Электродвигатель постоянного тока. Принцип действия и устройство. – www.motors33.ru
На рис. 1-1 представлена простейший электродвигатель постоянного тока, а на рис. 1-2 дано его схематическое изображение в осевом направлении. Неподвижная часть двигателя, называемая индуктор, состоит из полюсов и круглого стального ярма, к которому прикрепляются полюсы. Назначением индуктора является создание в электродвигателе основного магнитного потока. Индуктор изображенной на рис. 1-1 имеет два полюса 1 (ярмо индуктора на рис. 1-1 не показано).
Вращающаяся часть электродвигателя состоит из укрепленных на валу цилиндрического якоря 2 и коллектора. 3. Якорь состоит из сердечника, набранного из листов электротехнической стали, и обмотки, укрепленной на сердечнике якоря. Обмотка якоря в показанном на рис. 1-1 и 1-2 простейшем электродвигателе имеет один виток. Концы витка соединены с изолированными от вала медными пластинами коллектора, число которых в рассматриваемом случае равно двум. На коллектор налегают две неподвижные щетки 4, с помощью которых обмотка якоря соединяется с внешней цепью.
Основной магнитный поток в нормальных электродвигателях постоянного тока создается обмоткой возбуждения, которая расположена на сердечниках полюсов и питается постоянным током. Магнитный поток проходит от северного полюса N через якорь к южному полюсу S и от него через ярмо снова к северному полюсу. Сердечники полюсов и ярмо также изготовляются из ферромагнитных материалов.
Рис. 1-1. Простейший электродвигатель постоянного тока
Рис. 1-2. Работа простейшего электродвигателя постоянного тока в режиме генератора (а) и двигателя (б).
Генератор постоянного тока.
Рассмотрим сначала работу электродвигателя в режиме генератора.
Предположим, что якорь электродвигателя (рис. 1-1 и 1-2, а) приводится во вращение по часовой стрелке. Тогда в проводниках обмотки якоря индуктируется Э. Д. С., направление которой может быть определено по «правилу правой руки» и показано на рис. 1-1 и 1-2, а. Поскольку поток полюсов предполагается неизменным, то эта Э. Д. С. индуктируется только вследствие вращения якоря и называется Э. Д. С. вращения. В обоих проводниках вследствие симметрии индуктируются одинаковые Э. Д. С., которые по контуру витка складываются. Частота Э. Д. С. f в двухполюсном электродвигателе равна скорости вращения якоря n, выраженной в оборотах в секунду:
f = n,
а в общем случае, когда машина имеет р пар полюсов с чередующейся полярностью:
f = pn
Таким образом, в генераторе коллектор является механическим выпрямителем, который преобразовывает переменный ток обмотки якоря в постоянный ток во внешней цепи.
Двигатель постоянного тока.
Рассматриваемая простейшая машина может работать также двигателем, если к обмотке ее якоря подвести постоянный ток от внешнего источника. При этом на проводники обмотки якоря будут действовать электромагнитные силы и возникнет электромагнитный момент. Величины силы и момента определяются как и для генератора. При достаточной величине Мэм якорь электродвигателя придет во вращение и будет развивать механическую мощность. Момент Мэм при этом является движущим и действует в направлении вращения.
Если мы желаем, чтобы при той же полярности полюсов направления вращения генератора (рис. 1-2, а) и двигателя (рис. 1-2, б) были одинаковы, то направление действия а следовательно, и направление тока у двигателя должны быть обратными по сравнению с генератором (рис. 1-2, б).
В режиме двигателя коллектор превращает потребляемый из внешней цепи постоянный ток в переменный ток в обмотке якоря и работает, таким образом, в качестве механического инвертора тока.
Принцип обратимости. Из изложенного выше следует, что каждый электродвигателя постоянного тока может работать как в режиме генератора, так и в режиме двигателя. Такое свойство присуще всем типам вращающихся электрических машин и называется обратимостью.
Для перехода машины постоянного тока из режима генератора в режим двигателя и обратно, при неизменной полярности полюсов и щеток и при неизменном направлении вращения требуется только изменение направления тока в обмотке якоря.
Поэтому такой переход может осуществляться весьма просто и в определенных условиях даже автоматически.
Аналогичным образом может происходить изменение режима работы также в электродвигателях переменного тока.
Электродвигатель постоянного тока: принцип работы и действия, устройство, характеристики
Содержание
- Краткая история создания
- Принцип действия электродвигателя постоянного тока
- Устройство электродвигателя постоянного тока
- Особенности и характеристики электродвигателя постоянного тока
Сейчас невозможно представить нашу жизнь без электродвигателей. Они приводят в действие станки, бытовую технику и инструменты, поезда, трамваи и троллейбусы, компьютеры, игрушки и разные подвижные механизмы, устанавливаются на производственных станках, если частоту вращения рабочего вала требуется регулировать в широком диапазоне. Агрегаты для преобразования электрической энергии в механическую представлены множеством видов и моделей (синхронные, асинхронные, коллекторные и т. д.). Из этой статьи вы узнаете, что такое электродвигатель постоянного тока, его устройство и принцип действия.
Краткая история создания
Разные ученые пытались создать экономичный и мощный двигатель еще с первой половины 19 века. Основой послужило открытие М.Фарадея, сделанное в 1821 г. Он обнаружил, что помещенный в магнитное поле проводник вращается. Отталкиваясь от этого, в 1833 г изобретатель Томас Дэвенпорт смог сконструировать двигатель постоянного тока, а позже, в 1834 г, ученый Б.С.Якоби придумал прообраз современной модели двигателя с вращающимся валом. Устройство, более похожее на современные агрегаты, появилось в 1886 г, и до сегодняшнего дня электродвигатель продолжает совершенствоваться.
Принцип действия электродвигателя постоянного тока
На мысль о создании двигателя ученых натолкнуто следующее открытие. Помещенная в магнитное поле проволочная рамка с пропущенным по ней током начинает вращаться, создавая механическую энергию. Принцип действия электродвигателя постоянного тока основывается на взаимодействии магнитных полей рамки и самого магнита. Но одна рамка после определенного количества вращений замирает в положении, параллельном внешнему магнитному полю. Для продолжения движения необходимо добавить вторую рамку и в определенный момент переключить направление тока.
Вместо рамок в двигателе используется набор проводников, на которые подается ток, и якорь. При запуске вокруг него возбуждается магнитное поле, взаимодействующее с полем обмотки. Это заставляет якорь повернуться на определенный угол. Подача тока на следующие проводники приводит к следующему повороту якоря, и далее процесс продолжается.
Магнитное поле создается либо с помощью постоянного магнита (в маломощных агрегатах), либо с помощью индуктора/обмотки возбуждения (в более мощных устройствах).
Попеременную зарядку проводников якоря обеспечивают щетки, сделанные из графита или сплава графита и меди. Они служат контактами, замыкающими электрическую сеть на выводы пар проводников. Изолированные друг от друга выводы представляют собой кольцо из нескольких ламелей, которое находится на оси вала якоря и называется коллекторным узлом. Благодаря поочередному замыканию ламелей щетками двигатель вращается равномерно. Степень равномерности работы двигателя зависит от количества проводников (чем больше, тем равномернее).
Устройство электродвигателя постоянного тока
Теперь, когда вы знаете, как работает электродвигатель постоянного тока, пора ознакомиться с его конструкцией.
Как и у других моделей, основу двигателя составляют статор (индуктор) – неподвижная часть, и якорь вкупе с щеточноколлекторным узлом – подвижная часть. Обе части разделены воздушным зазором.
В состав статора входят станина, являющаяся элементом магнитной цепи, а также главные и добавочные полюса. Обмотки возбуждения, необходимые для создания магнитного поля, находятся на главных полюсах. Специальная обмотка, улучшающая условия коммутации, расположена на добавочных полюсах.
Якорь представляет собой узел, состоящий из магнитной системы (она собрана из нескольких листов), набора обмоток (проводников), уложенных в пазы, и коллектора, который подводит постоянный ток к рабочей обмотке.
Коллектор имеет вид цилиндра, собранного из изолированных медных пластин. Он насажен на вал двигателя и имеет выступы, к которым подходят концы секций обмотки якоря. Щетки снимают ток с коллектора, входя с ним в скользящий контакт. Удержание щеток в нужном положении и обеспечение их нажатия на коллектор с определенной силой осуществляется щеткодержателями.
Многие модели двигателей оснащены вентилятором, задача которого – охлаждение агрегата и увеличение продолжительности рабочего периода.
Особенности и характеристики электродвигателя постоянного тока
Эксплуатационные характеристики электродвигателя постоянного тока позволяют широко использовать это устройство в самых разных сферах – от бытовых приборов до транспорта. К его преимуществам можно отнести:
- Экологичность. При работе не выделяются вредные вещества и отходы.
- Надежность. Благодаря довольно простой конструкции он редко ломается и служит долго.
- Универсальность. Он может использоваться в качестве как двигателя, так и генератора.
- Простота управления.
- Возможность регулирования частоты и скорости вращения вала – достаточно подключить агрегат в цепь переменного сопротивления.
- Легкость запуска.
- Небольшие размеры.
- Возможность менять направление вращения вала. В двигателе с последовательным возбуждением нужно изменить направление тока в обмотке возбуждения, во всех остальных типах – в якоре.
Как и любое устройство, электродвигатели постоянного тока имеют и «слабые стороны»:
- Их себестоимость, следовательно, и цена достаточно высока.
- Для подключения к сети необходим выпрямитель тока.
- Самая уязвимая и быстроизнашивающаяся деталь – щетки – требует периодической замены.
- При сильной перегрузке может случиться возгорание. Если соблюдать правила эксплуатации, такая возможность исключена.
Но, как видите, достоинства явно перевешивают, поэтому на данный момент электродвигатель является одним из наиболее экономичных и эффективных устройств. Зная устройство и принцип работы электродвигателя постоянного тока, вы сможете самостоятельно собрать и разобрать его для техосмотра, чистки или устранения неисправностей.
Электрические машины – Якорь машины постоянного тока
Коммутация
В машине постоянного тока, разработанной до эпохи силовой электроники, используется механическая система для переключения напряжения контура, генерируемого переменным током, и подачи напряжения постоянного тока на клеммы машины. Этот процесс называется коммутацией. Механическое переключение достигается с помощью устройства, называемого коммутатором с разъемным кольцом. Рассмотрим рисунок и иллюстрацию на рис. 1. Каждый проводник (или каждая сторона петли) соединен с цилиндрическим проводником, который разделен на две половины. При вращении ротора цилиндр находится в контакте с неподвижными щетками. (Первоначально использовались втулки из медной проволоки; в современных машинах используются подпружиненные графитовые блоки.)
При вращении ротора половинки коллектора с разрезным кольцом проходят мимо стационарных щеток. С течением времени клеммы x и y подключаются к чередующимся концам проводящего контура ротора
Рассматривая графики индуцированного (красный) и терминального (синий) напряжения во времени, становится ясно, что напряжение, индуцированное в проводящем контуре на роторе продолжает чередоваться между положительным и отрицательным. Однако из-за расположения щеток измеренное напряжение на клеммах x-y является однонаправленным.
Рис. 1. Иллюстрация работы коммутатораУвеличенное количество полюсов и проводников
Реалистичные конструкции машин постоянного тока обычно имеют более двух полюсов.
В общем случае с \(p\) полюсами картина поля будет повторяться каждые \(720/p\) градусов.
В рассматриваемой исходной базовой машине имеется только 2 проводников, или одна петля на роторе. Если количество витков (и разрезных колец сегментов коммутатора) увеличивается, то щетки можно спроектировать так, чтобы они всегда были в контакте с проводником, который находится под поверхностью полюса. Пример этой идеи с двумя катушками показан на рис. 3 9.0003 Рис. 3. Анимация двухполюсной системы с двумя перпендикулярными катушками обмотки якоря
Уравнения для общей машины
Среднее индуктивное напряжение каждого проводника на роторе машины определяется выражением\[ e_{av}=rlB_{av}\omega_m \]
\(e_{av}\) – среднее индуцированное напряжение и \(B_{av}\) – величина средней плотности потока под полюсом. Используя общее уравнение для площади поверхности полюса
\[ A_p=\frac{2\pi rl}{p} \]
уравнение для среднего напряжения, индуцированного на проводнике под поверхностью полюса можно найти через поток и скорость:
\[ e_{av}=\frac{p}{2\pi}\phi\omega_m \]
Теперь, если вместо одного витка провода есть катушка с общей Z проводников (\(Z/2\)витков) соединены последовательно в любое время:
\[ e_{av}=\frac{Zp}{2\pi}\phi\omega_m \]
Обмотка машины, в которой индуцируется напряжение, называется обмотка якоря. В машине постоянного тока обмоткой якоря является обмотка на роторе. Определение постоянной машины постоянного тока \(k\):
\[ k=\frac{ZP}{2\pi} \]
приводит к уравнению напряжения якоря.
\[ E_A=к\фи\омега_м \]
Аналогично общему расчету напряжения, крутящий момент на одном проводнике можно записать как
\[ \tau_{av}=rlB_{av}я \]
, что дает общий крутящий момент, заданный уравнением крутящего момента машины постоянного тока.
\[ \тау=к\фи I_A \]
Обратите внимание, что поскольку мы перешли к уравнениям с постоянными значениями постоянного тока, уравнение напряжения якоря записывается в верхнем регистре как \(E_A\), чтобы обозначить, что это постоянное напряжение, а уравнение крутящего момента использует \(I_A\ ), чтобы показать, что ток является постоянным значением постоянного тока.
Цепь якоря
Модель эквивалентной схемы якоря
Модель эквивалентной схемы для якоря машина постоянного тока показана на рис. 1. Наведенное напряжение якоря, \(E_A\) представлен источником напряжения, подключен через 2 щетки к остальной части цепи. Арматура сопротивление обмотки \(R_A\) и напряжение на клеммах \(V_T\). Уравнение цепи якоря:
\[ V_T = E_A + I_A R_A \]
Рассматривая модель эквивалентной схемы, можно увидеть, что измеряемое напряжение машины, напряжение на клеммах \(V_T\) равно наведенному на якорь напряжению \(E_A\), когда ток якоря \(I_A\) равен нуль. Это происходит в двух случаях:
- без нагрузки: клеммы якоря подключены к источнику напряжения, но момент нагрузки отсутствует. В установившемся режиме момент двигателя и момент нагрузки равны и противоположны друг другу, то есть \(\tau=0\). Следовательно, ток якоря \(I_A\) равен нулю в соответствии с уравнением крутящего момента и \(E_A=V_T\)
- обрыв цепи: это тестовый случай, когда машина вращается внешней механической системой, а клеммы машины разомкнуты. Опять же, в этом случае \(I_A = 0 \) и \(E_A=V_T\)
Резюме
На этой странице простые уравнения постоянного тока расширяются до случая с несколькими полюсами и проводниками. Получены два важных уравнения для машин постоянного тока:
- Уравнение напряжения якоря
- Уравнения крутящего момента машины постоянного тока
Якорь моделируется эквивалентной схемой, учитывающей влияние сопротивления обмотки якоря.
\(E_A\) – наведенное внутреннее напряжение якоря; \(V_T\) – напряжение на клеммах.
Оборудование для двигателей постоянного тока от CAM Innovation
Основная линейка продуктов CAM доминирует в отрасли ремонта электродвигателей большой мощности. CAM предлагает полную линейку машин, используемых для ремонта и производства двигателей постоянного тока, используемых на железных дорогах, шахтах, сталелитейных и бумажных фабриках, транспорте, нефтегазовой и других отраслях тяжелой промышленности. Инженерный отдел проектирует и оборудует комплексные предприятия по техническому обслуживанию двигателей для наших клиентов по всему миру.
Многопрофильные универсальные машины
С нашими универсальными машинами вы мгновенно станете современным предприятием по производству тяговых двигателей, способным обеспечить клиентов постоянным и высококачественным ремонтом двигателей!
View Многопроцессорные универсальные машины
Автоматические подрезные машины для слюды
Эти подрезные машины сэкономят часы труда и помогут улучшить качество результатов. Отлично подходит для всех размеров мастерских по производству и ремонту двигателей постоянного тока.
Просмотреть все Автоматические подрезчики слюды
Подрезчики, устанавливаемые на токарном станке
Мы предлагаем подрезчики CAM для автомастерских любых размеров. Наша линейка токарных подрезных станков позволяет выполнять те же автоматизированные процессы, что и наши большие автономные станки.
Просмотреть все Подрезные станки, установленные на токарном станке
Обвязочные станки
Улучшите свою обвязку с помощью станка, специально созданного для этой работы! Обвязочная машина TS компании CAM производит плотные, однородные ленты или проволоку, поскольку она точно поддерживает натяжение. Этот простой в использовании обвязочный станок с быстрой настройкой обладает мощностью, точностью и конструктивными особенностями для высокопроизводительных автомобильных мастерских.
Посмотреть обвязочный станок TS
Устройства натяжения ленты
Устройство натяжения CB компании CAM предназначено для обвязки ленты на токарном станке с высоким натяжением. Это комбинированное устройство натяжения из стеклянной ленты и проволоки обеспечивает точную регулировку постоянного натяжения до максимального значения 600 фунтов (272,2 кг). Он может обеспечивать регулировку натяжения до 800 фунтов (363,9 кг) в течение коротких периодов времени или при прерывистой работе.
Посмотреть устройство натяжения бандажа
Автоматические сварочные аппараты TIG
Автоматическая сварка ВИГ — это контролируемый, повторяемый процесс, обеспечивающий стабильные высококачественные сварные швы ВИГ. Это упрощает сварку, повышает производительность и позволяет оператору выполнять другие задачи, контролируя процесс сварки. Арматуры, на сварку которых вручную уходили часы, могут быть квалифицированно, легко и быстро обработаны с помощью автоматических сварочных систем CAM.
Автоматические сварочные аппараты TIG
Приправа к арматуре
Приправочная машина TA компании CAM нагревает и вращает якорь тяжелого тягового двигателя на высоких скоростях. Это позволяет моторному цеху имитировать условия работы коллектора двигателя путем нагрева и вращения якоря.
Посмотреть Приправочная машина ТА
Подставки для арматуры
САМ предлагает более дюжины подставок для поддержки и вращения арматуры во время операций намотки.