Холодная сварка для металла температура эксплуатации: Холодная сварка – инструкция, свойства и применение

Содержание

Как пользоваться холодной сваркой для металла

«Холодная сварка» — это маркетинговое наименование материалов на основе эпоксидной смолы, а также технологии их применения. Создатели этого названия видимо хотели подчеркнуть, что технология не требует нагрева деталей, а прочность их соединения сопоставима со сварным швом. Холодную сварку металлов применяют для склеивания, выравнивания дефектов и заполнения трещин в изделиях как промышленного, так и бытового назначения. Материалы, применяемые для этих работ, очень дешевы, а их выполнение не требует практически никакой квалификации.

Область применения

Холодная сварка состоит из нескольких основных компонентов: эпоксидная смола, отвердитель, наполнитель и группа присадок. При соединении эпоксидной смолы с отвердителем образуется полимер, а наполнители и присадки формируют его эксплуатационные качества.

Чаще всего эту технологию применяют:

  • при ремонте деталей, узлов и агрегатов автомобилей;
  • при устранении течей в емкостях и отопительных батареях;
  • при ремонте трубопроводов и запорной арматуры;
  • для заделки раковин, сколов и трещин в литых корпусах из различных металлов;

Универсальную автомобильную сварку с металлическими наполнителями применяют при ремонте кузовных частей автомобиля и устранения течей в радиаторах и бензобаках. А корпусные детали двигателя, коллекторы и глушители ремонтируют специальной термостойкой холодной сваркой для металла.

Холодная сварка металла

При устранении течей в системе водоснабжения, канализации, трубах отопления и емкостях для воды обычно применяют влагостойкие составы адгезивные к мокрым поверхностям. Также существует холодная сварка для эксплуатации под высоким давлением. С ее помощью можно ремонтировать напорные трубопроводы и емкости со сжатым воздухом.

Преимущества

Как и все современные технологии, холодная сварка металлов имеет свои достоинства и недостатки. Она во многом превосходит другие способы склеивания металлов, а также имеет отдельные преимущества перед традиционными сварочными технологиями:

  • отсутствие температурного воздействия на соединяемые материалы;
  • скорость затвердевания и безусадочность;
  • широкий диапазон температур эксплуатации;
  • возможность механической обработки после затвердевания;
  • простота технологического процесса;
  • невысокая цена и доступность материалов.

Недостатки

Недостатки этой технологии напрямую зависят от физических свойств и особенностей эпоксидной смолы.

Обычно указывают на следующие недостатки:

  • прочность соединения ниже, чем у традиционной сварки;
  • ограничения по размеру заполняемых полостей;
  • медленное затвердевание при большой толщине композита;
  • токсичность при контакте со слизистыми оболочками.

Разновидности

Эпоксидные композиты для холодной сварки металлов различают по форме компонентов и техническим характеристикам.

Форма компонентов

Холодная сварка выпускается в виде густой жидкости или пластичной массы. В первом случае — это комплект из двух емкостей. В большей из них находится эпоксидная смола, а в меньшей — жидкий отвердитель. Для получения рабочей массы оба компонента перед применением смешиваются. Пластичная форма выпускается в виде двухкомпонентных брусков или цилиндров, в которых эпоксидная смола и отвердитель разделены нейтральным слоем. Перед ее использованием необходимо отрезать часть бруска и тщательно ее размять. Консистенция и форма компонентов не влияет на то, сколько по времени сохнет холодная сварка.

Холодная сварка пластичной массы

Технические характеристики

Холодные сварки для металла различаются по виду наполнителя и эксплуатационным характеристикам. В качестве основных инертных наполнителей обычно применяют порошки железа или алюминия (реже — других материалов), а в качестве дополнительных — порошки силикатов и углерода. Характеристики состава наполнителя должны соответствовать металлу ремонтируемого изделия.

По условиям эксплуатации эпоксидные композиты делятся на универсальные и специализированные. Универсальные водостойки и адгезивны к влажным поверхностям, но имеют предельную температуру эксплуатации до 140-160 °С. К специализированным относятся высокотемпературные смеси, а также композиты с высокой прочностью на разрыв и устойчивостью к агрессивным средам.

Какая холодная сварка для металла лучше.

Выбор

При выборе нужного типа холодной сварки необходимо строго следовать рекомендациям производителя, особенно в части применяемости и условий эксплуатации. Это обеспечит качество ремонта и снизит затраты на приобретение материалов.

Для большинства видов работ подходят универсальные холодные сварки. Среди зарубежных торговых марок самые известные — это американские «ABRO», «Hi-Gear», «Permatex», немецкая «WURTH» и уругвайская «Poxipol». Наиболее популярные российские торговые марки — «Момент», «Алмаз» и «Титан». Главные критерии при выборе нужного материала — это репутация торговой марки, заявленные характеристики, цена и вес в расфасовке.

Разновидности холодной сварки

Для ремонта корпусов автомобильных двигателей, глушителей, стальных печей, газовых горелок применяют термостойкие композиты. Это многокомпонентные патентованные смеси, и их цены в несколько раз выше, чем у универсальных холодных сварок. Здесь абсолютными лидерами являются американские производители автохимии. Температура эксплуатации «DonelDeal ТермоCталь» составляет 1400 °С, при этом она может применяться в условиях вибрации и напряжений. Чуть ниже этот показатель у «ABRO Thermometal» — 1316 °С.

Инструкция по применению холодной сварки для металла

В инструкции на каждый вид холодной сварки всегда указано как пользоваться данным типом композита, а также область его применения. Но в целом технология и состав работ у всех видов холодной сварки примерно одинаковы.

Общий порядок выполнения работ:

  1. Приготовить материалы, инструмент и приспособления для сжатия склеиваемых поверхностей.
  2. Зачистить мелкозернистой шкуркой рабочие поверхности.
  3. Просушить феном, а затем обезжирить будущее место нанесения готовой смеси.
  4. Приготовить композит. Если он состоит из двух отдельных компонентов – смешать их в отдельной емкости. Если это двухкомпонентная пластичная масса — отрезать нужное количество от бруска, а затем размять его руками до получения однородной массы.
  5. Шпателем или руками в перчатках нанести полученную смесь на ремонтируемую поверхность. Все надо делать быстро, так как постепенное затвердевание композита начинается через две-три минуты после смешивания.
  6. Для надежности соединения сжать склеиваемые поверхности струбцинами или (если необходимо) неподвижно закрепить деталь.

Время полного затвердевания композита зависит от марки холодной сварки и составляет от нескольких часов до суток.

Заключение

В наше время холодную сварку широко используют как при ремонте промышленного оборудования, так и в быту. На производственных предприятиях ее применяют на основе отработанных технологий. А вот в домашних условиях вся ответственность за выполнение ремонтных работ ложится на плечи домашнего мастера.

Безусловно, холодная сварка – это экономичное и быстрое решение многих проблем, особенно в экстренных ситуациях. Однако надо понимать, что «холодная сварка» — это всего лишь клей в виде эпоксидный массы для соединения металлических поверхностей или заполнение полостей в металле. Как правило, она не рассчитана на долгую эксплуатацию при высоких температурах, вибрации, механических и гидравлических нагрузках. В таких случаях ее необходимо применять только как временное устранение проблемы до проведения настоящего ремонта.

виды составов, сферы применения, инструкции

Выражение холодная сварка ассоциируется со способом соединения металлических деталей при помощи клеящего состава. При склеивании происходит диффузия между металлическими элементами и соединительным составом. Многие не раз пользовались им для мелкого ремонта системы отопления без вызова слесарей. В основном в продаже клей встречается в виде двухкомпонентного состава, напоминающего пластилин.

Состав и применение

Множество составов, предназначенных для склеивания, выпускается многокомпонентными, и для их приготовления необходимо тщательное перемешивание. Производство регламентируется ГОСТом 2601−2013. Большинство из них предназначены для домашнего использования.

Так, сухая сварка для металла в своем составе имеет следующие компоненты:

  • смола эпоксидная;
  • наполнитель;
  • отвердитель.

Эпоксидная смола сама по себе жидкая и тягучая субстанция. И чтобы привести ее в сухое состояние, в нее вводится наполнитель. Так как большинство клеев холодной сварки предназначено для соединения металлических деталей, то в качестве наполнителя используется очень мелкая металлическая стружка.

Стружка совместно с эпоксидной смолой создает высокопрочный шов, который поддается обработке только механическим путем. Смоле для затвердевания необходим отвердитель. В качестве сухого отвердителя выступает сера. А для придания дополнительных качеств производители вводят в состав и другие добавки.

Чаще всего в продаже можно встретить твердые двухкомпонентные составы, выполненные в виде цилиндра или брусочка. На срезе видно, что внешний тонкий слой отличается от внутреннего сердечника. Внутренний компонент — это эпоксидная смола с наполнителем, а внешний — отвердитель. Объемы обоих компонентов точно рассчитаны по массе.

Такие характеристики, как прочность и склеиваемость, зависят от подготовки поверхностей, температуры проведения работ, правильного выбора и применения. При выборе холодной сварки следует учитывать ее назначение и температуру, при которой она будет эксплуатироваться.

Большинство клеев в низкой ценовой категории не выдерживают температуры выше 250 °C. Но разработаны и термостойкие составы, выдерживающие температуру 1000 °C и выше. Их использование обусловлено тем, что традиционные методы сварки в некоторых случаях невозможны.

Среди достоинств холодной сварки следует отметить следующие:

  • стоимость продукции невелика, и приобрести ее можно в любом хозяйственном магазине;
  • при пользовании не нужна специальная подготовка;
  • работа производится без демонтажа элементов;
  • соединение при естественной температуре;
  • время схватывания незначительно;
  • высокая прочность;
  • подготовительные работы не требуют дополнительного оборудования;
  • отсутствие энергетических затрат;
  • нет деформаций;
  • низкая стоимость;
  • экологичность.

Среди недостатков следует выделить следующие:

  • в отличие от настоящей сварки шов недостаточно крепок;
  • заделка незначительных отверстий;
  • если наносится несколько слоев, то срок ремонта увеличивается;
  • необходима тщательная подготовка.

Разделение по признакам

Множество составов холодной сварки можно разделить по определенным признакам. И это знать очень важно. Они различаются:

  • по консистенции:
    • жидкий;
    • тестообразный;
  • по количеству компонентов:
    • монокомпонентные;
    • двухкомпонентные;
  • по назначению:
    • для пластика;
    • для линолеума;
    • по металлу;
    • для автомобиля;
    • термостойкий;
    • универсальный;
    • для работы под водой.

Чаще всего клей холодная сварка используется для ремонта систем отопления. Длительная эксплуатация не щадит даже металл, и на трубах или на радиаторах появляются свищи, через которые происходит утечка горячей воды.

Для их ремонта к подбору состава необходимо подходить со всей ответственностью. Клей будет находиться в постоянном контакте с водой и нагретой до высокой температуры. Стоит помнить, что холодная сварка — это временное решение проблемы. В итоге все равно не обойтись без традиционной сварки.

Также часто сухую сварку используют автолюбители, чтобы отремонтировать дорогостоящие детали, такие как радиатор охлаждения, бензобак, элементы выхлопной системы и прочие металлические детали, не испытывающие нагрузку.

Бензобак находится вне салона автомобиля, и на него воздействуют низкие температуры в зимний период. Поэтому следует выбирать такие составы, которые работают при отрицательных температурах и стойки к влаге.

Радиатор охлаждения во время работы двигателя разогревается почти до 100 °C, и для устранения течи достаточно универсального состава. Элементы автомобилей изготовлены из разных металлов, и при необходимости ремонта нужно внимательно читать назначение клея. Есть составы для ремонта алюминиевых, стальных и чугунных деталей.

Выхлопная система практически постоянно находится под воздействием высоких температур. Она может нагреваться выше 200 °C. Поэтому для ремонта глушителя или резонатора используются термостойкие металлизированные составы.

Сухая сварка для пластика обычно используется при ремонте пластиковых и полипропиленовых труб, пластмассовых корпусов и других элементов, требующих оперативного вмешательства.

Соединение торцов линолеума раньше производили при помощи высокотемпературного сварочного аппарата. Сейчас же пользуются двухсторонним скотчем или специальным клеем. Качество шва при использовании клея намного выше.

Технология проведения работ

Инструкция холодной сварки для металла описывает, как правильно подготовить поверхности, сделать состав, клеить, и предполагает следующую последовательность работ:

  • Подготовка поверхностей. Металлические детали зачищаются наждачной бумагой от старой краски, ржавчины до естественного металлического блеска. Наждачную бумагу необходимо взять крупную. Чем глубже получатся царапины, тем крепче будет соединение. Затем поверхности необходимо просушить и обезжирить. Быстро удалить влагу можно с помощью фена. А масляные и жировые остатки легко удаляются ацетоном.
  • Приготовление клеевого состава. Ножом отрезать необходимое для ремонта количество. Тщательно его перемешать руками до получения однородной массы. Во время смешивания температура смеси поднимается. Чтобы смесь не прилипала к рукам, их смачивают водой.
  • Нанесение на поверхности. Полученная смесь должна использоваться в кратчайшие сроки. Затвердевание происходит в течение 3−8 минут. Клей аккуратно и равномерно наносится по всей поверхности. Излишки убрать салфеткой. Застывать состав будет при температуре 20 °C около 24 часов.

При проведении работ действуют правила, предусмотренные СНиП 3−42−2013.

Производители и технические характеристики

На прилавках магазинов встречается как отечественная, так и зарубежная продукция. Каждый производитель использует свои добавки, которые влияют на технические характеристики клеящего состава.

НаименованиеВремя первичного схватывания, минПолное высыхание, часТемпература проведения работ и выдержки, °СКритическая температура эксплуатации, °С
Penosil5117120
Poxipol30318250
Zollex601820250
Nowax20320180
Alteco202.518250
Алмаз203181300

Кроме вышеперечисленных производителей, широко известны такие марки, как:

  • Момент;
  • Mastix;
  • Abro;
  • Hi-Gear;
  • Loctite;
  • Weicon;
  • Devcon.

Инструкция по применению поксипола

Поксипол продается в упаковке, где находится два тюбика с основой «А» и отвердителем «В». Состав является универсальным и подходит для склеивания любых материалов. Он прозрачный, поэтому соединяемые элементы предмета не меняют цвет.

Инструкция поксипола описывает следующую последовательность:

  • Соединяемые поверхности тщательно подготовить.
  • При необходимости произвести обезжиривание.
  • Для приготовления клеящего состава использовать пластиковую, керамическую емкость или посуду из стекла.
  • Выдавить поочередно из тюбиков требуемое количество компонентов и тщательно перемешать.
  • Состав имеет тягучую консистенцию и наносить его следует при помощи маленького шпателя или другой пластинкой.
  • Время первичного схватывания у поксипола достаточно велико, поэтому изделие необходимо расположить так, чтобы исключить стекание клея со склеиваемых элементов.
  • В это время состав достаточно уязвим, и для получения хорошего результата необходимо соблюсти условие изоляции.
  • Не перемещать изделие до полного высыхания.
  • Работы проводить при комнатной температуре.
  • При попадании клея на кожу или слизистую оболочку, чтобы исключить химический ожог, необходимо сразу же салфеткой убрать смесь и промыть кожу с мылом, временить нельзя.

В заключение стоит отметить, что сухая сварка довольно стойкая к химическим автомобильным жидкостям, таким как тосол, антифриз, бензин, масла. Металлическая стружка наполнителя может проводить электрический ток, что стоит учитывать при дальнейшей эксплуатации.

Оцените статью: Поделитесь с друзьями!

Холодная сварка металла- как пользоваться – самая полная инструкция в википедии строительного инструмента

Холодная сварка появилась на прилавках относительно недавно. Однако найти массовое применение у неё получилось довольно быстро. Она представляет собой клей, который позволяет соединять металлические детали, при этом получая шов очень похожий на сварочный. Этот способ скрепления очень дешевый и не требует больших знаний в технической области.

Как пользоваться холодной сваркой

Метод холодной сварки применяют в следующих случаях:

  • При незначительной деформации металлической конструкции в районе шва.
  • Соединение простых металлических элементов.
  • Скрепление двух деталей из разных металлов.

В этих трёх случаях лучше не использовать традиционные методы. Ведь можно скрепить конструкцию клеем. При помощи этого способа можно получить очень прочную конструкцию. Которая не будет разрушена под воздействием механических нагрузок. Поэтому холодная сварка для металла используется в ремонте автомобилей, сантехнического оборудования и бытовой техники.

Универсальный клей для металла

Преимущества и недостатки холодной сварки

Этот метод соединения имеет массу положительных сторон:

  • Высокая прочность скрепления.
  • Способность выдерживать серьёзные механические нагрузки.
  • Универсальность.
  • Процедура склеивания производится очень быстро.
  • Клей для холодной сварки стоит недорого и его можно приобрести в любом строительном магазине.
  • При работе не выделяется никаких отходов и вредных для человека веществ.

Существует и ряд серьёзных недостатков:

  • Прочность шва будет намного слабее чем при обычной сварке.
  • Благодаря холодной сварке очень трудно и неэффективно устранять серьёзные дефекты.
  • После работы обязательно нужно зачистить и отшлифовать шов, иначе качество скрепления сильно ухудшиться.
  • Двухкомпонентные составы необходимо смешивать перед проведением работ.

Клей для металла

Инструкция по применению холодной сварки

Процедура ремонта или скрепления металлических предметов клеем состоит из нескольких этапов:

  • Ищем повреждение или место скрепления. Если повреждена деталь механизма, то лучше провести её демонтаж. Делается это для простоты проведения ремонтных работ.
  • Зачищаем его и удаляем жир при помощи растворителей или спирта.
  • Подготавливаем клей к работе. Если клей состоит из двух тюбиков то необходимо их смешать в отдельной посуде. Если тюбик только один, то смешивать ничего не нужно, оно произойдёт автоматически.
  • Наносим массу на место работы и плотно прижимаем. Для повышения прочности стоит использовать металлическую заплатку.
  • Проведите финальную шлифовку.

Высокотемпературный клеевой состав

Данный вид соеденения способен выдерживать экстремально высокие температуры (выше 1000 градусов по Цельсию). Этот вид клея применяют для починки или соединения деталей, которые находятся под воздействием высоких температур. Его очень часто используют для ремонта выпускных коллекторов, выхлопных труб и других  частей автомобиля. Высокотемпературный состав имеет массу преймуществ:

  • Простота в эксплуатации.
  • Швы не разрушается в процессе коррозии. Также на них не воздействуют различные агрессивные вещества.
  • Быстро схватывается.
  • Может применять в подвижных механизмах.
  • Безопасность для окружающей среды

    

Клей для пластика

Клей для пластика

Клей для скрепления изделий из пластика используется довольно часто. Его применяют для починки пластиковых изделий, например сантехнических труб, или корпусов изготовленных из пластика.

Клей для резины

Используется для соединения мягкой и жёсткой резины. Применяется при строительных или ремонтных работах, например при склеивании линолеума.

Виды холодной сварки

Исходя из спецификации соединительного шва и рабочей поверхности есть несколько разновидностей клеевых составов для холодной сварки:

  • Точечная. Используется для изделий требующих точного ремонта.
  • Шовная. Используется для создания корпусов. Часто используется в промышленных производствах.
  • Стыковая. Применяется для скрепления различных предметов, например проводов.
  • Тавровая.
  • Скрепление со сдвигом. Изготавливается для ремонта труб и других сантехнических принадлежностей.

Клеевые составы имеют различные формы:

  • Пластилинообразная форма. Клеевой состав изготовленный в виде бруска. Перед работой его необходимо размягчить.
  • Жидкая сварка для металла. Перед нанесением необходимо смешать содержимое двух тюбиков.

Холодная сварка применяется в различных целях. А значит может выполнять разнообразные функции:

  • Водостойкие составы. Предназначены для изделий, которые непосредственно контактируют с жидкостями. Такие составы используют для ремонта сантехники.
  • Клеевые составы для ремонта автомобилей. Спокойно выдерживают высокие температуры и могут использовать в подвижных деталей.
  • Клеевые составы предназначенные для работы с металлическими изделиями.
  • Универсальная.
  • Высокотемпературная.

Она может быть однокомпонентной или двухкомпонентной. Компоненты могут быть изготовлены в форме пластилина или пасты.

Состав клеевых масс для ремонта изделий

Основными элементами для производства холодной сварки выступают:

  • Эпоксидная смола. Она является основой всего состава. Эпоксидная смола отличается превосходными соединяющими свойствами. Благодаря этому она нашла широкое применение в современной промышленности
  • Наполнитель. Усиливает плотность скрепления деталей, а также делает состав устойчивым к высоким температурам. Он может быть изготовлен как из металла, так и из других минеральных компонентов. Наполнитель может быть изготовлен в виде пудры или с использованием оксидных и диоксидных добавок.
  • Дополнительные компоненты (добавки). Они зависят от типа холодной сварки и сферы её применения.

Свойства холодной сварки подробно описаны в инструкции по её применению.

холодная сварка

Использование холодной сварки

Холодная сварка применяется для ремонта различных изделий:

  • Деталей из металла. При этом проводить работу можно даже с предметами находящимися под действием электрического тока или погружёнными в жидкость.
  • Различных видов пластиков и пластмасс (за исключением полиэтилена).
  • Изделий из стекла и керамики. При склеивании образуется довольно прочная связь между частями. Часто клеевые составы используют для восстановления разбитых изделий из глины, например ваз или горшков.
  • Для линолеума и ковролина.

Клей используется используется в различных сферах:

  • Сантехника. При помощи холодной сварки можно легко устранить протечку трубы, батареи или сантехнического смесителя. При этом можно чинить как металлические, так и пластиковые детали. При помощи использования можно самостоятельно устранить проблему и не прибегать к помощи профессионального сантехника.
  • Ремонт автомобилей. При поломке деталей не обязательно заменять их или обращаться в автосервис. Ведь есть возможность провести все работы своими силами. При этом нужно воспользоваться простым клеем для ремонта металлических изделий. С помощью этого метода можно заделать дыру в бензобаке или починить выпускной коллектор.

Клеевые герметики

Герметики — вещества не допускающие проток жидкости. Используются в сантехнике для заделывания дыр в трубах. Они подходят для работы с вертикальными поверхностями и при достаточно высоких температурах в несколько сотен градусов. Правда время затвердевания для таких составов довольно долгое. Примерно 1-3 суток.

Как провести ремонт

Соединить детали при помощи холодной сварки очень просто:

  • Провести подготовку поверхности. Сделать это нужно при помощи наждачной бумаги. Необходимо оставить царапины на обрабатываемой поверхности, это нужно для того чтобы клей проник в структуру металла. Чем глубже будут царапины, тем прочнее будет шов.
  • Производиться просушивание изделия. Это делается для устранения нежелательных жидкостей и повышении прочности крепления.
  • Проводиться обезжиривание рабочей поверхности. Ведь жировые пятна сильно снизят эффективность холодной сварки. Убрать жир можно при помощи ацетона.
  • Производится перемешивания компонентов клея до однородной массы.
  • Затем клеевая масса аккуратно наносится на изделие. Сделать это нужно очень быстро, ведь клеевая масса застывает всего за несколько минут. Если отверстие очень большое, то необходимо заделывать его при помощи металлической пластинки (заплатки), она прикрепляется к изделию при помощи холодной сварки.

Использование холодной сварки для ремонта автомобилей

Для ремонта автомобилей подойдёт почти любой клей, особенно если он выдерживает высокие температуры. Желательно использовать клей с наполнителем из металлической крошки. Если наполнитель отсутствует, то нужно сделать его самостоятельно, добавив в него металлическую пудру.

Важные советы

Перед работой обязательно прочтите инструкцию, которая прилагается к изделию. Там указывается важная информация относительно состава и способа применения. Перед работой обязательно подготовьте изделие, от этого напрямую зависит качество шва. В подготовительный этап входит: зачистка при помощи наждачной бумаги, удаление грязи, избавление от ржавчины. По прошествии некоторого времени можно спокойно эксплуатировать деталь. Выбирать холодную сварку необходимо исходя из условий использования и целей приобретения. Лучше отдавать предпочтение известным брендам, ведь в качестве их продукции не приходится сомневаться.

 

При покупке обязательно смотрите на следующие вещи:

  • Особенности добавок и их состав. Выбирайте наполнитель изготовленный из прочного металла. Материал наполнителя должен быть прочнее чем материал детали
  • Высокотемпературные составы наиболее надёжные. Поэтому лучше покупать именно их.
  • Обращайте пристальное внимание на время затвердевания. Лучше брать быстрозастывающие холодные сварки.

Качественный ремонт изделия производится очень просто. Нужно лишь подобрать правильные материалы и оборудование.

Лучшие производители холодной сварки

Большинство составов для сварки металла — это импортная продукция. Импортный сектор представлен такими моделями как: Hi-Gear, Abro, Poxipol. Однако в продаже имеется и отечественная продукция. В основном это торговые марки «Полимет» или Henkel.

Самыми популярными являются следующие составы:

Abro Steel

Abro Steel

Двухкомпонентный гель американского производства.

Устойчив к агрессивному воздействию внешней среды и выдерживает температуру вплоть до +250 градусов.

HiGeer

HiGeer

Изделия Hi-Geer широко используются для многих материалов.

Продукция обеспечивает соединение изделий из камня, дерева и пластика. Продукция обладает невысокой ценой и обладает устойчивостью ко многим негативным факторам.  

Клей момент

Клей Момент

Используется для фиксации металлических изделий. Выдерживает довольно высокую температуру в 140 градусов. Отличный продукт подходящий для бытовых нужд.

Wurth Liuguid Metal Fe 1

Wurth Liuguid Metal Fe 1

Холодная сварка производимая в Германии.

Изготавливается для работы с изделиями из металла и керамики. Материал не токсичен, выдерживает температуру в 120 градусов и отлично подходит для заделывания трещин в посуде или сантехническом оборудовании.

Summary

Article Name

Холодная сварка металла

Description

Холодная сварка металла – как пользоваться – самая полная инструкция по применению. ✅Преимущества и недостатки ➜– ✅Инструкция по применению ➜– ✅Лучшие производители

Author

Сарычев Александр Викторович — судебный строительно-технический эксперт, кандидат технических наук

Publisher Name

Википедия строительного инструмента

Publisher Logo


Поделиться новостью в соцсетях

 

« Предыдущая запись Следующая запись »

Высокотемпературная водостойкая холодная сварка для металла: что это такое, особенности и виды, применение жидкой термостойкой для нержавеющей стали, латуни, чугуна

Холодная сварка для металла высокотемпературная водостойкая – это наиболее качественный представитель семейства эпоксидных клеящих составов. Отличается сохранением эксплуатационных свойств даже при воздействии высоко температур.

Область применения

Термостойкость клея определяет сферы применения:

  1. Бытовая. Ремонт радиаторов отопления, газовых котлов, колонок, печей, кастрюль, чайников.
  2. Автомобильная. Ремонт всех узлов автомобиля, которые подвергаются воздействию высокой температуры: системы охлаждения, выпуска отработанных газов и двигатель.

Важно! Современный двигатель – высокотехнологичный агрегат. Не обладая профессиональными навыками, не стоит производить ремонт. Перед применением холодной сварки для ремонта двигателя рекомендуем проконсультироваться со специалистами

Преимущества

Высокотемпературную холодную сварку ценят за следующие свойства:

  • Широкий перечень соединяемых материалов. Клей способен соединять поверхности из алюминия, чугуна, латуни, нержавеющей стали, благородных металлов.
  • Легкость применения. Использование не требует специальной подготовки или особых навыков. Простота состава предполагает проведение срочных работ в полевых условиях.
  • Качество соединения. Шов не поддается химическому воздействию, коррозии и не подвержен окислению.
  • Возможность обработки. После полной полимеризации соединение поддаются любой механической обработке, включая использование пескоструйных аппаратов.
  • Экологичность. Абсолютно безопасно для окружающей среды.

Недостатки

Как и любое вещество, жаростойкий клей имеет свои недостатки:

  • Температурный режим. Производители рекомендуют склеивать поверхности при комнатной температуре. В противном случае не стоит ожидать высокого качества шва.
  • Промышленное применение невозможно. Применение дуговой сварки, на крупных предприятиях, обходится дешевле, чем соединение холодной сваркой. Даже с учетом высокой оплаты труда квалифицированных сварщиков.

Разновидности

Помимо формы и содержания упаковки, рассматриваемый материал различают по следующим параметрам:

  • Показания к применению (универсальная, металлическая, сантехническая).
  • Характеристики (влагостойкая, жаростойкая, маслостойкая).
  • Время схватывания и полимеризации.
  • Наличие дополнительных компонентов.

Состав

Содержит следующие компоненты:

  1. Эпоксидная смола.  То, на чем основана так называемая холодная сварка: базовый элемент клея, который отвечает за однородность и пластичность рабочей массы.
  2. Металлический или минеральный наполнитель. Важная составляющая, которая придает крепость при полимеризации. Благодаря металлической составляющей состав получил название  внешний вид соединения напоминает сварочный шов от ручной дуговой сварки.
  3. Наполнители. Наиболее распространенным элементом является сера. В состав входят и другие компоненты, отвечающие за качество продукции. Изготовители держат их в секрете.

Технические характеристики различных производителей

Рассмотрим перечень продуктов, которые пользуются популярностью в крупнейших городах России – Москве и Санкт-Петербурге:

  1. ABRO Термометалл TM-185. Страна-производитель – США. Однокомпонентный материал для заделки трещин и отверстий в стальных и железных деталях. Пригоден к использованию при ремонте автомобильных узлов, бытовых отопительных приборов, промышленного оборудования. Содержит антикоррозийные добавки. Отличается стойкостью к нефтепродуктам. Выдерживает температуру до 1316 Сº.Время полной полимеризации – 24 часа. Рекомендованная толщина слоя – 6 мм.
  2. Клей холодная сварка АЛМАЗ ТЕРМОСТОЙКИЙ. Продукт российского производства. Используется для соединения различных поверхностей: черный металл, нержавейка, пластмасса, стекло, керамика, дерево. Наиболее эффективен при ремонте батарей, радиаторов отопления и различных трубопроводов. Возможно применение на мокрых или замасленных поверхностях. Термостойкость до 300 Сº.Время полной полимеризации – 24 часа. Прочность при отрыве – 120 кг/см².

Вышеуказанные товары, в числе прочих, можно приобрести сети строительных гипермаркетов «Леруа Мерлен».

Форма компонентов

Холодная сварка отличается степенью густоты: производят пастообразный и жидкий составы.

  • Пастообразный представляет собой однокомпонентное вещество, готовое к использованию. По внешнему виду напоминает детский пластилин.
  • Жидкую сварку для металла выпускают в специальных контейнерах. Является двухкомпонентным клеем, который необходимо смешать перед применением.

Двухкомпонентные растворы имеют преимущество – длительный срок хранения, тогда как однокомпонентный клей необходимо использовать после вскрытия упаковки.

Какая лучше? Критерии выбора

Популярность холодной сварки породила огромное количество товаров на любой вкус, поэтому выбор должен зависть от области применения.

Температурный режим

Универсальные продукты отличаются хорошим показателем прочности на растяжение и разнообразием соединяемых материалов. Показатель химической устойчивости – средний. Можно ли таким составом заклеить кастрюлю? Да, но максимальная температура соединения не превышает 200 Сº.

Специализированный клей сохраняет свойства при температуре свыше 1000 Сº.

Герметики

Краеугольным камнем универсальных продуктов является низкая избирательность. Для устранения утечек труб отопления рекомендуем использовать специальные водостойкие продукты. В первую очередь они являются герметиками, поэтому не ждите от них высокой адгезии при заклеивании металла. Производятся в жидком виде.

Составы для автомобилей

Автомобильная холодная сварка отличается устойчивостью к негативным факторам, которые сопровождают эксплуатацию автомобиля – вибрация, удары, перепады температур. Не подходит для применения под водой. Высокий показатель прочности на разрыв.

Значение наполнения

Обращайте внимание на соединяемый материал. Для холодной сварки металла лучше всего подойдет сварка с металлическим наполнителем. Он должен соответствовать параметрам металла. Например, для соединения чугуна необходим чугунный наполнитель, для меди – медный и т. п. Это позволит добиться наилучших результатов.

Инструкция по применению

Перед работой внимательно изучите инструкцию по применению. В ней указаны технические характеристики. Также можно почерпнуть нужную информацию, касательно безопасного использования клея и рекомендуемых областей применения.

Ниже приведены общие правила при использовании холодной сварки.

Правила безопасности при работе с холодной сваркой
Холодная сварка – нетоксичный материал. Ее применения не требует использования защитных очков или средств защиты органов дыхания. Основным требованием безопасности некоторых продуктов является защита кожного покрова и слизистой оболочки от непосредственного контакта с клеем.

В случае попадания в глаза следует хорошо промыть контактный участок большим количеством воды и обратиться к врачу. Это относится к готовой смеси – контакт с высохшим продуктом не принесет вреда здоровью.
Посуда для подготовки смеси должна быть чистой, без содержания посторонних элементов. Дальнейшее использование посуды для приема пищи нежелательно.

Производители и популярные марки

Рейтинг наиболее популярных производителей холодной сварки возглавляют:

  • HI-GEAR,
  • Liqui Moly,
  • ALTECO,
  • MANNOL,
  • LAVR,
  • АЛМАЗ,
  • Done Deal.

Если вы хотите узнать больше об использовании холодной сварки, то на нашем сайте есть статьи по темам:

  • Какую холодную сварку сварку лучше выбрать для металла?
  • Как пользоваться холодной сваркой для пластика?
  • Как заварить глушитель холодной сваркой?

Заключение

Таким образом, холодная сварка является наиболее востребованным средством экстренного ремонта в бытовой и автомобильной сфере. Однако, ее применение не всегда освобождает от необходимости в проведении полноценного ремонта или замены детали.

Автомеханик ООО «Алеко-Сервис» Бондаренко Сергей Анатольевич, опыт работы – 20 лет: «Я занимаюсь ремонтом автомобильного подвижного состава с 20 лет. Появление на рынке термостойкой холодной сварки существенно облегчила мне жизнь – особенно при ремонте выхлопной системы. С задачей заделки незначительных трещин она справляется «на отлично». К тому же отсутствует необходимость снятия узлов для полноценной сварки – это экономит силы и время».

Загрузка…

Холодная сварка давлением. Обзор технологии. — «Вебер Комеханикс»

Холодная сварка давлением это сварка в твердой фазе, она является уникальной, поскольку проводится при температуре окружающей среды. Другие виды сварки в твердой фазе проводятся при повышенной температуре. Например, при сварке сопротивлением. Однако, хотя температура и высокая, расплавления материала не происходит, нагрев производится до температуры пластической деформации.

Еще 3000 лет до н.э. египтяне обрабатывали железо при помощи ковки, сваривая при этом раскаленные детали. Кузнецы также столетиями сваривали железо, используя метод ковки. Этот вид сварки всегда проводился при повышенной температуре.

В Великобритании первый известный пример сварки ковкой при температуре окружающей среды (то есть холодной сварки давлением) относится к позднему периоду Бронзового века, примерно 700 лет до н.э. При раскопках были обнаружены золотые шкатулки, изготовленные подобным образом, исходным материалом которых было золото.

Открытие холодной сварки давлением

Машина AW 813 с электроприводом для сварки проволоки больших сечений круглой и прямоугольной формы

Первые научные исследования холодной сварки давлением провел Реверенд Десагулирс в 1724 году. Он продемонстрировал этот процесс Королевскому научному обществу и затем опубликовал результаты в научных журналах. Рев Десагулирс обнаружил, что если взять два свинцовых шарика диаметром 25 мм, затем сжать их и скрутить, то они соединятся. Прочность соединения замерили на безмене и, хотя процесс был довольно нестабильным, были достигнуты хорошие результаты, полученная прочность материал соединения не отличалась от прочности основного материала.

Как оказалось, мало что изменилось в способе сварки ковкой с момента открытия его Ревом Десагулирсом в 18 веке вплоть до начала Второй мировой войны. Новые потребности военного времени способствовали появлению новых открытий, особенно в Германии, где при помощи холодной сварки давлением были сварены детали из легкосплавного материала для авиационной промышленности, хотя сварка проводилась при повышенной температуре.

Волшебный процесс сварки

Примеры соединений алюминиевых и медных прутков, полученных холодной сваркой давлением

На первый взгляд холодная сварка давлением может показаться волшебным процессом. Людям, не знакомым с данным методом сварки, бывает довольно сложно его понять, поскольку он не подразумевает использование нагрева, электричества или присадочного материала. После демонстрации они обычно спрашивают: – “Каким образом соединились две металлические детали?”.

Существует несколько теорий, объясняющих, каким образом происходит холодная сварка давлением. Например, было предположение, что сварка происходит посредством рекристаллизации, также существовала энергетическая теория, но большинство предположений было опровергнуто либо экспериментальным путем, либо теоретически.

Общепринятая теория описывает холодную сварку давлением как процесс, при котором атомы металла соединяются между собой на молекулярном уровне, характерном для металлических сплавов. Данное соединение образуется в результате сил притяжения свободных, отрицательно заряженных атомов друг к другу.

Процесс сварки

Когда две металлические детали подходят друг к другу на расстояние в несколько ангстрем (в 1 сантиметре 300 млн. ангстрем), происходит реакция между свободными электронами и ионизированными атомами, которая устраняет потенциальный барьер для образования электронной пары. Это в свою очередь, приведет к образованию сварного соединения.

Более простой способ объяснения этого процесса таков: если рассматривать на уровне атомной структуры две ровные, хорошо зачищенные поверхности состыкованных деталей, получается соединение, близкое по структуре к исходному материалу.

Первоначальное применение

Ручные сварочные клещи CW 10 с возможностью сварки проволоки диаметром от 0.08 мм.

Однако на практике получить подобное соединение фактически невозможно по нескольким причинам, например, из-за неровностей поверхности, органического загрязнения поверхности и присутствия химической пленки, в том числе оксидной. Для получения максимально качественного сварного соединения необходимо удалять любые загрязнения с поверхностей контакта деталей, при этом поверхность соприкосновения деталей перед сваркой должна быть как можно больше.

На первоначальном этапе применения холодной сварки давлением практически всегда было гарантировано радиальное смещение границы между свариваемыми материалами. У данной технологии существовало несколько недостатков: было важно обеспечить плоскостность торцов соединяемых прутков, обе поверхности должны быть очищены от загрязнений, количество материала, который образуется при захвате электродами, было таковым, что могло произойти загибание проволоки, либо отклонение от соосности, тем самым, исключая правильное течение металла.

Принцип многократной осадки

Затем появился метод стыковой сварки, разработанный компанией GEC, который еще называют «принципом многократной осадки». При каждом рабочем движении машины, когда заготовка зафиксирована в электродах, она захватывается данными электродами и подается вперед.

Таким образом, два противостоящих торца материала растягиваются и расширяются по мере движения во встречном направлении. Оксидная пленка и другие посторонние включения выдавливаются из металла, и происходит сварка. Для того чтобы удалить все посторонние включения рекомендуется выполнить минимум 4 цикла осадки.

Преимущества данного вида сварки можно увидеть при практическом применении. При этом методе не нужно предварительно подготавливать к сварке торцы проволоки или прутка, кроме того, подгонка торцов происходит автоматически, когда материал находится в матрице, также нет необходимости нагрева материала, не нужно выдерживать зазор, поскольку он имеется в матрице, и не нужно устанавливать усилие пружины. В случае если вышеуказанные условия не будут соблюдаться, например, при стыковой сварке сопротивлением, то качественное соединение не получится.

Свариваемые материалы

Зона сварки в поперечном разрезе, где медный пруток диаметром 0.315″ (8мм) приварен к алюминиевому прутку диаметром 0.374″ (9.5мм)

Холодная сварка давлением применяется только для цветных металлов, в крайнем случае, для мягкой стали с очень низким содержанием углерода. Большинство цветных металлов можно сварить холодной сваркой давлением. Самые распространенные из них медь и алюминий, а также различные сплавы, такие как альдрей, сплав марки ЕЕЕ, константан, латунь 70/30, цинк, серебро и его сплавы, никель, золото и другие, которые обладают хорошей свариваемостью. Проволоку с покрытием, в том числе, луженую медь, посеребренные и никелированные прутки тоже можно сваривать друг с другом, либо просто с медью.

Если использовать обычные способы соединения разнородных металлов, таких как медь и алюминий, а именно контактную сварку, сварку трением или пайку с нагревом, то это может привести к разрыву полученного соединения. При соединении двух поверхностей металла, между алюминием и медью сразу же происходит реакция.

Данная проблема возникает скорее из-за присутствия оксидной пленки и воздушной прослойки, которые остаются на стыке двух металлов, чем по причине разнородности структуры металлов. Тем не менее, при холодной сварке давлением все оксиды и воздух выдавливаются из соединения в процессе сварки без тепловложения, и происходят только структурные изменения при температуре окружающей среды.

Холодная сварка давлением является наиболее эффективным способом сварки меди с алюминием, исключающим образование хрупких металлических соединений. Достигается высокое качество сварки, структура материала гораздо лучше литой структуры, которая возникает при сварке плавлением. Также, при этом отсутствует зона термического влияния с нежелательным влиянием на свойства материала.

При проверке прочности соединения большинство людей полагаются на данные машины для испытания на растяжение. Дополнительно можно провести испытание на знакопеременный изгиб. Тем не менее, самый оптимальный способ это протянуть сварное соединение через множество волоков волочильного станка.

Функция матрицы

Сварочная головка и проволока с гратом, образованным при холодной сварке давлением

Матрица играет очень важную роль в процессе холодной стыковой сварки. Прежде всего, зажимные губки должны надежно захватить материал, для чего в канавках наносятся рифления (насечка) электрогравером, либо, если необходимо захватывать алюминиевый пруток большого размера, механическим путем до их термообработки.

Очень важно, чтобы зазор в матрице был правильным. Если зазор слишком большой материал может порваться или погнуться. Зазор устанавливается на производстве и не может быть изменен.

И последнее, концы электродов имеют смещение, что приводит к эффекту отклонения линии вокруг длины окружности прутка. Назначением данного смещения является разделение грата на 2 половинки, что облегчает дальнейшее его удаление, иначе грат образуется в виде кольца и его сложнее будет удалить. Кроме того, концы электрода должны быть достаточно заострены, что, по сути, позволяет подрезать грат вокруг соединения, и в дальнейшем также облегчает его удаление.

Прочность и твердость электродов являются наиболее важными свойствами. В стадии зарождения холодной сварки обычным явлением была поломка электродов. Намного позже была произведена машина для сварки прутка диаметром 8 мм, и основные трудности заключались в приложении необходимых усилий на электроде для больших размеров.

Компания BWE осуществляет разработку и поставку аппаратов для холодной сварки начиная с 1969 года. За это время завод накопил огромный опты и является лидером в данной области. Оборудование этой марки хорошо зарекомендовало себя. Среди его преимуществ – долгий срок службы, простота эксплуатации, безопасность и эффективность.

Машины BWE позволяют добиться удаления всех включений и загрязнений благодаря технологии многократной осадки, применяемой при сварке. Подобная технология позволяет не только получать высококачественные сварные соединения, но и позволяет исключить операции по подготовке торцев перед сваркой, что существенно экономит время.

Широкий спектр оборудования для холодной сварки, который предлагает компания BWE, позволяет решать задачи по сварки большого диапазона диаметров прутка.

Электроды, используемые при сварке, изготавливаются с использованием новейших компьютерных технологий и доводятся вручную, обеспечивая самые высокие стандарты сварки.

Матрицы могут изготавливаться для различных форм профилей, причем только такого сечения, которое допускает применение разжимных электродов из 2-ух половинок – это обеспечит возможность вынимать сваренный пруток из матрицы – а площадь поперечного сечения должна соответствовать мощности машины.

Также существует возможность сваривать проволоку различных диаметров. В действительности, диаметр проволоки большего размера не может превышать диаметр проволоки меньшего размера более чем на 30%. Если медная проволока значительно меньше в диаметре, чем алюминиевая, то она будет просто вдавливаться в нее и сварка не получится.

выбор средства, пошаговая инструкция, техника безопасности

Холодная сварка для алюминия может быть применена в тех ситуациях, когда нет возможности использовать электродуговую сварку в среде защитного газа. Данная методика актуальна применительно к алюминию еще и по той причине, что заготовки из данного металла очень плохо соединяются при помощи болтов и гаек. Под понятием «холодная сварка алюминия» может подразумеваться и способ соединения деталей из данного металла при помощи деформации, и технология, предполагающая использование специального клея.

Под «холодной сваркой» чаще всего подразумевают специальный клей, но существуют еще и механические методы холодной сварки — сварка деформацией

Виды холодной сварки алюминия

Для алюминиевых деталей подходят три способа стыкования, все они могут именоваться «холодной сваркой». Первый используется на заводах, иных крупных производствах и основывается на механизме диффузии. Взаимное проникновение частиц металлов друг в друга присуще не только алюминию, но именно у этого материала процесс происходит быстрее. Диффузия металлов достигается путем оказания давления особыми стержнями (пуансонами), в результате формируются новые молекулярные связи, появляется крепкий шов.

Еще один метод соединения компонентов – сварка сдвигом. Здесь давление на заготовки будет не точечным, а сплошным со смещением в горизонтальной плоскости. В данном случае создается соединение на большой поверхности. Для работы используются станки, обладающие высокой силой и прижимной способностью.

В домашних условиях сваривать изделия перечисленными способами можно, но есть технология проще. Это холодная сварка или склеивание алюминия специальными химическими составами. В их основе – эпоксидная смола. Также средства содержат металлический порошок, серу, иные минеральные компоненты и присадки. По внешнему виду они напоминают мастику, пластилин или являются жидкими. Смола способна как бы расплавлять поверхность деталей, обеспечивая молекулам взаимное проникновение. В результате получается надежный, крепкий шов.

Соединение деталей специальным клеем

Вот мы и добрались до термина «холодная сварка». Что же это такое?

ВАЖНО ЗНАТЬ: Технология плазменной сварки

Этот метод не требует никаких специальных устройств или механизмов, очень часто он используется как временное средство для устранения аварийной ситуации, когда устранение неисправности происходит буквально в полевых условиях.

Это двухкомпонентный клей в виде жидкости или мастики на основе эпоксидной смолы с добавлением стального порошка.

Развитие химической промышленности открыло новые свойства некоторых элементов, поэтому в традиционный «рецепт» сварки сейчас добавляют специальные присадки, которые улучшают адгезию, температурные характеристики, устойчивость к агрессивным средам и так далее.

Можно сказать, что современный клей по своим прочностным характеристикам зачастую превосходит соединяемые детали.

Встретить холодную сварку можно практически в любом хозяйственном магазине – множество отечественных и зарубежных производителей выпускают такие составы, отличающиеся только внешним оформлением.

Жидкая сварка всегда выпускается в упаковке из двух тюбиков или бутыльков, содержимое которых смешивается в одной емкости непосредственно перед применением.

Видео:

Мастика чаще встречается в виде двухслойного бруска, напоминающего пластилин, клей, либо помещенного для удобства в цилиндрическую упаковку.

Перед сваркой от куска строго перпендикулярно отрезается необходимое количество. Компоненты сварки соединяются путем разминания между пальцами и быстро наносятся на склеиваемый участок.

Места склеивания предварительно лучше обезжирить, так как замасливание под клеем снижает адгезивные свойства до 15-20%

Обращу ваше внимание, что свежеприготовленный клей обладает рабочими свойствами в течение 20-30 мин после смешивания, иногда меньше (подробная информация указывается на упаковке).

Именно в этот период клей можно наносить на склеиваемые предметы, которые затем нужно прижать друг к другу на 40-45 мин при комнатной температуре.

Полное время затвердевания этой «сварки» составляет около 2,5 часов, после чего изделием можно пользоваться.

Места, где использовался клей, можно подвергать практически любым нагрузкам, кроме деформации «на разрыв».

ВАЖНО ЗНАТЬ: Советы по сварке алюминия электродами

«Холодной сваркой» можно соединять не только различные алюминиевые детали, она используется и для заделки отверстий в алюминиевых радиаторах, дыр и трещин в автомобилях, так как хорошо заполняет различные отверстия, принимая любую форму.

Видео:

Клей обладает высокой адгезией, малым сроком высыхания, после затвердевания приобретает повышенную прочность, очень тяжело разрушается, что обуславливает его широкую популярность.

Но для его использования существует ряд ограничений, состав нельзя применять:

  • в местах повышенной экологической опасности;
  • в местах с высокими температурами;
  • в местах с резким изменением условий эксплуатации;
  • в сосудах, находящихся под высоким давлением;
  • в местах с агрессивной окружающей средой.

Выполняя холодную сварку алюминиевых заготовок этим способом лучше позаботиться о средствах защиты – перчатках и респираторе, так как клей содержит вещества, раздражающие кожу и дыхательные пути.

При попадании в глаза необходимо немедленно промыть их проточной водой и срочно обратиться к офтальмологу.

Внимание! Строго запрещено применение клеевых составов на основе эпоксидной смолы для предметов, находящихся в непосредственном контакте с питьевой водой и продуктами питания.

Также хочется отметить, что цена такой сварки для алюминия очень невысока, а применять ее можно практически везде.

Клей, в отличие от газовой сварки, не провоцирует окисление металла, не вызывает его плавление, значит, ваше изделие будет служить намного дольше.

Благодаря всему этому, все больше людей выбирают для ремонтных работ «холодную сварку», а высокотемпературная сварка используется все меньше в домашних условиях.

Применение холодной сварки

Ремонт и склейка деталей холодным свариванием применяется в промышленности, быту. Метод незаменим в аварийной ситуации, когда нужно срочно починить разрыв трубы, поломку крепления. Чаще всего такая мера будет временной, по мере возможности заплатку снимают и заваривают дефект аргоном либо меняют деталь. Для ремонта автомобилей клеи на основе эпоксидной смолы тоже подходят: ими заделывают бамперы, элементы салона, реконструируют иные детали. Сварка хорошо крепится к корпусу авто, после чего его шлифуют, красят.

В продаже есть высокотемпературные средства, они наносятся аналогичным образом, при эксплуатации могут выдерживать температуры до +1000 градусов. Такие материалы после контакта с огнем становятся еще более прочными.

Склейка или сварка силумина?

Периодически сталкиваюсь с разрушением силуминовых элементов. Внешне детали изготовленные из силумина похожи на алюминий, но это только на первый взгляд. Хотя его достаточно легко отличить когда изделие повреждено. Невооруженным гразом можно видеть спекшиеся крупицы порошка. Но, как говорится, надежда умирает, последней. В телефонной книге ищешь номер знакомого аргонщика. Приносишь деталь и после первого «чварка» можно наблюдать кислое лицо этого аргонщика. И вот после очередных повреждений силуминовых деталей уже и не хочется предпринимать попытки обращения к аргонщикам.

И вот я решил погуглить в сети, действительно ли этот самый силумин на сваривается. Для начала заглядываю в википедию, чтобы узнать из чего же состоит этот самый силумин. Его схожесть с алюминием не случайна, посколько это основная составляющая этого сплава. Второй основной элемент это кремний, доля которого составляет от 4 до 22% в зависимости от его марки. Также в состав силумина входит небольшое количество примесей: железо, медь, марганец, титан и прочие. Исходят из того, что процентное соотношение кремния разное, то скорее всего шанс сваривания есть. Итак, погрузившись в бурные обсуждения интернет-форумов я понял следующее, что сваривать (спаивать) стоит только лишь в том случае, если деталь представляет некую ценность и если она находится под действием определенных нагрузок. В противном случае все ратуют за склеивание деталей силумина. ОК. Все равно хотелось бы тезисно изложить основные требования к свариванию.

  • Использовать только аргон.
  • Силумин бывает разный. Надо всегда пробовать. Откровенно китайские изделия не свариваются. Тупо расплавляются. А вот, к примеру, автомобильные детали от известных производителей без проблем поддаются свариванию.
  • Для сваривания силумина рекомендуют использовать специальные припои типа Harris-52, НТS-2000, ER 4043. Они предназначены для сваривания алюминия.
  • Перед сваркой необходимо детали предварительно разогреть до температуры 220 градусов цельсия. Для более эффективного отвода тепла рекомендуют использовать стальные прокладки. Насколько я понимаю это необходимо для недопущения расплавления силумина.
  • Жесткие закрепления стараться избегать во избежаний трещинообразования.
  • Перед сваркой попытаться попробовать на тестовом образце.

Теперь что касается склеивания силумина. Прежде чем клеять необходимо тщательно подготовить поверхность. Максимально очистить от грязи и масла. Заранее продумать чем зафиксировать изделия после нанесения клея. Самое распространенный клее — эпокситный. Также многие советуют всяческие пятиминутки. После застывания клея можно армировать места склеивания. Для этих целей подойдет шпатлевка с волоконным наполнителем. Да, если вы надеетесь найти специальный клей для силумина, не теряйте зря время. Но здесь можно пойти по логике сварщиков, которые ищут припои для алюминия. Так и здесь, существуют специальные клеи предназначенные для склеивания алюминия. Двухкомпонентные клеи COSMOFEN DUO и AL-1. Применяется в строительстве для склеивания алюминиевых элементов окон и дверей.

Вот такой вот краткий анализ в помощь тем, кто ищет способы сваривания и склеивания силумина. Здесь подход должен быть творческий, когда сумма попыток рождает победу. Удачи. P.S. Совсем забыл про «холодную сварку».

Методы сварки деформацией

Можно ли заварить детали из алюминия своими руками? Для создания неразъемного соединения нужно разрушить оксидную пленку, которая присутствует на поверхности металла, а также плотно прижать изделия друг к другу. Это поможет создать новые кристаллические решетки между молекулами в соединениях. Стоит подробнее рассмотреть три возможных метода сварки деформацией, чтобы выбрать лучший.

Точечная сварка

Точечная холодная сварка является самой популярной, для ее проведения не нужны зажимы. Качество готового стыка будет зависеть от выраженности деформации металла в сварной точке. Нормы по соотношению глубины вдавливания к толщине изделия таковы:

  • чистый алюминий – 60-70%;
  • сплавы алюминия – 75-90%.

Данная методика подходит лишь для деталей не более 1,5 см толщиной, зато они могут быть достаточно габаритными. Листы укладываются внахлест, сдавливаются пуансонами точечно, с определенным интервалом. Недостатком методики является негерметичность стыка.

Шовная сварка

Для выполнения такого способа стыкования деталей нужно особое оборудование – кольцевой пуансон или вращающийся ролик. Путем оказания переменного давления стык становится сплошным. Если требуется односторонняя сварка, ролик может быть неподвижным. Для двухсторонней сварки применяются два подвижных устройства. Механизм помогает сдавить детали на нужную глубину и получить качественный шов.

Недостаток технологии серьезен. Из-за сильного сплошного сдавливания крепость самой конструкции уменьшается. Поэтому методика была усовершенствована и соединила в себе элементы шовной и точечной техник. Стык создается в ходе вращения ролика с выступами, который оказывает давление на детали точечно. Готовый стык является прерывистой цепью сваренных участков, потому конструкция остается прочной.

Стыковая сварка

Метод подразумевает использование зажимных устройств (губок), причем их размеры определяют максимальную длину деталей, чем накладывают на процесс определенные ограничения. Изделия сжимаются своими торцевыми частями и зоной, соприкасающейся с губкой. Далее на опору направляется осевое давление, способствующее формированию прочного шва. Минусом методики можно назвать сложность извлечения устройства из губок.

Шовный способ

Эффективная методика холодной сварки, которая подразумевает создание сплошного шва с помощью специального оборудования.

Она представляет собой два ролика, между которыми закрепляются детали. Ролики располагаются параллельно друг друга. На их рабочей части закрепляются пуансоны или специальное кольцо. Эти элементы и формируют стыковочный шов. Разделить шовную сварку можно на два вида:

  • Односторонняя – вращается один ролик, другой прочно зафиксирован в одном положении.
  • Двухсторонняя – два ролика приводятся в движение с помощью электродвигателей.

Процесс скрепления металлических листов:

  1. Зона которая будет скрепляться, изначально обезжиривается и очищается от грязи с ржавчиной.
  2. Детали прижимаются между роликами.
  3. После запуска двигателя, они начинают вращаться и прогоняют детали через рабочую часть. Так получается ровный однородный шов.

Металлурги часто соединяют таким образом большие листы алюминия и других цветных металлов. Однако, нужно помнить о том, что сплошные швы снижают прочность общей детали. Из-за этого шовная методика была со временем модернизирована. В процессе развития технологий появился метод шовно-точечного соединения. Он подразумевает под собой установку на ролики пуансонов, которые делают шов разбитым на множество точек. Таким образом он получается гораздо прочнее.

Выбор клея для сварки

При покупке следует внимательно изучить инструкцию, рассмотрев такие параметры:

  • диапазон рабочих температур;
  • степень адгезии;
  • стойкость к агрессивным условиям.

В отношении алюминия удобнее пользоваться пластилинообразными средствами, особенно, если ремонт производится в экстренном режиме. Все составы являются двухкомпонентными, потому перед применением требуют смешивания составляющих со строгим соблюдением пропорций. Большинство сварок работают при температурах до +130 градусов, некоторые – до +260 градусов. При необходимости можно купить высокотемпературной средство, которое стоит намного дороже.

Пошаговый процесс холодной сварки

Для замешивания массы нельзя применять металлические инструменты, иначе она вступит в реакцию с ними раньше положенного времени. Перед работой нужно надеть средства индивидуальной защиты: перчатки, респиратор, поскольку до застывания испарения эпоксидной смолы вредны для здоровья.

Порядок работы с клеем для сварки таков:

  1. Обезжирить поверхность. В противном случае качество сцепления сильно пострадает. Для этого этапа лучше применять спирт, ацетон. Полностью высушить поверхность непосредственно перед склейкой.
  2. Подготовить материал. Из упаковки достать двухслойный брусочек, строго перпендикулярно отрезать кусок необходимого размера. Размять массу пальцами, предварительно смочив перчатки холодной водой. Использовать средство нужно в течение 15-20 минут в зависимости от марки.
  3. Приложить клей на место будущего стыка. После аккуратного накладывания деталей их надежно фиксируют на 40-50 минут, пока сварка не затвердеет. Лучше не трогать изделия 2-3 часа, а пользоваться ими только спустя сутки, хотя многие производители указывают меньший срок.
  4. Удалить лишнюю клеевую массу. Пока материал окончательно не застыл, с боков надо убрать вылезший клей при помощи наждачки, острого ножа.

Если необходимо заполнить глубокий дефект, на него последовательно наносят слои толщиной до 0,5 см, дожидаются полного высыхания. Затем повторяют процесс нужное количество раз.

Сварка силумина при помощи аргоном

Технология сварки силумина практически идентична процессу сваривания алюминия. Она получила название аргонодуговой, поскольку в ней объединились электрическая и газовая сварки. А именно, сварка осуществляется при помощи неплавящегося электрода в защитном аргоном облаке.

Как уже отмечалось, основная функция аргона заключается в защите сплава от процессов окисления. За счет того, что он тяжелее воздуха, он вытесняет воздушные массы из зоны сварки. Еще одна отличительная особенность аргона состоит в том, что он является инертным газом, а значит ни с воздухом, ни с другими газами он ни при каких обстоятельствах не будет вступать в реакцию.

Если вы новичок, и впервые производите сварку силумина в домашних условиях, следует быть очень внимательным и не перегреть газ.

В случае, когда осуществляется сварка на обратной полярности (электрод подсоединяется к плюсу, а заготовленная деталь к минусу), от атомов аргона будут отсоединяться электроды. Таким образом, происходит ионизация газа и он начнет пропускать через себя электроток. Поэтому очень важно довести аргон до нужной температуры, ведь если его перегреть, то своей силой он будет не соединять заготовки из силумина, а начнет их разрушать.

Обратите внимание! Сваривать можно исключительно литейный силумин, в котором находится 5-20% кремния. Если в составе много цинка. То варить такой материал нельзя.

Меры предосторожности

При работе с холодной сваркой обязательным является применение спецодежды, особенно, когда работа ведется в таких условиях:

  • в агрессивной среде, местах с повышенной температурой или экологически опасных зонах;
  • при регулярной смене условий;
  • с сосудами, находящимися под давлением.

Перчатки применяются даже при работе с небольшими кусочками клея для сварки. Он сильно раздражает кожу, потому при случайном попадании ее нужно хорошо промыть с мылом. При проникновении средства в глаза, несмотря на использование защитных очков, их промывают, после обращаются к врачу. В помещении нужно оборудовать вытяжку или обеспечить приток свежего воздуха иным способом, иначе можно получить отравление парами эпоксидной смолы и растворителей.

Aluminium Putty F (Devcon F), металлополимер наполненный алюминием

Aluminium Putty F (Devcon F) – двухкомпонентный состав, который насыщен алюминиевым порошком. Используется для соединения цветных металлов, а также пластика и бетона. С помощью этой холодной сварки можно создавать алюминиевые поверхности, которые устойчивы к воздействию коррозийных процессов.

Применение:

  1. Изначально поверхности склеиваемых деталей очищаются от краски, грязи и ржавчины. Остатки масла и жира нужно удалить с помощью растворителя. При работе с изделиями из алюминия, нужно зачищать его перед нанесением холодной сварки.
  2. Если работы проводятся при температуре менее +10° С, поверхности разогреваются до +40° С.
  3. На плоской дощечке смешивается основа и отвердитель с помощью шпателя. Им же готовый клей наносится на детали.
  4. Готовое изделие обрабатывать мокрой шкуркой.

При нанесении клея, нужно вдавливать его в пустоты и трещины материала. Холодную сварку этого типа можно использовать для починки емкостей, в которых будет содержаться бензин или масло.

Характеристики:

  • Начинать механические работы со склеенным изделием после отверждения не ранее чем через 4 часа. Через 16 часов при комнатной температуре достигает 75% полной готовности к использованию.
  • Устойчив к коррозийным процессам. Защищает металл.
  • При полной готовности сохраняет свои свойства при температуре до +120° С.
  • Наносить клей можно в течении 60 минут.

Компаунды Devcon F имеют химстойкость к воде, растворам солей, бензину, нефтепродуктам, маслу и пропиленгликолю. Не подходит для длительного контакта с концентрированными кислотами и органическими растворителями.

Преимущества и недостатки клеевой методики

Клей для холодной сварки – удобное приспособление, с ним можно быстро провести ремонт алюминиевых и иных изделий в быту. Если создать сплошной шов, он будет герметичным, влагостойким, практически не подверженным разрушению даже при вибрации (благодаря эластичности). Высокотемпературные составы позволяют склеенным деталям работать в самых тяжелых условиях.

Прочие достоинства метода клеевой сварки:

  • простота, отсутствие необходимости опыта работы;
  • дешевизна ремонта;
  • малое время до начала эксплуатации изделий;
  • отсутствие отходов и затрат на электроэнергию;
  • возможность создавать швы, заделывать ямки, сколы, царапины;
  • возможность сварить алюминий с любыми иными материалами.

Минусом можно назвать то, что сварку нельзя использовать на посуде и иных принадлежностях, контактирующих с пищей. Также детали, которые ежедневно подвергаются ударным нагрузкам, лучше сразу сварить аргоном – прочность клеевого шва быстро снизится. Дешевые составы обычно плохо переносят сильное давление, хотя есть средства, препятствующие даже усилию на разрыв.

Как произвести сварку силумина

Чтобы сварить силумин нужно прибегнуть к аргонодуговой технологии. Оборудование сконструировано из инвертора, газового баллона, осциллятора и горелки. В горелку монтируется неплавящийся вольфрамовый электрод, силуминовая проволока предстает в качестве присадки.

Перед тем как начать процесс сварки нужно:

  • взять наждачку, металлическую щетку или пескоструйную машину и зачистить кромки свариваемых силуминовых деталей,
  • затем нужно обработать их химическим составом. Для этого подойдут: бензин или любой растворитель.

Производители и популярные марки

Не стоит покупать составы для сварки неизвестных производителей, лучше клеить детали из алюминия надежными материалами. Выбор марок велик, хорошо себя зарекомендовали следующие:

  • Алмаз;
  • Mastix;
  • Zollex;
  • Abro;
  • Poxipol;
  • Loctite;
  • Weicon.

Для деталей авто из алюминия, дюралюминия можно воспользоваться сваркой Полирем-Алюминий (она подойдет и для бытовых нужд). Средство предназначено специально для алюминия и его сплавов, позволяет провести качественный ремонт без сварочного аппарата. Холодная сварка годится для радиаторов авто, кузова, панелей, головок цилиндров, трубопровода. В любом случае, качество шва будет зависеть от предварительной подготовки, соблюдения инструкции и надежности фиксации, чему следует уделить пристальное внимание.

Технические характеристики

Данная продукция имеет ряд характерных особенностей, которые определяются ее характеристиками. Конечно же, у каждой марки могут быть свои особенности, но в большинстве случаев характеристики имеют следующий вид:

Время первичного высыхания, минутыВремя полного высыхания, часыМинимальный температурный предел эксплуатации, градусы ЦельсияМаксимальный температурный предел эксплуатации, градусы ЦельсияОбъем упаковки, граммы
305-40+30057/115

Если применяется холодная сварка для алюминия высокотемпературная, то ее верхний предел может быть выше 700-100 градусов Цельсия. Некоторые дополнительные вещества, которые вносятся в состав, также могут изменять характеристики, но они зачастую являются узконаправленными и встречаются не так часто.

Выбор холодной сварки

Подбор правильной марки во многом определяет качество последующей операции по ремонту. Для этого нужно обращать внимания на определенные параметры, которые вам важны. Здесь нужно найти баланс между ценой и качеством, так как проверенные производители могут предлагать достаточно дорогостоящую продукцию. В первую очередь нужно обратить внимание на температурный режим, в котором может производиться эксплуатация материала. Он должен совпадать или превышать тот, в котором вы будете вести работу.

Холодная сварка – обзор

1 Механизмы и обработка

МА в высокоэнергетическом шаровом мельничном оборудовании достигается путем обработки исходной порошковой загрузки, обычно состоящей из смеси элементов, керамики (например, оксида иттрия для сплавов ODS) и лигатуры порошки, поставляемые в строго контролируемых диапазонах размеров. Порошки лигатуры используются для уменьшения окисления in situ высокореактивных частиц, таких как добавки алюминия или титановых сплавов во время обработки.Мелющая среда, обычно используемая в коммерческих системах, представляет собой загрузку шариков из закаленной стали, обычно диаметром 2 см. Массовое соотношение шара и порошка тщательно выбирается для каждой комбинации мельницы и загрузки порошка, но для коммерческих систем обычно составляет около 10: 1. Учитывая огромную площадь поверхности как исходных порошков, так и поверхностей свежих порошков, образовавшихся в процессе МА, контроль атмосферы измельчения и ее чистоты имеет важное значение, чтобы избежать чрезмерного загрязнения сплава. Основная защитная атмосфера, используемая при промышленном измельчении порошков МА, обычно представляет собой аргон или водород, и эта защита обычно распространяется как на обработку порошков до, так и после МА.Как чистота этой газовой атмосферы, так и целостность газовых уплотнений на измельчающем оборудовании имеют важное значение для контроля загрязнения, особенно при переработке химически активных веществ. Например, уровни оксидного загрязнения в Ni 3 Al могут удвоиться всего за несколько часов измельчения в нечистом аргоне. Однако иногда преднамеренное легирование среды измельчения использовалось для облегчения легирующих добавок во время обработки.

Центральным событием во время МА является столкновение шарика с порошком и шариком в измельчаемой среде во время обработки.Повторение этих высокоэнергетических столкновений в конечном итоге приводит к МА порошкового заряда. Тщательное перемешивание и возможная МА порошковой загрузки происходит в серии идентифицируемых, более или менее дискретных стадий во время обработки (например, Gilman and Benjamin 1983). В случае комбинаций исходных порошков вязко-пластичный или пластично-хрупкий, МА сначала осуществляется сплющиванием и деформационным упрочнением пластичных порошков и дроблением хрупких компонентов, за которым следует обширная холодная сварка между частицами порошка, образование пластинчатых структур и укрупнение частиц. гранулометрический состав порошка.Фрагменты хрупкого порошка улавливаются на стыках холодной сварки между развивающимися пластинами пластичных компонентов и, таким образом, продолжая измельчаться, становятся диспергированными. При непрерывном измельчении устанавливается баланс, который зависит от параметров обработки и состава компонентов, между дальнейшей холодной сваркой и разрушением частиц порошка, что приводит к относительно стабильным размерам частиц порошка.

Этот баланс между сваркой и разрушением сопровождается как дальнейшим уменьшением расстояния между ламелями, так и складыванием и смешиванием фрагментов ламелей с образованием микроструктур, типичных для МА (рис.1). Для сплавов ODS компоненты порошка измельчаются до такой степени, что исследование с помощью световой микроскопии показывает, что расстояние между ламелями уменьшилось до уровня ниже предела разрешения (~ 1 мкм). Для типичных уровней добавления оксида (например, ~ 0,5 мас.% Оксида иттрия) этот критерий обеспечивает среднее расстояние между частицами дисперсоидов <0,5 мкм (рис. 2). В других системах фрезерование может продолжаться до тех пор, пока не произойдет истинное легирование. Неожиданно, МА может быть достигнута и между по существу хрупкими составляющими порошка. Механизмы, с помощью которых это происходит, менее изучены, чем в системах, включающих по крайней мере один компонент из пластичного порошка.Тем не менее, гранулированные, а не межламеллярные смеси компонентов хрупкого порошка действительно развиваются, как правило, с более мелкими и твердыми фрагментами, постепенно включенными в очень мелкие частицы в менее твердые компоненты, например, оксид алюминия и оксид никеля. Более того, МА этих хрупких компонентов может прогрессировать до истинного легирования, как было продемонстрировано с помощью измерений параметров решетки Si – 28 ат.% Ge, постепенно размалываемого из составляющих порошков (Davis and Koch 1987).

Рис. 1. Полированный и протравленный металлографический разрез порошков сплава ODM 751 FeCrAl в состоянии полной МА, демонстрирующий складчатую пластинчатую структуру, типичную для материала, обработанного высокоэнергетической шаровой мельницей (любезно предоставлено Д.М. Джагер).

Рис. 2. Изображение, полученное с помощью просвечивающего электронного микроскопа, показывающее выравнивание мелкомасштабной дисперсии оксидных частиц в экструдированном сплаве ODS PM2000. Стрелка показывает направление экструзии (любезно предоставлено Y.L. Chen).

Фрезерование очень пластичных металлов, таких как алюминий и олово, необходимо тщательно контролировать, чтобы избежать полной агломерации пластичной фазы, а не баланса между холодной сваркой и разрушением, который приводит к МА. Обычно это достигается путем добавления точных количеств органических соединений, называемых агентами управления технологическим процессом (PCA), в среду измельчения.Обычно воски или растворители, эти соединения, которые мешают холодной сварке, постепенно разрушаются во время измельчения и включаются в конечные порошки МА (например, в алюминиевые сплавы) в виде мелкозернистых распределений карбидов или оксидов. Подобные ограничения на склонность к холодной сварке пластичных порошков могут быть достигнуты без использования PCA путем фрезерования при низких температурах, например, ниже -100 ° C для алюминия.

Технологическое оборудование, используемое для получения МА путем высокоэнергетического измельчения порошков в шаровой мельнице, появилось в горнодобывающей промышленности и традиционной порошковой металлургии.Ассортимент высокоэнергетического оборудования для шаровой мельницы делится примерно на две категории: небольшие высокоэнергетические лабораторные устройства и более крупные установки, способные измельчать коммерческие количества порошка. К первой категории относятся вибрационные мельницы SPEX и планетарные шаровые мельницы. Оба устройства способны быстро производить МА, но в количестве порошков не более нескольких десятков граммов. Мельницы SPEX вибрируют со скоростью до 1200 об / мин в трех ортогональных направлениях, достигая скорости шара, приближающейся к ~ 5 мс -1 .Планетарные мельницы содержат вращающуюся опорную плиту, на которой установлены вращающиеся в противоположных направлениях пузырьки меньшего радиуса, содержащие шар / пороховой заряд. Кинетическая энергия, передаваемая шаровому заряду в планетарной мельнице, зависит от опорной плиты, радиусов пузырьков и угловых скоростей. Шаровые мельницы Attritor или Szigvari, в зависимости от их размера, могут использоваться как для лабораторных, так и для коммерческих целей шаровой мельницы и включают вращающийся вертикальный вал с прикрепленными к нему горизонтальными крыльчатками, которые перемешивают контейнер, содержащий шар и пороховой заряд.Эти устройства могут обрабатывать партии порошка до нескольких килограммов и более за счет значительного дифференциального движения, создаваемого крыльчатками между шаром и пороховым зарядом. Шарики могут каскадом или падать, покидая стенку мельницы во время обработки на аттриторе, в зависимости от заряда шара и скорости рабочего колеса.

Самыми крупными коммерческими устройствами, применяемыми для МА, являются горизонтальные шаровые мельницы. Когда эти устройства превышают несколько метров в диаметре, они передают достаточную кинетическую энергию посредством ударов шара, чтобы вызвать МА, и могут обрабатывать более 1000 кг порошка за партию в более крупных единицах.Во время обработки в этих мельницах шарики либо каскадируются, либо падают в зависимости от скорости вращения (см. Рис. 3). Время, необходимое для достижения МА, приблизительно обратно пропорционально размеру используемого измельчающего оборудования. Следовательно, измельчение, выполнение которого на мельнице SPEX может занять несколько минут, может занять несколько часов в аттриторе или дней в горизонтальной шаровой мельнице. Однако все эти технологические маршруты имеют очень низкую эффективность преобразования энергии, так как только небольшая часть затраченной энергии измельчения влияет на микроструктурные изменения, вносящие вклад в процесс МА.

Рис. 3. Конфигурация горизонтальной шаровой мельницы, показывающая высвобождение порошка и шарового заряда (в угловом положении ϕ) из внутренней стенки мельницы, вращающейся с угловой скоростью ω (по Lu и др. , 1995).

Стоит отметить, что во время МА частицы порошка также покрывают (кондиционируют) среду шаровой мельницы, а это означает, что во избежание перекрестного загрязнения промышленных сплавов повторное использование шаровых зарядов ограничивается композиционно схожими партиями сырья. .

Холодная сварка наночастиц золота на слюдяной подложке: самонастройка и усиленная диффузия

В этой статье AuNP экспериментально получены с использованием зеленого синтеза 11,12,13,14,15,16 . При измерении размера AuNP на изображениях HR-TEM и AFM мы наблюдаем значительную разницу; AuNP на изображении AFM намного больше, чем на изображении HR-TEM. Подложка из слюды для сканирования AFM сделана из силиката и других. Хорошо известно, что существует сильная сила притяжения между атомами золота и силикатом 8 , что приводит к предположению, что что-то произошло в образце на слюдяной подложке для сканирования АСМ.

Сравнение изображений HR-TEM и AFM (SEM)

На рисунке 1 показано изображение HR-TEM AuNP, экспериментально синтезированных с использованием природного вещества в качестве восстановителя (зеленый синтез). Подробности зеленого синтеза можно найти в разделе о методах в конце статьи. Мы замечаем, что размер AuNP, измеренный с помощью изображений HR-TEM, варьируется от 10 до 20 нм, как показано на гистограмме в справочных документах 11,12,13,14,15,16 . Однако на изображениях HR-TEM не было AuNP размером более 30 нм.

Рис. 1

HR-TEM-изображения AuNP, синтезированных экспериментально.

Все AuNP на изображениях были синтезированы с HAuCl 4 · 3H 2 O в качестве иона-предшественника. Использованные восстановители: ( A ) Экстракт Polygala tenuifolia , ( B ) ванкомицин, ( C ) ресвератрол, ( D ) галлотаннин, ( E ) ампициллин и ( F ) хлорогеновая кислота. . Отметим, что не было AuNP с диаметром более 30 нм.Подробные экспериментальные процедуры для синтеза AuNP описаны в каждой ссылке. В условиях эксперимента были получены AuNP сферической формы, как показано на изображениях. После получения изображений HR-TEM, дискретные AuNP из изображений были случайным образом выбраны для измерения среднего диаметра (нм). Количество AuNP, выбранных для измерения диаметра, следующее. ( A ) 277, ( B ) 208, ( C ) 118, ( D ) 189, ( E ) 51 и ( F ) 111. Масштабные полосы представляют 20 нм, за исключением изображения. ( B ), масштабная линейка которого составляет 10 нм.

На рисунке 2 (B) показано изображение высоты АСМ хлорогеновой кислоты-AuNP на слюдяном субстрате, которое показывает диаметр 65 нм и высоту 15 нм. Для образца AFM их размеры становятся больше 50 нм, как показано на изображении FE-SEM на рис. 2 (A). По сравнению с AuNP на рис.2 (A) в том же масштабе, размер AuNP на изображении FE-SEM после сканирования AFM намного больше, чем размер (22,25 ± 4,78 нм) вставленного изображения HR-TEM до АСМ сканирование.

Рисунок 2

Изображения AuNP, полученные с различных устройств.

( A ) Изображение FE-SEM хлорогеновой кислоты-AuNP после сканирования АСМ. Средний размер, измеренный с помощью FE-SEM, составил 59,35 ± 4,67 нм. На вставке показано соответствующее изображение HR-TEM хлорогеновой кислоты-AuNP перед сканированием AFM со средним диаметром 22,25 ± 4,78 нм. ( B ) АСМ трехмерное изображение высоты AuNP хлорогеновой кислоты. Масштабные полосы представляют 1 мкм × 1 мкм (слева) и 500 нм × 500 нм (справа). ( C ) Изображение HR-TEM ресвератрол-AuNP, отделенных от слюдяного субстрата.Масштабная шкала представляет 20 нм. После сканирования АСМ ресвератрол-AuNP на слюдяной подложке AuNP отделяли от подложки и получали изображение HR-TEM. Подробная экспериментальная процедура отделения ресвератрол-AuNPs от слюдяного субстрата описана в экспериментальном разделе. Средний диаметр ресвератрол-AuNP в HR-TEM был определен как 14,60 ± 2,97 нм, как показано на фиг. 1 (C). Отщепленные AuNP от подложки из слюды находились в диапазоне 40 ~ 50 нм и были намного больше, чем на изображении HR-TEM.Размер одной наночастицы на изображении составил 49,22 нм.

В качестве другого примера, диаметр ресвератрол-AuNP перед сканированием AFM составляет (14,60 ± 2,97 нм), измеренный с помощью изображения HR-TEM, как показано в таблице 1. Изображение AFM дает диаметр (65,94 ± 2,26 нм) и высота (8,69 ± 2,08 нм), что аналогично диаметру измерения HR-TEM. После сканирования АСМ ресвератрол-AuNP отделяются от подложки из слюды. Для оторвавшихся частиц с помощью HR-TEM их диаметры, измеренные как (40 ~ 50 нм) на рис.2 (в), что указывает на то, что дополнительная холодная сварка произошла в образце АСМ на подложке из слюды после зеленого синтеза. Из-за сил притяжения со стороны слюдяной подложки, сферические AuNP растут только в направлении плоскости, параллельной слюдяной подложке. Чтобы исследовать явление холодной сварки на слюдяной подложке, выполняется несколько моделей МД, поскольку вышеупомянутые экспериментальные измерения обеспечивают только изображения после завершения холодной сварки.

Таблица 1 Сравнение размеров AuNP от различных устройств (единицы измерения: нм).

Серый столбец показывает измерение на сетках HR-TEM сразу после зеленого синтеза. После нанесения на слюдяную подложку последовательно выполняются измерения AFM и FE-SEM для получения результатов измерения в белых столбцах. Наконец, отделяя AuNP от подложки из слюды, снова проводят HR-TEM, чтобы получить повторное измерение в последней колонке.

МД-моделирование AuNP

МД-моделирование выполняется с помощью LAMMPS 17 с временными шагами 0.5 фс с использованием скоростного алгоритма Верле. 1 фс обычно используется для общего МД моделирования. В ссылках 18,19,20 для МД моделирования слюды предлагается 0,5 фс. Мы протестировали оба, чтобы убедиться, что 0,5 фс более стабильны. В каноническом ансамбле введен термостат Носа-Гувера для поддержания температуры на уровне 300 К. Константа демпфирования температуры для термостата Носа-Гувера определена как 0,01 на основании артикула 21 . Если константа слишком велика, каноническое распределение будет достигнуто после очень долгого времени моделирования.С другой стороны, слишком маленькие значения могут привести к высокочастотным колебаниям температуры. Во время МД-моделирования температура держится на уровне 300 K, поскольку в реальных экспериментах образец раствора AuNP сушат на слюде при комнатной температуре. Межатомный потенциал, используемый в моделировании, описывается методом встроенного атома (EAM) 22 , где потенциал описывается парным потенциалом и функцией электронной плотности. Методы МД и численная модель для слюдяной подложки построены на основе ссылок 23,24,25 .

Молекулы воды препятствуют взаимодействию между AuNP и слюдяным субстратом и помогают плавать AuNP, что приводит к легкому движению твердого тела AuNP на рис. 3 (a). Кроме того, неоднородные силы притяжения от поверхности AuNP могут привести к вращению твердого тела AuNP, как показано на рис. 3 (b).

Рисунок 3

МД Моделирование AuNP на слюдяной подложке (Приложение № 1).

( A ) Движение твердого тела AuNP под влиянием молекул воды, ( B ) Вращение твердого тела AuNP под действием неоднородных сил притяжения от поверхности AuNP.Молекулы воды препятствуют взаимодействиям между AuNP и слюдяным субстратом и помогают удерживать AuNP в воздухе. Неоднородные силы притяжения от поверхности AuNP могут привести к вращению твердого тела AuNP. Это заставляет AuNPs на слюдяном субстрате вращаться более энергично, по сравнению со случаем AuNPs без слюдяного субстрата.

Наночастицы могут свободно вращаться по сравнению с нанопроводами и нанопленками, и, таким образом, холодная сварка способствует корректировке структур решетки наночастиц.Известно, что максимальный размер холодной сварки ограничен 10 нм для нанопроволок 2 и 2 ~ 3 нм для нанопленок 8 , как сообщается в литературе. Однако в этой статье на слюдяной подложке обнаружены 25 нм холодно сваренные AuNP из-за характеристик самонастройки. Для проверки характеристик наночастиц на слюдяной подложке « самонастройка, » и «, усиленная диффузия, » были созданы два типа численных моделей для моделирования МД.

Число атомов в AuNP 2.040 нм и 3.672 нм составляет 762 и 1400 соответственно. Кроме того, количество атомов слюдяной подложки составляет 10 752, и требуются миллионы временных шагов. Если диаметр AuNP увеличивается до 10 ~ 20 нм, размер слюдяной подложки должен быть соответственно увеличен, и, таким образом, время вычислений чрезмерно увеличивается. Однако несколько количественных симуляций выполняются с меньшими моделями M и N, которые могут быть обработаны текущими вычислительными мощностями.

Самонастройка

Потенциальная энергия для атомов золота может быть разделена на потенциальный вклад EAM (Embedded Atom Method) для золота и потенциал LJ (Леннард-Джонса) для слюдяной подложки, U = U EAM + U LJ . Наблюдается, что потенциальная энергия в атомах золота около слюды больше, чем вдали от слюды, поскольку потенциал LJ зависит от межатомного расстояния.Потенциал EAM для наночастиц золота и потенциал LJ для системы слюдяных подложек доступны в литературе и коде LAMMPS. Однако параметры LJ между атомами разного типа для взаимодействий золото-слюда обычно недоступны. Основываясь на правиле смешивания Лоренца-Бертело, нам пришлось использовать среднее геометрическое для энергетической глубины и среднее арифметическое для диаметра столкновения. Таким образом, качественное сравнение численных результатов с экспериментальными имеет больший смысл, чем количественное сравнение.Две конфигурации AuNPs рассматриваются, как показано на рис. 4, первоначально параллельная модель (A) и первоначально повернутая модель (B).

Рисунок 4

Векторы нормали к поверхности.

( A ) Изначально параллельная модель, ( B ) Изначально повернутая на 30 градусов модель, ( C ) Вектор внешней нормали поверхности решетки.

Первоначально параллельная модель

Модели M и N имеют диаметр 2,040 нм и выровнены в соответствии со структурой решетки. Два вектора внешней нормали определены на рис.4 (С). Нормальные векторы построены с использованием усредненных данных о положении атомов в одной плоскости. Чтобы получить единичный вектор нормали n для поверхности решетки, необходимо определить уравнение для плоскости, окрашенной в красный цвет на рис. 4 (A, B). Используя метод регрессии наименьших квадратов, получаем уравнение, из которого определяется соответствующий вектор нормали. Внутреннее произведение векторов нормалей в AuNP можно использовать для измерения степени самонастройки. Значение 1 соответствует идеально параллельному расположению поверхностей решетки.Подробности определения вектора нормали обсуждаются в разделе методов.

Сравнивая потенциальную энергию моделей, модель M имеет более низкие значения, чем модель N, как показано на рис. 5 (A). Можно сделать вывод, что разность потенциальной энергии идет на холодную сварку. Обратите внимание, что модель M имеет меньшую потенциальную энергию независимо от диаметра AuNP и находится в более стабильном состоянии на слюдяной подложке.

Рисунок 5

Сравнение механической энергии на атом (изначально параллельно).

( A ) История потенциальной энергии модели диаметром 2,04 нм; ( B ) История потенциальной энергии модели диаметром 3,67 нм; ( C ) История кинетической энергии модели диаметром 2,04 нм; ( D ) История кинетической энергии модели диаметром 3,67 нм.

Сравнивая кинетическую энергию одного атома золота, модель M имеет более высокие значения, чем модель N, как показано на рис. 5 (C). По мере увеличения диаметра AuNP мы можем наблюдать тенденцию к уменьшению кинетической энергии, а также ее различие на рис.5 (D). Требуемая энергия на атом для холодной сварки известна как 1 эВ. На рис. 5 (C) после контакта двух наночастиц многие точки больше 1 эВ наблюдаются в модели M, но мало точек в модели N. Однако по мере увеличения диаметра наночастиц точки больше 1 эВ редко встречаются в модели M и отсутствуют в модели N после контакта двух наночастиц, как показано на рис. 5 (D). Таким образом, холодная сварка могла происходить только на контактных поверхностях наночастиц. Во время АСМ сканирования в реальном эксперименте холодная сварка происходит в наночастицах диаметром 25 нм.В этом моделировании мы провели качественное сравнение численных результатов с экспериментальными за счет использования усредненных LJ-параметров между атомами разного сорта для взаимодействий золото-слюда. Обратите внимание, что разница кинетической энергии в моделях M и N уменьшается по мере увеличения диаметра AuNP, что подразумевает уменьшение доступной кинетической энергии для преодоления энергетического барьера для холодной сварки. Следовательно, также можно сделать вывод, что холодная сварка практически не происходит, если диаметр AuNP больше заданного.

Модель с первоначальным поворотом на 30 градусов

Для дальнейшего исследования характеристик самонастройки при холодной сварке AuNP на слюдяной подложке, мы рассмотрим случай изначально повернутых на 30 градусов AuNP, как показано на рис. 4 (B). Области в рамке представляют плоскости в одном и том же нормальном направлении, а их вращение в плоскости указывает на вращение нормальных поверхностей AuNP. В процессе холодной сварки, как показано на рис. 6 (A), AuNP на слюдяной подложке вращаются, чтобы выровнять решетчатую структуру контактных поверхностей после 500 пс (проверьте совмещение двух красных квадратов).Это связано с тенденцией поддерживать регулярную структуру решетки вокруг области сварки, если разрешено вращение AuNP. Однако, если слюдяная подложка отсутствует, как показано на рис. 6 (B), AuNP не вращаются, и регулярная структура решетки исчезает по мере того, как холодная сварка прогрессирует.

Рисунок 6

Сравнение самонастройки (Приложение №2).

( A ) AuNP на слюдяной подложке, ( B ) AuNP без слюдяной подложки. AuNP на слюдяной подложке вращаются для выравнивания структур решетки после завершения холодной сварки.С другой стороны, если подложка из слюды отсутствует, AuNP не вращаются, и регулярная структура решетки исчезает по мере прогрессирования холодной сварки.

В каждой из моделей M и N мы построили по две модели с диаметрами 2,040 и 3,672 нм. Внутреннее произведение двух векторов нормали в каждой из четырех моделей составляет 0,866, поскольку векторы нормали изначально повернуты на 30 градусов. На рисунке 7 показана внутренняя история продукта двух моделей M, которая показана черным цветом для модели 2,040 нм и синим цветом для модели 3.Модель 672 нм. Рисунок 7 включает внутреннюю историю продукта двух моделей N, которая показана красным для модели 2,040 нм и зеленым цветом для модели 3,672 нм.

Рисунок 7

История внутреннего произведения нормальных векторов.

Внутренняя история продукта двух моделей M показана черным цветом для модели 2,040 нм и синим цветом для модели 3,672 нм. Кроме того, внутренняя история продукта двух моделей N показана красным цветом для модели 2,040 нм и зеленым цветом для модели 3,672 нм. Для случая 2.Модель M 040 нм (черный) после контакта AuNPs, происходит несколько больших поворотов, таких как A, чтобы выровнять ориентацию структур решетки, пока AuNPs не достигнут области B. В случае модели M 3,672 нм (синий) AuNP постепенно поворачиваются, чтобы выровнять ориентацию структур решетки, пока AuNP не достигнет области C.

Внутренние продукты двух моделей M (черная и синяя) быстро восстанавливаются до 1,0, тогда как у двух моделей N (красной и зеленой) сохраняются исходные значения внутренних продуктов.В случае модели M 2,040 нм (черный) после контакта AuNPs происходит несколько больших вращений, таких как A, для выравнивания ориентации структур решетки до тех пор, пока AuNPs не достигнут области B. После этого холодную сварку можно было продолжить, поскольку амплитуда внутреннего продукта подразумевает относительное вращение двух наночастиц. В случае модели M 3,672 нм (синий) AuNP постепенно поворачиваются, чтобы выровнять ориентацию структур решетки, пока AuNP не достигнет области C. После этого относительное вращение двух наночастиц кажется незначительным, что означает, что дальнейшая холодная сварка невозможна.С другой стороны, холодная сварка может продолжаться без значительного изменения начального угла.

Сравнивая потенциальную энергию моделей, модель M имеет историю меньших значений, чем модель N, как показано на рис. 8 (A).

Сравнивая кинетическую энергию одного атома золота, модель M имеет более высокие значения, чем модель N, как показано на рис. 8 (C). После контакта двух AuNP в модели M наблюдается много точек больше 1 эВ, но мало точек в модели N.По мере увеличения диаметра AuNP мы можем наблюдать тенденцию к уменьшению кинетической энергии, а также ее разницу на рис. 8 (D). Точки, превышающие 1 эВ, редко встречаются в модели M и отсутствуют в модели N после контакта двух AuNP.

Рисунок 8

Сравнение механической энергии на атом (первоначально повернутый на 30 градусов).

( A ) История потенциальной энергии модели 2,040 нм, ( B ) История потенциальной энергии модели 3,672 нм, ( C ) История кинетической энергии 2.Модель 040 нм, ( D ) История кинетической энергии модели 3,672 нм.

Расширенная диффузия

Для анализа результатов механизма холодной сварки использовались следующие методы: 10 ,

Метод Экланда-Джонса 26 , по сути, является эвристическим алгоритмом, который сравнивает угловое распределение идеального кристалла. решетки, а также решетки с небольшими искажениями, сгенерированные в ходе моделирования, приписывающие либо ГЦК (гранецентрированную кубическую), либо ОЦК (объемно-центрированную кубическую), ГПУ (гексагональную плотноупакованную) или икосаэдрическую структуры.Параметр центросимметрии 27 – широко используемый метод для идентификации дефектов в кристаллах, таких как дефекты упаковки в ГЦК-структурах. Анализ центросимметрии еще раз показывает, что холодная сварка происходила с низким напряжением, и в конце процесса была получена кристаллическая структура с очень небольшим количеством дефектов, что позволило восстановить большинство исходных характеристик чистых AuNP.

Мы показали, что сварные AuNP сохраняют свою кристаллическую ГЦК структуру даже в зоне сварки, что согласуется с известными экспериментальными данными 2 о том, что несколько дефектов, внесенных в процесс, восстанавливаются для восстановления ГЦК структуры.Чтобы измерить регулярность структур решетки, рассмотрим историю параметра Экланда-Джонса во время холодной сварки. В модели M на рис. 9 (A) следующие цвета присвоены различным структурам решетки; синий для неизвестного, голубой для bcc, зеленый для fcc, желтый для hcp и красный для ico. На рисунке 9 (A) показано, что структуры ОЦК и ГПУ расширяются от поверхности сварки по мере выполнения холодной сварки. После некоторого периода релаксации ГЦК структура окончательно восстанавливается. С другой стороны, в модели N на рис.9 (B), небольшая часть ГПУ-структур образуется вокруг сварочной поверхности по мере выполнения холодной сварки. После некоторого периода релаксации ГЦК структура быстро восстанавливается. Область диффузии атомов очень ограничена, что может привести к неполной сварке.

Рисунок 9

Сравнение различных показателей качества холодной сварки.

( A ) Контур параметра Акланда-Джонса в модели M, ( B ) Контур параметра Акланда-Джонса в модели N, ( C ) Контур параметра центросимметрии в модели M, ( D ) Centro -контура параметра симметрии в N модели.Структуры ОЦК и ГПУ ( A ) и дефекты упаковки ( C ) расширяются от поверхности сварки по мере выполнения холодной сварки в модели M. После некоторого периода релаксации ГЦК структура окончательно восстанавливается. С другой стороны, небольшая часть ГПУ-структур ( B ) и дефекты упаковки ( D ) вблизи сварочной поверхности образуются вокруг сварочной поверхности по мере того, как холодная сварка прогрессирует в модели N. После некоторого периода релаксации ГЦК структура быстро восстанавливается.Область диффузии атомов очень ограничена, что может привести к неполной сварке.

Чтобы измерить качество решетчатых структур, рассмотрите историю параметра центросимметрии во время холодной сварки. Рисунок 9 (C) показывает, что дефекты упаковки расширяются от поверхности сварки по мере выполнения холодной сварки. После некоторого периода релаксации, наконец, восстанавливается регулярная ГЦК-структура. С другой стороны, в модели N на рис. 9 (D) дефекты упаковки возникают вблизи сварочной поверхности в процессе сварки.После периода релаксации обычная ГЦК структура быстро восстанавливается. Область диффузии атомов очень ограничена, что может привести к неполной сварке.

Моделирование процесса холодной сварки

Изображения HR-TEM AuNP на рис. 10 (A, C) получены из одного образца HR-TEM AuNP, отделившихся от подложки из слюды после сканирования AFM, другими словами, после завершения холодной сварки. Для моделирования процесса холодной сварки численная модель на рис. 10 (A) состоит из 3 AuNP на слюдяной подложке, состоящей из 16 × 8 × 1 элементарных ячеек.Мы можем заметить, что линейная сторона треугольника не образуется из кластеров атомов золота во время зеленого синтеза, но может быть построена в процессе холодной сварки.

Рис. 10

МД снимки AuNP на слюдяной подложке (Приложение № 3, № 4, № 5).

( A ) Вид сверху 3 AuNP на слюдяной подложке, ( B ) Вид сбоку 3 AuNP на слюдяной подложке, ( C ) Вид сверху 7 AuNP на слюдяной подложке. Последние картинки на рис.10 (A, C) показаны изображения HR-TEM ресвератрол-AuNP, отделившихся от образца на подложке из слюды после сканирования AFM. AuNPs растут в плоскости, параллельной подложке из слюды, сохраняя регулярную структуру решетки, как показано на рис. 10 (B). В результате холодной сварки наблюдается хорошее сохранение регулярности структуры решетки.

После моделирования методом МД форма AuNP показывает, что высота AuNP, сваренных методом холодной сварки, составляет 1,9 нм, что аналогично диаметру (1.8 нм) исходных AuNP, как показано на рис. 10 (B). AuNPs растут в плоскости, параллельной подложке из слюды, сохраняя регулярную структуру решетки. В результате холодной сварки наблюдается хорошее сохранение регулярности структуры решетки.

В случае 7 наночастиц на рис. 10 (C) гексагональные наночастицы не образуются из кластеризации атомов золота во время зеленого синтеза, но могут быть созданы в процессе холодной сварки. В процессе холодной сварки AuNP проходят итерационный процесс кластеризации и миграции до тех пор, пока они не будут достаточно стабилизированы, как показано на истории потенциальной энергии в AuNP на рисунках 5 и 7.

Burnin ‘Up: советы по сварке в холодную погоду для зимних проектов

Когда температура падает, все меняется, и сварка не исключение. Для тех, кто еще изучает этот ценный навык, влияние холода на сварку может стать новым опытом. А если вы не замечаете препятствий, это может очень быстро стать очень неприятным. Необходимо учитывать определенные факторы, чтобы предотвратить деформацию и обеспечить надлежащую сварку.

В идеальном мире у вас будет гараж с климат-контролем, который не заставит вас беспокоиться об условных угрозах.Но, к сожалению, мир несовершенен, и временами вы будете вынуждены работать в плохих условиях.

Следуя теме практических советов этой недели, например, как определить ведра для ржавчины и изготовить оборудование, вот несколько ключевых советов по сварке в холодную погоду, которые помогут вам в выполнении всех ваших зимних проектов.

Проблема с холодной погодой и сварными швами

Прежде чем приступить к сварке в холодную погоду, мы должны понять, что может усложнить ее. Сварка осуществляется путем воздействия на сталь экстремальных температур.Даже в правильных условиях связанные с этим температуры позволяют очень легко деформировать металл. А когда этот металл холодный, вероятность деформации увеличивается.

Сварные швы также более подвержены растрескиванию в этих условиях из-за плохого проплавления. Это может быть очень неприятно, не говоря уже о том, что это отнимает много времени, если вы вообще не знаете, как этого избежать. Что ж, не волнуйтесь, потому что вот несколько проверенных и проверенных советов, которые помогут вам работать умнее, а не усерднее.

Посмотрите видео ниже, чтобы узнать, когда и почему может потребоваться предварительный нагрев некоторых типов стали перед сваркой.

Введение нагрева перед сваркой

Что можно сделать, чтобы снизить вероятность деформации холодного металла? Подожгите. С помощью горелки осторожно увеличьте температуру стали. Это обеспечит проникновение во время пасов. Это также помогает замедлить скорость охлаждения металла, делая его более пластичным и устойчивым к растрескиванию.

Вы не должны повышать температуру металла слишком высоко, так как это только поможет ему деформироваться.Попасть в золотую середину может быть немного сложно. Помните, что вы не пытаетесь раскалить металл докрасна. Вы просто хотите сделать его более восприимчивым к сварным швам.

В идеале вы хотите поднять температуру как минимум до 50 градусов по Фаренгейту, но может быть и больше, в зависимости от толщины стали. Тепловой карандаш для индикации температуры, такой как те, что предлагает Tempil®, может помочь убедиться, что вы находитесь в правильном диапазоне.

Лучшие проекты для сварки в холодную погоду

Даже если вы нагреете металл до нужной температуры и успешно проведете хороший сварной шов, это не всегда означает, что работа сделана.Кузовные работы состоят из множества этапов, которые требуют оптимальной среды для нанесения шпатлевки и правильного высыхания краски. Поэтому, вероятно, лучше избегать подобных проектов зимой.

Если это невозможно, то вам нужна работа, не требующая большого количества дополнительных шагов, когда температура играет важную роль. Так что, может быть, прибереги патч-панели на весну. Но если у вас отваливается выхлоп или вы откладываете этот структурный ремонт, приступайте к работе.

Еще несколько вещей, на которые следует обратить внимание

При сварке в холодную погоду подход является ключевым, как и забота о материалах.Если ваше рабочее место не отапливается, подумайте об использовании изолированного брезента или внешнего источника тепла, чтобы поддерживать температуру окружающей среды как можно более постоянной.

Один сварщик, который участвовал в обсуждении этой темы на форуме, поделился своим мнением:

«Основная проблема неотапливаемых сараев и мастерских проявляется, когда погода становится теплой после похолодания. Все крупные металлические изделия остынут и, вероятно, будут ниже точки росы влаги в более теплом воздухе.В результате на более крупных предметах образуется конденсат по мере того, как более теплый воздух попадает внутрь помещения. Один из способов смягчить это – посмотреть прогноз погоды и включить сухой обогрев в мастерской до наступления более теплой погоды ».

Аналогичным образом, сверьтесь с руководствами по эксплуатации своих сварочных инструментов, чтобы убедиться, что они выдержат эту зиму. Производитель может дать несколько советов по увеличению прочности или предотвращению накопления влаги.

Хотя на видео выше изображена небольшая кузнечная мастерская в Колорадо, ведущий предлагает несколько здравых советов по сохранению тепла и безопасности на рабочем месте!

Еще одна вещь, которую следует учитывать, – это ваше собственное тело, – отмечает Дэн Гайер, менеджер по категориям Keystone Automotive Operations.«Сварка требует мобильности и сноровки. Холодные руки и мышцы могут сделать день долгим, а суставы будут болеть. Кроме того, укладка на холодный цементный пол в гараже истощает вашу энергию ».

Сотрудник программы

, выпускник Keystone, Джон Потучек, соглашается и предлагает добавить:

«Одна вещь, о которой следует помнить, если при сварке в гараже и использовании обогревателя для обогрева гаража, в зависимости от типа обогревателя, вы хотите выключить его перед сваркой. Например, если у вас есть обогреватель торпеды, он перемещает много воздуха. Худшее – ну, второе худшее, если не считать грязного материала – это сварка при любом ветре.Это сдует защитный газ со сварного шва и сделает сварной шов неаккуратным. Это не такая большая проблема для сварки MIG, как для сварки TIG, но в любом случае это проблема.

Кроме того, вам нужно следить, если ваш металл очень холодный (скажем, 25 градусов), и вы слишком быстро его нагреваете и сразу же пытаетесь сварить. Когда вы нагревали этот толстый холодный металл, вы создавали конденсат. Сварные швы не любят влагу ».

Каков ваш подход к сварке в холодную погоду?

В идеале у вас должен быть гараж-мечта с климат-контролем, в котором все инструменты находятся в идеальном рабочем состоянии.Увы, большинству из нас не так повезло. Некоторые люди скажут вам, что если условия не идеальны, вы не должны вмешиваться. Мы говорим: жизнь несправедлива, и иногда приходится с ней справляться.

По правде говоря, не имеет значения, насколько красивым является рабочее место, если вы принимаете правильные меры. И даже если вы ошибетесь и вам придется начинать проект заново, это еще один шанс еще больше овладеть навыком.

У каждого свой подход. Каковы ваши советы по сварке в холодную погоду? Какими хитростями вы бы поделились с новичком?

Этот пост был обновлен на по сравнению с его исходной версией, опубликованной 8 ноября 2018 года.

Нравится:

Нравится Загрузка …

Связанные

Что такое холодная сварка? (Преимущества, недостатки и применения)

Прежде чем холодная сварка сможет соединить два или более металлов вместе, необходимо удалить оксидные слои с поверхностей материалов. Большинство металлов (при нормальных условиях) имеют оксидный слой на поверхности, который образует барьер, препятствующий связыванию атомов металла. После удаления этого оксидного слоя металлы можно спрессовать вместе под высоким давлением, чтобы создать металлургические связи.Оксидный слой можно удалить с помощью металлической щетки, обезжиривания или других химических или механических методов.

После очистки металлы можно сжимать, но материалы должны быть пластичными и не должны подвергаться сильному упрочнению. В результате для холодной сварки часто предпочтительны более мягкие металлы.

Процесс холодной сварки вызывал механические проблемы на ранних спутниках и других космических аппаратах, поскольку этот процесс не исключает относительного движения между соединяемыми поверхностями.Это означает, что адгезия, истирание и заедание могут накладываться друг на друга, поэтому, например, холодная сварка и истирание могут происходить одновременно. Однако, с другой стороны, возможность плавить металлы вместе без жидкой или расплавленной фазы позволяет астронавтам быстро и эффективно работать вне космического корабля для выполнения любых необходимых ремонтных работ.

Холодная сварка также может выполняться в наномасштабе, с демонстрациями, показывающими, что монокристаллические ультратонкие золотые нанопроволоки (с диаметром менее 10 нм) могут быть соединены за секунды посредством механического контакта.Результаты оказались почти идеальными, с той же ориентацией кристаллов, электропроводностью и прочностью, что и остальная нанопроволока. Такое высокое качество сварки обеспечивается наноразмерными размерами образца, механической поверхностной диффузией и ориентированными механизмами крепления. Холодная сварка в наномасштабе была продемонстрирована для соединения золота с серебром и серебра с серебром.

Объясняя, как работает холодная сварка, Ричард Фейнман отметил в своих «Лекциях Фейнмана»: «Причина такого неожиданного поведения в том, что, когда все соприкасающиеся атомы имеют одинаковый вид, атомы не могут« знать » что они в разных кусках меди.Когда есть другие атомы, в оксидах и смазках и более сложных тонких поверхностных слоях загрязняющих веществ между ними, атомы «знают», когда они не находятся в одной и той же части ».

Холодная сварка впервые была признана феноменом в 1940-х годах, но история методов холодной сварки уходит намного глубже.

Археологи нашли инструменты бронзового века, которые были соединены с помощью холодной сварки, но первый научный эксперимент по этому методу не проводился до 1724 года, когда преподобный Джон Теофил Дезагульерс использовал два свинцовых шарика, чтобы проверить концепцию, удерживая их вместе и скручивая, Он заметил, что они держатся вместе.Дальнейшие испытания показали, что образовавшаяся связка имеет ту же прочность, что и основной металл.

Холодная сварка имеет ряд преимуществ по сравнению с другими сварочными процедурами, в том числе:

1. Нет ЗТВ

Холодная сварка не создает зоны термического влияния (HAZ), что значительно снижает риск негативных химических или механических изменений соединяемых основных материалов.

2. Прочные, чистые сварные швы

Холодная сварка позволяет получить чистые сварные швы, прочность которых по крайней мере равна прочности самого слабого из основных материалов.Этот процесс сварки не приводит к образованию хрупких интерметаллических соединений на стыках.

3. Соединение разнородных материалов

Разнородные металлы, которые трудно соединить с помощью других методов, например алюминий и медь, можно соединить с помощью холодной сварки.

4. Сварка алюминия

Холодная сварка показывает свои преимущества не только при соединении меди с алюминием, но и для сварки алюминия серий 2ххх и 7ххх, что невозможно при использовании других методов сварки металлов.

Несмотря на то, что холодная сварка дает некоторые заметные преимущества, она также имеет ограничения. Эти недостатки в большинстве случаев затрудняют рассмотрение холодной сварки в качестве основного метода соединения. Однако, как показано выше, в некоторых случаях холодная сварка все же может быть полезной. К проблемам и проблемам холодной сварки относятся:

1. Чистота

Основная проблема холодной сварки заключается в том, что материалы должны быть чистыми и не содержать оксидов для получения удовлетворительного сварного шва.Это может быть трудно достичь, а также дорого и сложно управлять в условиях крупносерийного производства.

2. Типы материалов

Существуют ограничения на типы материалов, которые можно сваривать холодной сваркой, поскольку металлы должны быть пластичными и не должны подвергаться тяжелым процессам закалки. Кроме того, металлы, содержащие углерод в любой форме, не могут быть соединены с помощью этой техники.

3. Форма материала

Неровности на поверхности металлов могут затруднить их соединение, даже если были приняты все другие меры.Холодная сварка требует, чтобы материалы имели правильную форму и не имели неровностей поверхности. Самая прочная холодная сварка достигается с плоскими ровными поверхностями.

Несмотря на все проблемы, которые ставит технология, холодная сварка находит применение в различных отраслях промышленности.

Чаще всего этот метод применяется для сварки проволокой, где тепловая энергия может быть проблемой. Холодная сварка может обеспечить быстрое и прочное соединение проволоки и обычно используется с алюминием, латунью 70/30, медью, золотом, никелем, серебром, сплавами серебра и цинком.

Холодная сварка также хороша для соединения разнородных металлов, которые иначе сложно сваривать. Этот метод, особенно полезный для соединения меди и алюминия вместе, также позволяет соединять вместе сварку алюминия серий 2ххх и 7ххх.

Холодная сварка, используемая в таких отраслях, как авиакосмическая и автомобильная, часто применяется для стыковых соединений или соединений внахлест.

Какие металлы можно сваривать холодным способом?

Металл для холодной сварки должен быть пластичным, но этот метод обычно используется для соединения алюминия (включая несвариваемые марки, такие как серия 7XXX), латунных сплавов 70/30, меди, цинка, серебра и серебряных сплавов, никеля и золота, особенно как провода.

Холодная сварка также может использоваться для соединения металлов, таких как нержавеющая сталь, под большим давлением.

Металлы, содержащие углерод, нельзя сваривать холодным способом.

Насколько сильна холодная сварка?

Холодная сварка может обеспечить такое же прочное соединение, как и сами основные материалы, при правильных условиях. Как упоминалось выше, это означает, что металлы должны быть пластичными, очищенными от оксидов на поверхности и в идеале иметь правильную форму. Материалы не могут быть сильно закаленными или содержать углерод.

Несмотря на эти факторы, при холодной сварке можно получить одни из самых прочных сварных швов.

Холодная сварка постоянна?

Холодная сварка позволяет создавать прочные сварные швы при правильных условиях. Если все сделано правильно, то соединение может быть отменено только при повреждении заготовок. Однако, если холодная сварка не выполняется в правильных условиях, соединения могут выйти из строя.

Холодная сварка – это уникальная технология склеивания, позволяющая создавать очень прочные соединения без использования тепла.Он использовался с бронзового века, но по-настоящему его начали понимать с научной точки зрения только в 16 веке.

Несмотря на то, что с холодной сваркой возникают проблемы, при правильном выполнении она может склеивать разнородные материалы и даже некоторые «несвариваемые» сорта алюминия. Холодная сварка, обычно используемая для соединения проволоки, также находит применение в таких отраслях, как авиакосмическая и автомобильная.

Связанные часто задаваемые вопросы (FAQ)

экспериментальных и имитационных исследований процесса запайки тепловых труб холодной сваркой | Китайский журнал машиностроения

Результаты ортогональных экспериментов

Различные параметры, такие как зазор уплотнения (s g ), длина уплотнения (s l ), диаметр уплотнения (s d ) и скорость уплотнения (s ). v ), исследуются, чтобы наблюдать их влияние на прочность соединения в CWSP.На рис. 7 представлены медные трубки до и после процесса герметизации. На рис. 7 (a) показаны медные трубки с разным диаметром уплотнения, а на рис. 7 (b) показаны герметизированные медные трубки с разной длиной уплотнения.

Фиг.7

Медные трубы с разными параметрами уплотнения

В таблице 4 представлены ортогональные экспериментальные факторы и уровни, в которых комбинация A 1 Б 1 К 1 D 1 означает, что образец имеет 0.Уплотняющий зазор 5 мм, длина уплотнения 6 мм, диаметр уплотнения 3,8 мм и скорость уплотнения 50 мм / с. В таблице 5 представлена ​​ортогональная схема эксперимента и соответствующие результаты. Значения давления насыщенного пара получены на основе зависимости, представленной на рис. 5, и соответствующих параметров k 1j , к 2j , к 3j для каждого фактора по трем уровням, а также диапазоны R образцов рассчитываются для анализа их влияния на прочность склеивания.Рис. 8 иллюстрирует взаимосвязь между четырьмя факторами и давлением насыщенного пара, которое является показателем прочности сцепления. Согласно ранжированию диапазонов выборки наиболее критическим фактором является зазор уплотнения, за которым следуют длина уплотнения, диаметр уплотнения и скорость уплотнения.

Таблица 4 Ортогональные экспериментальные факторы и уровни Таблица 5 Ортогональная схема эксперимента и результаты Рис.8

График зависимости между коэффициентами уплотнения и давлением насыщенного пара

Анализ склеивающего интерфейса

Морфология и металлографический анализ склеивающего интерфейса

Наблюдаются СЭМ-изображения склеивающего интерфейса и исходных внутренних поверхностей, как показано на рис.9. Рис. 9 (b) показывает, что верхняя область границы раздела склеивания демонстрирует относительно небольшие неровности на поверхности, в то время как на фиг. 9 (d) и (e) показывают, что исходные внутренние поверхности являются довольно гладкими из-за небольшой пластической деформации. Однако, как показано на Фиг.9 (c), поверхность соединения в центральной области является шероховатой, что указывает на то, что граница раздела испытывает сильное давление во время процесса соединения. Первичный металл может быть выдавлен перед прижатием к противоположной поверхности, и поверхность будет иметь неправильную морфологию.Это открытие согласуется с ранее проиллюстрированным механизмом склеивания.

Рис. 9

СЭМ-изображения границы раздела склеивания и исходных внутренних поверхностей

Фиг. 10 и 11 показаны металлографические фигуры Образца 1 в продольном и поперечном сечениях границы раздела соединений, соответственно. Образец 1 подвергается наибольшей пластической деформации при наименьшем уплотнительном зазоре и диаметре. Рис. 10 (c) показывает, что несжатая область имеет регулярное распределение зерен.Однако рис. 10 (b) показывает, что распределение зерен явно изменяется в переходной области, а рис. 10 (d) показывает, что границу в области соединения трудно наблюдать. На рис. 11 видно, что зерно мелкое и неравномерное распределение. Толщина стенки у выпуклой стороны матрицы меньше, что свидетельствует о более острой пластической деформации. На рис. 12 показаны металлографические рисунки образцов 4 и 9 в положениях 1 и 2, отмеченных на рис. 11 (а). Образцы 4 и 9 имеют большие зазоры уплотнения и четкие граничные линии.Они имеют более крупные зерна и более регулярное распределение, чем Образец 1.

Рис. 10

Металлографические рисунки образца 1 на продольном сечении границы раздела склеивания

Рис. 11

Металлографические рисунки образца 1 в поперечном сечении границы соединения

Рис.12

Металлографические рисунки в поперечном сечении границы раздела склеивания: (а) – (б) образец 4 и (в) – (г) образец 9

Твердость стыка соединения

Рис.10 (а) и 11 (а) показывают несколько позиций тестирования, выбранных для анализа твердости области соединения. Образцы 2, 4 и 9 имеют одинаковые уплотнительные диаметры, но разные уплотнительные зазоры. Длина уплотнения не имеет отношения к твердости в CWSP. Таким образом, влияние уплотнительного зазора на твердость определяется путем сравнения трех образцов.

На рис. 13 показаны графики твердости в различных положениях для испытаний в продольном сечении. Очевидно, что твердость возрастает при малых зазорах уплотнения, а твердость несколько снижается в направлении от выпуклой матрицы к вогнутой матрице на стыке соединения.На рис. 14 показана твердость позиций для испытаний в поперечном сечении. Очевидно, что твердость увеличивается при малых зазорах уплотнения, а твердость в испытательных положениях у Образца 2 намного больше, чем у образцов 4 и 9 в поперечном сечении. Средняя часть области соединения также демонстрирует повышенную твердость, чем в угловых областях.

Фиг.13

Твердость контрольных позиций на продольном сечении

Рис.14

Твердость контрольных позиций в поперечном сечении

Анализ моделирования методом конечных элементов

Поток металла

Рис.15 показано смещение медной трубки в направлении Y в продольном и поперечном сечениях с зазором уплотнения 0,5 мм и скоростью уплотнения 5 мм / с. В окружном направлении металл в средней области имеет большее смещение в Y , чем в углах, где металл встречает большее сопротивление потоку. В направлении толщины центральная часть приобретает большее смещение, чем с обеих сторон, потому что трение между трубкой и штампами на контактных поверхностях препятствует течению металла.На рис. 16 показан более заметный эффект смещения в направлении Z , который предполагает, что металл в основном сжимается, чтобы течь к углам. Рис. 17 представляет собой схему течения металла.

Рис. 15

Смещение медной трубки в направлении Y в продольном и поперечном сечениях при с г = 0,5 мм и с v = 5 мм / с

Фиг.16

Смещение медной трубки в направлении Z, при с г = 0,5 мм и с v = 5 мм / с

Рис.17

Принципиальная схема потока металла

Анализ деформации и напряжения

Рис. 18 и 19 показаны распределения полной эквивалентной пластической деформации в различных зазорах уплотнения при скорости уплотнения 20 мм / с и при различных скоростях уплотнения при зазоре уплотнения 0.5 мм соответственно. Увеличение скорости уплотнения при одном и том же зазоре уплотнения приводит к небольшому изменению пластической деформации, тогда как увеличение зазора уплотнения при той же скорости уплотнения приводит к значительному снижению пластической деформации. Этот результат указывает на то, что зазор уплотнения является более важным фактором в общей эквивалентной пластической деформации, чем скорость уплотнения. На рис. 18 (а) показаны выбранные узлы 8 075, 8 781, 3 743, 3 690, 12 052 и 8 148 в области соединения, которые используются для анализа общей эквивалентной пластической деформации.На рис. 20 показан соответствующий график для выбранных узлов. Пластическая деформация постепенно уменьшается в направлении от выпуклой матрицы к вогнутой матрице, поскольку уменьшение толщины стенки трубы больше у стороны выпуклой матрицы, что приводит к острой пластической деформации. Деформационное упрочнение могло произойти из-за перемещений дислокаций материала, вызванных пластической деформацией. Пластическая деформация так или иначе связана со степенью деформационного упрочнения во время процесса, и результаты согласуются с результатами экспериментального испытания твердости.

Рис.18

Распределение суммарной эквивалентной пластической деформации при различных зазорах при с v = 20 мм / с

Рис.19

Распределение общих эквивалентных пластических деформаций при различных скоростях уплотнения при с г = 0,5 мм

Рис.20

Полная эквивалентная пластическая деформация узлов вдоль области соединения

Рис.21 показано распределение эквивалентных напряжений при различных зазорах уплотнения и скоростях. Максимальное напряжение наблюдается в области соединения. При том же зазоре уплотнения 0,5 мм увеличение скорости уплотнения увеличивает эквивалентное напряжение. При той же скорости уплотнения 20 мм / с увеличение зазора уплотнения с 0,5 мм до 0,7 мм увеличивает эквивалентное напряжение, тогда как увеличение зазора уплотнения с 0,7 мм до 0,9 мм снижает эквивалентное напряжение. Этот результат указывает на то, что эквивалентное напряжение не всегда увеличивается с увеличением зазора уплотнения при той же скорости уплотнения, что, вероятно, связано с большим выделением тепла при малых зазорах уплотнения, которое снижает эквивалентное напряжение.Эквивалентные напряжения в области соединения в различных ситуациях намного больше, чем у исходного материала, что указывает на относительно острую пластическую деформацию в области соединения.

Рис.21

Распределение эквивалентных напряжений при различных уплотняющих зазорах и скоростях уплотнения

Изменение температуры

На рис. 22 показано распределение температуры продольного сечения на этапах 170, 190 и 200 при различных зазорах уплотнения при скорости уплотнения 20 мм / с.Герметичная медная трубка нагревается до 140 ° C перед CWSP. Перед этапом 170 внутренние поверхности, которые должны быть соединены, не соприкасались, и из-за деформации изгиба из-за выпуклой матрицы было получено небольшое количество тепла. При большом зазоре уплотнения полученного тепла недостаточно для компенсации потерь тепла в окружающую среду, что приводит к снижению температуры во всей трубке. Склеиваемые поверхности на этапе 190 находились в полном контакте, и температура увеличивалась с большей скоростью, чем на предыдущих этапах.На рис. 22 (а) показано круговое распределение температуры, которое постепенно уменьшается от центра. Температура увеличивается до максимального значения в конце процесса штамповки на этапе 200 во время формирования соединения. На рисунке видно, что небольшой зазор уплотнения приводит к острой пластической деформации и высокой температуре. На рис. 22 (с) показаны узлы 8781 и 12 052 в середине скрепляющих стен. Узлы выбираются для отслеживания изменения температуры в области склеивания при разных скоростях запечатывания.

Рис.22

Распределение температуры на разных этапах при разных зазорах при с v = 20 мм / с

На рис. 23 показаны температурные кривые узлов 8781 и 12052. Температура узла 8 781 сначала снижается с низкой скоростью, поскольку тепло передается окружающей среде и кристаллу. Кривая начинает медленно увеличиваться по мере того, как начинается процесс пластической деформации и выделяется тепло.Кривая увеличивается с большой скоростью, когда образуется соединение, и достигает пороговой деформации. Однако температура не может увеличиваться при скорости сварки 5 мм / с, пока не произойдет фактическое соединение. Точно так же низкая деформация возникает перед соединением для узла 12052, что демонстрирует отсутствие повышения температуры до установления контакта между соединяемыми поверхностями. Кривые показывают, что пороговая деформация мала при низкой скорости уплотнения [20], а температура увеличивается с высокой скоростью с меньшим количеством шагов.

Рис.23

Температурные кривые узлов 8 781 и 12 052 при разных скоростях уплотнения

Анализ эффекта

Влияние герметизирующего зазора на прочность соединения

На рис.8 показано, что прочность сцепления ослабевает по мере увеличения герметизирующего зазора и изменяется с большим наклоном, что означает, что небольшое изменение герметизирующего зазора вызывает большую вариацию в сцеплении. сила. Большая сила сжатия требуется для уменьшения толщины и возникновения большой пластической деформации с небольшим уплотнительным зазором, что приводит к шероховатой морфологии поверхности и высокой твердости поверхности.После достижения необходимого снижения порога для металлического соединения продолжающееся сжатие для небольшого зазора приводит к слиянию двух границ раздела и получению относительно большого повышения температуры. Прочность соединения быстро увеличивается по достижении пороговой деформации, а затем устанавливается квалифицированное соединение.

Влияние длины уплотнения на прочность соединения

Прочность соединения увеличивается с относительно большим запасом по мере увеличения длины уплотнения. Прочность соединения определяется как пропорциональная площади контакта при холодной сварке [21].ZHANG и BAY [12] предложили соотношение между номинальной прочностью сварного шва ( σ Б ) и эффективное нормальное давление ( p Б ), действующий на части интерфейса как

$$ \ sigma_ {B} = \ psi p_ {B}, $$

(2)

, где ψ – экспонирование перекрывающейся поверхности.Большая длина уплотнения с большой площадью контакта подразумевает большую эффективную площадь соединения и перекрывающуюся открытую поверхность из-за сжимающей нагрузки. Следовательно, большая длина запечатывания приводит к улучшенной прочности склеивания.

Влияние диаметра уплотнения на прочность соединения

Трубка с большим диаметром уплотнения имеет небольшое уменьшение общей толщины при сжатии до определенной толщины, что приводит к слабой прочности соединения. Меньшая пластическая деформация отражает слабую силу сцепления.Увеличение диаметра уплотнения увеличивает площадь соединения, что в некоторой степени увеличивает прочность соединения. Однако этот эффект незначителен, потому что площадь контакта увеличивается в поперечном сечении, и прочность соединения может не удерживать насыщенный пар внутри, когда он недостаточно твердый в любом месте поперечного сечения. Следовательно, увеличение диаметра уплотнения снижает прочность соединения.

Влияние скорости запечатывания на прочность склеивания

Высокая скорость запечатывания приводит к улучшенной прочности склеивания, как показано на рис.7. Низкая скорость запечатывания оказывает небольшое влияние на прочность склеивания, тогда как высокая скорость запечатывания оказывает более значительное влияние на прочность склеивания. Низкая скорость запечатывания обеспечивает достаточно времени для экструзии первичного металла из-за разрушения оксидных пленок или покровных слоев, а необходимое снижение порога склеивания снижается [20]. Высокая скорость уплотнения вызывает очень критическое явление наклепа деформированного металла, которое сталкивается с высоким сопротивлением потоку при высокой скорости деформации.Высокая скорость деформации также увеличивает работу деформации, что вызывает теплоту пластической деформации, которая не может быть передана в течение короткого периода времени. Вырабатываемое тепло позволяет металлу легче течь и образовывать металлическую связь с улучшенным воздействием на металл. В результате выделяемое тепло преобладает и усиливает силу склеивания, тем самым повышая прочность скрепления при высокой скорости запечатывания.

Предотвращение образования холодных трещин при сварке

Когда сварка более прочных стальных материалов, водородное холодное растрескивание (HACC) – это реальная проблема.HACC характеризуется трещинами, которые образуются в сварном шве и / или нагреваются. зона воздействия основного металла после снижения температуры сварного изделия. С участием адекватные сварочные процедуры и уход во время сварки, HACC в значительной степени может быть устранено.


The WelderDestiny Compass: еженедельная подписка на электронный журнал


Вы можете посмотреть прошлые выпуски “The WelderDestiny Compass”, щелкнув здесь.


Аналог. условия:

  • Водород Вспомогательное холодное растрескивание.(HACC)
  • Водородный крекинг.
  • Холодное растрескивание. Под холодным крекингом понимается тот факт, что водородный крекинг происходит только при сварной шов относительно холодный.
  • Отсроченное растрескивание. Водородный крекинг может быть задерживается на много часов. Иногда до 72 часов, хотя это необычный. Гораздо более типичным было бы около 12 часов.
Соединительный шов для берегового трубопровода: Типичная ситуация, при которой может происходить холодное растрескивание с водородом.

Что такое холодный крекинг с водородом?

Там представляют собой ряд различных механизмов, предложенных для холодного крекинга с водородом.Учитывая, что существует множество различных «теорий», я уверен, вы можете себе представить, что единого принятого механизма нет.

А широко распространенная теория состоит в том, что атомы водорода диффундируют через металл, и собираются в «пробелах» в микроструктуре металла. Обычно это было бы на включениях в металле и на границах зерен металла. Однажды атомарный водород собирается, он превращается в молекулярный водород (h3) или даже вступает в реакцию с углеродом с образованием метана в тех точках, где он собирается.Как только водород больше не существует как отдельный атом, он становится слишком большим. легко диффундировать через металлическую структуру. Со временем все больше и больше водород накапливается и приводит к чрезмерному «давлению» в этих очень локализованных точки. Утверждается, что давление может вырасти настолько, что в результате в материале, «раскалывающемся». Это расщепление под давлением вызвало водородом тогда рассматривается как водородный крекинг. Есть проблемы с этим теория, если рассматривать ее изолированно.

Другой теория состоит в том, что водород собирается вокруг включений в металле, таких как карбидные включения. Когда материал затем медленно пластифицируется деформация (может присутствовать при усадке сварных швов при их остывании до комнатной температуры) атомы водорода «увлекаются» движущимися дефектами (называемыми дислокации) до тех пор, пока атомы водорода не будут эффективно закреплять дислокации. Когда это происходит, пластическая деформация больше не может происходить, и материал действует хрупко.Важно отметить, что пластичность металлов из-за движения вывихов. Если вывихи больше не могут двигаться, то пластичности больше нет.

независимо точного механизма, мы знаем, что водородное растрескивание происходит, когда все соблюдены следующие условия:

  • Наличие атомарный водород: При дуговой сварке почти всегда присутствует водород. настоящее время. В основном это происходит из-за загрязнения влаги или углеводорода.
  • Наличие растягивающее напряжение: При отсутствии напряжения водородное растрескивание не принимает место. Во время сварки почти всегда возникают высокие напряжения из-за термическая усадка шва при охлаждении. Любые концентраторы напряжений, такие как Дефекты сварного шва будут иметь тенденцию локально увеличивать уровни напряжений.
  • А чувствительная микроструктура: Определенные структуры материала, такие как «аустенит» (Нержавеющие стали 304 и 316 являются аустенитными материалами при комнатной температуре) не подвержен водородному растрескиванию.Наиболее восприимчивые микроструктуры: те, которые твердые и хрупкие. Высокопрочные стали обычно имеют такие конструкции. Поэтому закаленные сварные швы углеродистых и низколегированных сталей также подвержен водородному растрескиванию.
  • А достаточно низкая температура: Растрескивание происходит только ниже температуры, при которой водород не так легко диффундирует. Обычно предел около 100 ° C. допустимо, хотя в очень неблагоприятных условиях водородный холодный крекинг (HACC) может произойти при температурах немного выше этой.
Зона теплового воздействия Холодное растрескивание в угловом сварном шве: Неполный провар и неравномерная длина ветви увеличивают напряжения в меньшей ветви.

Предотвращение холодного крекинга с водородом (HACC)

В По сути, любая мера, которая устраняет одно из 4 условий, показанных выше, будет исключить водородное растрескивание. Ниже приведен список типичных шагов, которые можно принято, для устранения HACC:

  • Уменьшить уровень водорода: Некоторые сварочные процессы, такие как газовая дуговая сварка вольфрамом (GTAW) по своей природе являются низким содержанием водорода.В случае процессов флюсования, таких как Дуговая сварка защищенного металла (SMAW – также называемая сваркой палкой) флюсом составляющие могут быть составлены с низким содержанием влаги. Это дальше усиливается за счет «запекания» электродов для удаления как можно большего количества влаги. возможный.
  • Применить относительно высокий предварительный нагрев свариваемого материала: Это обычно приводит к при более низких скоростях охлаждения сварного шва и зоны термического влияния (ЗТВ) и в целом приводит к более жесткой микроструктуре.
  • Обслуживание относительно высокая температура между проходами: Если температура сварного шва и зона термического влияния поддерживается выше примерно 100 ° C, для типичных структурных стали, даже в промежутках между сварочными швами, тогда температура не становитесь достаточно низкими, чтобы могло произойти «холодное растрескивание». Для сталей повышенной прочности возможно, потребуется повысить температуру до 150 ° C.
  • Применить пост-нагрев: В этом методе высокая температура предварительного нагрева и промежуточного прохода сохраняется во время сварки.После завершения сварки температура все еще остается на прежнем уровне. поддерживается в течение определенного периода времени. Это называется «пост-тепло». Во время этого поста тепла, водороду, который наносит вред, дается время, чтобы «прогреться» из материала, снижение уровней водорода, доступного, чтобы привести к водородному крекингу.
  • Обслуживание высокая погонная энергия при сварке: Высокая погонная энергия – это еще один способ сказать что количество энергии, прикладываемой при сварке, велико. Тепловая нагрузка составляет обычно измеряется как напряжение, умноженное на силу тока, разделенную на время сварки. Скорость путешествия.Высокое тепловложение обычно приводит к более медленной скорости охлаждения, что обычно приводит к более пластичной микроструктуре. Кроме того, есть немного больше времени при повышенной температуре, что позволяет большему количеству водорода «выпекать» до того, как температура станет достаточно низкой, чтобы позволить холодному растрескиванию происходить.
  • Использование материал, который вряд ли образует твердые, хрупкие микроструктуры: Обычно это достигается за счет использования материалов с низким содержанием углерода. Современные сталелитейные заводы удается получить высокую прочность материала с низким содержанием углерода, используя термомеханически управляемый процесс (TMCP) при прокатке стали на окончательная форма.
  • Использование присадочный металл, более слабый, чем свариваемый основной металл: Если сварной шов металл значительно слабее основного металла и очень пластичен, тогда когда сварной шов подвергается напряжению, пластическая деформация в значительной степени ограничивается металл шва, а не основной металл. Поскольку металл шва не имеет чувствительной микроструктуры, водородное растрескивание маловероятно. Очевидно это означает, что сварной шов слабее основного металла, поэтому сварной шов не в полной мере использовать прочность материала.Чтобы преодолеть это, более слабый сварной шов металл обычно используется только для одного или двух сварных швов, а остальная часть сварного шва прогоны выполняются с присадочным металлом, превышающим соответствующий размер. Это работает, потому что водород растрескивание наиболее распространено в сварном шве при небольшом поперечном сечении. Один раз сварной шов становится «достаточно толстым», он подвергается гораздо меньшей пластической деформации при воздействии термических напряжений, поэтому вероятность водородного растрескивания составляет уменьшенный.
  • Обеспечить что время задержки между сварками сведено к минимуму: Поскольку водородное растрескивание имеет тенденцию чтобы быть механизмом, зависящим от времени, вероятность растрескивания может быть уменьшена за счет обеспечение следующего цикла сварки, в результате которого температура шва повысится. снова, помещается до того, как сварной шов успеет остыть, и для водород накапливается вокруг включений в материале.Самый критический временная задержка между первым и вторым сварочными операциями. По этой причине вторую сварку часто называют «горячим проходом». Идея в том, что этот проход его необходимо нанести как можно скорее, пока сварной шов еще «горячий». Этот горячий проход также нагревает сварной шов до температуры, выше которой водород может быть «выжжен» из сварного шва. Как правило, если время от начало корневого прохода, до начала горячего прохода может быть меньше, чем 8 минут, то водородное растрескивание маловероятно.Иногда это достигается одновременное выполнение нескольких сварочных работ несколькими сварщиками.
  • Использование из аустенитного присадочного металла: Это необычно, но хорошо работает, если нет проблемы с использованием аустенитного наплавленного металла. Это работает, потому что аустенитный сварочный металл может «растворить» весь водород, который реально возникать во время сварки. Это означает, что вождения не так много сила для проталкивания водорода в основной металл, поэтому водородное растрескивание маловероятно.К сожалению, у этого есть ряд недостатков. В Во-первых, типичные сварочные металлы серии 300 слабее, чем высокопрочные. стали, поэтому для повышения прочности необходимо использовать аустенитные наполнители с высоким содержанием никеля. соответствие. Эти наполнители дорогие. Типичная нержавеющая сталь серии 300 материалы также подвержены коррозионному растрескиванию под напряжением в определенных среды, поэтому они не подходят для этих приложений. Другой проблема – гальваническая коррозия, которая может возникнуть, когда углеродистые стали и коррозионно-стойкие сплавы контактируют в агрессивной среде.
  • Уменьшить приложенные напряжения на сварном шве, насколько это возможно, пока вам не удастся наплавьте относительно толстое поперечное сечение сварного шва: В качестве примера при выполнении сварка трубопровода, выравнивающие зажимы, удерживающие соединение вместе, не удаляется до тех пор, пока не будет нанесена большая часть сварного шва. Другой пример – обеспечить наилучшая возможная стыковка концов труб при сварке. Чем хуже подгонка, тем больше напряжения, которые испытывает сварной шов, особенно в корне область сварного шва.Другой пример – завершить сварку перед перемещением сварной шов. Если труба перемещается после того, как был пройден только корневой участок осажденного, тогда напряжения должны быть достаточно высокими, чтобы привести к водородному растрескиванию.

Холодное растрескивание с водородом при сварке трубопроводов

Когда при прокладке магистральных трубопроводов обычно выполняются тысячи сварных швов обязательный. В этих условиях высокопроизводительные сварочные технологии являются важный. Экономия времени на 10% при выполнении такого большого количества сварных швов очень выгодна. с экономической точки зрения.Один из традиционных способов достижения высоких Производительность при сварке этих трубопроводов заключается в использовании целлюлозных электроды с процессом дуговой сварки защищенного металла (SMAW).

В то время как большинство сварных швов магистральных трубопроводов в наши дни выполняется автоматизированной сваркой, трубопроводов по-прежнему используют целлюлозные электроды для «врезных» сварных швов. Причина в том, что у целлюлозных электродов очень проникающая дуга, поэтому они хорошо подходят для выполнения корневых проходов на трубах. Шлак тоже быстрый замораживание, позволяющее использовать последовательность сварки вертикально вниз.Это далее увеличивает скорость и производительность сварки.

Сварка трубопроводов электродами из целлюлозного электрода SMAW: эта ситуация является одной из наиболее подверженных водородному образованию холодных трещин.

большая проблема с целлюлозными электродами заключается в том, что они зависят от влаги в покрытие флюсом, чтобы обеспечить эти преимущества. По замыслу целлюлозные электроды приводят к присутствию большого количества водорода. Следует признать, что когда сварка электродами из целлюлозы всегда присутствует достаточно водорода для приводит к водородному растрескиванию, если присутствуют все другие факторы.

В Помимо высокой производительности сварки, экономичность трубопроводов, как правило, благоприятствует использованию высокопрочных трубопроводных сталей. (Тогда трубопровод может быть тоньше.) Такой высокий Прочностные стали обычно более склонны к водородному растрескиванию, чем стали с более низкой стали бы прочнее. Благодаря такому сочетанию высокопрочных сталей сварены методами сварки с высоким содержанием водорода, холодное растрескивание под водородом (HACC) уделяет большое внимание трубопроводным проектам. Фактически, большинство кросс-кантри В правилах трубопроводов большое внимание уделяется параметрам сварки, которые могут привести к водородный крекинг.По этой причине в этих правилах сварки, как правило, много важные переменные, которые не рассматриваются в других правилах сварки. Это также Важно отметить, что большинство современных сталей для трубопроводов термомеханически Стали с контролируемым технологическим процессом (TMCP), которые повышают стойкость сталей к водородный крекинг.

Это важно отметить, что в наши дни есть альтернативы целлюлозному электроды, но часто конкретная экономика проекта трубопровода все еще может подтолкнуть инженеров-проектировщиков к использованию целлюлозных электродов.

В в случае подводных трубопроводов использование целлюлозных электродов обычно не допускается. разрешается. Это связано с тем, что временные задержки обычно указываются между сварными швами. завершение и начало неразрушающего контроля (NDT) при сварке с процессом сварки с высоким содержанием водорода. Типичные минимальные временные задержки между завершение сварки и начало неразрушающего контроля займет 48 часов при использовании целлюлозные электроды. Это сделано потому, что у вас будет достаточно времени, чтобы убедиться, что что если произойдет холодный крекинг с водородом (HACC), то это произойдет. фактически происходят до проведения тестирования.При сварке на трубоукладочной барже такие временные задержки добавят огромных затрат на операцию по укладке трубопровода. Технически и Поэтому с экономической точки зрения использование целлюлозных электродов просто нецелесообразно.

Ресурсы для снижения риска HACC

как водородный крекинг может иметь тяжелые последствия для безопасности и экономики. многочисленные документы, которые могут помочь нам снизить вероятность образования водорода растрескивание. Часто используемые ресурсы:

  • Сварка Технологический институт Австралии (WTIA) Техническое примечание 1.
  • Австралийский Стандарт на сварку трубопроводов для газа и сжиженного газа, AS / NZS 2885.2, Приложение E.
  • Американский Кодекс по сварке конструкций Общества сварщиков AWS D1.1, приложение H.
  • Европейский Стандарт рекомендаций по сварке ферритных сталей, EN 1011-2 Приложение C.

Кроме того стандарты, упомянутые выше, есть много книг, посвященных сварке сталей без водородного растрескивания, но с использованием одного из указанных выше стандартов вероятно будет достаточно для большинства обстоятельств.



The WelderDestiny Compass: еженедельная подписка на электронный журнал


Вы можете посмотреть прошлые выпуски “The WelderDestiny Compass”, щелкнув здесь.


Изнуряющая жара, леденящий кровь холод

Там, где я вырос, в Амарилло, штат Техас, ветер дует 364 дня в году. Ходят шутки, что зимой между Амарилло и Северным полюсом только забор из колючей проволоки.Нередко холодный ветер достигает 40-50 градусов по Фаренгейту ниже нуля, а метели оседают снегом до крыш.

Здесь, в Далласе, где я сейчас живу, полки продуктовых магазинов опустеют, если выпадет хоть дюйм снега. Но иногда бывают ледяные бури, которые покрывают дорогу слоем льда в несколько дюймов. Я не работал целую неделю после такого шторма.

Летом температура может достигать 110 градусов по Фаренгейту, а влажность настолько высока, что кажется, будто вы находитесь в паровой бане.

Погода влияет на сварщиков независимо от того, в каком климате они живут, и тем более в полевых условиях. Вы получите гораздо лучший сварной шов, если будете чувствовать себя комфортно с точки зрения температуры. Если вам посчастливилось работать в магазине с регулируемым климатом, вам не о чем беспокоиться, кроме случаев, когда вы собираетесь на работу и обратно. Однако магазины, в которых я работал, были ледяными зимой и раскаленными летом!

Летом я сваривал, и пот капал мне на глаза, а стержни шокировали мои мокрые от пота руки.Зимой я сваривал высоко в воздухе, ветер дул по моей спине, у меня болели пальцы рук и ног, а жало тряслось повсюду из-за моей дрожи. Я весь день был наполовину заморожен на заводе, потому что каждая чертова дверь в этом месте была открыта, впуская потоки холодного воздуха.

Я слышал, как люди говорят, что им больше холодно, чем жарко, потому что они всегда могут одеться, чтобы согреться. Это, друг мой, куча БУНКЕРОВ! Обычно они говорят это в очень жаркий день или никогда не проводили длительное время на холоде.

Выросший в Амарилло, я попал в армию на границе с Восточной Германией. Было так холодно, что нам пришлось сунуть зажигалки в рот, чтобы оттаять наши слова! На дежурстве мне было так холодно, что я буквально думал, что сойду с ума. Быть таким холодным – плохая новость, и хотя быть чертовски горячим – это очень плохо, я буду терпеть это в любое время на холоду.

Итак, я сказал себе, что никогда больше не буду мерзнуть после армии. Тогда что я сделал? Я попал в сварку и тут же заморозил хвост в жарких цехах, на порывистых холодных плотинах, электростанциях и многоэтажках.Я наконец понял, что вы должны справляться с любой ситуацией, в которой вы оказались, с позитивным настроем. Если вы попали в плохую ситуацию, вам просто нужно сделать все возможное, чтобы ее исправить. Но не позволяйте мне казаться слишком ярким и радостным – я, как известно, немного раздражаюсь, когда мне холодно.

В цехе или на поле тепло или холод обычно не так сильно влияют на сварку высокопрочной низкоуглеродистой или закаленной конструкционной стали. Я был удивлен, когда узнал, что нам обычно не нужно предварительно или повторно нагревать колонны и балки на холоде.

В большинстве случаев предварительный нагрев стали для строительных работ непрактичен, потому что вы ползаете повсюду в самых неудобных положениях. Причина, по которой нам не нужен предварительный нагрев, заключается в том, что погода обычно достаточно мягкая, и потому, что мы обычно работаем с толстой сталью с небольшой зоной термического влияния (HAZ). (Зона термического влияния – это область, где микроструктура основного металла изменяется из-за тепла от сварного шва.) Из-за небольшой ЗТВ кристаллическая структура стали не изменяется, или высокая скорость охлаждения создает микроструктуру адекватная сила.

Обычно термообработанные мягкие стали подвергаются дуговой сварке без предварительного нагрева. Однако предварительный нагрев следует использовать, когда температура металла ниже примерно 50 градусов F (10 градусов C), и предварительный нагрев примерно до 100 градусов F (38 градусов C) или выше, если толщина листа превышает 1 дюйм. (25,4 мм) или если соединение сильно стеснено. 1

Однако во многих случаях требуется предварительный и последующий нагрев. На самом деле я слышал о сварщиках, которые должны предварительно нагревать огромные стальные фермы до 200 градусов прямо в середине лета на работе здесь, в Далласе.В то время было около 110 градусов тепла, и большинство металлистов «тянули» (вынимали инструменты и убирались оттуда), как только получали свою первую зарплату.

У каждого есть определенная температура, при которой ему комфортно. Мне очень нравились 60-70-е. У нас есть эта часть мозга, называемая гипоталамусом, которая определяет температуру нашей крови. Если температура слишком высокая или низкая, гипоталамус посылает сигналы, которые заставляют нас потеть или дрожать соответственно.Пот испаряется и охлаждает тело, а дрожь создает энергию, которая помогает нагреть тело.

Как справиться с простудой

Холодно больно! Когда сварщик страдает от холода, ему или ей трудно сосредоточиться на сварке. Существуют меры, которые можно предпринять для борьбы с воздействием температуры, вызывающей переохлаждение костей.

Руководители:

Сделайте так, чтобы вашим сотрудникам было максимально комфортно. Я не говорю, что вам нужно развести для них камин и подать им горячее какао, но создание комфортной обстановки не требует больших денег или усилий.Помогая своим работникам чувствовать себя более комфортно, вы демонстрируете заботу о них, а это хорошо для морального духа. Рабочий, который чувствует, что его ценят и который чувствует себя комфортно, станет лучшим производителем.

Вы можете купить бутановый обогреватель для магазина, который обогреет большую площадь, примерно за 80 долларов.

В полевых условиях это немного сложнее, потому что сварщики обычно находятся в разных местах и ​​в течение разного времени. Вы по-прежнему можете установить обогреватели в различных местах, где сварщики могут время от времени греться.И снова рабочие будут более продуктивными, если они будут чувствовать себя комфортно и цениться.

Сварщики:

Точно так же, как вам нужны подходящие инструменты для работы, вам также нужна подходящая одежда для работы. Я помню ученика, который пришел на работу на плотине в теннисных туфлях. После того, как все на стройплощадке перестали смеяться, главный прораб отправил его домой за сапогами. Дом находился в 110 милях от дома, так что в тот день ученик усвоил тяжелый урок.

Однажды утром я получил тяжелый урок на работе за пределами Амарилло.Это было в 70-е, большую часть октября. Мы привыкли к этому и работали с короткими рукавами, когда влетел синий северный ветер. Мы могли видеть его приближение за два часа до его удара – небо стало темно-синим, и накатились огромные зимние снежные облака. час температура упала с высоких 70 до низких 30. Никто из нас не хотел идти домой, потому что была пятница, и мы не хотели терять нашу «звонилку» (40-часовую зарплату). Мы облачились в дождевик и все, что могли достать, и пережили тот долгий холодный полдень.С того дня я круглый год хранил пальто в своем грузовике!

Строительных курток популярных брендов и длинного нижнего белья обычно достаточно для защиты от холода. Некоторые сварщики предпочитают комбинезоны или комбинезоны, но от них мне становится жарко и пот, а когда я их снимаю, мне становится холодно. Кроме того, я едва могу двигаться со всем этим, а отсутствие мобильности – это плохо, когда вы работаете на высоком уровне. Я обнаружил, что утепленные жилеты и каски, закрывающие уши, действительно помогают. Шерстяные носки тоже помогают, но, клянусь, я никогда не находил способа согреть пальцы рук и ног.

Холод может быть опасен во многих отношениях. Может случиться обморожение, ваше зрение может затуманиться от холодного ветра, и вы можете потерять контроль над инструментами. Сильный холод может даже повлиять на ваше суждение. Но правильная одежда и термос с кофе помогут вам чувствовать себя более комфортно.

Работа с теплом

Те из вас, кто живет на Юге, говорят: «Да, верно, мне холодно только тогда, когда кондиционер установлен слишком низко; как насчет тепла?»

Хотя холод влияет на меня больше, я знаю, что 100-градусные дни могут быть ужасными как в магазине, так и в поле.Один мой знакомый слесарь потерял сознание и упал с восьми этажей насмерть из-за теплового удара.

Тепловой удар возникает при перегреве тела и опухании мозга. В жаркую погоду обязательно пить много жидкости, желательно воды. Начальники, принесите на стройплощадку большой кувшин утоляющего жажду. И сварщики, следите за тем, чтобы избежать обезвоживания. И я не имею в виду местную “водопой”!

Ссылка


1. Справочник по сварке Том 4, 8 -е издание – Материалы и применение, Часть 2 (Майами: Американское сварочное общество, 1998).

Автор: alexxlab

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *