для полного отклонения вольтметра, содержащего гальванометр с сопротивлением 25 Ом и чувствительностью 50 мкА. Тогда приложенное к измерителю напряжение 10 В должно давать ток 50 мкА. Общее сопротивление должно быть:

[латекс] \ text {R} _ {\ text {tot}} = \ text {R} + \ text {r} = \ frac {\ text {V}} {\ text {I}} = \ frac { 10 \ text {V}} {50 \ mu \ text {A}} = 200 \ text {k} \ Omega, [/ latex]

или:

[латекс] \ text {R} = \ text {R} _ {\ text {tot}} - \ text {r} = 200 \ text {k} \ Omega - 25 \ Omega \ приблизительно 200 \ text {k} \Омега.[/ латекс]

(R настолько велик, что сопротивление гальванометра, r, почти ничтожно.) Обратите внимание, что 5 В, приложенное к этому вольтметру, вызывает отклонение на половину шкалы, пропуская через измеритель ток 25 мкА, поэтому показания вольтметра пропорциональны к напряжению по желанию. Этот вольтметр не годится для напряжений менее примерно половины вольта, потому что отклонение измерителя будет слишком маленьким для точного считывания. Для других диапазонов напряжения другие сопротивления устанавливаются последовательно с гальванометром.Многие измерители позволяют выбирать шкалы, которые включают последовательное включение соответствующего сопротивления с гальванометром.

Гальванометры как амперметры

Тот же гальванометр может также работать как амперметр, если он установлен параллельно небольшому сопротивлению R , часто называемому шунтирующим сопротивлением. Поскольку сопротивление шунта невелико, большая часть тока проходит через него, что позволяет амперметру измерять токи, намного превышающие те, которые вызывают полное отклонение гальванометра.

Предположим, например, что нам нужен амперметр, который дает полную шкалу отклонения для 1,0 А и который содержит тот же гальванометр на 25 Ом с чувствительностью 50 мкА. Поскольку R и R параллельны, напряжение на них одинаковое.

Эти ИК-капли: IR = I G r

так, чтобы: [latex] \ text {IR} = \ frac {\ text {I} _ \ text {G}} {\ text {I}} = \ frac {\ text {R}} {\ text {r }}. [/ latex]

Решая для R и отмечая, что IG составляет 50 мкА, а I равно 0.{-3} \ Omega. [/ Latex]

Нулевые измерения

Нулевые измерения уравновешивают напряжения, поэтому через измерительные устройства не протекает ток, который мог бы помешать измерению.

Цели обучения

Объясните, почему используются нулевые измерения

Основные выводы

Ключевые моменты
  • Измерения напряжения и тока стандартными вольтметрами и амперметрами изменяют измеряемую цепь, внося погрешности.Вольтметры потребляют дополнительный ток, тогда как амперметры уменьшают ток.
  • Нулевые измерения используются для уменьшения погрешности измеренных напряжения и тока.
  • Потенциометр и мост Уитстона - это два метода измерения нуля.
  • Потенциометр - это прибор, который измеряет неизвестное напряжение путем противодействия известному напряжению, не потребляя ток от измеряемого источника напряжения.
  • Мост Уитстона - это электрическая цепь, используемая для измерения неизвестного электрического сопротивления путем уравновешивания двух ветвей мостовой схемы, одна из которых включает неизвестный компонент.
Ключевые термины
  • нулевые измерения : методы более точного измерения тока и напряжения путем балансировки цепи таким образом, чтобы ток не протекал через измерительное устройство
  • потенциометр : прибор, который измеряет напряжение путем противодействия ему точной долей известного напряжения и без потребления тока из неизвестного источника.
  • Мост Уитстона : прибор, используемый для измерения неизвестного электрического сопротивления путем уравновешивания двух ножек мостовой схемы, одна ножка которой включает неизвестный компонент.

Нулевые измерения

Стандартные измерения цепей изменения напряжения и тока, вносящие числовые погрешности. Вольтметры потребляют дополнительный ток, тогда как амперметры уменьшают ток. Нулевые измерения уравновешивают напряжения, поэтому ток через измерительный прибор не протекает, а цепь остается неизменной. Нулевые измерения обычно более точны, но более сложны, чем стандартные вольтметры и амперметры. Их точность все еще ограничена.

Потенциометр

При измерении ЭДС аккумулятора и подключении аккумулятора напрямую к стандартному вольтметру, как показано на, фактическая измеряемая величина - это напряжение на клеммах В. Напряжение связано с ЭДС батареи соотношением В = ЭДС - Ir , где I - протекающий ток, а r - внутреннее сопротивление батареи.

Вольтметр, подключенный к батарее : Аналоговый вольтметр, подключенный к батарее, потребляет небольшой, но ненулевой ток и измеряет напряжение на клеммах, которое отличается от ЭДС батареи. (Обратите внимание, что заглавная буква E символизирует электродвижущую силу или ЭДС.) Поскольку внутреннее сопротивление батареи точно неизвестно, невозможно точно рассчитать ЭДС.

ЭДС можно было бы точно рассчитать, если бы были известны r , что бывает редко. Если бы ток I можно было сделать нулевым, тогда В = ЭДС , и ЭДС можно было бы непосредственно измерить. Однако стандартным вольтметрам для работы необходим ток.

Потенциометр - это прибор для измерения нуля для измерения потенциалов (напряжений).Источник напряжения подключен к резистору R, пропускает через него постоянный ток. Вдоль провода наблюдается постоянное падение потенциала (падение ИК-излучения), поэтому переменный потенциал получается через контакт вдоль провода.

Неизвестная ЭДС x (обозначенная скриптом E x ), подключенная последовательно с гальванометром, показана на. Обратите внимание, что ЭДС x противостоит другому источнику напряжения. Расположение точки контакта регулируется до тех пор, пока гальванометр не покажет ноль.Когда гальванометр показывает ноль, ЭДС x = IR x , где R x - это сопротивление участка провода до точки контакта. Поскольку через гальванометр не протекает ток, он не проходит через неизвестную ЭДС, и определяется ЭДС x .

Потенциометр : Потенциометр является устройством измерения нуля. (a.) Источник напряжения, подключенный к резистору с длинным проводом, пропускает через него постоянный ток I.(b) Неизвестная ЭДС (обозначенная надписью Ex) подключается, как показано, и точка контакта по R регулируется до тех пор, пока гальванометр не покажет ноль. Отрезок провода имеет сопротивление Rx и сценарий Ex = IRx, где I не зависит от соединения, поскольку через гальванометр не течет ток. Таким образом, неизвестная ЭДС пропорциональна сопротивлению сегмента провода.

Стандартная ЭДС заменяется на ЭДС x , и точка контакта регулируется до тех пор, пока гальванометр не покажет ноль, так что ЭДС s = IR s .В обоих случаях через гальванометр не проходит ток. Ток I через длинный провод идентичен. Принимая соотношение ЭДС x / ЭДС s , I отменяет, и решение для ЭДС x дает то, что видно в.

Поскольку для R используется длинный однородный провод, соотношение сопротивлений R x / R с такое же, как отношение длин провода, который обнуляет гальванометр для каждой ЭДС.Три величины в правой части уравнения теперь известны или измерены, и можно вычислить ЭДС x . В этом расчете часто меньше неопределенности, чем при прямом использовании вольтметра, но он не равен нулю. Всегда есть некоторая неопределенность в соотношении сопротивлений R x / R s и стандартных ЭДС. Кроме того, невозможно определить, когда гальванометр показывает ровно ноль, что вносит ошибку как в R x , так и в R s , а также может повлиять на текущий I .

Измерения сопротивления

Многие так называемые омметры измеряют сопротивление. Наиболее распространенные омметры прикладывают напряжение к сопротивлению, измеряют ток и вычисляют сопротивление по закону Ома. Их показания и есть это рассчитанное сопротивление. Простые конфигурации с использованием стандартных вольтметров и амперметров имеют ограниченную точность, поскольку измерители изменяют как напряжение, подаваемое на резистор, так и ток, протекающий через него. Мост Уитстона - это устройство измерения нуля для расчета сопротивления путем уравновешивания падения потенциала в цепи.Устройство называется мостом, потому что гальванометр образует мост между двумя ветвями. Для измерения нуля в цепях используются различные мостовые устройства. Резисторы R 1 и R 2 точно известны, а стрелка через R 3 указывает, что это переменное сопротивление. Можно точно прочитать значение R 3 . При неизвестном сопротивлении Rx в цепи R 3 регулируется до тех пор, пока гальванометр не покажет ноль.

Мост Уитстона : Мост Уитстона используется для расчета неизвестных сопротивлений. Переменное сопротивление R3 регулируется до тех пор, пока гальванометр не покажет ноль при замкнутом переключателе. Это упрощает схему, позволяя рассчитывать Rx на основе падения ИК-излучения.

Разность потенциалов между точками b и d тогда равна нулю, что означает, что b и d имеют одинаковый потенциал. При отсутствии тока, протекающего через гальванометр, он не влияет на остальную цепь.Таким образом, ветви abc и adc параллельны, и каждая ветвь имеет полное напряжение источника. Поскольку b и d имеют одинаковый потенциал, падение IR вдоль и должно равняться падению IR вдоль ab . Опять же, поскольку b и d имеют одинаковый потенциал, падение ИК-излучения вдоль dc должно равняться падению ИК-излучения вдоль bc . Это уравнение используется для вычисления неизвестного сопротивления, когда ток через гальванометр равен нулю.Этот метод может быть очень точным, но он ограничен двумя факторами. Во-первых, ток через гальванометр не может быть точно равен нулю. Во-вторых, всегда есть неопределенности в R 1 , R 2 и R 3 , которые вносят вклад в неопределенность в R x .

10.5: Электроизмерительные приборы - Physics LibreTexts

Цели обучения

К концу раздела вы сможете:

  • Опишите, как подключить вольтметр в цепь для измерения напряжения
  • Опишите, как подключить амперметр в цепь для измерения тока
  • Опишите использование омметра
Закон

Ома и метод Кирхгофа полезны для анализа и проектирования электрических цепей, предоставляя вам значения напряжения, проходящего тока и сопротивления компонентов, составляющих цепь.Для измерения этих параметров требуются инструменты, и эти инструменты описаны в этом разделе.

Вольтметры и амперметры постоянного тока

В то время как вольтметр с измеряет напряжение, амперметр с измеряет ток. Некоторые измерители в автомобильных приборных панелях, цифровых камерах, сотовых телефонах и тюнерах-усилителях на самом деле являются вольтметрами или амперметрами (Рисунок \ (\ PageIndex {1} \)). Внутренняя конструкция простейшего из этих счетчиков и то, как они подключены к системе, которую они контролируют, дает более полное представление о применениях последовательного и параллельного подключения.

Рисунок \ (\ PageIndex {1} \): датчики уровня топлива и температуры (крайний правый и крайний левый, соответственно) в этом Volkswagen 1996 года представляют собой вольтметры, которые регистрируют выходное напряжение «передающих» устройств. Эти единицы пропорциональны количеству бензина в баке и температуре двигателя. (кредит: Кристиан Гирсинг)

Измерение тока с помощью амперметра

Для измерения тока через устройство или компонент амперметр подключается последовательно с устройством или компонентом. Последовательное соединение используется потому, что последовательно соединенные объекты имеют одинаковый ток, проходящий через них.(См. Рисунок \ (\ PageIndex {2} \), где амперметр обозначен символом A.)

Рисунок \ (\ PageIndex {2} \): (a) Когда амперметр используется для измерения тока через два резистора, последовательно подключенных к батарее, один амперметр помещается последовательно с двумя резисторами, потому что ток одинаковый. через два последовательно включенных резистора. (b) Когда два резистора соединены параллельно с батареей, три метра или три отдельных показания амперметра необходимы для измерения тока от батареи и через каждый резистор.Амперметр подключается последовательно к рассматриваемому компоненту.

Амперметры должны иметь очень низкое сопротивление, доли миллиома. Если сопротивлением нельзя пренебречь, установка амперметра в цепь изменит эквивалентное сопротивление цепи и изменит измеряемый ток. Поскольку ток в цепи проходит через измеритель, амперметры обычно содержат предохранитель для защиты измерителя от повреждения слишком высокими токами.

Измерение напряжения с помощью вольтметра

Вольтметр подключается параллельно к любому устройству, которое он измеряет.Параллельное соединение используется потому, что объекты, находящиеся параллельно, испытывают одинаковую разность потенциалов. (См. Рисунок \ (\ PageIndex {3} \), где вольтметр обозначен символом V.)

Рисунок \ (\ PageIndex {3} \): Для измерения разности потенциалов в этой последовательной цепи вольтметр (В) помещается параллельно источнику напряжения или одному из резисторов. Обратите внимание, что напряжение на клеммах измеряется между положительной клеммой и отрицательной клеммой аккумулятора или источника напряжения. Невозможно подключить вольтметр напрямую через ЭДС без учета внутреннего сопротивления - батареи.

Поскольку вольтметры подключаются параллельно, вольтметр должен иметь очень большое сопротивление. Цифровые вольтметры преобразуют аналоговое напряжение в цифровое значение для отображения на цифровом индикаторе (Рисунок \ (\ PageIndex {4} \)). Недорогие вольтметры имеют сопротивление порядка \ (R_M = 10 \, M \ Omega \), тогда как высокоточные вольтметры имеют сопротивление порядка \ (R_M = 10 \, G \ Omega \). Значение сопротивления может варьироваться в зависимости от того, какая шкала используется на измерителе.

Рисунок \ (\ PageIndex {4} \): (a) Аналоговый вольтметр использует гальванометр для измерения напряжения.(b) Цифровые счетчики используют аналого-цифровой преобразователь для измерения напряжения. (кредит а и кредит б: Джозеф Дж. Траут)

Аналоговые и цифровые измерители

В лаборатории физики вы можете встретить два типа измерителей: аналоговые и цифровые. Термин «аналоговый» относится к сигналам или информации, представленной непрерывно изменяющейся физической величиной, такой как напряжение или ток. Аналоговый измеритель использует гальванометр, который по сути представляет собой катушку провода с небольшим сопротивлением в магнитном поле, с прикрепленной стрелкой, указывающей на шкалу.Ток течет через катушку, заставляя катушку вращаться. Чтобы использовать гальванометр в качестве амперметра, параллельно катушке помещают небольшое сопротивление. У вольтметра большое сопротивление ставится последовательно с катушкой. Цифровой измеритель использует компонент, называемый аналого-цифровым (аналого-цифровым) преобразователем, и выражает ток или напряжение как серию цифр 0 и 1, которые используются для работы цифрового дисплея. Большинство аналоговых счетчиков было заменено цифровыми.

Проверьте свое понимание

Цифровые счетчики способны обнаруживать меньшие токи, чем аналоговые счетчики, использующие гальванометры.Как это объясняет их способность измерять напряжение и ток более точно, чем аналоговые измерители?

Поскольку цифровые счетчики требуют меньшего тока, чем аналоговые счетчики, они изменяют схему меньше, чем аналоговые счетчики. Их сопротивление в качестве вольтметра может быть намного больше, чем у аналогового измерителя, а их сопротивление в качестве амперметра может быть намного меньше, чем у аналогового измерителя. См. Рисунок \ (\ PageIndex {3} \) и рисунок \ (\ PageIndex {2} \) и их обсуждение в тексте

Примечание

В этом виртуальном лабораторном моделировании вы можете создавать схемы с резисторами, источниками напряжения, амперметрами и вольтметрами, чтобы проверить свои знания в области проектирования схем.

Омметры

Омметр - это прибор, используемый для измерения сопротивления компонента или устройства. Работа омметра основана на законе Ома. Традиционные омметры содержат внутренний источник напряжения (например, аккумулятор), который подключается к проверяемому компоненту, создавая ток через компонент. Затем для измерения тока использовался гальванометр, а сопротивление вычислялось по закону Ома. Современные цифровые измерители используют источник постоянного тока для пропускания тока через компонент, и измеряется разность напряжений на компоненте.В любом случае сопротивление измеряется по закону Ома \ ((R = V / I) \), где известно напряжение и измеряется ток, либо известен ток и измеряется напряжение.

Интересующий компонент должен быть изолирован от цепи; в противном случае вы будете измерять эквивалентное сопротивление цепи. Омметр никогда не следует подключать к «активной» цепи, к которой подключен источник напряжения и через нее протекает ток. Это может повредить глюкометр.

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *